
 

General formulation of the electromagnetic field distribution in
machines and devices using Fourier analysis.
Citation for published version (APA):
Gysen, B. L. J., Meessen, K. J., Paulides, J. J. H., & Lomonova, E. (2010). General formulation of the
electromagnetic field distribution in machines and devices using Fourier analysis. IEEE Transactions on
Magnetics, 46(1), 39-52. https://doi.org/10.1109/TMAG.2009.2027598

DOI:
10.1109/TMAG.2009.2027598

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://doi.org/10.1109/TMAG.2009.2027598
https://doi.org/10.1109/TMAG.2009.2027598
https://research.tue.nl/en/publications/81344fc6-8ff3-48f8-809f-1aa1e165405a


IEEE TRANSACTIONS ON MAGNETICS, VOL. 46, NO. 1, JANUARY 2010 39

General Formulation of the Electromagnetic Field Distribution in Machines

and Devices Using Fourier Analysis

B. L. J. Gysen, K. J. Meessen, J. J. H. Paulides, and E. A. Lomonova

Electromechanics and Power Electronics Group, Department of Electrical Engineering, Eindhoven University of Technology,

5600 MB, Eindhoven, The Netherlands

We present a general mesh-free description of the magnetic field distribution in various electromagnetic machines, actuators, and
devices. Our method is based on transfer relations and Fourier theory, which gives the magnetic field solution for a wide class of two-
dimensional (2-D) boundary value problems. This technique can be applied to rotary, linear, and tubular permanent-magnet actuators,
either with a slotless or slotted armature. In addition to permanent-magnet machines, this technique can be applied to any 2-D geometry
with the restriction that the geometry should consist of rectangular regions. The method obtains the electromagnetic field distribution
by solving the Laplace and Poisson equations for every region, together with a set of boundary conditions. Here, we compare the method
with finite-element analyses for various examples and show its applicability to a wide class of geometries.

Index Terms—Boundary value problem, Fourier analysis, permanent magnet.

LIST OF SYMBOLS

Magnetic vector potential m

Magnetic flux density vector

Remanent flux density

Unit vector -

Magnetic field strength vector m

Height

Current density vector

Region number -

Longitudinal direction

Magnetization vector m

Harmonic number

Harmonic number

Normal direction

Tangential direction

Spatial frequency or rad

Magnetic susceptibility

Offset in tangential direction

Permeability m

Permeability of vacuum m

Relative permeability

Angular direction

Width or rad

Bessel function of first kind of 0th order

Bessel function of first kind of 1th order

Bessel function of second kind of 0th order

Bessel function of second kind of 1th order
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I. INTRODUCTION

E
XTENSIVE modeling of the electromagnetic field distri-

bution has become a crucial step in the design process

for developing electromagnetic devices, machines, and actua-

tors which have improved position accuracy, acceleration, and

force density. During recent years, a lot of research and devel-

opment has been conducted to be able to model or predict the

magnetic field distribution in electromagnetic structures. Sev-

eral analytical, semianalytical, and numerical techniques exist

in the literature:

• the magnetic equivalent circuit (MEC) [1], [2];

• the charge model (CM) [3], [4];

• transfer relations—Fourier analysis (TR-FA) [5]–[8];

• Schwarz-Christoffel conformal mapping (SC) [9]–[12];

• finite-element method (FEM) [13];

• boundary-element method (BEM) [14].

In general, each type of problem will have its own optimal

modeling technique, since high accuracy is not always pre-

ferred and a low computational time could be more important.

For almost every technique, these requirements are a tradeoff,

although the increased computational capability of micropro-

cessors enhanced the use of numerical methods. A large class

of the mentioned methods (MEC, SC, FEM, FEM, amd BEM)

require geometry discretization, mesh, prior to the calculation

of the electromagnetic field distribution; hence, only solutions

at the predefined points are obtained. An increased mesh den-

sity improves the accuracy, but also increases the computational

time. Additionally, correct geometry discretization requires

prior knowledge to get a reliable solution. In ironless structures,

without concentrated magnetic fields, or machines with a small

air gap and a large outer size, these methods become even more

problematic due to the necessity of a high mesh density and/or

size.

For analytical or numerical calculation of secondary parame-

ters, like force, electromotive force, or inductance, only the field

solution at a predetermined point or “line” is necessary. Numer-

ical methods require the solution for the total meshed geom-

etry in order to obtain these secondary parameters [15]–[17].
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Therefore, a mesh-free solution is preferred since the computa-

tional time reduces and, in certain problems, it even allows for

analytical expressions which provide for direct means to illus-

trate the dependencies of the geometric parameters and material

properties.

This paper will discuss the analytical calculation of the elec-

tromagnetic fields using transfer relations and Fourier analysis.

The direct solution of the magnetostatic Maxwell equations is

considered, which reduces to the Laplace equation in the air

region and the Poisson equation in a magnet or current car-

rying region. This method originates from the book of Hague

[5], which only considers the field solution for arbitrary posi-

tioned current carrying wires between two parallel or concen-

tric iron surfaces. Boules [7] applied this work for permanent

magnets by replacing them by an equivalent distribution of am-

pere-conductors and using Hague’s field solution. The disad-

vantage is that no irregular iron shapes can be considered and

that the magnet should have a simple geometric shape and mag-

netization direction. The solutions of the Maxwell equations in-

cluding permanent magnets described by harmonic series were

published by Zhu et al. [8]. Recently, several publications ex-

tended this method considering specific problems in different

coordinate systems [18]–[24].

In this paper, the method is extensively described in a gener-

alized manner, focusing on:

• model formulation;

• methodology;

• general field solutions in two-dimensional (2-D) coordi-

nate systems;

• examples in 2-D coordinate systems (FEM comparison);

• numerical limitations.

The model formulation can be applied for general 2-D prob-

lems in the Cartesian, polar, and cylindrical coordinate system.

The distinction between regions with periodical boundary con-

ditions and Neumann boundary conditions in the tangential di-

rection is made. Therefore, irregular rectangular iron shapes can

be considered; hence, a wide range of devices can be modeled

using this technique. Examples of the analytical solution for the

three coordinate systems are compared with 2-D finite-element

analysis (Cedrat FLUX2D [25]). Furthermore, numerical prob-

lems and drawbacks for certain conditions will be addressed.

II. MODEL FORMULATION

A. Model Assumptions

To obtain a semianalytical field solution, the following as-

sumptions have to be made:

1) the problem can be described by a 2-D model;

2) the materials are linear;

3) the materials are homogeneous;

4) the soft-magnetic material (iron) is infinite permeable;

5) source terms are invariant in the normal direction within

one region.

General electromagnetic devices have a 3-D geometry. Since

only 2-D problems can be considered, the geometry should be

invariant with one of the three dimensions, or its dependency

should be negligible. In general, this is a valid assumption since

TABLE I
COORDINATE SYSTEMS

for example, in rotary actuators the 3-D effects due to the finite

axial length are often negligible, and in tubular actuators, the

axisymmetry results inherently in a 2-D problem description.

A large class of long-stroke actuators and machines exhibit a

certain symmetry or periodicity. The use of Fourier theory al-

lows one to use that periodicity to describe the magnetic field

distribution. If the 2-D problem has no periodicity, it can be ob-

tained by repeating the problem in the direction where the pe-

riodicity should be obtained with the assumption that the elec-

tromagnetic influence of the repetition on the 2-D problem is

negligible. Three different 2-D coordinate systems will be con-

sidered: Cartesian , polar , and cylindrical . The

direction of periodicity is arbitrary for the Cartesian coordinate

system; either the or the -direction can be used, however, the

-direction is chosen in this paper. For the polar and cylindrical

coordinate system, the direction of periodicity is the and -di-

rection, respectively, since physically no electromagnetic peri-

odicity can be obtained in the -direction. For generality the

normal direction is referred as the -direction, the direction of

periodicity or the tangential direction is referred as the -direc-

tion, and the longitudinal (invariant) direction is referred as the

-direction. A summary of the considered coordinate systems is

given in Table I.

The analytical solution only applies to linear problems;

hence, the permeability of all materials is assumed to be

isotropic and homogenous. The permanent magnets are mod-

eled with a linear - magnetization curve in the second

quadrant with remanence and relative recoil permeability

.

The relative permeability of the soft-magnetic material is as-

sumed to be infinite; hence, the magnetic field distribution is

not calculated inside the soft-magnetic material but the mag-

netic field strength normal to the boundary of the soft-magnetic

material is set to zero (Neumann boundary condition).

The source regions, magnets or current carrying coils, are in-

variant in the normal direction. This implies that a source that

varies in the normal direction should be described by multiple

regions [23].

B. Examples

For every coordinate system, an example will be given

which indicates the applicability of the proposed method. For

the Cartesian coordinate system a structure enclosed with

soft-magnetic material is considered which has an irregular

rectangular shape, Fig. 1. This indicates that the model is

even applicable to structures enclosed by soft-magnetic mate-

rial without periodicity. The example in the polar coordinate

system is a three-phase rotary brushless permanent-magnet

actuator with slotted stator, Fig. 2, indicating the ability of
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Fig. 1. Boundary value problem in the Cartesian coordinate system.

Fig. 2. Boundary value problem in the polar coordinate system, a three-phase
slotted brushless PM actuator.

modeling slotted permanent-magnet actuators in a semianalyt-

ical manner. For the cylindrical coordinate system, a slotless

tubular permanent-magnet actuator with axial magnetization is

modeled, Fig. 3. In that particular example, the field distribution

due to a finite stator length will be calculated which allows for

cogging force calculation, as discussed in [21] for radial and

Halbach magnetization.

C. Division in Regions

In order to solve the total field distribution in the electro-

magnetic actuator or device, the 2-D geometry will be divided

into several regions. Since the soft-magnetic materials are as-

sumed to have infinite permeability, three different regions are

considered:

• source-free regions (air, vacuum);

• magnetized regions (permanent magnets);

• current carrying regions (coils, wires).

Every region should be enclosed by four boundaries where each

boundary is in parallel with one of the two variant dimensions

under consideration (normal or tangential). When a boundary is

Fig. 3. Boundary value problem in the cylindrical coordinate system, a slotless
tubular PM actuator.

not in parallel with one of the two dimensions, it can be approxi-

mated by a finite number of rectangles with varying length [23].

The division in and number of regions defines the form of the so-

lution and the complexity of the problem. For the examples con-

sidered, a number of 6, 7, and 12 regions is necessary to model

the boundary value problem for the Cartesian (Fig. 1), polar

(Fig. 2), and cylindrical (Fig. 3) coordinate system, respectively.

To simplify the magnetic field formulation, each region has a

local coordinate system. The main coordinate system is ,

where the local coordinate system for every region is

defined as

(1)

where the offset is indicated in Figs. 4 and 5.

D. Motion

Since all regions have a parameter defining the offset in

the tangential direction, motion in this direction can easily be

implemented. Defining a set of fixed regions and a set of moving

regions, an increment of the parameter for all regions within

the moving set results in a positive displacement. Now it is pos-

sible to calculate the field distribution for all positions of the

moving part.

E. Boundary Value Problem

Dividing the geometry in regions results in a boundary value

problem. This type of problem has three types of boundary con-

ditions: periodic, Neumann, and continuous. The boundaries

of a region parallel to the -direction should both be periodic

(Fig. 4) or Neumann (Fig. 5). The boundaries parallel to the
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Fig. 4. Definition of a region with periodic boundaries.

Fig. 5. Definition of a region with Neumann boundaries.

-direction can either be Neumann or continuous or a combi-

nation of both. The division in regions is such that each region

has constant permeability and the source term does not vary in

the normal direction.

The reason for applying Fourier theory to the solution of the

magnetic field distribution is to satisfy the boundary conditions

in the tangential direction (constant ).

For a region with periodic boundary conditions, Fig. 4, and

width , choosing the mean period of for the Fourier

series of the magnetic field inherently satisfies the periodic

boundary conditions.

For a region with soft-magnetic boundaries, Fig. 5, the tan-

gential magnetic field component at the boundary has to be zero.

As a sine function has two zero crossings (at 0 and ), de-

scribing the component of the magnetic field tangential to the

boundary by means of a Fourier series with mean period ,

where is the width of the region, inherently satisfies the Neu-

mann boundary condition .

The boundary conditions in the normal direction (constant

) will result in a set of equations which are used to solve the

unknown coefficients of the magnetic field description which

will be discussed in Section IV.

III. SEMIANALYTICAL SOLUTION

A. Magnetostatic Maxwell Equations

In order to solve the magnetostatic field distribution, the mag-

netic flux density can be written in terms of the magnetic vector

potential as

(2)

since . For the remainder of this paper, the definition

of the magnetization vector as employed by Zhu [8] will be

used wherein

(3)

(4)

with the magnetic susceptibility and the residual magne-

tization. This definition of the magnetization vector gives the

constitutive relation in the form of

(5)

(6)

where is the relative permeability of the considered

region . This reduces the magnetostatic Maxwell equations to

a Poisson equation for every region , given by

(7)

with . Since only 2-D boundary value problems are

considered, the magnetization vector only has components

in the normal and tangential direction and the cur-

rent density vector has only a component in the longitudinal

direction . Therefore, the magnetic vector potential has only

a component in the longitudinal direction which is only

dependent on the normal and tangential direction . The

Poisson equations in the different coordinate systems are there-

fore given by

Cartesian :

(8)

Polar:

(9)

Cylindrical:

(10)

Note that when a particular region is considered, the local

coordinate systems need to be considered by replacing by .

The magnetic flux density distribution can be obtained from the

solution of the magnetic vector potential by means of (2) and
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the magnetic field strength is obtained from the flux density

distribution by means of the constitutive relation (6).

B. Source Term Description

The description of the Fourier series for the source terms is

different for regions with periodical boundary conditions in the

tangential direction than for region with Neumann boundary

conditions in the tangential direction, see Figs. 4 and 5. The

function which describes the source term, magnet or coil region,

will be assigned as , which can be the normal or tangen-

tial magnetization component , or the longitudinal current

density component

(11)

(12)

(13)

(14)

(15)

where the spatial frequencies for every region are defined

as

(16)

For regions with periodical boundary conditions, the width of

the region is defined as . Hence, using general Fourier theory,

the source function as function of the tangential direction

for region can be written in terms of Fourier series as

(17)

(18)

(19)

(20)

For regions with Neumann boundary conditions, the width of

the region is defined as , but the main period of the Fourier

series for the source term is still . The total source descrip-

tion is therefore obtained by applying the imaging method [5],

where the source is mirrored around its tangential boundaries

as indicated in Fig. 6. A consequence of this imaging method

is that, for normal magnetized regions, the cosine terms will

be zero and, for the tangential magnetized regions

and longitudinal current density regions, the sine terms will be

zero . After applying the imaging method,

(17) to (20) can still be applied.

Fig. 6. Source description for regions with Neumann boundary conditions in
tangential direction. (a) Normal magnetized region. (b) Tangential magnetized
region. (c) Longitudinal current source region.

C. Semianalytical Solution

Since the source terms are expressed by means of Fourier

analysis, the resulting solution for the magnetic vector potential

is also written in terms of Fourier components. The Poisson

equation is solved with the use of separation of variables,

hence the solution for the vector magnetic potential is given

by a product of two functions, one dependent on the normal

direction and one on the tangential direction . As men-

tioned before, the functions for the tangential direction are

sine and cosine functions since a Fourier description is used.

The function for the normal direction is such that the Poisson

equation is satisfied

(21)

(22)

Hence, the expressions for the magnetic flux density distribution

can generally be written as

(23)

(24)

(25)
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where the functions and can be ob-

tained by considering the transfer relations for every coordinate

system [6], and are given by

1) Cartesian Coordinate System:

(26)

(27)

(28)

(29)

(30)

where and are defined as

(31)

(32)

2) Polar Coordinate System:

(33)

(34)

(35)

(36)

(37)

where and are defined as

(38)

(39)

(40)

(41)

Cylindrical Coordinate System:

(42)

(43)

(44)

(45)

(46)

where and are defined as

(47)

(48)

(49)

(50)

and and are defined as

(51)

(52)

For regions with Neumann boundary conditions in the tan-

gential direction, Fig. 5, should be zero at the tangential

boundaries of the region; consequently, only contains sine

terms . Since the normal and tangential component

of the magnetic flux density are linked via the magnetic vector

potential, the sine terms of the tangential component will also

be zero in that case .

The set of unknowns and or for every

region are solved considering the boundary conditions in the

normal direction which will be discussed in the following

section.

IV. BOUNDARY CONDITIONS

Due to the proper choice of the solution form for the magnetic
flux density distribution, the boundary conditions in the tangen-
tial direction are inherently satisfied as discussed in Section II.
To solve the unknown coefficients in the set of solutions for
the magnetic flux density distribution, the boundary conditions
in the normal direction have to be considered. Five types of
boundary conditions can be distinguished:

• Neumann boundary conditions;
• continuous boundary conditions;
• combination of Neumann and continuous boundary

conditions;
• conservation of magnetic flux;
• Ampère’s law.

Each of them will be considered in the following subsections.

A. Neumann Boundary Condition

A Neumann boundary condition (tangential magnetic field
strength must be zero) appears at the normal interface between a
region and a soft-magnetic material at a certain height ,
as shown in Fig. 7

(53)
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Fig. 7. Neumann boundary condition for a region � with (a) periodic boundary
conditions and (b) Neumann boundary conditions in the tangential direction.

Using the constitutive relation (6), (53) can be written in terms
of the magnetic flux density and magnetization as

(54)

Equation (54) implies that the sum of a Fourier series needs
to be zero at height for all . This can be obtained
if every harmonic term of the Fourier series is zero including
the dc term; hence, both the coefficients for the sine and cosine
terms need to be zero as well as the dc term. Equation (54) can
therefore be rewritten in the following set of equations for every
harmonic :

(55)

(56)

(57)

B. Continuous Boundary Condition

For the continuous boundary condition, the normal compo-

nent of the magnetic flux density needs to be continuous as
well as the tangential component of the magnetic field strength

at the boundary between region and giving

(58)

(59)

Using the constitutive relation (5), (59) can be written in terms
of the magnetic flux density as

(60)

The two regions ( and ) have the same width and equal offsets
, as shown in Fig. 8. This implies that both regions

have the same spatial frequencies and the
same coordinate systems . Applying (58) and (60) to
the flux density distributions at the boundary height
will result in equating two Fourier series with equal fundamental
frequency. Consequently (58) and (60) should hold for every

Fig. 8. Continuous boundary condition between a region � and � with (a) peri-
odic boundary conditions and (b) Neumann boundary conditions in the tangen-
tial direction.

harmonic; hence, the coefficients for both the sine and the cosine
function should be equal as well as the dc terms.

Equation (58) will give the following set of equations for
every harmonic :

(61)

(62)

The boundary condition for the continuous tangential mag-
netic field strength (60) will result in the following set of equa-
tions for every harmonic :

(63)

(64)

(65)

C. Combination of a Neumann and Continuous

Boundary Condition

A combination of Neumann and continuous boundary con-
ditions occurs at an interface between regions which have un-
equal width and/or unequal offsets. In general, it concerns the
boundary condition at height , between a region on
one side, and one or more regions , on the other
side. A general example for is shown in Fig. 9(a) where
region has periodic boundary conditions in tangential direc-
tion and Fig. 9(b) where region has Neumann boundary con-
ditions in tangential direction. The region will always have
Neumann boundary conditions in the tangential direction. The
technique for solving this type of boundary conditions is for ex-
ample discussed in [18], [22]. The normal magnetic flux density
component of every region should equal the normal mag-
netic field component of region on the boundary at .

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 8, 2010 at 07:47 from IEEE Xplore.  Restrictions apply. 



46 IEEE TRANSACTIONS ON MAGNETICS, VOL. 46, NO. 1, JANUARY 2010

Fig. 9. Boundary condition between regions � � � � and � with (a) periodic
boundary conditions and (b) Neumann boundary conditions in the tangential
direction.

Furthermore, the tangential magnetic field strength component
of region must equal the tangential magnetic field strength

component of every region on the respective boundary, and
equal zero elsewhere. Therefore, the boundary conditions are
rewritten in the form

(66)

(67)

Applying the constitutive relation (5) to (67) gives

(68)

Boundary condition (66) implies that two waveforms which
have a different fundamental frequency should be equal for a
certain interval. Boundary condition (68) implies that a wave-
form should be equal to another waveform with different fun-
damental frequency and zero elsewhere. Both boundary condi-
tions are solved using the correlation technique which will be
described in the following subsections.

1) Normal Magnetic Flux Density: Substituting the general
functions for the magnetic flux density distribution in (66) gives
the following equations:

(69)

However, this equation has to be rewritten into an infinite
number of equations in order to solve the infinite number of un-
knowns. Therefore, the coefficients of region are written as
a function of the coefficients of region . This can be obtained
by correlating (69) with and , respec-
tively, over the interval where the boundary condition holds.
Since the correlation on the left-hand side is only nonzero for
the harmonic that is considered for the sine or cosine term,
respectively, the summation over disappears giving

(70)

(71)

which is a set of equations for every and region where the
correlation functions and are given by

(72)

(73)

(74)

(75)

The solutions of these integrals are given in the Appendix.
2) Tangential Magnetic Field Strength: Substituting the gen-

eral functions for the magnetic flux density distribution in (68)
gives the following single equation:

(76)
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However, this equation has to be rewritten into an infinite
number of equations in order to solve the infinite number of un-
knowns. Therefore, the coefficients of region are written as
a function of the coefficients of region . This can be obtained
by correlating (76) with and , respectively,
over the interval where the boundary condition holds (width of
region ). The conditional (76) can be written into an uncondi-
tional one by changing the bounds of the right-hand-side cor-
relation integrals into the bounds where the boundary condition
holds. Since the correlation on the left-hand side is only nonzero
for the harmonic that is considered for the sine or cosine term,
respectively, the summation over disappears giving

(77)

(78)

which is a set of equations for every where the correlation
functions and are given by

(79)

(80)

(81)

(82)

(83)

(84)

The variable is equal to 1 when region has periodic boundary
conditions in tangential direction and equal to 2 when region
has Neumann boundary conditions in tangential direction. The
solutions of these integrals are given in the Appendix.

Fig. 10. Conservation of magnetic flux around soft-magnetic blocks sur-
rounded by regions �� � � � � and �.

D. Conservation of Magnetic Flux

When the source term of a region inhibits a dc term for the
magnetization in the tangential direction or current
density in the longitudinal direction , the magnetic
flux density in the tangential direction has an extra unknown
( for Cartesian and cylindrical coordinate system or

for the polar coordinate system).
When this region has a Neumann boundary condition in the

normal direction, this extra unknown is solved by the boundary
condition given in (57). In the case this region has a continuous
boundary condition in the normal direction, this extra term is
solved by (65). However, when this region is situated between
two other regions with different fundamental period, an extra
boundary condition is necessary to solve the extra term. This sit-
uation occurs for example with regions II of example 3 (Fig. 3)

, or with regions and of Fig. 10 . In
these situations, soft-magnetic “blocks” appear in the structure
which are surrounded by four different regions ( and
in Fig. 10).

The extra boundary condition is given by setting the diver-
gence of the magnetic field to zero (conservation of magnetic
flux) around the surface of the soft-magnetic block

(85)

Since only 2-D problems are considered, this surface integral
changes to a line integral over the boundary of the block; hence,
the boundary condition for every coordinate system is given by

Cartesian:

(86)

Polar:

(87)
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Fig. 11. Ampère’s law around soft-magnetic blocks surrounded by regions ��

� � � � and �.

Cylindrical:

(88)

For a problem concerning blocks on the same layer, the
same number of boundary conditions are obtained. However,
only -1 conditions are independent when the model is peri-
odic. The final independent equation is obtained by applying
Ampère’s law as explained in the following subsection.

E. Ampère’s Law

The final equation for solving the extra terms as explained in
the previous section is given by taking the contour integral of
the magnetic field strength as shown in Fig. 11. Note that this
contour integral could also be applied at the top of regions .
The contour integral is given by

(89)

For every coordinate system, this equation reduces to

(90)

V. FINITE-ELEMENT COMPARISON

A. Example in the Cartesian Coordinate System

In this example, every region has Neumann boundary condi-

tions in the tangential direction; hence, and of every

region are zero or the coefficients and are set to zero. The

normal magnetization of region II only has sine compo-

nents and the longitudinal current den-

sities of region IV and IV only have a dc component

. Neumann boundary conditions (56) and (57) are ap-

plied at the bottom of region I and I and the top of region IV

and IV . Furthermore, a continuous boundary condition is ap-

plied between region II and III given by (61) and (64). Finally, a

combination of Neumann and continuous boundary condition is

Fig. 12. Analytical solution of the magnetic flux density distribution for the
example in the Cartesian coordinate system.

applied at the bottom of region II and the top of region III given

by (70) and (78). Solving the set of equations for the parameters

given in Table II gives the analytical solution shown in Fig. 12.

Comparing this solution with the 2-D finite-element analysis in

Fig. 13 shows excellent agreement for every region. The only

noticeable discrepancy is at the left and right boundary of the

magnet in region II. Only a finite number of harmonics can be

taken into account to describe the discontinuous magnetization

profile.

B. Example in the Polar Coordinate System

This example considers a rotary actuator with slotted stator.

The translator has a quasi-Halbach magnet array; hence, the

magnetization profile of region II consists of a normal

and tangential magnetization, only the dc components are

zero . The magnetic field should be zero at

the center of the nonmagnetic shaft; hence, the coefficients

and of region I are set to zero. Regions IV have Neumann

boundary conditions in the tangential direction; hence, coeffi-

cients and of those regions are zero. The longitudinal cur-

rent densities of regions IV have a dc term and cosine terms;

hence, only the sine terms are zero . The amplitudes

of the different currents are given by

(91)

(92)

(93)

where the commutation angle is set to radians

in this example. Neumann boundary conditions (56) and (57)

are applied at the top of regions IV . Furthermore, continuous

boundary conditions are applied between region I and II and

between II and III given by (61), (62), (63), and (64). Finally,

a combination of Neumann and continuous boundary condition

is applied at the top of region III given by (70), (71), (77), and

(78). Solving the set of equations for the parameters given in
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Fig. 13. Finite-element solution of the magnetic flux density distribution for
the example in the Cartesian coordinate system.

TABLE II
PARAMETERS OF THE MODEL IN THE CARTESIAN COORDINATE SYSTEM

Table III gives the analytical solution shown in Fig. 14. Again,

very good agreement is obtained with the 2-D finite-element

analysis shown in Fig. 15. It can be observed that only the mag-

netic field distribution inside the quasi-Halbach array is difficult

to obtain, since again, a high number of harmonics is required

to obtain an accurate description of the discontinuous magneti-

zation profile.

C. Example in the Cylindrical Coordinate System

The translator of the actuator under consideration consists

of an axial magnetized permanent-magnet array with soft-mag-

netic pole pieces. Hence, regions II have a tangential magneti-

zation with only a dc term . Furthermore,

these regions as well as region IV have Neumann boundary con-

ditions in the tangential direction; hence, coefficients and

are zero. The magnetic flux density has to be zero at the center

of the axis, setting the coefficients and for region I to zero.

Additionally, since region V has infinite height, coefficients

and are set to zero since the magnetic field is assumed to

be zero at . A combination of Neumann and continuous

boundary conditions is applied at the top and bottom of regions

II and IV given by (70), (71), (77), and (78). Furthermore, the

divergence of the magnetic field is set to zero around 7 of the

8 pole pieces given by (88), since the 8th equation would not

Fig. 14. Analytical solution of the magnetic flux density distribution for the
example in the polar coordinate system.

Fig. 15. Finite-element solution of the magnetic flux density distribution for
the example in the polar coordinate system.

TABLE III
PARAMETERS OF THE MODEL IN THE POLAR COORDINATE SYSTEM

be an independent equation. The last independent equation is

given by applying Ampère’s law at the bottom or top of regions

II given by (90). Solving the set of equations for the parameters

given in Table IV gives the analytical solution shown in Fig. 16.
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Fig. 16. Analytical solution of the magnetic flux density distribution for the
example in the cylindrical coordinate system.

Fig. 17. Finite-element solution of the magnetic flux density distribution for
the example in the cylindrical coordinate system.

Again, very good agreement is obtained with the 2-D finite-ele-

ment analysis shown in Fig. 17. In this case excellent agreement

is obtained for every region including the magnets since in this

case, in order to describe the magnetization profile, only the dc

component is necessary.

TABLE IV
PARAMETERS OF THE MODEL IN THE CYLINDRICAL COORDINATE SYSTEM

VI. NUMERICAL LIMITATIONS

Modeling techniques which use a meshed geometry will have

a limited accuracy related to the density of the mesh. The frame-

work based on Fourier theory exhibits a similar problem in the

frequency domain. Therefore, the inaccuracies of the proposed

method are all related to the limited amount of harmonics in-

cluded in the solution. The two reasons for the possibility of

including a finite number of harmonics is a limiting computa-

tional time and numerical accuracy. For an increased harmonic

number, the value of the coefficients and are decreasing

while and are increasing. Solving the sets of equations for

the boundary conditions results in a system of equations which

is ill-conditioned; hence, the solution becomes inaccurate.

This problem can be reduced by including proper scaling of

the coefficients and for every region. This is pos-

sible in the Cartesian and polar coordinate system since

Cartesian: (94)

Polar: (95)

for a given normal height . However, this scaling technique

cannot be applied for Bessel functions, making problems in

the cylindrical coordinate system difficult, if not impossible, to

scale.

Limiting the number of harmonics will lead to inaccurate field

solutions at discontinuous points in the geometry, especially at

the corner points of magnets, current regions, or soft-magnetic

material. The correlation technique which is used to satisfy the

boundary conditions between regions with different spatial fre-

quencies has drawbacks when only a finite number of harmonics

can be considered. In order to illustrate the effect, the analytical

field solution is plotted at the boundary between region II and

region III of the example in the cylindrical coordinate system to-

gether with the finite-element solution for the normal magnetic

flux density in Fig. 18 and the tangential magnetic field strength

in Fig. 19. However, this inaccuracy decays when the field solu-

tion is not calculated at the boundaries but close to, for example

in the center of region III, as shown in Fig. 20, where very good

agreement is obtained. Additionally, the number of harmonics

for each region should be chosen carefully, an extensive discus-

sion on the effect of the number of harmonics taken into account

is given in [26].
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Fig. 18. The normal magnetic flux density component at � � � mm for ex-
ample in the cylindrical coordinate system.

Fig. 19. The tangential magnetic field strength component at � � � mm for the
example in the cylindrical coordinate system.

Fig. 20. The field solution at � � ���� mm for the example in the cylindrical
coordinate system.

A second drawback of this framework are the integrals (51)

and (52) in the source functions of the cylindrical coordinate

system. Note that the use of these integrals is only necessary

when or are nonzero. These integrals are

difficult, if not impossible, to solve analytically and hence are

solved numerically. For obtaining the solution by means of

solving the set of boundary conditions, only the solution of the

source function at the top and bottom of the source region is

necessary, hence the amount of numerical integrals is limited.

If, however, after obtaining the solution, the magnetic field

within the source region has to be obtained, the integrals have

to be solved numerically for every radius in consideration.

VII. CONCLUSION

A semianalytical framework for solving the magnetostatic

field distribution in 2-D boundary value problems is given for

three different coordinate systems. This technique can be ap-

plied to any geometry consisting of rectangular regions which

exhibits a certain periodicity, or is bound by soft-magnetic mate-

rial. The source term description and the resulting magnetic field

distribution is written in terms of Fourier series. The various

boundary conditions are discussed in detail which result in a set

of linear equations that solve the total boundary value problem.

The framework is applied to various examples in different coor-

dinate systems, and the solutions are verified with 2-D finite-el-

ement analyses. Excellent agreement is obtained, which shows

the applicability of this model to various electromagnetic actu-

ators and devices. Furthermore, the drawbacks and stability of

numerical implementation are discussed.

APPENDIX

where and where is equal to 1 when region

has periodic boundary conditions in tangential direction and

equal to 2 when region has Neumann boundary conditions in
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tangential direction. If , the correlation functions

are given by
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