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General Frames for Relevant Modal Logics

Takahiro Seki

Abstract General frames are often used in classical modal logic. Since they are
duals of modal algebras, completeness follows automatically as with algebras but
the intuitiveness of Kripke frames is also retained. This paper develops basics
of general frames for relevant modal logics by showing that they share many
important properties with general frames for classical modal logic.

1 Introduction

General completeness results for relevant modal logics were proved in Seki [10]
where the notion of general frames was also introduced by analogy with classical
modal logic. Although relational semantics for relevant logics has existed since the
1970s and algebraic semantics has also long been known (see,e.g., Dunn [7]), gen-
eral frames for relevant logics have not been much discussed. Thus duality theory
for relevant logics is rather underdeveloped with the notable exceptions of Brink [2],
Celani [3], and Urquhart [11].

In this paper we intend to fill this gap and discuss duality theory for relevant modal
logics in some detail, making use of general frames as introduced in [10]. Some of
the results from the present paper have already been announced without their proofs
in [10] in order to develop Sahlqvist-like theorems for relevant modal logics. We
will give their detailed proofs here.

General frames occupy a prominent place in classical modal logic where they are
often said to combine the intuitiveness of Kripke frames with the universal adequacy
of algebraic semantics. General frames are duals of modal algebras in a clear intu-
itive sense, and for a certain subclass of them, namely, so-called descriptive frames,
this duality becomes precisely the duality in a category theory sense. In particular,
each modal algebra can be represented as a descriptive frame(for a proof, see Došen
[6] or Goldblatt [8]). Thus it may be said that descriptive general frames (later on,
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simply descriptive frames) are the most important. For moreon various classes of
frames see, for example, Blackburn et al. [1] or Chagrov and Zakharyaschev [4].

Whereas in classical modal logic duality theory is very welldeveloped, in the
realm of relevant logic, relatively little has been done along these lines. Brink’s
Stone-style representation of the (nonmodal)R¬-algebra in [2] should be mentioned
here, as well as Urquhart’s Priestley-style duality between relevant algebras and rel-
evant spaces developed in [11] and extended by Celani to certain relevant modal
algebras in [3]. This paper will follow in Brink’s footsteps and provide Stone-style
representation. One difference from Brink’s approach is that whereas he makes es-
sential use of subalgebras and subframes, we work directly with algebras and general
frames without recourse to any substructures.

This paper is organized as follows. We give a brief survey of relevant modal log-
ics and their semantics in Section2 followed by the definition of general frames in
Section3. In Section4 we prove a representation theorem for relevant modal al-
gebras which yields completeness of relevant modal logics with respect to general
frames defined in Section3. We introduce descriptive frames in Section5 and dis-
cuss their properties in comparison to descriptive frames for classical modal logic.
Finally, Section6 proves duality between the category of relevant modal algebras
and relevant descriptive frames.

2 Preliminaries

In this section we present basic notions of relevant modal logics. For more informa-
tion, see [10].

We use &,⇒,⇔,∀, and ∃ to denote, respectively, conjunction, implication,
equivalence, and universal and existential quantifiers in the metalanguage. We omit
some parentheses by assuming that∀, ∃ bind more strongly than &, and that & binds
more strongly than⇒,⇔.

The language of relevant modal logics consists of

1. propositional variables,
2. the propositional constantt,
3. logical connectives→,∧,∨, ◦, and∼,
4. modal operators� and♦.

Formulas are defined in the usual way and are denoted by capital letters A, B, C.
Prop andWff will denote the set of all propositional variables and of formulas, respec-
tively. When necessary, we use′ or subscripts. Further, we introduce the following
abbreviations:

A ↔ B
def
= (A → B) ∧ (B → A), ⊡A

def
=∼ ♦ ∼ A, ♦· A

def
=∼ � ∼ A.

The relevant modal logicB.C�♦ is defined as follows.

Axioms

(B1) A → A
(B2) A ∧ B → A
(B3) A ∧ B → B
(B4) (A → B) ∧ (A → C) → (A → B ∧ C)

(B5) A → A ∨ B
(B6) B → A ∨ B
(B7) (A → C) ∧ (B → C) → (A ∨ B → C)
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(B8) A ∧ (B ∨ C) → (A ∧ B) ∨ C
(B9) ∼∼ A → A
(B10) �A ∧ �B → �(A ∧ B)

(B11) ♦(A ∨ B) → ♦A ∨ ♦B
(B12) t

Rules of inference

A → B A

B

A B

A ∧ B

A → B

(B → C) → (A → C)

A → B

(C → A) → (C → B)

A →∼ B

B →∼ A

A ◦ B → C

A → (B → C)

A → (B → C)

A ◦ B → C

A → B

�A → �B

A → B

♦A → ♦B

A

t → A

A B.C�♦-frameis a 7-tuple〈O, W, R, S�, S♦,∗ , e〉 where

(a) W is a set of all worlds,
(b) O is a nonempty subset ofW,
(c) R is a ternary relation onW,
(d) S� andS♦ are binary relations onW,
(e) ∗ is an unary operation onW,
(f) e is an element ofW called thenull world.

To simplify the notation, we define a binary relation≤ on W and an elementu of O
as follows. For alla, b ∈ W,

1. a ≤ b
def

⇐⇒ ∃c(c ∈ O & Rcab),

2. u
def
= e∗.

A B.C�♦-frame〈O, W, R, S�, S♦,∗ , e〉 satisfies the following postulates. For all
a, b, c, d ∈ W,

(p1) a ≤ a
(p2) a ≤ b & Rbcd⇒ Racd
(p3) a ≤ c & Rbcd⇒ Rbad
(p4) d ≤ a & Rbcd⇒ Rbca
(p5) Ruab⇒ a = e or b = u
(p6) Reue
(p7) a ≤ b ⇒ b∗ ≤ a∗

(p8) a∗∗ = a
(p9) a ≤ b & S�bc ⇒ S�ac
(p10) S�ee
(p11) S�ua ⇒ a = u
(p12) a ≤ b & S♦ac ⇒ S♦bc
(p13) S♦ea⇒ a = e
(p14) S♦uu
(p15) a ≤ b & a ∈ O ⇒ b ∈ O
(p16) e 6= u.
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Furthermore, for a givenB.C�♦-frame 〈O, W, R, S�, S♦,∗ , e〉, we define binary
relationsS⊡ andS♦· on W as follows. For alla, b ∈ W,

1. S⊡ab iff S♦a∗b∗,

2. S♦· ab iff S�a∗b∗.

We call an 8-tuple〈O, W, R, S�, S♦,∗ , e, V〉 a B.C�♦-modelon aB.C�♦-frameF

(we simply say aB.C�♦-model) if F = 〈O, W, R, S�, S♦,∗ , e〉 is a B.C�♦-frame
and V is a mapping fromProp to 2W called avaluationon F, which satisfies the
following hereditary condition(1), E-condition(2), andU-condition (3). For all
a, b ∈ W and allp ∈ Prop,

1. a ≤ b & a ∈ V(p) ⇒ b ∈ V(p),

2. e /∈ V(p),

3. u ∈ V(p).

Given aB.C�♦-model〈O, W, R, S�, S♦,∗ , e, V〉 for a ∈ W andA ∈ Wff, a relation
|H betweenW andWff is defined inductively as follows:

(i) for any p ∈ Prop, a |H p iff a ∈ V(p),
(ii) a |H A ∧ B iff a |H A & a |H B,
(iii) a |H A ∨ B iff a |H A or a |H B,
(iv) a |H A → B iff ∀b ∈ W∀c ∈ W(Rabc& b |H A ⇒ c |H B),
(v) a |H A ◦ B iff ∃b ∈ W∃c ∈ W(Rbca& b |H A & c |H B),
(vi) a |H∼ A iff a∗ 6|H A,
(vii) a |H �A iff ∀b ∈ W(S�ab ⇒ b |H A),
(viii) a |H ♦A iff ∃b ∈ W(S♦ab & b |H A),
(ix) a |H t iff a ∈ O,

wherea 6|H A means thata |H A does not hold. It is easy to see that

1. a |H ⊡A iff ∀b ∈ W(S⊡ab ⇒ b |H A),
2. a |H ♦· A iff ∃b ∈ W(S♦· ab & b |H A).

We putV(A) = {a ∈ W | a |H A}, for all A ∈ Wff.
Let M = 〈O, W, R, S�, S♦,∗ , e, V〉 be a B.C�♦-model on aB.C�♦-frame

F = 〈O, W, R, S�, S♦,∗ , e〉 andA ∈ Wff. Then we say

1. A holds inM if and only if a |H A for every worlda ∈ O,
2. A is valid in a B.C�♦-frameF (write F |H A) if and only if A holds in every

B.C�♦-modelM onF.

Let L be any extension ofB.C�♦ . Any B.C�♦-frame in which all theorems ofL are
valid is called anL-frame. L-models(on L-frames) are defined similarly toB.C�♦-
models.

In proving completeness ofB.C�♦ , we use the canonical model method. Below
we present the definition of the canonical model and refer thereader to [10] for the
detailed completeness proof.

1. 6 is anL-theoryiff 6 satisfies the following:
(a) A ∈ 6 andB ∈ 6, thenA ∧ B ∈ 6;
(b) A → B is a theorem ofL andA ∈ 6, thenB ∈ 6.

2. For anL-theory6,
(a) 6 is regular iff 6 contains all theorems ofL;
(b) 6 is prime iff A ∨ B ∈ 6 implies eitherA ∈ 6 or B ∈ 6.
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3. Let Th(L) be the set of allL-theories. Then a ternary relationR on Th(L),
and binary relations onS� andS♦ onTh(L), are defined by

R6Ŵ1 iff for any A, B ∈ Wff, if A → B ∈ 6 andA ∈ Ŵ thenB ∈ 1;

S�6Ŵ iff for any A ∈ Wff, if �A ∈ 6 thenA ∈ Ŵ;

S♦6Ŵ iff for any A ∈ Wff, if A ∈ Ŵ then♦A ∈ 6.

ThecanonicalL-model〈Oc, Wc, Rc, S�c, S♦c, gc, Vc〉 is defined as follows:

(a) Wc is the set of all primeL-theories;
(b) Oc is the set of all regular primeL-theories;
(c) Rc is the ternary relationR restricted toWc;
(d) S�c is the binary relationS� restricted toWc;
(e) S♦c is the binary relationS♦ restricted toWc;
(f) gc is the unary operation onWc defined bygc(6) = {A | ∼ A /∈ 6};
(g) ec = ∅;
(h) Vc is defined by6 ∈ Vc(p) iff p ∈ 6, for all p ∈ Prop and6 ∈ Wc.

Note that≤c is the set-theoretic inclusion⊆ and thatuc = Wff. The following
proposition will be used in later sections. For the proof, see [10].

Proposition 2.1

1. If A is not a theorem ofL, then there exists a regular primeL-theory5 such
that A /∈ 5.

2. Let 〈Oc, Wc, Rc, S�c, S♦c, gc, ec, Vc〉 be the canonicalL-model. For all
A ∈ Wff and6 ∈ Wc,

6 |Hc A iff A ∈ 6.

An algebraM = 〈M,∩,∪,→, ·,−,�,♦, 1〉 is called aB.C�♦-algebraif it satisfies
the following postulates. For allx, y, z ∈ M,

(A1) 〈M,∩,∪〉 is a distributive lattice,
(A2) x ≤ y ⇒ x · z ≤ y · z,
(A3) x ≤ y ⇒ z · x ≤ z · y,
(A4) x · y ≤ z iff x ≤ y → z,
(A5) x ∪ y = −(−x ∩ −y),
(A6) �(x ∩ y) = �x ∩ �y,
(A7) ♦(x ∪ y) = ♦x ∪ ♦y,
(A8) 1 · x = x,

where≤ denotes the lattice-order, that is,x ≤ y is defined byx ∩ y = x.
For anyB.C�♦-algebraM = 〈M,∩,∪,→, ·,−,�,♦, 1〉, a mappingv from Prop

to M is called avaluationonM. Further, given a valuationv onM, a mappingI from
Wff to M, called theinterpretation associated withv, is defined as follows:

(i) for p ∈ Prop, I (p) = v(p),
(ii) I (A ∧ B) = I (A) ∩ I (B),
(iii) I (A ∨ B) = I (A) ∪ I (B),
(iv) I (A → B) = I (A) → I (B),
(v) I (A ◦ B) = I (A) · I (B),
(vi) I (∼ A) = −I (A),
(vii) I (�A) = �I (A),
(viii) I (♦A) = ♦I (A),
(ix) I (t) = 1.
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Let M be aB.C�♦-algebra,v be a valuation onM, andI be the interpretation asso-
ciated withv. Then we say

1. A is valid in v if and only if 1 ≤ I (A),
2. A is valid in M if and only if A is valid in anyv.

A B.C�♦-algebraM is called anL-algebraif all theorems ofL are valid inM.
The Lindenbaum algebra forL, defined as usual, can be used to show the follow-

ing.

Theorem 2.2 Any extensionL of B.C�♦ is characterized by a class ofL-algebras.

Filters, prime filters, and ideals in a lattice〈M,∩,∪〉 are defined as usual, except
that, for simplicity, we assume that both∅ andM are prime filters and ideals. We
state two properties required in later sections. For proofs, see Davey and Priestley
[5], for example.

Proposition 2.3 Let 〈M,∩,∪〉 be a distributive lattice.

1. Suppose that∇ is a filter and1 is an ideal such that∇ ∩ 1 = ∅. Then there
exists a prime filter∇ ′ ⊇ ∇ such that∇ ′ ∩ 1 = ∅.

2. If x, y ∈ M satisfy x 6≤ y, then there exists a prime filter∇ such that x∈ ∇

and y /∈ ∇.

3 General Frames

In this section, we define general frames for relevant modal logics. Also, for a given
general frameF, we define the dual ofF, which is aB.C�♦-algebra. In particular, we
show that the Lindenbaum algebra forL is isomorphic to the dual of the canonical
L-frame.

For a givenL-frame〈O, W, R, S�, S♦,∗ , e〉, let

Up(W)+ = {X ⊆ W | X 6= ∅ & X 6= W & ∀a∀b(a ∈ X & a ≤ b ⇒ b ∈ X)}.

Note that in the definition ofUp(W)+, conditionsX 6= ∅ andX 6= W are equivalent
to conditionsu ∈ X and e /∈ X, respectively. AgeneralL-frame is an 8-tuple
F = 〈O, W, R, S�, S♦,∗ , e, P〉 where

1. 〈O, W, R, S�, S♦,∗ , e〉 is anL-frame, later denoted byκF,

2. P, called aset of possible valuesin F, is a nonempty subset ofUp(W)+,
containingO and closed under∩,∪ and the operations→, · ,− ,�, and♦,
which are defined as follows. For allX, Y ⊆ W,

(a) X → Y = {a ∈ W | ∀b∀c(Rabc& b ∈ X ⇒ c ∈ Y)},
(b) X · Y = {a ∈ W | ∃b∃c(Rbca& b ∈ X & c ∈ Y)},
(c) −X = {a ∈ W | a∗ /∈ X},
(d) �X = {a ∈ W | ∀b(S�ab ⇒ b ∈ X)},
(e) ♦X = {a ∈ W | ∃b(S♦ab & b ∈ X)}.

Note that any setP of possible values is closed under the operations⊡ and♦· defined
as follows. For allX ∈ P,

1. ⊡X = {a ∈ W | ∀b(S⊡ab ⇒ b ∈ X)},
2. ♦· X = {a ∈ W | ∃b(S♦· ab & b ∈ X)}.

Let F = 〈O, W, R, S�, S♦,∗ , e, P〉 be a generalL-frame. We call a 9-tuple
〈O, W, R, S�, S♦,∗ , e, P, V〉 anL-modelonF, where
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1. F = 〈O, W, R, S�, S♦,∗ , e, P〉,
2. V is a mapping fromProp to P, called avaluationon F, that is,V(p) ∈ P

for all p ∈ Prop.

Further, a relation|H betweenW andWff is defined as in Section2. Thus a general
L-frameF with P = Up(W)+ is essentially equal toκF. Then we writeF |H A if
for any valuationV on a frameF = 〈O, W, R, S�, S♦,∗ , e, P〉 and for alla ∈ O,
a |H A.

The algebra〈P,∩,∪,→, ·,−,�,♦, O〉 is called thedual of F and denoted by
F+. For the duals of general frames, we easily see the following.

Theorem 3.1

1. The dual of a generalB.C�♦-frame is aB.C�♦-algebra.
2. LetF be a generalB.C�♦-frame. Then A is valid inF if and only if A is valid

in F+.

By Theorem3.1, we have the following.

Theorem 3.2 The dual of a generalL-frame is anL-algebra.

Given anL-model M = 〈O, W, R, S�, S♦,∗ , e, V〉, the generalL-frame F =

〈O, W, R, S�, S♦,∗ , e, P〉 with P = {V(A) | A ∈ Wff} is called thegeneralL-
frame associated withM.

The general frame associated with the canonicalL-model

Mc = 〈Oc, Wc, Rc, S�c, S♦c, gc, ec, Vc〉

is denoted byγ Fc = 〈Oc, Wc, Rc, S�c, S♦c, gc, ec, Pc〉. We will call γ Fc theuni-
versalL-frame. The following is Theorem 11 of [10]. We will give the proof.

Theorem 3.3 The Lindenbaum algebraML for L is isomorphic to(γ Fc)
+, where

the mapping f defined by

f ([A]) = Vc(A), for every A∈ Wff

is an isomorphism.

Proof First of all, we will show thatf is bijective. It is clear thatf is surjective by
the definition ofPc. So we show thatf is injective. Suppose that[A] 6= [B]. Then
A ↔ B is not a theorem ofL. By (1) of Proposition2.1, there exists5 ∈ Oc such
that A ↔ B /∈ 5. Then5 6|Hc A ↔ B by (2) of Proposition2.1. This implies that
Vc(A) 6= Vc(B), that is, f ([A]) 6= f ([B]).

Next we will prove thatf preserves operations ofML . We will only show some
cases. Let6 ∈ Wc.

1. First, suppose that6 ∈ f ([A] → [B]). To show that6 ∈ f ([A]) → f ([B]),
suppose thatRc6Ŵ1 andŴ ∈ f ([A]). Then6 |Hc A → B andŴ |Hc A, so
1 |Hc B. This means that1 ∈ f ([B]), which is the desired result.

Next, suppose that6 /∈ f ([A] → [B]). Then6 6|Hc A → B, so there
existŴ,1 ∈ Wc such thatRc6Ŵ1, Ŵ |Hc A and1 6|Hc B. Hence we have
Ŵ ∈ Vc(A) and1 /∈ Vc(B), which mean thatŴ ∈ f ([A]) and1 /∈ f ([B]).
Therefore,6 /∈ f ([A]) → f ([B]).

2. 6 ∈ f (−[A]) iff 6 |Hc∼ A iff gc(6) 6|Hc A iff gc(6) /∈ Vc(A) iff
6 ∈ − f ([A]).
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3. 6 ∈ f (♦[A]) iff 6 |Hc ♦A
iff ∃Ŵ(S♦c6Ŵ & Ŵ |Hc A)

iff ∃Ŵ(S♦c6Ŵ & Ŵ ∈ Vc(A))

iff 6 ∈ ♦ f ([A]).
�

4 Duality

In this section, we consider general frames as duals of algebras. For a given algebra,
we will construct a general frame by using the set of prime filters. Further, we will
show that the duals of Lindenbaum algebras are isomorphic touniversal frames.

Let M = 〈M,∩,∪,→, ·,−,�,♦, 1〉 be anL-algebra. LetFM be the set of all
filters in M. We define a ternary relationR on FM and binary relationsS� andS♦

on FM as follows. For all∇1,∇2,∇3 ∈ FM,

R∇1∇2∇3 iff for all x, y ∈ M, if x → y ∈ ∇1 andx ∈ ∇2 theny ∈ ∇3;

S�∇1∇2 iff for all x ∈ M, if �x ∈ ∇1 thenx ∈ ∇2;

S♦∇1∇2 iff for all x ∈ M, if x ∈ ∇2 then♦x ∈ ∇1.

Note thatR∇1∇2∇3 above means that∇1 · ∇2 ⊆ ∇3 in the notation of [11].
The next lemma shows that relationsR, S�, andS♦ on FM can be restricted to

the class of prime filters. The following results onR can be proved in the standard
way. See, for example, Routley et al. [9] or Urquhart [11].

Lemma 4.1

1. Suppose that∇1 and ∇2 are filters and∇3 is a prime filter such that
R∇1∇2∇3. Then there exists a prime filter∇ ′

1 ⊇ ∇1 such that R∇ ′
1∇2∇3.

2. Suppose that∇1 and ∇2 are filters and∇3 is a prime filter such that
R∇1∇2∇3. Then there exists a prime filter∇ ′

2 ⊇ ∇2 such that R∇1∇
′
2∇3.

3. Suppose that∇ is a prime filter and both∇1 and ∇2 are filters such that
R∇∇1∇2 and y /∈ ∇2. Then there exist prime filters∇ ′

1 and ∇ ′
2 such that

R∇∇ ′
1∇

′
2, ∇1 ⊆ ∇ ′

1 and y /∈ ∇ ′
2.

4. For a prime filter∇ such that x→ y /∈ ∇, there exist prime filters∇1 and∇2
such that R∇∇1∇2, x ∈ ∇1 and y /∈ ∇2.

Lemma 4.2 For a prime filter∇ such that x· y ∈ ∇, there exist prime filters∇1
and∇2 such that R∇1∇2∇, x ∈ ∇1, and y∈ ∇2.

Proof Let ∇1 and∇2 be the filters generated by{x} and {y}, respectively. Then
we see easily thatR∇1∇2∇. By (1) and (2) of Lemma4.1, there exist prime filters
∇ ′

1 ⊇ ∇1 and∇ ′
2 ⊇ ∇2 such thatR∇ ′

1∇
′
2∇. Then it is obvious thatx ∈ ∇ ′

1 and
y ∈ ∇ ′

2. �

Lemma 4.3

1. Suppose that∇ is a prime filter and∇1 is a filter such that S�∇∇1 and
x /∈ ∇1. Then there exists a prime filter∇ ′

1 such that S�∇∇ ′
1 and x /∈ ∇1.

2. For a prime filter∇ such that�x /∈ ∇, there exists a prime filter∇1 such that
S�∇∇1 and x /∈ ∇1.
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Proof

1. Let1 be the ideal generated by{x}. Then we see easily that∇1 ∩ 1 = ∅.
By (1) of Proposition2.3, there exists a prime filter∇ ′

1 ⊇ ∇1 such that
∇ ′

1 ∩ 1 = ∅. It is obvious thatS�∇∇ ′
1. Further, we havex /∈ ∇ ′

1 since
x ∈ 1.

2. Let ∇1 = {y | �y ∈ ∇}. Then we easily see that∇1 is a filter such that
S�∇∇1 and x /∈ ∇1. By 1, there exists a prime filter∇ ′

1 ⊇ ∇1 such that
S�∇∇ ′

1 andx /∈ ∇ ′
1 .

�

Lemma 4.4 For a prime filter∇ such that♦x ∈ ∇, there exists a prime filter∇1
such that S♦∇∇1 and x∈ ∇1.

Proof Let ∇1 be the filter generated by{x} and let1 = {y | ♦y /∈ ∇}. Then we
see easily that∇1 is an ideal such that∇1 ∩ 1 = ∅. By (1) of Proposition2.3, there
exists a prime filter∇ ′

1 ⊇ ∇1 such that∇ ′
1 ∩ 1 = ∅. Now suppose thaty ∈ ∇ ′

1.
Theny /∈ 1, so♦y ∈ ∇. Therefore,S♦∇∇ ′

1. It is obvious thatx ∈ ∇ ′
1. �

For anL-algebraM = 〈M,∩,∪,→, ·,−,�,♦, 1〉, the structure

M+ = 〈OM, WM, RM, S�M, S♦M, gM, eM, PM〉,

called thedualof M, is defined as follows:

(a) WM is the set of all prime filters inM;
(b) OM = {∇ ∈ WM | 1 ∈ ∇};
(c) RM is the restriction ofR to WM;
(d) S�M is the restriction ofS� to WM;
(e) S♦M is the restriction ofS♦ to WM;
(f) gM(∇) = {x ∈ M | − x /∈ ∇}, for ∇ ∈ WM;
(g) eM = ∅;
(h) PM = { fM(x) | x ∈ M}, where fM : M → U p(WM)+ is defined by

fM(x) = {∇ ∈ WM | x ∈ ∇}.

Of course, the binary relation≤M on WM is defined by

∇1 ≤ M∇2 iff ∃∇(∇ ∈ OM & RM∇∇1∇2),

anduM = M.

Lemma 4.5 For eachB.C�♦-algebraM, 〈OM, WM, RM, S�M, S♦M, gM, eM〉 is
a B.C�♦-frame.

Proof Before we check all postulates, we show that≤M is equal to⊆. First, take
any prime filter∇1 and∇2 such that∇1 ⊆ ∇2. Put∇ = {x | 1 ≤ x}. Then it is easy
to see that∇ is a filter. Now suppose thatx → y ∈ ∇ andx ∈ ∇1. Then 1≤ x → y,
and sox ≤ y. Since∇1 is a filter, we havey ∈ ∇1, which impliesy ∈ ∇2. So we
haveR∇∇1∇2. By (1) of Lemma4.1, there exists a prime filter∇ ′ ⊇ ∇ such that
R∇ ′∇1∇2. Therefore, there exists∇ ′ ∈ OM such thatRM∇ ′∇1∇2.

For the converse, suppose that there exists∇ ∈ OM such thatRM∇∇1∇2. Further,
suppose thatx ∈ ∇1. Then 1∈ ∇, sox → x ∈ ∇ since 1≤ x → x. Hencex ∈ ∇2.
Therefore,∇1 ⊆ ∇2.

Other postulates from(p1) to (p16) can be easily checked. �
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Since the relation≤M is the set-theoretic inclusion⊆, we easily see the following.

Lemma 4.6 Every set X∈ PM is upward closed in〈OM, WM, RM, S�M, S♦M,

gM, eM〉, that is, if∇ ∈ X and∇ ≤M∇ ′, then∇ ′ ∈ X.

By Lemmas4.1through4.4, we obtain the following.

Lemma 4.7 PM is closed under→, · ,− ,�, and♦.

Proof Here we give proofs only for→ and�. Let f M(x), f M(y) ∈ PM for some
x, y ∈ M.

(→) First, suppose that∇ ∈ f M(x → y). To show that∇ ∈ f M(x) → f M(y),
suppose thatRM∇∇1∇2 and∇1 ∈ f M(x). Thenx → y ∈ ∇ andx ∈ ∇1, soy ∈ ∇2.
This is just∇2 ∈ f M(y), which is the desired result.

Next, suppose that∇ /∈ f M(x → y). Thenx → y /∈ ∇. By (4) of Lemma4.1,
there exist∇1,∇2 ∈ WM such thatRM∇∇1∇2, x ∈ ∇1 and y /∈ ∇2. Then
∇1 ∈ f M(x) and∇2 /∈ f M(y). Hence∇ /∈ f M(x) → f M(y).

( � ) First, suppose that∇ ∈ f M(�x). To show that∇ ∈ � f M(x), suppose that
S�M∇∇1. Then�x ∈ ∇, sox ∈ ∇1. This means that∇1 ∈ f M(x), which is the
desired result.

Next, suppose that∇ /∈ f M(�x). Then�x /∈ ∇, so there exists∇1 ∈ WM such
that S�M∇∇1 andx /∈ ∇1 by (2) of Lemma4.3. Hence we have∇1 /∈ f M(x), so
∇ /∈ � f M(x).

�

By Lemmas4.5through4.7, we have the following.

Theorem 4.8 Let M be aB.C�♦-algebra. Then the dualM+ of M is a general
B.C�♦-frame.

Then we have the representation theorem.

Theorem 4.9 EveryB.C�♦-algebraM is isomorphic to(M+)+ under the isomor-
phism fM.

Proof First of all, we will show thatf M is bijective. It is clear thatf M is surjective,
so we show thatf M is injective. Suppose thatx 6= y. Then eitherx 6≤ y or y 6≤ x.
Without loss of generality, we may assumex 6≤ y. By (2) of Proposition2.3, there
exists a prime filter∇ such thatx ∈ ∇ and y /∈ ∇. So we have∇ ∈ f M(x) and
∇ /∈ f M(y), and hence,f M(x) 6= f M(y).

It remains to show thatf M preserves each operation ofM. Since any element of
f M(x) must be a prime filter, it is easy to see thatf M(x ∩ y) = f M(x)∩ f M(y) and
f M(x ∪ y) = f M(x) ∪ f M(y). For other operations, we have already proved those
in Lemma4.7.

Finally, we show thatOM ∈ PM. This is obtained from the following:

∇ ∈ OM iff 1 ∈ ∇ iff ∇ ∈ fM(1). �

From Theorem4.9and (2) of Theorem3.1, we have the following.

Corollary 4.10 Let M be aB.C�♦-algebra. Then A is valid inM if and only if A
is valid in M+.
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Proof By Theorem4.8, M+ is a generalB.C�♦-frame. Further, by (2) of Theo-
rem3.1, A is valid inM+ if and only if A is valid in (M+)+. From Theorem4.9, we
have the desired result. �

By Theorems4.8and4.9and Corollary4.10, we have the following.

Corollary 4.11 Let M be anL-algebra. Then the dualM+ of M is a general
L-frame.

Thus, the following property on general frames (Theorem 12 of [10]) holds.

Corollary 4.12 Any extensionL of B.C�♦ is complete with respect to the class of
all generalL-frames.

Proof Suppose thatA is not a theorem ofL. Then by Theorem2.2 there exists an
L-algebraM in which A is not valid. By Corollary4.10, A is not valid inM+, which
is a generalL-frame by Corollary4.11. Hence, there exists a generalL-frame in
which A is not valid. �

Further, we can easily see the following relationship between duals of Lindenbaum
algebras and universal frames (Theorem 13 of [10]).

Theorem 4.13 The dual(ML)+ of the Lindenbaum algebra forL is isomorphic to
the universalL-frameγ Fc.

5 Descriptive Frames

In preceding sections, we have seen that the dual of a generalframe is an algebra and
vice versa. It follows that the bidual (i.e., dual of a dual) of a general frame is also
a general frame. But general frames are not always isomorphic to their biduals. In
this section we introduce descriptive frames, for which such isomorphism holds, as
in classical modal logic.

We first introduce some auxiliary notions. Given a generalL-frame F =

〈O, W, R, S�, S♦,∗ , e, P〉, we say that

(a) F is differentiatedif for any a, b ∈ W,

a = b iff ∀X ∈ P(a ∈ X ⇔ b ∈ X),

(b) F is r-tight if for any a, b, c ∈ W,

Rabc iff ∀X ∈ P∀Y ∈ P(a ∈ X → Y & b ∈ X ⇒ c ∈ Y),

(c) F is �-tight if for any a, b ∈ W, S�ab iff ∀X ∈ P(a ∈ �X ⇒ b ∈ X),
(d) F is ⊡ -tight if for any a, b ∈ W, S⊡ab iff ∀X ∈ P(a ∈ ⊡X ⇒ b ∈ X),
(e) F is ♦-tight if for any a, b ∈ W, S♦ab iff ∀X ∈ P(b ∈ X ⇒ a ∈ ♦X),
(f ) F is ♦· -tight if for any a, b ∈ W, S♦· ab iff ∀X ∈ P(b ∈ X ⇒ a ∈ ♦· X),
(g) F is compactif for any familiesX ⊆ P andY ⊆ P = {W − X | X ∈ P},

⋂
(X ∪ Y) = {a | ∀X ∈ X∀Y ∈ Y(a ∈ X & a ∈ Y)} 6= ∅

whenever
⋂

(X′ ∪ Y′) 6= ∅ for all finite subfamiliesX′ ⊆ X andY′ ⊆ Y.

A generalL-frame F is calleddescriptiveif F is differentiated, r-tight,�-tight,
⊡ -tight,♦-tight,♦· -tight, compact, and, moreover, satisfies

O =
⋂

{X ∈ P | O ⊆ X}.
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The definition of descriptive frames for relevant modal logics, although analogous to
the classical one, differs from it in that it introduces several kinds of tightness and a
condition on the setO. Different kinds of tightness are due to differences between
relevant connectives and their classical counterparts. The condition onO stems from
the fact that Routley-Meyer semantics uses so-called distinguished points (see [4]).

In the following, we will investigate the properties of these notions. For a general
L-frameF = 〈O, W, R, S�, S♦,∗ , e, P〉 anda ∈ W, define

Pa = {X ∈ P | a ∈ X}.

The following proposition is easy to prove.

Proposition 5.1 For every generalL-frameF = 〈O, W, R, S�, S♦,∗ , e, P〉 and
every a∈ W, Pa is a prime filter inF+.

Compact general frames are characterized by the following proposition which corre-
sponds to Proposition 8.48 of [4] (p. 255).

Proposition 5.2 A generalL-frameF = 〈O, W, R, S�, S♦,∗ , e, P〉 is compact if
and only if every prime filter∇ in F+ is of the form Pa for some a∈ W.

The following theorem (Theorem 14 of [10]) characterizes descriptive frames.

Theorem 5.3 A generalL-frameF = 〈O, W, R, S�, S♦,∗ , e, P〉 is descriptive if
and only if it is isomorphic to(F+)+.

Proof The ‘if’ part is proved as follows. Let∇1,∇2,∇3 ∈ WF+ , that is,∇1,∇2,
and∇3 be prime filters inP. For proofs that(F+)+ is differentiated,�-tight, ⊡

-tight, and compact, see Proposition 8.51 of [4] (p. 257). Here we will give proofs of
the other clauses.

Clause 1 (F+)+ is r-tight. The ‘if’ part is proved as follows. Suppose that
RF+∇1∇2∇3 does not hold. Then there existX, Y ∈ P such thatX → Y ∈ ∇1,
X ∈ ∇2, and Y /∈ ∇3. Then we havefF+(X), fF+ (Y) ∈ PF+ satisfying
∇1 ∈ fF+(X) → fF+(Y), ∇2 ∈ fF+(X), and∇3 /∈ fF+(Y).

The ‘only if’ part is proved as follows. Suppose thatRF+∇1∇2∇3. Further, take any
fF+(X), fF+ (Y) ∈ PF+ satisfying∇1 ∈ fF+(X) → fF+(Y) and∇2 ∈ fF+(X).
Then we haveX → Y ∈ ∇1 andX ∈ ∇2, soY ∈ ∇3, and hence∇3 ∈ fF+(Y).

Clause 2 (F+)+ is ♦-tight. The ‘if’ part is proved as follows. Suppose that
S♦F+∇1∇2 does not hold. Then there existsX ∈ P such thatX ∈ ∇2 and♦X /∈ ∇1.
Then we havefF+(X) ∈ PF+ satisfying∇2 ∈ fF+(X) and∇1 /∈ ♦ fF+(X).

The ‘only if’ part is proved as follows. Suppose thatS♦F+∇1∇2. Further, take any
fF+(X) ∈ PF+ satisfying∇2 ∈ fF+(X). Then we haveX ∈ ∇2, so♦X ∈ ∇1, and
hence∇1 ∈ ♦ fF+(X).

Clause 3 (F+)+ is ♦· -tight. Similar to clause 2.

Clause 4 OF+ =
⋂

{ fF+(X) ∈ PF+ | OF+ ⊆ fF+(X)}. First, suppose that
∇ ∈ OF+ . Take any fF+(X) ∈ PF+ such thatOF+ ⊆ fF+(X). Then it is clear
that ∇ ∈ fF+(X). Therefore,∇ ∈

⋂
{ fF+(X) ∈ PF+ | OF+ ⊆ fF+(X)}. Next,

suppose that∇ /∈ OF+ . Then O /∈ ∇, so ∇ /∈ fF+(O). It is easy to show that
OF+ ⊆ fF+(O). Since fF+(O) ∈ PF+ ,∇ /∈

⋂
{ fF+(X) ∈ PF+ | OF+ ⊆ fF+(X)}.

Thus, we see that(F+)+ is descriptive.
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The ‘only if’ part is proved as follows. By Proposition5.1, for eacha ∈ W, Pa is a
prime filter inF+. We define a mappingfF : W → WF+ by

fF(a) = Pa, for a ∈ W.

By Proposition5.2, we haveWF+ = {Pa | a ∈ W}. Then it is clear thatfF is
surjective. Takea, b ∈ W such thata 6= b. SinceF is differentiated, there exists
X ∈ P such thata ∈ X andb /∈ X. So we haveX ∈ Pa and X /∈ Pb. Hence
fF(a) 6= fF(b). Therefore,fF is injective.

Further, as in Proposition 8.51 of [4] (p. 257), we show that

1. S�ab iff S�F+ fF(a) fF(b),
2. S⊡ab iff S⊡F+ fF(a) fF(b),
3. X ∈ P iff fF(X) ∈ PF+ ,

for a, b ∈ W. It remains to show the following clauses. Fora, b, c ∈ W:

Clause 1 Rabciff RF+ fF(a) fF(b) fF(c).

Rabc iff ∀X ∈ P∀Y ∈ P(a ∈ X → Y & b ∈ X ⇒ c ∈ Y) (F is r-tight)
iff ∀X ∈ P∀Y ∈ P(X → Y ∈ Pa & X ∈ Pb ⇒ Y ∈ Pc)
iff RF+ PaPbPc
iff RF+ fF(a) fF(b) fF(c).

Clause 2 S♦ab iff S♦F+ fF(a) fF(b).

S♦ab iff ∀X ∈ P(b ∈ X ⇒ a ∈ ♦X) (F is ♦-tight)
iff ∀X ∈ P(X ∈ Pb ⇒ ♦X ∈ Pa)

iff S♦F+ fF(a) fF(b).

Clause 3 S♦· ab iff S♦· F+ fF(a) fF(b). Similar to clause 2.

Clause 4 fF(a∗) = gF+( fF(a)).

X ∈ fF(a∗) iff a∗ ∈ X
iff a /∈ −X
iff −X /∈ fF(a)

iff X ∈ gF+( fF(a)).

Clause 5 fF(O) = OF+ . First, suppose that∇ ∈ fF(O). Then there exists
a ∈ O such that∇ = fF(a). SinceF is descriptive,a ∈

⋂
{X ∈ P | O ⊆ X}. It

means that∀X ∈ P(O ⊆ X ⇒ X ∈ Pa). SinceO ∈ P, we haveO ∈ Pa, that is,
O ∈ ∇. Hence we have∇ ∈ OF+ .

For the reverse inclusion, suppose that∇ ∈ OF+ . Since∇ is a prime filter inF+,
∇ = Pa for somea ∈ W by Proposition5.2. ThenO ∈ Pa, soa ∈ O. Therefore,
∇ ∈ fF(O). �

Thus we have the following theorem (Theorem 15 of [10]).

Theorem 5.4 Any extensionL of B.C�♦ is characterized by the class of descriptive
L-frames.

Proof Let F be any descriptiveL-frame. By the definition ofL-frames, if A is a
theorem ofL, thenF |H A. On the other hand, ifA is not a theorem ofL, thenA is
not valid in the Lindenbaum algebraML for L. By Corollary4.10, A is not valid in
(ML)+. By Theorem4.13, A is not valid in the universalL-frameγ Fc. Further, we
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see thatγ Fc is descriptive by Theorems3.3, 4.13, and5.3. Therefore, there exists a
descriptiveL-frame in whichA is not valid. �

6 The Categories of Descriptive Frames and Algebras

In Section5, we introduced descriptive frames. Considering duality between de-
scriptive frames and algebras in detail, we have shown that each algebra can be
represented by descriptive frames and vice versa. This factcan be stated clearly with
the help of categorical notions. In this section, following[6] and [8], we will show
that descriptive frames and algebras are duals in the category theory sense.

Let A be the category ofL-algebras defined as follows:

1. objects areL-algebras;
2. morphisms are homomorphisms.

Now we will introduce frame morphisms, which will be the morphisms in the cate-
gory of descriptive frames that we are going to define. LetF = 〈O, W, R, S�, S♦,∗ ,

e, P〉 andF′ = 〈O′, W′, R′, S′
�

, S′
♦
, ∗′, e′, P′〉 be generalL-frames. Then a map-

ping q : W → W′ is a frame morphismfrom F to F′ if the following conditions
hold. For alla, b, c ∈ W anda′, b′, c′ ∈ W′,

(m1) Rabc⇒ R′q(a)q(b)q(c),
(m2) R′a′b′q(c) ⇒ ∃a ∈ W∃b ∈ W(Rabc& a′ ≤′ q(a) & b′ ≤′ q(b)),
(m3) R′q(a)b′c′ ⇒ ∃b ∈ W∃c ∈ W(Rabc& b′ ≤′ q(b) & q(c) ≤′ c′),
(m4) S�ab ⇒ S′

�
q(a)q(b),

(m5) S′
�

q(a)b′ ⇒ ∃b ∈ W(S�ab & q(b) ≤′ b′),
(m6) S♦ab ⇒ S′

♦
q(a)q(b),

(m7) S′
♦

q(a)b′ ⇒ ∃b ∈ W(S♦ab & b′ ≤′ q(b)),
(m8) q(a∗) = (q(a))∗′,
(m9) q−1(O′) = O,
(m10) q(e) = e′,
(m11) X ∈ P′ ⇒ q−1(X) ∈ P.

Then it is clear that the identity map on any frame is a frame morphism and that
the composition of frame morphisms is also a frame morphism.So the collection
of all descriptive frames and frame morphisms between descriptive frames forms a
category. LetF be the category of descriptiveL-frames defined as follows:

1. objects are descriptiveL-frames; and
2. morphisms are frame morphisms.

We proceed to define functors between these categories. We begin by showing that
every algebra homomorphism has its corresponding frame morphism. LetM andM′

beL-algebras. For a homomorphismh from M to M′, a mappingh+ : M′
+ → M+

is defined by
h+(∇) = h−1(∇),

for every prime filter∇ in M′. Then we have the following.

Lemma 6.1 If h is a homomorphism fromM to M′, then the mapping h+ is a frame
morphism fromM′

+ to M+.

Proof It suffices to check the conditions(m1) through (m11). Here we give the
proof for the conditions(m2)and(m5).
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(m2) Suppose thatRM∇1∇2h+(∇ ′
3) for ∇1,∇2 ∈ WM and ∇3 ∈ WM′ .

Putting ∇ ′
4 = {y′ ∈ M ′ | ∃x ∈ ∇1(h(x) ≤ y′)} and

∇ ′
5 = {y′ ∈ M ′ | ∃x ∈ ∇2(h(x) ≤ y′)}, it is easy to see that∇ ′

4 and∇ ′
5 are fil-

ters inM′. Further, suppose thaty′ → z′ ∈ ∇ ′
4 andy′ ∈ ∇ ′

5. Then there exist
x1 ∈ ∇1 andx2 ∈ ∇2 such thath(x1) ≤ y′ → z′ andh(x2) ≤ y′. Sinceh is
a homomorphism, we haveh(x1 · x2) = h(x1) · h(x2) ≤ (y′ → z′) · y′ ≤ z′,
andx1 · x2 ∈ h+(∇ ′

3), that is,h(x1 · x2) ∈ ∇ ′
3 by the assumption. Since∇ ′

3 is
a filter,z′ ∈ ∇ ′

3. Thus, we haveR∇ ′
4∇

′
5∇

′
3.

Then, by (1) and (2) of Lemma4.1, there exist prime filters∇ ′
1 and ∇ ′

2
such that∇ ′

4 ⊆ ∇ ′
1, ∇ ′

5 ⊆ ∇ ′
2, and RM′∇ ′

1∇
′
2∇

′
3. Here, takingx ∈ ∇1,

we haveh(x) ∈ ∇ ′
4 ⊆ ∇ ′

1 sinceh(x) ≤ h(x), and hencex ∈ h+(∇ ′
1).

So we have∇1 ⊆ h+(∇ ′
1) and, similarly, ∇2 ⊆ h+(∇ ′

2). Therefore,
there exist∇ ′

1,∇
′
2 ∈ WM′ such thatRM′∇ ′

1∇
′
2∇

′
3, ∇1 ≤M′ h+(∇ ′

1), and
∇2 ≤M′ h+(∇ ′

2).

(m5) Suppose thatS�Mh+(∇ ′
1)∇2 for ∇ ′

1 ∈ WM′ and ∇2 ∈ WM. Putting
∇ ′

3 = {x′ ∈ M ′ | �x′ ∈ ∇ ′
1}, it is easy to see that∇ ′

3 is a filter inM′ satis-
fying S�∇ ′

1∇
′
3. Let 1 be the ideal generated by{h(x) | x /∈ ∇2}. Assuming

thatx′ ∈ ∇ ′
3 ∩ 1, we have�x′ ∈ ∇ ′

1, x′ ≤ h(x), andx /∈ ∇2. Since∇ ′
1 is

a filter andh is a homomorphism,h(�x) ∈ ∇ ′
1, that is,�x ∈ h+(∇ ′

1), and
x /∈ ∇2. This is a contradiction, so∇ ′

3 ∩ 1 = ∅. By (1) of Proposition2.3,
there exists a prime filter∇ ′

2 ⊇ ∇ ′
3 such that∇ ′

2 ∩ 1 = ∅. It is obvious that
S�M′∇ ′

1∇
′
3. Further, suppose thatx ∈ h+(∇ ′

2). Thenh(x) ∈ ∇ ′
2, and hence

h(x) /∈ 1. So, we havex ∈ ∇2. Thus,h+(∇ ′
2) ⊆ ∇2. �

Then we show that every frame morphism has its correspondingalgebra homomor-
phism. LetF andF′ be descriptiveL-frames. For a frame morphismq from F to F′,
a mappingq+ : F′+ → F+ is defined by

q+(X) = q−1(X),

for everyX ∈ P′. Then we have the following.

Lemma 6.2 If q is a frame morphism fromF to F′, then the mapping q+ is a
homomorphism fromF′+ to F+.

Proof Here we only show that (1)q+(X → Y) = q+(X) → q+(Y) and (2)
q+(♦X) = ♦q+(X), for X, Y ∈ P′.

(1) First, suppose thata ∈ q+(X → Y). To show thata ∈ q+(X) → q+(Y),
suppose thatRabcandb ∈ q+(X). Then we haveq(a) ∈ X → Y andq(b) ∈ X.
By (m1), R′q(a)q(b)q(c), soq(c) ∈ Y. This means thatc ∈ q+(Y), which is the
desired result.

For the converse, suppose thata ∈ q+(X) → q+(Y). To show thata ∈ q+(X → Y),
suppose thatR′q(a)b′c′ andb′ ∈ X. By (m3), there existb, c ∈ W such thatRabc
andb′ ≤′ q(b) andq(c) ≤′ c′. SinceX is upward closed,q(b) ∈ X, so we have
b ∈ q+(X). Hencec ∈ q+(Y), soc′ ∈ Y. This is the desired result.

(2) First, suppose thata ∈ q+(♦X). Thenq(a) ∈ ♦X, so there existsb′ ∈ X
such thatS′

♦
q(a)b′. By (m7), there existsb ∈ W such thatS♦ab andb′ ≤′ q(b).
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SinceX is upward closed, we haveq(b) ∈ X, sob ∈ q+(X). Therefore, we have
a ∈ ♦q+(X).

For the converse, suppose thata ∈ ♦q+(X). Then there existsb ∈ q+(X) such
that S♦ab. Thenq(b) ∈ X, andS′

♦
q(a)q(b) by (m6). So we haveq(a) ∈ ♦X, and

hencea ∈ q+(♦X). �

By Lemmas6.1and6.2, we obtain the following facts:

1. if h is a homomorphism fromM to M′, then(h+)+ is a homomorphism from
(M+)+ to (M′

+)+;
2. if q is a frame morphism fromF to F′, then(q+)+ is a frame morphism from

(F+)+ to (F′+)+.

SinceM and (M+)+, M′ and (M′
+)+ are respectively isomorphic, it is natural to

consider the relation betweenh and(h+)+.

Theorem 6.3 For anL-algebraM, let fM be the isomorphism fromM to (M+)+ of
Theorem4.9. Then for any homomorphism h fromM to M′, (h+)+ ◦ fM = fM′ ◦ h.

Proof For anyx ∈ M and∇ ∈ WM′ , ∇ ∈ (h+)+( fM(x)) iff h+(∇) ∈ fM(x) iff
x ∈ h−1(∇) iff h(x) ∈ ∇ iff ∇ ∈ fM′(h(x)). �

We can associate a descriptiveL-frameM+ and a frame morphismh+ from M′
+ to

M+ with anL-algebraM and a homomorphismh from M to M′, respectively. It is
easy to check that

1. (idF)+ = idF+ , where ‘id’ denotes identity maps,
2. (h1 ◦ h2)+ = (h2)+ ◦ (h1)+.

Thus( · )+ defines a contravariant functor fromA to F .
The analogous result for frame morphisms is given below.

Theorem 6.4 For each descriptiveL-frameF, let fF be the isomorphism fromF
to (F+)+ in the proof of Theorem5.3. Then for any frame morphism q fromF to F′,
(q+)+ ◦ fF = fF′ ◦ q.

Proof For anya ∈ W and X ∈ P′, X ∈ (q+)+( fF(a)) iff q+(X) ∈ fF(a) iff
a ∈ q−1(X) iff q(a) ∈ X iff X ∈ fF′(q(a)). �

We can associate anL-algebraF+ and a homomorphismq+ from F′+ to F+ with a
descriptiveL-frameF and a frame morphismq from F to F′, respectively. It is easy
to check that

1. (idM)+ = idM+ , where ‘id’ denotes identity maps,
2. (q1 ◦ q2)

+ = q+
2 ◦ q+

1 .

So( · )+ defines a contravariant functor fromF to A.
Thus Theorem6.3 shows that the collection of isomorphismsh+ constructs a

natural isomorphism between the composite functor(( · )+)+ and the identity functor
on A, and Theorem6.4 shows that the collection of isomorphismsq+ constructs a
natural isomorphism between the composite functor(( · )+)+ and the identity functor
onF . Hence we have the following theorem.

Theorem 6.5 The categoriesA andF are dual by the functors( · )+ and( · )+.
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