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General Framework forDynamic Substructuring:History, Review,
and Classification of Techniques

D. de Klerk,∗ D. J. Rixen,† and S. N. Voormeeren†

Delft University of Technology, 2628 CD Delft, The Netherlands

DOI: 10.2514/1.33274

Four decades after the development of the first dynamic substructuring techniques, there is a necessity to classify

the different methods in a general framework that outlines the relations between them. In this paper, a certain vision

on substructuring methods is proposed, by recalling important historical milestones that allow us to understand

substructuring as a domain decomposition concept. Thereafter, based on the dual and primal assembly of

substructures, a general framework for the classification of the methods is presented. This framework allows us to

indicate how the various classes of methods, proposed along the years, can be derived from a clear mathematical

description of substructured problems. Current bottlenecks in experimental dynamic substructuring, as well as

solutions found in literature, will also be briefly discussed.

Nomenclature

B = signed Boolean matrix
C = damping matrix
f = vector of external forces
G = matrix of associated modes
g = vector of connecting forces
K = stiffness matrix
L = Boolean localization matrix
M = mass matrix
q = vector of unique degrees of freedom
R = reduction matrix
r = vector of residual forces
t = time
u = vector of degrees of freedom
Y = receptance matrix
Z = dynamic stiffness matrix
� = vector of generalized coordinates
� = vector of Lagrange multipliers
� = vector of unique generalized coordinates
! = circular frequency
?m = pertaining to a modal domain property
?�s� = pertaining to a structure named s
~? = primal assembled matrix

I. Introduction

D YNAMIC substructuring (DS) has played a significant role in
the field of structural dynamics and continues to be of great

value. Performing the analysis of a structural system componentwise
has some important advantages over global methodswhere the entire
problem is handled at once:

1) It allows evaluating the dynamic behavior of structures that are
too large or complex to be analyzed as a whole. For experimental
analysis, this is true for large and complex systems such as aircraft.
For numerical models, this holds when the number of degrees of

freedom is such that solution techniques cannot find results in a
reasonable time.

2) By analyzing the subsystems, local dynamic behavior can be
recognized more easily than when the entire system is analyzed.
Thereby, DS allows identification of local problems as well as
efficient local optimization. Also, dynamic substructuring allows the
elimination of local subsystem behavior which has no significant
impact on the assembled system. This results in a simple
representation of the component’s dynamics (e.g., an effective mass
criteria) and, consequently, in an additional reduction of analysis
time.

3) Dynamic substructuring gives the possibility of combining
modeled parts (discretized or analytical) and experimentally
identifying components.

4) It allows sharing and combining substructures from different
project groups.

The goal of this paper is to present a general framework which
allows for classification of dynamic substructuring methods and
highlights the interrelations and differences between the many
variants published. It is indeed peculiar that, despite the fact that
dynamic substructuring concepts have been used and investigated
for many years, such general overviews on the subject have only
rarely been proposed. Starting with a historical overview in Sec. II,
the general framework will be presented in Sec. III. According to this
framework, Sec. IV presents a classification of the different DS
techniques and further details different strategies existing for
frequency-based substructuring and for component-mode synthesis.
The paper is concluded with a discussion on some of the major
challenges in DS that require future research, namely the bottlenecks
associated with the coupling of experimentally obtained
substructures.

II. Random Walk in History

In this section, substructuring techniques are put in perspective by
recalling some important historical milestones. Certainly, we do not
claim to propose an exhaustive or even an objective historical review.
Instead, a certain amount of subjectivity will be used to place
important contributions to substructuring on the timeline, to describe
often forgotten links between them.

Historically, the roots of substructuring concepts can be found in
the field of domain decomposition. As discussed in this section,
dynamic substructuring essentially can be seen as a special class of
domain decomposition. The domain decomposition paradigm
originates from the desire to analyze complex problems by
considering separately the problem of its components and the
problem of finding the interface solution. In other words, finding
the solution to the local problems at subparts level, assuming the
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interface data are known. This corresponds to the old principle of
“divide and conquer.”

In 1890, Schwarz [1] imagined an iterative procedure based on
domain decomposition to prove the existence and uniqueness of the
solution of a Laplace problem in a domain made of a circle and a
rectangle. The proof was based on the fact that the uniqueness of the
solutions on a circle and a rectangle separately were known, and the
iterative procedure between the subdomains could be shown to
converge to a unique solution. The domain handled by Schwarz has
become the icon of the domain decomposition community and will
be used here to illustrate the discussion (see Fig. 1). More details on
domain decomposition techniques can be found in the many
reference books on the subject (e.g., [2,3]).

The publication of Schwarz [1] opened a new way to iteratively
find solutions of analytical problems on complex domains. However,
most of the analytical models of coupled continuous subdomains do
not have a closed-form solution. To circumvent this problem,
approximation and discretization techniques were developed
(Fig. 1), such as the Rayleigh–Ritz approach [4], the boundary
element technique, and the finite element method. In these methods,
an approximate solution is sought by describing the infinite space of
admissible solution functions as a combination of approximation
functions. In the case of finite elements, the physical space is
decomposed into subdomains described by piecewise defined
approximation functions. Thefinite elements can therefore be seen as
subdomains, which are based on simpler and approximate fields. In
the view of this paper, these discretization methods, similar to the
decomposition of the physical problem in the Schwarz method [1],
can be considered as “first level” domain decomposition techniques,
as indicated in Fig. 1.

Eventually, the finite element method emerged as a very efficient
and versatile technique, and soon took a leading role [5,6]. With the
invention of the microprocessor, system modeling quickly evolved
and a large variety of physical problems could now be solved in a
detailed and accurate way.

Driven by the desire to analyze ever larger and more complex
problems, scientists and engineers searched for methods to optimize
the efficiency of their (discretized) calculations. Various approaches
were developed. The first steps to speed up the calculations consisted
in replacing the direct solvers, basically variants of the factorization
techniques of Gauss, by iterative solvers. A major milestone in
iterative solvers was the conjugate gradient solver proposed in 1952
by Hestnes and Stiefel [7]. However, it soon became clear that
iterative approaches were lacking robustness and could barely be
used for complex engineering problems. Indeed, the bad
mathematical conditioning of the problems, resulting from the
discretization and the lack of smart preconditioners, induced a slow
convergence. Iterative techniques therefore remained mainly an
academic curiosity until the 1980s, when, sparked by the advent of
parallel computing, iterative solvers became highly popular.

Modern parallel computing techniques, used to solve complex
mechanical engineering problems, are often based on the concept of
domain decomposition. The problem is divided into subdomains that
are handled by different processors, whereas the interface coupling
problem is solved iteratively using the local solutions at the
subdomain levels. This can be seen as a second level domain
decomposition if one considers, as explained previously, that the
discretization of the problem is afirst decomposition level (see Fig. 1,
left column).

For dynamics modeling, a way to further increase the analysis
efficiency consists in reducing the complexity of the individual
subdomains. After finding approximate local solutions, represented
in a subspace of the physical degrees of freedom, the subdomains are
coupled. In that case, the subdomains, called substructures in the
dynamic context, are seen as components of the system represented
by general responses and no longer through their detailed
discretization. This is indicated by the “reduction” arrow in Fig. 1.
This so-called dynamic substructuring method can also be obtained
considering that the subparts are characterized by their experimental
behavior. This can be seen as modifying the physical, substructured
(but nondiscretized) model by replacing the mathematical
description of the domains by experimentally obtained information.
These methods are referred to as experimental substructuring (see
vertical arrow in the right column of Fig. 1).

The first dynamic substructuring ideas were developed as
reduction techniques and were probably triggered by the paper of
Hurty in 1960 [8] and further worked out in [9]. In the same time
period, a method using a branched vision of the organization of
substructures was proposed by Gladwell [10]. These methods were
soon known under the name “component-mode synthesis” (CMS),
where the term “modes” includes all kinds of structural modes (e.g.,
exact eigenmodes, approximate modes, static modes, interface
modes, etc.). Rapidly, the scientific and engineering communities
discovered the benefits of dynamic substructuring and component-
mode synthesis became an important research topic in the field of
structural dynamics. Some major developments followed shortly,
resulting in the classic methods by Craig and Bampton [11], Rubin
[12], and MacNeal [13] in the late 1960s and 1970s.

In the 1980s, substructure coupling techniques became attractive
to the experimental community, due to ever more accurate and faster
testing equipment. However, the first attempts were already
performed with experimentally obtained modal information in the
early 1970s [14]. A decade later, coupling techniques were directly
applied to measured frequency response functions (FRFs). At first,
these methods dealt with structural dynamic modification (SDM)
problems, with the aim to alter the dynamic behavior of a base
structure by coupling a “modification” structure (usually lumped
masses or springs). Although structural modification techniques are
generally not considered as substructuring techniques, the two
concepts are in fact identical, as observed in [15–17].

One of the first steps toward frequency-based coupling techniques
was taken by Crowley et al., who proposed a structural modification
method called SMURF (structural modification using experimental
frequency response functions) [18]. However, this method failed to
gain popularity with the broad public. A few years later, Jetmundsen
et al. formulated the classical FRF-based substructuring (FBS)
method [19], which was more efficient and more accurate than the
impedance modeling method available at that time [20] (see
Sec. IV.A for more details).

Summarizing, dynamic substructuring techniques can historically
be placed in the framework of domain decomposition as a second
level decomposition. The dynamic substructuring theory can be used
for numerical and experimental data.

III. General Framework for Dynamic Substructuring

This section is similar to the outline in [21], Chap. 17, but a
different perspective is proposed here, focusing on substructuring
methods in general and not only in the context of model reduction. In
the framework proposed here, the structural dynamics are therefore

Level 0
Full domain

Full continuous domain
Discrete decomposition   

  

BA

Level 1
Domain 
decomposition

Decomposed continuous domainsDecomposed discretized domains 

Level 2
Double domain 
decomposition

Discretized and substructured  domains

BA

Reduced and substructured  domains

Reduction

Substructure decomposition   

A B

Experimental

Continuous decomposition 

Fig. 1 Dynamic substructuring and its relation to domain decom-

position.
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analyzed in three distinct domains: the physical, modal, and
frequency domains.

In the physical domain, the structure is characterized by its mass,
stiffness, and damping distributions, which are given by the
corresponding stiffness, mass, and damping matrices for a
discretized linear(ized) model. A structure in the frequency domain
is seen through its frequency response functions. In the modal
domain, the dynamic behavior of a structure is interpreted as a
combination of modal responses: the system matrices are projected
on the modal basis which, generally speaking, can be any basis
representing the structural response. From a theoretical perspective,
the same information is contained in all different representations
(assuming no model reduction is performed). This is schematically
shown in Fig. 2.

Substructures are structures that interact with their neighboring
structures. When two or more substructures are to be coupled, two
conditions must always be satisfied, regardless of the coupling
method used:

1) Compatibility of the substructures’ displacements at the inter-
face is the so-called compatibility condition.

2) Force equilibrium on the substructures’ interface degrees of
freedom is called the equilibrium condition.

Knowledge of the dynamic models at substructure level and
proper application of the coupling conditions allows one to calculate
the response of the coupled system. Depending on whether one
chooses displacement or forces as unknown at the interface, a primal
or dual assembled system of equations is obtained, as shown
schematically in Fig. 2. Note that, in some methods, both interface
forces and displacements are chosen as interface unknowns, either
separately (in the so-called three field formulations) or as a
combination (Robin-type interface conditions, see, e.g., [22]). This
will not be discussed here. Next, a general coupling framework will
be presented in the three different domains in Secs. III.A–III.C.

A. Coupling in the Physical Domain

Let us consider the system as being described by its mass,
damping, and stiffness matrices as obtained from themechanical and
geometrical properties of the system. We call that the physical
domain. The equations of motion in the physical domain of a
discrete/discretized dynamic subsystem s may be written as

M �s� �u�s��t� �C _u�s��t� �K�s�u�s��t� � f�s��t� � g�s��t� (1)

Here M�s�, C�s�, and K�s� are the mass, damping, and stiffness
matrices of substructure s, u�s� denotes its vector of degrees of
freedom, f�s� is the external force vector, and g�s� is the vector of
connecting forces with the other substructures. In this context, the
connecting forces can be considered as constraining forces
associated to the compatibility conditions. Note that, in these
equations, it is implicitly assumed that the system is linear (the mass,
damping, and stiffness properties are independent of the state of the
system) and that it is time invariant (i.e., constant parameters).

Although a similar framework could be written for nonlinear and
time-variant systems, this will not be discussed here.

Note that whereas dynamic substructuring concepts of linear
systems have been around formany years, dynamic substructuring of
nonlinear systems is still in its infancy. Some methods have been
proposed for the reduction and coupling [23,24] of nonlinear
systems, but no “standard”method (like the Craig–Bamptonmethod
for linear systems [11]) has been established yet. Another way of
handling nonlinear subsystems in a substructuring analysis is by
applying real-time substructuring methods [25]. In these techniques,
no explicit dynamic model of the nonlinear substructure has to be
constructed, but the nonlinear dynamic behavior can be taken into
account experimentally by including the substructure in the real-time
substructuring loop.

The equations of motion of the n substructures that are to be
coupled can be rewritten in a block-diagonal format as

M �u�C _u�Ku� f� g (2)

with

M ≜ diag�M�1�; . . . ;M�n�� �
M�1� � �
� . .

.
�

� � M�n�

2
4

3
5

C≜ diag�C�1�; . . . ;C�n�� K≜ diag�K�1�; . . . ;K�n��

u≜

u�1�

..

.

u�n�

2
4

3
5; f≜

f�1�

..

.

f�n�

2
4

3
5; g≜

g�1�

..

.

g�n�

2
64

3
75

For the sake of simplicity, the explicit time dependence has been
omitted here. Next, the compatibility condition can be expressed by

Bu � 0 (3)

TheBmatrix operates on the interface degrees of freedom (DOF)
and is a signed Booleanmatrix if the interface degrees of freedom are
matching (hence, for conforming discretizations on the interface).
Note that sometimes the substructures do not originate from a
partitioning of a global mesh: in some applications, the substructures
are meshed independently or the interface meshes are sliding like in
contact problems. In that case, the interface compatibility is usually
enforced through nodal collocation or by using weak interface
compatibility formulations, so that the compatibility condition can
still be written as in Eq. (3) but now the operator B is no longer
Boolean (see for instance [26]). Non-Boolean interface matrices
arise also in other general multipoint constraints, such as when joint
constraints are defined between components in multibody dynamics.
The discussion in this paper is valid bothwhenB is Boolean or not. If
B is a signed Boolean matrix, the compatibility condition states that
any pair of matching interface degrees of freedom u�k� and u�l� must
have the same displacement, i.e., u�k� � u�l� � 0. More details on the
formulation of the Boolean matrix B can be found in the Appendix.

The equilibrium condition is expressed by

L Tg� 0 (4)

where the matrix L is the Boolean matrix localizing the interface
DOF of the substructures in the global dual set of DOF. (Let us note
that it is often stated that this equilibrium condition enforces the exact
equilibrium on the interface between substructures, forgetting that
the discretization process enforces equilibrium only in a weak sense
and thus introduces an equilibrium error for the underlying
continuous problem. Nevertheless, in this paper, we will call “exact”
the solution and interface conditions related to the nonreduced
discretized problem.) The expression states that when the dual
connection forces are summed, their resultant must be equal to zero,
i.e., g�k� � g�l� � 0. More details can be found in the Appendix. The
total system is now described by Eqs. (2–4):

Physical domain

Modal domain Frequency domain

Eigenvalue analysis Fourier transform

Modal parameter identification

FRF synthesis

Compatibility and equilibrium conditions :
Choose dual or primal assembly

Modal parameter  identification

CMS Direct coupling FBS

Fig. 2 Representation of system dynamics in three domains.
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8><
>:
M �u�C _u�Ku� f� g

Bu� 0

LTg� 0

(5)

Note that Eq. (5) describes the coupling between any number of
substructures with any number of arbitrary couplings. From this set
of equations, the coupled system can be obtained in either a primal or
a dual way, as discussed next.

1. Primal Formulation in Physical Domain

In a primal formulation, a unique set of interface degrees of
freedom is defined, and the interface forces are eliminated as
unknowns using the interface equilibrium. Classically, finite element
models are assembled in this primal manner. Mathematically, this is
obtained by stating that

u �Lq (6)

where q is the unique set of interface DOF for the system andL is the
Boolean matrix introduced earlier. Because Eq. (6) indicates that the
substructure DOF are obtained from the unique set q, it is obvious
that the compatibility condition (3) is satisfied for any set q, namely

Bu �BLq� 0 8 q

Hence, L actually represents the nullspace of B or vice versa:
�
L� null�B�
BT � null�LT�

(7)

This is a very useful property when calculating the response of the
coupled system because, in the assembly process, only one Boolean
matrix needs to be formulated. The construction of these Boolean
matrices, as well as an explicit computation of the nullspaces, is
discussed in more detail in the Appendix.

Because the compatibility condition in Eq. (5) is satisfied by the
choice of the unique set q, the system is now described by

�
ML �q�CL _q�KLq� f� g

LTg� 0

Premultiplication of the equilibrium equations by LT and noting
that according to the equilibrium conditionLTg is equal to zero, the
primal assembled system reduces to

~M �q� ~C _q� ~Kq� ~f (8)

with the primal assembled system matrices defined by

8>>><
>>>:

~M≜LTML
~C≜LTCL
~K≜LTKL
~f≜LTf

2. Dual Formulation in Physical Domain

In a dual assembly formulation, the full set of global DOF is
retained, i.e., all interface DOF are present as many times as there are
subdomains connected on the corresponding node. From Eq. (5), the
dual assembled system is obtained by satisfying a priori the interface
equilibrium. This is obtained by choosing the interface forces in
the form

g ��BT�

Here, � are Lagrange multipliers, corresponding physically to the
interface force intensities. By choosing the interface forces in this
form, they act in opposite directions for any pair of dual interface
degrees of freedom, due to the construction of BooleanmatrixB. The
equilibrium condition is thus written

L Tg��LTBT�� 0

Because it was shown thatLT was the nullspace ofBT , see Eq. (7),
this condition is always satisfied. Consequently, the system of Eq. (5)
is now described by

�
M �u�C _u�Ku� BT�� f

Bu� 0

In matrix notation, one finds the dually assembled system as

M 0
0 0

� ��
�u

�

�
� C 0

0 0

� ��
_u

�

�
� K B

BT 0

� ��
u

�

�
�
�
f

0

�
(9)

Clearly, � are the Lagrange multipliers associated with the
compatibility condition. Dual approacheswere already considered in
the early days of finite element theory, but dual assembly became
really popular in the 1990s as a way to implement efficient solvers on
parallel processing computers. This led to the family of parallel
solvers known as dual Schur complement methods or FETI (finite
elements tearing and interconnecting) [27].

B. Coupling in the Frequency Domain

When the dynamics of subsystems are obtained from measure-
ments, one typically measures their frequency response for several
inputs and outputs. (One could also consider time responses in time
such as impulse responses. Nevertheless, this is usually not done in
the context of dynamic substructuring.) In that case, the mass,
damping, and stiffness properties of the system are not known
separately like in the physical domain considered before. The
equations of motion, as well as the coupling conditions, can be
transformed from the physical domain into the frequency domain
using the Fourier transform. To this end, the mechanical subsystems
must be linear (or linearized), time invariant (i.e., constant
parameters), and in steady state (i.e., transient effects must have
damped out). Performing a Fourier transform on Eq. (5) then gives
the following set of governing equations in the frequency domain:

8><
>:
Z�!�u�j!� � f�!� � g�!�
Bu�!� � 0

LTg�!� � 0

(10)

Clearly, from the context of the equation, u, f, g represent the
complex amplitude of the harmonic response and forces. Here, Z is
the block-diagonal matrix containing the dynamic stiffness matrices
of the substructures, i.e.,

Z �j!�≜ �!2M� j!C�K

with j being the unit imaginary number. The same procedure as
before can be followed to obtain either a primal or dually assembled
system of equations.

1. Primal Formulation in the Frequency Domain

To obtain the primal system of equations, interface compatibility
is again imposed by choosing a unique set of interface DOF as in
Eq. (6). Analog to the physical domain coupling, one now finds

~Zq� ~f (11)

where

�
~Z≜LTZL
~f≜LTf

are the primally assembled frequency response functionmatrices and
forcing amplitudes.
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2. Dual Formulation in the Frequency Domain

To obtain a dual assembled system from Eq. (10), the equilibrium
condition is imposed by choosing the interface forces as g��BT�.
Analog to the dual coupling in the physical domain, one finds

Z BT

B 0

� ��
u

�

�
�
�
f

0

�
(12)

Observe that, in experimental dynamics, onemeasures in free–free
conditions, imposing forces on points and letting the remaining
structure free,which results in the receptancematrix representationY
of the subsystems. Hence, one does not have direct access to the
dynamic stiffness Z but to the information of its inverse. Therefore,
the formwritten in Eq. (12) is not directly applicable. Eliminating the
Lagrange multiplier (LM) in the system of Eq. (12), one finds the so-
called dual interface problem in the frequency domain, suitable for
the coupling of receptance matrices obtained with experimental
data [28]:

u � Yf � YBT�BYBT��1BYf (13)

where Y ≜ Z�1.

C. Coupling of Reduced Components

Substructures can be represented in an approximated manner by
assuming that the degrees of freedomare in a reduced space of the full
solution space of the structural component. This is often done in
numerical simulation to reduce the computational cost, or in
experimental substructuring when the behavior of the components is
reconstructed from experimentally identified shapes (e.g., static
responses and eigenmodes). Historically, the first methods published
considered substructural representations including true eigenmodes
of the components and were thus called “component-mode
synthesis” [11]. Nowadays, the denomination component-mode
synthesis is understood as “the construction of substructures based
on a reduced space,” the term “mode” being understood as any vector
of the reduction space, such as a Ritz vector. The discussion in this
section relates to the modal domain and component-mode synthesis
mentioned in Fig. 2.

The substructure description may contain different kinds of
information, but a dynamic description of the coupled system
typically includes some sort of dynamic component modeshapes
and/or a representation of the substructure’s quasi-static response.
So, in the modal domain “substructuring method” usually refers to a
process where the substructure dynamics are approximated in a
reduction basis.

Component-mode synthesis methods became particularly popular
among the engineering community as a reduction method for finite
element models. Usually, the CMS method comprises some kind of
modal analysis on the substructure, of which the obtained modal
vectors are used to reduce the equations of motion from the physical
to themodal domain. By doing so, the full set of physical coordinates
is reduced to a smaller set of generalized coordinates. (An important
issue in the coupling of reduced components is the verification of the
quality of the reduced models. To this end, one could, for instance,
use an effective modal mass criterion [29]. However, a detailed
discussion on this subject is out of the scope of this paper.) Note that
if a full set of eigenmodes is taken, i.e., modal truncation is avoided,
the reduction actually becomes a transformation to modal
coordinates. The number of coordinates remains the same. The
reduction is accomplished substructurewise by a reductionmatrixR,
which is a block-diagonal matrix consisting of the substructures’
individual reduction matrices:

u ’ R� R≜ diag�R�1�; . . . ;R�n�� (14)

where � is a vector of generalized coordinates. As stated before, the
substructure reduction matrix R can contain different kinds of
dynamic component modeshapes. Substituting the approximation
Eq. (14) into the equilibrium Eq. (1) of a substructure, one finds

M �s�R ���s� �CR _��s� �K�s�R��s� � f�s� � g�s� � r�s� (15)

where the explicit time dependency is again omitted for clarity. In
this equation, r�s� is a residual force introduced due to the fact that the
approximation given in the reduced basis cannot usually represent
the exact solution. The reduced equilibrium equations are then
obtained by imposing that the residual force must be zero in the
reduction space, namely,‡ R�s�

T
r�s� � 0. One thus finds the reduced

equations of motion of the decoupled subsystems as

M m ���Cm _��Km�� fm � gm (16)

The subscriptm denotes the fact that the matrices are transformed to
the modal domain: 8>>>>>>><

>>>>>>>:

Mm ≜RTMR

Cm ≜RTCR

Km ≜RTKR

fm ≜RTf

gm ≜RTg

(17)

If the subsystems are coupled, both the compatibility and force
equilibrium equations need to be imposed on the subsystems in
generalized coordinates as well. The compatibility condition is
transformed to generalized coordinates as

B m�� 0 (18)

B m ≜ BR (19)

which is still a strong (or exact) compatibility requirement on the
interface. A global set of generalized coordinates satisfying the
compatibility condition can be found in a way analog to what was
done to couple the physical subdomains:

� �Lm� (20)

Here � expresses the unique set of generalized coordinates of the
assembled system andmatrixLm is the primal assembly operator (or,
by comparison of the physical assembly, the localization matrix)
associated with the generalized coordinates. Substituting Eq. (20) in
the compatibility condition Eq. (18), one must have

B mLm�� 0 8 � (21)

meaning thatLm must span the nullspace of Bm if the interface is to
be assembled in a fully compatible way:

L m � null�Bm� � null�BR�

The operatorLm is in general non-Boolean becauseBR is in general
non-Boolean. However, if the interface degrees of freedom of the
substructures are kept as generalized DOF in the set �, thenBR, and
thus Lm, will still be Boolean.

By taking into account the coupling conditions in the transformed
domain, one finds analog to Eq. (5) the following set of equations for
the assembled structure:

8><
>:
Mm ���Cm _��Km�� fm � gm
Bm�� 0

LT
mgm � 0

(22)

The model reduction weakens the force equilibrium condition as
explained previously, i.e., the system response is computed only for
forces that can be represented in the modal space. This compromise
also holds for the interface forces. This can be seen by observing that,

‡Note that this principle is applied in a virtual work or variational principle
approach as well.
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recalling definition Eq. (17), one can also write

L T
mgm �LT

mR
Tg� 0 (23)

Also, according to Eqs. (19) and (21), one finds BmLm��
B�RLm��� 0 for all �, meaning that RLm is the part of the
nullspace of B that exists in the transformation space R or, in other
words,RLm represents a subspace ofL. Hence, comparing Eq. (23)
to Eq. (4), it can be understood as a weak equilibrium condition on
the interface forces, exactly like the reduction process at the
substructure level induces a weakening of the substructure
equilibrium [see Eq. (15)].

Using the Eqs. (22) as a starting point, one can again assemble the
substructures in a primal or dual manner, respectively.

1. Primal Formulation

In the primal formulation, direct use is made of the unique choice
of interface DOF in global coordinates, i.e., Eq. (20). Substitution of
the equation into Eq. (22) yields8><

>:
MmLm

���CmLm
_��KmLm�� fm � gm

BmLm�� 0

LT
mgm � 0

(24)

The second line in Eq. (24) is zero, as Lm � null�Bm�.
Premultiplication of the remaining equations with LT

m and noting
thatLT

mgmmust be equal to zero gives the primal system of equations
of the coupled structure as

~M m
��� ~Cm

_�� ~Km�� ~fm (25)

with 8>>>><
>>>>:

~Mm ≜LT
mMmLm

~Cm ≜LT
mCmLm

~Km ≜LT
mKmLm

~fm ≜LT
mfm

2. Dual Formulation

The dually assembled system is obtained when imposing the
interface equilibrium by choosing the interface forces in generalized
coordinates in the form:

g m ��Bm�

where � corresponds to the Lagrange multipliers associated to the
interface intensities in generalized coordinates. The force
equilibrium is now always satisfied, as

L T
mBm�� 0

The equations of motion of the dually assembled system in
generalized coordinates can thus be written as

�
Mm ���Cm _��Km�� BT

m�� fm
Bm�� 0

In matrix-vector form, the dually formulated system is equal to§

Mm 0
0 0

� ��
��

�

�
� Cm 0

0 0

� ��
_�

�

�
� Km Bm

BT
m 0

� ��
�

�

�
�
�
f

0

�

(26)

Remark: Dual assembly and free-interface modes: It is interesting
to observe that the dually assembled modally reduced problem

Eq. (26) can also directly be obtained by considering the dually
assembled physical problem Eq. (9) and reducing it, using the
approximation

�
u

�

�
’ R 0

0 I

� ��
�

�

�
(27)

where I is the identity matrix. Indeed, it can be easily verified that by
substituting Eq. (27) into Eq. (9), one directly obtains Eq. (26).

In certain classes of component-mode synthesis techniques, the
reduction space for the physical DOF includes so-called residual
flexibility modes. Those modes correspond to the substructure’s
(quasi-) static response to a unit interface force and are typically used
in combination with free-interface modes (for instance, in the
MacNeal [13] and Rubin [12] methods).

In that case, two approaches can be considered. In the first
approach, one can consider the reduction only on the DOF u and
write

u ’ �R G �
�
�

�

�
(28)

and simply consider � as a generalized DOF exactly as �, and where
G are the associated modes (typically residual flexibility modes).
Using this reduction relation on the primally assembled physical
problem Eq. (8), one finds the reduced systems as in Eq. (25) or in
Eq. (26). This leads to the MacNeal [13] method as shown in [30] or
to the so-called Craig–Chang method [31].

In a second approach, one can consider the reduction of the entire
(u, �) space by

�
u

�

�
’ R G

0 I

� ��
�

�

�
(29)

and apply this reduction directly on the dually assembled problem
Eq. (9). It is important to observe that this does not yield the same
reduced equations as in the first approach. Indeed, the reduced
equations are now obtained by substituting Eq. (29) into Eq. (9) and
premultiplying it by the transposition of the reduction matrix. This
can schematically be written as

RT 0
GT I

� �
substructure equilibrium
interface compatibility

� �
(30)

Clearly, whereas in the first approach the interface compatibility is
exact and the interface equilibrium is approximate, here, the
compatibility is now weakened, because the strong compatibility
condition is now replaced by

G T�substructure equilibrium� � interface compatibility

indicating that one allows the interface to be slightly incompatible.
This can be an efficient way to avoid interface locking when the
displacement reduction spaceR is poor. The approach described by
Eq. (30) leads, for instance, to the so-called dual Craig–Bampton
method [32] or to the similar method proposed in [33].

IV. Frequency Response Function Based
Substructuring and Component-Mode

Synthesis Strategies

In the previous section, a general framework for the coupling of
substructures was presented. This framework allows the
classification of existing dynamic substructuring techniques in three
main classes (see also Fig. 2): 1) coupling techniques in the physical
domain, 2) coupling techniques in the frequency domain, and
3) coupling techniques in the modal domain.

As suggested in Sec. II, the process of coupling in the physical
domain is equal to assembling thematrices of individual elements, as
is done in the finite element method. However in the experimental
community, coupling in the physical domain is very uncommon,

§Observe that mathematically speaking, the form obtained here is identical
to the dual problem of the nonreduced problem except that now the
compatibility matrix Bm is no longer Boolean.
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because it is impossible to obtain the full experimental description of
a subdomain in real structures.

Next, the most important dynamic substructuring methods found
in the literature are classified according to the dynamic
substructuring classes, frequency domain or modal domain.

A. Frequency-Based Substructuring

Basically, three fundamental frequency based substructuring
methods can be found in the literature: 1) impedance coupling,
2) admittance coupling, and 3) SMURF/LM FBS coupling.

Classically, frequency domain substructuring was performed by
primally coupling the dynamic stiffness. In the literature, thismethod
commonly carries the name “impedance modeling/coupling”
[17,20]. Because dynamic stiffness matrices are hard to find directly
in practice, the data are obtained by inverting a measured structure’s
receptance matrix. Using the framework introduced in Sec. III, the
impedance coupling method for n substructures with any number of
arbitrary couplings is mathematically expressed by

q � �LTY�1L��1LTf

Although this method is able to deal with measured FRFs directly, it
is computationally inefficient and prone to severe error amplification.
In the case of coupling two substructures, for example, it already
involves three matrix inversions.¶ In addition, the chance of round-
off errors due to bad matrix conditioning is higher as well, as the
matrices are inverted twice. If the calculations are not ill conditioned,
their outcomewill, however, be similar to the othermethods because,
theoretically, the method is exact and is equivalent to Eq. (5).

A more common substructuring technique in the frequency
domain is the one proposed by Jetmundsen et al. in 1988 [19]. The
method is sometimes suitably referred to in the literature as
“admittance modeling” [34–36]. The method consists in coupling
the receptance matrices of the substructures in a primal-like way, by
partitioning the matrices according to the interface and internal
degrees of freedom. In the case of coupling multiple arbitrary
subsystems, use is made of the graph theory [19]. The method has an
improved computational efficiency and better computational
robustness against ill conditioning over the impedance coupling
method. The original formulation of the method was generalized by
Gordis et al. [37,38], and a similar method was proposed by Ren and
Beards in 1993 [39].

In 1984, Crowley et al. [18] formulated the so-called SMURF
method. This method uses the free-interface receptance matrices of
the substructures to calculate the receptance matrix of the coupled
system in a dual manner. However, as indicated earlier, this method
gained little popularity as a dynamic substructuring method. This is
probably due to the fact that it was initially intended mainly as a
structural modification and troubleshooting tool [18]. In 2006, the
method was reinvented and rewritten in a more straightforward
manner to be used as a dynamic substructuring method, under the
name Lagrange multiplier FBS (LM FBS) [28]. A more general
framework for the method was presented in Sec. IV.B, which
resulted in the final equation:

u � Yf � YBT�BYBT��1BYf

or:

u � Yf � YBT� (31)

� ≜ �BYBT��1u� (32)

u � ≜ BYf (33)

Equations (13) or (31–33) can be seen as a simpler formulation of the
FBS method by Jetmundsen et al. [19] where a genuine dual
assembly is used. Themechanical interpretation of Eqs. (31–33) will
be explained briefly.

The responses of the individual subsystems upon the applied
external excitation is equal to the first termYf in Eq. (31). As a result,
a gapu� is formed between the still-uncoupled subsystem interfaces
[see Eq. (33)]. The interface forces of intensities � applied on the
common subsystem interfaces are then computed by Eq. (32) such
that this gap is closed. Additional responses associated with the
interface forces are expressed by�YBT� in Eq. (31) and, as the gaps
are now closed, Eq. (31) represents the response of the coupled
subsystems.

Special attention to the determination of the interface force
intensities � is required. To this end, one needs to know the gap
which the external forces applied on the individual subsystems
introduced, e.g., u� from Eq. (33). Notice that the Boolean matrix
arranges the subtraction of the subsystem interface displacements,
e.g.,

u � � � 1 �1 � Y
�1� 0

0 Y�2�

� ��
f�1�

f�2�

�
� Y�1�f�1� � Y�2�f�2� (34)

where, for simplicity, Y�1� and Y�2� are the FRFs of two single DOF
subsystems which are connected. Now the term BYBT determines
the gap, which results from an applied interface unit force on
matching interface nodes. The flexibility of both subsystems are
subtracted to this end by the construction of the Boolean matrix, i.e.,

BYB T�� � 1 �1 � Y
�1� 0

0 Y�2�

� ��
1

�1

�
�� �Y�1� � Y�2��� (35)

Inversion of the interface flexibility matrix BYBT gives a dynamic
stiffness matrix describing the interface force needed to introduce a
unit displacement gap at the interface DOF. Multiplication of this
stiffness matrix with the gap, which was actually initiated by the
external forces on the individual subsystems, gives the (negative)
interface force that is needed to keep the subsystems together.

Comparedwith the Jetmundsenmethod [19], the LMFBSmethod
shows its simplicity, as the subsystem receptance matrices do not
need to be partitioned before coupling [28].

In the literature, numerous variations on these three methods have
been proposed. Some important examples include the following:

1) Ferreira and Ewins proposed the addition of nonlinear joints
[40,41].

2) Various authors [42–44] proposed numerical techniques to
process the measured FRFs and thereby to improve the accuracy of
the assembled systems in experimental substructuring, based on the
Jetmundsen method [19]. Typically, a singular value decomposition
is applied on measured FRF data to improve the numerical
conditioning of the coupling calculations.

3) In the case of simple structures with only one coupling point to
other structures, use can bemade of the four-pole theory developed in
the late 1950s [45]. As the method is restricted to single input and
output data, this method can be seen as a restricted FBS method.

B. Component-Mode Synthesis

As the name tells, component-mode synthesis techniques use
modes (in the general sense) to represent the dynamic behavior of a
substructure. In experimental substructuring, CMS is possible in two
different ways:

1) Direct identification of thematrices related to the reduced basis.
The most basic approach is, for instance, to measure free–free
eigenparameters of substructures: the eigenmodes represent the
reduction basis; the modal mass, eigenfrequencies, and dampings
then form the associated reduced matrices. The substructures can be
assembled as explained in Sec. III.C. More accurate approaches
based on this idea (including, for instance, residual and static modes)
can be constructed [15], but applying more advanced identification
of reduced dynamics requires precise and complex testing (see also
Sec. V) and, to date, no clear success has been reported.

¶One inversion of the assembled dynamic stiffness matrix and two
inversions of the receptance matrices of each substructure in the block-
diagonal matrix Y [17].
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2) A different way to use the modal information obtained
experimentally consists of synthesizing the admittance matrices of
substructures by a spectral superposition. Obviously, residual terms
of themodal identification can also be included. This approach can be
seen as an FRF-based substructuring, as discussed in the previous
section, where the modal identification step corresponds to a kind of
filtration of the raw FRF measurements. (There is obviously a
relation between the two methods discussed here, namely using the
modes to synthesize the FRF and using them directly with the modal
reduced matrices. If only modes are used, the two approaches are
equivalent, but, when adding residual corrections, it is not clear if
they lead to the same model [15].)

Component-mode synthesis started, in fact, as a reductionmethod,
as outlined in the history discussion (Sec. II). Nearly all methods are
based on the projection of the physical problem on a reduced basis
consisting of general modes [see Eq. (16)] and they differ from one
another by the nature of the modes used to approximate the physical
space.

In the original method of Hurty in 1965 [9], the interface DOF are
partitioned in a set that renders the substructures statically
determined and in a set containing the remaining interface DOF. The
modes used by Hurty for the reduction are then the rigid body modes
associated with unit displacements of the statically determined DOF
and the static response to unit displacements on the other interface
DOF, the statically determined set being fixed. This method was
slightly difficult to apply because it required partitioning of the
interface sets. Therefore, the methods that became popular are the
static condensation techniques of Guyan∗∗ [47] published around the
same time as the Hurty method [9], and the Craig–Bampton method
[11], which is still themost commonly used substructuring technique
in structural dynamics.

In the Craig–Bamptonmethod [11], not only static modes are used
but also vibration modes associated with the dynamics of the DOF
internal to the substructures, namely when the interface DOF are
fixed. The reduced Craig–Bampton matrices are nearly diagonal and
therefore lead to an efficient implementation in finite element codes.

Later, methods were proposed where the ingredients used to build
the reduction basis consisted of so-called attachment modes, namely
substructure responses corresponding to unit interface forces. In
addition, free-interface modes where used to represent the internal
dynamics of the substructures. This led to the methods of MacNeal
[13], Rubin [12], and Craig and Chang [31].

Interesting reviews of component-mode synthesis methods can be
found in [21,48,49]. Here, we will rapidly outline some of the
important variations of the common and popular reduction methods:

1) Many authors have proposed different modes to build a
reduction basis that better approximates the substructures’ dynamics.

a) Already at the time when Hurty published the idea of sub-
structuring, the branch method [10] was proposed in which the
reduction modes are evaluated by taking into account the
influence of neighboring substructures.

b) Several authors have proposed to replace the static modes in the
reduction basis by quasi-static modes related to a dynamic
stiffness matrix obtained by shifting around a central frequency
[50–52].

c) Some authors have proposed to add masses to the interface
when measuring or computing the substructure modes to
account for the inertia loading of the neighboring substructures
[53,54].

d) Instead of using vibration modes (which represent the general
dynamics of the substructures) one can also use the so-called
Krylov vectors related to the interface loading [55], which, in
fact, arise from the concept of the load-dependent vectors
proposed by Wilson et al. for model reduction [56].

e) A way to include both true eigenmodes and Krylov vectors
consists of adding to the reduction basis so-called modal
truncation augmentation vectors that represent a kind of mode

acceleration correction. Examples of such higher order
corrections can be found in [57–60].

2) Some rare publications have tackled the issue of reducing the
interface problem. This is an important issue because in many
practical applications the number of degrees of freedom on the
interface is still unnecessarily high. A second reduction step for the
interface DOF can then be performed and typically the reduction
space is obtained from a preliminary Guyan reduction step [61–63].

3) Some authors have proposed to iteratively construct or improve
the reduction basis, using the error residual from the previous
iteration [61–66].

4) Multilevel substructuring consists of performing nested par-
titioning of the system and reducing the substructures
successively starting at the lowest level. Any substructuring
technique can be applied in a multilevel manner. One popular
technique is the automatic multilevel substructuring method or
AMLS [67,68]

5) Themethod proposed in [69], similar to the concept of statically
determined DOF set by Hurty [9], introduces explicit rigid DOF at
the global level to have direct access to the rigid body motion of the
entire structure.

6) For damped systems, classical reduction basis can lead to full
reduced damped matrices [70] or might not be adequate for an
efficient reduction. In that case, some authors have proposed to
consider the state-space form of the equation and use the associated
modes and Krylov vectors [71–73].

7) Building substructured models that undergo parametric modi-
fications (like in modal updating or optimization procedures) is an
active research area. Several techniques to update or enrich the
reduction basis to efficiently reduce families of models can be found
in [74–77].

This overview and classification of component mode synthesis
covers most of the important trends in the field, although the
reference list mentioned here is by no means exhaustive. Note also
that we have not touched the topics of substructuring for nonlinear
and formultifield problems. These are currently active researchfields
but are beyond the scope of this paper.

V. Difficulties in Experimental Dynamic
Substructuring

In experimental dynamic substructuring, some difficulties have to
be dealt with to avoid an erroneous analysis. These difficulties all
originate from the inability to properly measure all the subsystem’s
properties.

As will be seen, the FBS and CMS methods both have some
distinct differences in the errors encountered. In general, onemay say
that the CMSmethod is more appropriate in case the (sub)structure is
suitable for a modal identification. If the modal identification is
performed well, good results can be obtained. However, in case a
(sub)structure has high damping, special frequency dependencies
(such as in rubber components) or a highmodal density, direct use of
the measured FRFs with the FBS method will probably yield better
results.

Next, the main difficulties encountered are discussed, as well as
solutions proposed in the literature.

A. Truncation Errors

A problem encountered in experimental substructuring with the
CMS method is that of modal truncation. Modal truncation means
that not all themodal degrees of freedom, describing the subsystem’s
dynamics, are contained in the subsystem’s description. This is a
common problem in experimental modal analysis (EMA), for which
the concept of residual flexibility was developed [78,79]. If a
subsystem is identified with an EMA and is afterward used in a DS
calculation, the inclusion of these residual terms is essential. (The
same holds for numerically obtained FRF data.) If the residual
flexibility is not included, the substructure will behave more stiffly,
as it has less degrees of freedom to deform in [80]. Shifts in resonance
frequency of the total coupled system can then be expected. Note that

∗∗Also known as the Guyan–Irons reduction, Irons having proposed the
same approach later in his frontal solver [46].
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residual flexibility is only an approximation of the highermodes, and
so an error will still be made in the coupling of the subsystems.

Amodal analysis on a subsystemmight not always be possible, as
the substructure might have too much damping, has frequency-
dependent dynamic stiffnesses, or has a modal density that is too
high. In such cases, direct couplingwith themeasured FRFdata is the
best option, in which the residual terms are included in the data
naturally.

B. Rotational Degrees of Freedom

A lot has been written on the importance of rotational degrees of
freedom in dynamic substructuring [81–83]. The measurement of
these rotations, and the application of torques to excite them, is very
difficult to accomplish in practice. However, if not taken into
account, a large number of entries in the (receptance) matrix are
omitted. The influence of omitting rotational information strongly
depends on the component’s interface flexibility [84].

Different approaches exist to tackle the rotational DOF issue.
Basically, one can either put effort into measuring them [85] or
expand translational data to reconstruct the information for the
rotational DOF [86,87]. In particular, if one assumes that the
interface has only local rigid motions, one can construct its response
from a minimum of six coupling DOF at three nodes. This kind of
procedure will only yield good results up to frequencies where local
deformation between the interface nodes starts to take place.

C. Continuity of Interface

In all practical applications, the interface is in fact a continuous
surface.Measurements, however, can usually only be performed on a
small discrete number of points (unless field measurements such as
holographic techniques are used). In that case, one must reconstruct
the interface’s continuous behavior using expansion strategies. The
simplest method is to consider a rigid behavior around measured
points: as discussed in the preceding point, one then describes the
interfacewith rotational degrees of freedom.More complex interface
deformation modes can be reconstructed if sufficient interface points
are measured. Methods previously proposed in the field of model
updating can be used, such as the system equivalent reduction
expansion process (SEREP method) [86], where static deformations
obtained from a finite element model in the vicinity of the interface
are used. A local finite element model can also be used to determine
local dynamicmodes for the expansion of themeasurements onto the
interface [88]. Recently, the experimental community started using
these kind ofmultiple point connections, enhancing the experimental
coupling results significantly [35,36,89,90].

D. Rigid Body Modes

Essential to the successful coupling of substructures with the CMS
method is the inclusion of the substructures’ rigid bodymode (RBM)
information [91]. If this information is not contained, erroneous
coupling results are calculated. This then affects the total frequency
range, because the structure will always move in a combined motion
of flexible and rigid modes. Even at higher frequencies, the rigid
modes are still excited and essential.

In the FBSmethod, no explicit attention is needed for the coupling
algorithm itself; the RBM information is included naturally.
However, setting up the experiment such that the rigid body modes
are included properly is still required. In practice, this means low-
stiffness air springs or elastic bands should be used, separating the
RBM frequencies from the first elastic modes well [92].

E. Dynamics of Joints

Dynamic substructuring methods are sensitive to the coupling
mechanisms which take place at the subsystem interfaces. As for the
coupling mechanisms between substructures, different approaches
exist. Usually, the coupling between the subsystems is either
modeled as exact, i.e., Bu� 0, or with linear flexible joints [93].

In many engineering structures, however, people found nonlinear
coupling mechanisms between parts modeled as substructures. This

nonlinear behavior originates, for instance, from friction between the
bolted parts. Efforts are being made to develop nonlinear models to
account for such mechanisms [94]. The engineer should be aware of
this kind of coupling behavior and decide whether it should be taken
into account.

F. Time Delay

One specific application of the dynamic substructuring concept is
the field of real-time dynamic substructuring. In real-time dynamic
substructuring, a hybrid model of the complete system is created by
combining an experimental substructure with a numerical model
describing the remainder of the system. This technique is, among
others, useful when dealing with nonlinear substructures because no
explicit dynamic model of the nonlinear substructure has to be
constructed. The nonlinear dynamic behavior can be taken into
account experimentally by including the substructure in the real-time
substructuring loop. However, a bottleneck in these real-time
substructuring techniques is the time delay due to the inherent
dynamics of the actuators used for the structural testing [95]. Because
this time delay troubles the real-time DS simulations and can even
cause instability during the experiments, this subject has received a
lot of research attention over the last years [25,96].

G. Experimental Errors

In the case of dynamic substructuring using experimental data,
measurement errors affect the response of the coupled system.
Numerous errors can be made; in the literature, different kinds are
addressed. First there is the problem of random measurement noise,
which is inherent to performingmeasurements. Especially for lightly
damped structures, the signal-to-noise ratio can become very small
[35] between eigenfrequencies and at antiresonances. Measurement
averaging is therefore seen as a requirement in most cases.

If the FRFs are polluted with random measurement noise and
testing artifacts (e.g., collocation errors and added mass effects) the
coupling results will be erroneous. This effect strongly depends on
which FRFs the random errors are related. The interface flexibility
matrix BYBT , for example, needs to be inverted in the admittance
and LM FBS coupling. Because of the matrix operation, small
measurement errors can be significantly amplified, resulting in large
errors in the FRFs of the coupled system. To get a feeling of how
sensitive the coupling is to the random measurement errors, one can
monitor the conditioning of the assembled flexibility operator
BYBT . If the conditioning number is high, the calculation becomes
more sensitive to small inaccuracies. To improve the robustness of
FBS, a lot of effort is spent on filtration techniques, using, for
instance, singular value decomposition to make the inversion less
sensitive to small perturbations on the matrix entries
[34,43,44,97,98]. Furthermore, a method was recently developed
that allows analyzing the effect of these randommeasurement errors
on the accuracy of the FBS algorithm [99].

When applying the CMS method, use is made of a modal
identification. Although the modal parameters are also affected by
the random errors due to measurement noise and testing artifacts,
better results can be accomplished with this kind of filtration. As a
mathematical model is deducted, matrix conditioning is of less
importance.

Research has shown that antiresonances are difficult to measure in
practice [100]. Because antiresonances of substructures often
determine, for a significant part, the FRF of the assembled system
(for instance, for very flexible substructures [99,101]), special care
must be taken to measure the FRFs accurately over the entire
frequency range. Therefore, the following points must be kept in
mind: 1) Sensor positioning and alignment. For instance,
antiresonances can be very sensitive to the exact location of the
excitation; 2) unmeasured side forces introduced by a shaker/stinger
combination; 3) signal processing errors, like leakage and bias errors
due to the limited frequency resolution; 4) added mass introduced by
the measurement equipment; 5) local nonlinearities of the (sub)
structure; 6) lightly damped substructures can be severely affected by
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the damping of the suspension [92]. Also, the stiffness of the
suspension can result in shifts of the lower eigenfrequencies.

VI. Conclusions

In this paper, the concept of substructuring has been placed in a
historical context, explaining, for instance, its relation to domain
decomposition and model reduction. A general framework has been
outlined, starting from a general decomposed formulation and
including dual and primal assembly of the substructures in the
physical, frequency, and modal domains. In the light of that
framework, the most important methods proposed over the last
decades have been classified, both for the frequency-based
substructuring used in experimental dynamics and for the
component-mode synthesis techniques. The paper was concluded
by a brief discussion of some of the important open issues that still
render experimental substructuring difficult to apply in practice.

Appendix: Construction of Boolean Matrices

This appendix illustrates the construction of the Boolean matrices
B and L. To this end, the general system shown in Fig. A1 is
considered: this figure schematically shows the coupling of two
general substructures. Both substructures consist of three nodes;
substructure A has 4 DOF, whereas substructure B holds 5 DOF.

In this example, nodes 2 and 3 of substructure A are coupled to
nodes 5 and 6 of substructure B, respectively. And so, three
compatibility conditions should be satisfied:

8><
>:
u2x � u5x
u2y � u5y
u3x � u6x

(A1)

To express this condition as in Eq. (3), i.e., Bu� 0, the signed
BooleanmatrixBmust be constructed. The total vector of degrees of
freedom u is

u � � u1y u2x u2y u3x u4x u4y u5x u5y u6x �T

The signed Boolean matrix B is now found as

u1y u2x u2y u3x u4x u4y u5x u5y u6x

B�
0 1 0 0 0 0 � 1 0 0

0 0 1 0 0 0 0 �1 0

0 0 0 1 0 0 0 0 �1

2
4

3
5

Every coupling term or, equivalently, every compatibility
condition, corresponds to a line in the Boolean matrixB. Therefore,
in the general case where the coupled substructures comprise
n degrees of freedom of which m are coupled interface DOF, the
matrixB has sizem 	 n. In this example, n� 9 andm� 3; the size
of B is 3 	 9. It can easily be seen that the condition Bu� 0 is
equivalent to the three compatibility equations in Eq. (A1).

From this signed Boolean matrix, the Boolean localization matrix
L is found by computing the nullspace. In this example, this gives

L �

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
6666666666664

3
7777777777775

The set of unique interface DOF that is chosen for this example is
found as††

q � �u1y u4x u4y u5x u5y u6x �T

Indeed, theBooleanmatrixL transforms this unique set of degrees
of freedom to the total set of DOF:

u �Lq�

u1y
u5x � u2x
u5y � u2y
u6x � u3x
u4x
u4y
u5x
u5y
u6x

2
6666666666664

3
7777777777775

�

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
6666666666664

3
7777777777775

u1y
u4x
u4y
u5x
u5y
u6x

2
6666664

3
7777775

In addition, the Boolean localization matrixL describes the force
equilibrium naturally as well:

LTg�

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1

2
6666664

3
7777775

0

g2x
g2y
g3x
0

0

g5x
g5y
g6x

2
6666666666664

3
7777777777775

�

0

0

0

g2x � g5x
g2y � g5y
g3x � g6x

2
6666664

3
7777775
� 0

To satisfy the equilibrium condition, the connection forces on dual
degrees of freedom must thus sum to zero.

Finally, it should be noted that there is another way to obtain the
matrix L from B. To this end, partitioning of the global set of DOF
into sets of unique uu and redundant ur coordinates is required. The
unique coordinates are all the internal DOF plus one set of interface
DOF. The redundant coordinates are formed by the dual interface
DOF. Partitioning Eq. (3) then gives

�Brr Bru �
�
ur
uu

�
� 0

Here, Brr is a nonsingular square submatrix of B. From this
partitioned equation, it is clear that the redundant DOF can be found
from the unique DOF as

u r ��B�1rr Buuuu

Because the Boolean localization matrixL builds the set of global
DOF from a set of unique DOF (i.e., u�Lq), one finds L directly
from the partitioned compatibility equation:

u �Lq�
�
uu
ur

�
�
�
�B�1rr Bru

Iuu

�
uu (A2)

BBBB
y

2

3

4

BBBB

AAAA

5

6

x

1

Fig. A1 Coupling of two general substructures.

††The interface DOF of substructure B are retained.
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In this example, this gives

u2x u2y u3x u1y u4x u4y u5x u5y u6x

B�
1 0 0 0 0 0 � 1 0 0

0 1 0 0 0 0 0 �1 0

0 0 1 0 0 0 0 0 �1

2
4

3
5

Computing the Boolean localization matrix from Eq. (A2) then
gives

L �

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
6666666666664

3
7777777777775

It can easily be verified that this is indeed equal to the nullspace of
the partitioned B matrix.
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