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General framework for E(3)-equivariant
neural network representation of density
functional theory Hamiltonian

Xiaoxun Gong 1,2,7, He Li 1,3,4,7, Nianlong Zou1, Runzhang Xu1,
Wenhui Duan 1,3,4,5 & Yong Xu 1,4,5,6

The combination of deep learning and ab initio calculation has shown great
promise in revolutionizing future scientific research, but how to design neural
network models incorporating a priori knowledge and symmetry require-
ments is a key challenging subject. Here we propose an E(3)-equivariant deep-
learning framework to represent density functional theory (DFT) Hamiltonian
as a function of material structure, which can naturally preserve the Euclidean
symmetry even in the presence of spin–orbit coupling. Our DeepH-E3method
enables efficient electronic structure calculation at ab initio accuracy by
learning from DFT data of small-sized structures, making the routine study of
large-scale supercells (>104 atoms) feasible. The method can reach sub-meV
prediction accuracy at high training efficiency, showing state-of-the-art per-
formance in our experiments. The work is not only of general significance to
deep-learning method development but also creates opportunities for mate-
rials research, such as building a Moiré-twisted material database.

It has been well recognized that deep-learning methods could offer a
potential solution to the accuracy-efficiency dilemma of ab initio
material calculations. Deep-learning potential1,2 and a series of other
neural network models3–7 are capable of predicting the total energies
and atomic forces of given material structures, enabling molecular
dynamics simulation at large length and time scales. The paradigm has
been used for deep-learning research of various kinds of physical and
chemical properties8–19. During the development of these methods,
people have gradually come to realize that the introduction of sym-
metry considerations as a priori knowledge into neural networks is of
crucial importance to the deep-learning approaches. For this purpose,
people have drawn insights from a class of neural networks called the
equivariant neural networks (ENNs)20–24. The key innovation of ENNs is
that all the internal features transform under the same symmetry
group with the input; thus, the symmetry requirements are explicitly
treated and exactly satisfied. Symmetry has fundamental importance
in physics, so ENNs will be especially advantageous when they are

applied to the modeling of physical systems, as shown by a series of
neural network models for various material properties6,7,13–15.

Recently, a deep neural network representation of density func-
tional theory (DFT) Hamiltonian (named DeepH) was developed by
employing the locality of electronic matter, localized basis, and local
coordinate transformation25. By the DeepH approach, the computa-
tionally demanding self-consistent field iterations could be bypassed,
and all the electron-related physical quantities in the single-particle
picture can, in principle, be efficiently derived. This opens opportu-
nities for the electronic structure calculation of large-scale material
systems. However, it is highly nontrivial to incorporate symmetry
considerations into DeepH. Specifically, the property that the Hamil-
tonian matrix changes covariantly (i.e., equivariantly) under rotations
or gauge transformations should be preserved by the neural network
model for efficient learning and accurate prediction (Fig. 1). A strategy
is developed in DeepH to apply local coordinate transformation which
changes the rotation covariant problem into an invariant one and thus
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the transformed Hamiltonian matrices can be learned flexibly via
rotation-invariant neural networks25. Nevertheless, the large amount of
local coordinate information seriously increases the computational
load, and the model performance depends critically on a
proper selection of local coordinates, which relies on human intuition
and is not easy to optimize. Therefore, we think that the combination
of DeepHwith ENNmight open new possibilities for the deep-learning
modeling of Hamiltonians.

People have already made attempts to model the Hamiltonian
using equivariantmethods. Unke et al. designed PhiSNet26, which used
ENN for predicting the Hamiltonians of molecules with fixed system
size. Nigam et al. used rotationally equivariant N-center features in the
kernel ridge regressionmethod to fit molecular Hamiltonians27. Zhang
et al. proposed an equivariant scheme to parameterize the Hamilto-
nians of crystals based on the atomic cluster expansion descriptor28.
However, the key capability of DeepH that learns from DFT results on
small-sized material systems and predicts the electronic structures of
much larger ones has not been demonstrated by thesemethods. More
critically, the existing equivariant methods have neglected the equiv-
ariance in the spin degrees of freedom, although the electronic spin
and spin–orbit coupling (SOC) play a key role in modern condensed
matter physics and materials science. With SOC, one should take care
of the spin–orbital Hamiltonian, whose spin and orbital degrees of
freedom are coupled and transform together under a change of
coordinate system or basis set, as illustrated in Fig. 1. This would raise
critical difficulties in designing ENN models due to a fundamental
change of symmetry group. In this context, the incorporation of ENN
models into DeepH is essential but remains elusive.

In this work, we propose DeepH-E3, a universal E(3)-equivariant
deep-learning framework to represent the spin–orbital DFT Hamilto-
nian ĤDFT as a function of atomic structure fRg by neural networks,
which enables efficient electronic structure calculations of large-scale
materials at ab initio accuracy. A general theoretical basis is developed
to explicitly incorporate covariance transformation requirements of
fRg7!ĤDFT into neural network models that can properly take the
electronic spin and SOC into account, and a code implementation of
DeepH-E3 based on the message-passing neural network is also pre-
sented. Since the principle of covariance is automatically satisfied,
efficient learning and accurate prediction become feasible via the
DeepH-E3method.Our systematic experiments demonstrate the state-
of-the-art performance of DeepH-E3, which shows sub-meV accuracy
in predicting DFT Hamiltonian. The method works well for various
kinds of material systems, such as magic-angle twisted bilayer gra-
phene or twisted van der Waals materials in general, and the

computational costs are reduced by several orders of magnitude
compared to direct DFT calculations. Benefiting from the high effi-
ciency and accuracy as well as the good transferability, there could be
promising applications of DeepH-E3 in electronic structure calcula-
tions. Also, we expect that the proposed neural network framework
can be generally applied to develop deep-learning ab initio methods
and that the interdisciplinary developments would eventually revolu-
tionize future materials research.

Results
Realization of equivariance
It has long been established as one of the fundamental principles of
physics that all physical quantities must transform equivariantly
between reference frames. Formally, a mapping f : X→ Y is equivariant
for vector spaces X and Y with respect to group G if DY (g) ∘ f = f ∘ DX

(g),∀g∈G, where DX,DY are representations of group G over vector
spaces X, Y, respectively. The problem considered in this work is the
equivariance of a mapping from the material structure fRg including
atom types and positions to the DFT Hamiltonian ĤDFT with respect to
the E(3) group. The E(3) group is the Euclidean group in three-
dimensional (3D) space which contains translations, rotations, and
inversion. Translation symmetry is manifest since we only work on the
relative positions between atoms, not their absolute positions. Rota-
tions of coordinates introduce nontrivial transformations, which
should be carefully investigated. Suppose the same point in space is
specified in two coordinate systems by r and r0. If the coordinate sys-
tems are related to each other by a rotation, the transformation rule
between the coordinates of the point is r0 =Rr, where R is a 3 × 3
orthogonal matrix.

In order to take advantage of the nearsightedness of electronic
matter29, the Hamiltonian operator is expressed in the picture of
localized pseudo-atomic orbital (PAO) basis. The basis is separated
into radial and angular parts, having the form ϕiαðrÞ=RiplðrÞY lmðr̂Þ.
Here i is the site index,α ≡ (plm),wherep is themultiplicity index, Ylm is
the spherical harmonics having angular momentum quantum number
l and magnetic quantum number m, r ≡ ∣r − ri∣ and r̂ � ðr� riÞ=∣r� ri∣
where ri is the position of the ith atom. The transformation rule for the
Hamiltonian matrix between the two coordinate systems described
above is

H0
ip1 ,jp2

� �l1l2

m1m2

=
Xl1

m0
1 =�l1

Xl2
m0

2 =�l2

Dl1
m1m

0
1
ðRÞDl2

m2m
0
2
ðRÞ* Hip1 ,jp2

� �l1l2

m0
1m

0
2

, ð1Þ

a b

a1 a2 b1 b2

Electronic Structure Calculation

Atomic orbital basis

NucleusSpin-orbital wavefunction

Electron spin

Neglecting SOC Including SOC
Structure a1

Structure a2 Structure b2

Structure b1

Fig. 1 | Equivariance in electronic structure calculations. a Schematic wave-
functions and b Hamiltonian matrices are shown for the systems neglecting or
including spin–orbit coupling (SOC). Structures a1 and a2 are related to each other
by a 90∘ rotation (see (a)), whose hopping parameters (i.e., Hamiltonian matrix
elements) betweenpx orbitals are related by a unitary transformation (see (b)). This

equivariant property of Hamiltonian must be preserved in all electronic structure
calculations. When the SOC is taken into account, the spin and orbital degrees of
freedom are coupled and must transform together under global rotations, as
shown for structures b1 and b2.
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where Dl
mm0 ðRÞ is the Wigner D-matrix. The equivariance of the

mapping fRg 7! ĤDFT requires that, if the change of coordinates
causes the positions of the atoms to transform, the correspond-
ing Hamiltonian matrix must transform covariantly according to
Eq. (1).

ENN is applied to construct the mapping fRg 7! ĤDFT in order
to preserve equivariance. The input, output, and internal feature
vectors of ENNs all belong to a special set of vectors that have the
form xl = (xl,l,…, xl,−l) and transform according to the following
rule:

x0
lm =

Xl

m0 =�l

Dl
mm0 ðRÞxlm0 : ð2Þ

This vector is said to carry the irreducible representation of
the SO(3) group of dimension 2l + 1. If the input vectors are
transformed according to Eq. (2), then all the internal features
and the output vectors of the ENN will also be transformed
accordingly. Under this constraint, the ENN incorporates learn-
able parameters in order to model equivariant relationships
between inputs and outputs.

Themethod of constructing the equivariant mapping fRg 7! ĤDFT

is illustrated in Fig. 2. The atomic numbers Zi and interatomicdistances
∣rij∣ ≡ ∣ri − rj∣ are used to construct the l =0 input vectors (scalars).
Spherical harmonics acting on the unit vectors of relative positions r̂ij
constitute input vectors of l = 1, 2,… . The output vectors of the ENN
are passed through the Wigner–Eckart layer before representing the
final Hamiltonian. This layer exploits the essential concept of the
Wigner–Eckart theorem:

l1 � l2 = ∣l1 � l2∣� � � � � ðl1 + l2Þ: ð3Þ

“⊕ ” and “⊗ ” signs stand for direct sum and tensor product of
representations, respectively. “=” denotes equivalence of representa-
tions, i.e., they differ from each other by a change of basis. The coef-
ficients in the change of basis are exactly the celebrated
Clebsch–Gordan coefficients. The representation l1⊗ l2 is carried by

the tensor xl1l2
, which transforms according to the rule

x0
l1l2m1m2

=
Xl1

m0
1 =�l1

Xl2
m0

2 =�l2

Dl1
m1m

0
1
ðRÞDl2

m2m
0
2
ðRÞxl1l2m0

1m
0
2
: ð4Þ

Notice that Eq. (4) has the same form as Eq. (1), so the tensor xl1l2
can exactly represent the output Hamiltonian satisfying the equivar-
iant requirements.

Equivariance of the spin–orbital Hamiltonian
If we further consider the spin degrees of freedom, the transformation
rule for the Hamiltonian becomes

H0
ip1 ,jp2

� �l1
1
2l2

1
2

m1σ1m2σ2

=

Pl1
m0

1 =�l1

Pl2
m0

2 =�l2
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1
ðRÞ
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� �l1
1
2l2

1
2
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0
1m

0
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0
2

,

ð5Þ

where σ1, σ2 are the spin indices (spin up or down). The construction of
the spin–orbital DFT Hamiltonian is a far more complicated issue.
Electron spin has angular momentum l = 1/2, so it seems that tedious
coding and debugging are unavoidable because we have to introduce
complex-valued half-integer representations into the neural network,
which typically only supports real-valued integer representations for
the time being. Furthermore, a 2π rotation brings a vector in 3D space
to itself but introduces a factor -1 to the spin-1/2 vector. This means
that anymapping from3D input vectors to l = 1/2 output vectorswill be
discontinued and cannot bemodeled by neural networks, which poses
a serious threat to our approach sincewe only have 3Dvectors as input
to the neural network (Fig. 2).

Fortunately, we observe that l = 1/2 appearing in the DFT Hamil-
tonian does not necessarily mean that half-integer representations

Elemental
embedding

Gaussian
basis

Spherical
harmonics Equivariant neural network

Including
SOC

Neglecting
SOC

Wigner-
Eckart
layer

a b

c

Fig. 2 | Method of constructing an equivariant mapping fRg 7! ĤDFT. Take the
Hamiltonian matrix between l = 1 and l = 2 orbitals, for example. a The atomic
numbers Zi and interatomic distances ∣rij∣ are used to construct the l =0 vectors,
and the unit vectors of relative positions r̂ij are used to construct vectors of
l = 1, 2,… . b These vectors are passed to the equivariant neural network. c If
neglecting spin–orbit coupling (SOC), the output vectors of the neural network are

converted to the Hamiltonian using the rule 1⊕ 2⊕ 3 = 1⊗ 2 via theWigner–Eckart
layer. If including SOC, the output consists of two sets of real vectors which are
combined to form complex-valued vectors. These vectors are converted to the
spin–orbital DFT Hamiltonian according to a different
rule ð1� 2� 3Þ � ð0� 1� 2Þ � ð1� 2� 3Þ � ð2� 3� 4Þ= ð1� 1

2Þ � ð2� 1
2
*Þ.
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must be inserted everywhere into the neural network. In fact, they can
be restricted to the final output layer as soon as we employ the
transformation rule:

l1 �
1
2

� �
� l2 �

1
2

� �
= l1 � l2
� �� ð0� 1Þ: ð6Þ

There is no half-integer representation on the right-hand side;
thus, it can be further decomposed into integer representations by
repeatedly applying Eq. (3).

Another problem is associated with the introduction of complex
numbers. Generally, the spin–orbital Hamiltonian matrix elements
have complex values, and the ENN cannot simply predict its real and
imaginary parts separately because this will violate equivariance.
Ordinary neural networks of complex numbers are mostly still under
their experimental and developmental stage, so the use of complex-
valued ENN is practically difficult, if not impossible. Nevertheless, we
have discovered away to sidestep this problem.Under the baseswhich
are eigenvectors of the time-reversal operator, the D-matrices of
integer l will become purely real. Consequently, for a vector with
integer l under that basis, its complex and real parts will never mingle
with each other when the vector is multiplied by a real transformation
matrix. Then one complex vector can be technically treated as two real
vectors while preserving equivariance. Note that this is not true for
half-integer representations, for that we must add up the real and
imaginary parts before the integer representations are converted to
half-integer representations in the Wigner–Eckart layer (Fig. 2).

Yet another subtle issue arises in Eq. (5). It is not exactly the same
as Eq. (4) in that two of theD-matrices in the former equation are taken
as complex conjugates, but those in the latter are not. In fact, insteadof
constructing a vector with representation ðl1 � 1

2Þ � ðl2 � 1
2Þ, we must

construct ðl1 � 1
2Þ � ðl*2 � 1

2
*Þ to represent the spin–orbital Hamiltonian

described in Eq. (5). Here, l* denotes the representation whose repre-
sentation matrix is replaced by its complex conjugate. This is not a
problem for integer l, but is critical for l = 1/2. If not treated properly,
the overall equivariancewill be violated. In order to solve this problem,
we first notice that the representation l* is still a representation of the
SU(2) group with dimension 2l + 1. In fact, it is guaranteed to be
equivalent to the representation lwithout complex conjugate. In other
words, there must exist a unitary matrix Pl for each integer or half-
integer l satisfying

DlðgÞ* =PlDlðgÞðPlÞy,8g 2 SU(2) : ð7Þ

This is guaranteed by the fact that the quantum rotation
operator ÛðgÞ commutes with the time-reversal operator T :
hlm∣ÛðgÞ∣lm0i= hlm∣T yÛðgÞT ∣lm0i= ð�1Þm�m0 hl,�m∣ÛðgÞ∣l,�m0i*. The
matrix P in Eq. (7) is thus given by

Pl
mm0 = ð�1Þl�mδm,�m0 : ð8Þ

Therefore, we only need to apply a change of basis to convert a
vector carrying representation l to a vector carrying l*. Notice that this
property holds even for material systems without time-reversal
symmetry.

Theworkflowof constructing theDFTHamiltonian is summarized
and illustrated in Fig. 2. In order to construct a Hamiltonian with SOC,
the output vectors from the ENN are first separated into two real
components, then combined together into complex vectors and pas-
sed to theWigner–Eckart layer. TheWigner–Eckart layer uses the rules
in Eq. (3) and Eq. (6) to convert these vectors to tensors of the form in
Eq. (4), except that the tensors here have rank 4 insteadof 2. After that,
the last spin index is converted to its complex conjugate counterpart
by the change of basis using Eq. (8) for l = 1/2. The output tensors
follow the same transformation rule under coordinate rotation as the
DFT Hamiltonian in Eq. (5), and thus could be used to represent the
DFT Hamiltonian matrix.

Finally, we discuss two remaining issues. To include parity, wewill
consider E(3) = SE(3)⊗ {E, I}, where E is the identity and I is the spatial
inversion. Under a coordinate transform, the vector ismultiplied by −1
if it has odd parity and the coordinate transform involves spatial
inversion. The parity of the Hamiltonian is determined by ð�1Þl1 + l2 . In
addition, there is a possible ambiguity in Eq. (5) since the mapping
from a classical rotation R to a quantum rotation D

1
2 is not single-

valued. However, the possible factor −1 will always be canceled
between the two D-matrices in that equation, which eliminates the
potential problem.

The neural network architecture of DeepH-E3
Here we present the neural network architecture of the DeepH-E3
method. An illustration of the architecture can be found in Fig. 3. The
general structure is based on the message-passing neural network9,30

that has been widely used in materials research6,7,14–19,25. The material
structure is represented by a graph, where each atom is associated
with a vertex (or node). Edges are connected between atom pairs with
nonzero inter-site hopping, and self-loop edges are included to
describe intra-site coupling. Every vertex i is associated with a feature
vi and every edge ij with eij. These features are composed of several

Gaussian
basis

Spherical
harmonics

EquiConv

E3LayerNorm

Vertex update

E3Linear

E3Linear

EquiConv

Edge update

E3Linear

E3Linear

E3LayerNorm

EquiConv

Gate

MLP

Elemental
embedding

Vertex update
Edge update

E3Linear

Vertex update
Edge update

a b d e

c

Fig. 3 | Neural network architecture of DeepH-E3. a Overall network structure.
Elemental embeddings andGaussian expansions (see (b)) serve as initial vertex and
edge features, respectively. The vertex and edge features are updated L times by
update blocks (see (d) and (e)), which encode the interatomic distances and

directional information through equivariant convolutions (EquiConv, see (c)). The
“⋅” sign stands for channel-wisemultiplication and ∣∣ for vector concatenation.N i is
the neighborhood of vertex i. The final edge vectors feðLÞij g are passed into the
Wigner–Eckart layer depicted in Fig. 2 to represent the DFT Hamiltonian.
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vectors defined in Eq. (2). As illustrated in Fig. 3a, the initial feature vð0Þ
i

of vertex i is the trainable embedding of the atomic number Zi, and the
initial eij is the interatomic distance ∣rij∣ expanded using the Gaussian
basis eB(∣rij∣) as defined in Eq. (11). The features of vertices and edges
are iteratively updated using features of their neighborhood as
incomingmessages. Finally, the final edge feature eij is passed through
a linear layer and used to construct the Hamiltonian matrix block Hij

between atoms i and j using the method illustrated in Fig. 2. It is worth
mentioning that, under the message-passing scheme, the output
Hamiltonian is only influenced by the information of its neighborhood
environment. The nearsightedness property29 ensures efficient linear-
scaling calculations as well as good generalization ability25.

The equivariant building blocks of the neural network are imple-
mented using the scheme provided by Tensor-Field Networks21 and
e3nn24,31. The feature vectors xðlÞ

cm processed by these neural network
blocks are implemented as dictionaries with key l, an integer which is
the order of representation of the SO(3) group. c is the “channel index”
ranging from1 ton(l), wheren(l) is the numberof channels atorder l, and
each channel refers to a vector defined in Eq. (2).

The E3Linear layer defined in Eq. (12) possesses learnable weights
and biases, which is similar to linear layers in conventional neural
networks, but only connects vectors of the same representation to
preserve equivariance. The gate layer introduces equivariant non-
linearity, as proposed in ref. 22, where nonlinearly activated l = 0 vec-
tors (i.e., scalars) are used as scaling factors (“gates”) to the norms of
l ≠0 vectors.

We propose a normalization scheme, E3LayerNorm, that nor-
malizes the feature vectors usingmean and varianceobtained from the
layer statistics while preserving equivariance:

E3LayerNorm ðviÞðlÞcm = gðlÞ
c
ðviÞðlÞcm � μðlÞ

m

σðlÞ + ϵ
+bðlÞ

c , ð9Þ

where ϵ is introduced to maintain numerical stability, gðlÞ
c ,bðlÞ

c are

learnable affine parameters, the mean μðlÞ
m = 1

NnðlÞ
PN

i = 1

PnðlÞ
c= 1 ðviÞðlÞcm, the

variance ðσðlÞÞ2 = 1
NnðlÞ

PN
i= 1

PnðlÞ
c = 1

Pl
m=�l ∣ðviÞðlÞcm � μðlÞ

m ∣2, N is the total

number of vertices. Here only the E3LayerNorm for vertex update
blocks is described. The corresponding E3LayerNorm for edge update
blocks is similar with the mean and variance obtained from edge fea-
tures instead of vertex features. We find that E3LayerNorm sig-
nificantly stabilizes the training process. A discussion about the use of
E3LayerNorm can be found in Supplementary Note 5.

The previously discussed blocks do not include coupling between
different l’s. This problem is resolved by the tensor product layer:

zðlÞcm =
X
l1l2

X
m1m2

X
c1c2

Clm
l1m1 ;l2m2

Uðl1Þ
cc1

xðl1Þ
c1m1

� �
V ðl2Þ

cc2
yðl2Þc2m2

� �
, ð10Þ

where Cl1m1
l2m2 ;l3m3

are Clebsch–Gordan coefficients, UðlÞ
cc0 ,V

ðlÞ
cc0 are learn-

able weights. This is abbreviated as z = (Ux)⊗ (Vy).

The neural network architecture is illustrated in Fig. 3. The
equivariant convolution block (EquiConv, Fig. 3c) encodes the infor-
mation of an edge and the vertices connected to that edge. The core
component of equivariant convolution is the tensor product (Eq. (10))
of the vertex and edge features (vi∣∣vj∣∣eij) and the spherical harmonics
of the edge ij (Yðr̂ijÞ). Here ∣∣ stands for vector concatenation. The
tensor product introduces directional information of material struc-
ture into the neural network. Propagating directional information into
neural networks is important, as emphasized by previous works12,14,
which is realized in an elegant way here via the tensor product. The
interatomic distance information is also encoded into the neural net-
work. It is expanded using the Gaussian basis expansion and then fed
into a fully connected neural network, whose output is multiplied
element-wise to the output of gate nonlinearity.

The vertexupdate block (Fig. 3d) aggregates information fromthe
neighboring environment. To update a vertex, every edge connected
to that vertex contributes a “message” generated by the equivariant
convolution (EquiConv) block. All the “messages” are summed and
normalized to update the vertex feature. This is similar for the edge
update block (Fig. 3e), except that only the output of EquiConv on
edge ij is used for updating eij. After several updates, the final edge
feature vectors will serve as the neural network output and are passed
into the Wigner–Eckart layer to construct the Hamiltonian matrix
blocks, as illustrated in Fig. 2. More details are described in “Methods”.

Capability of DeepH-E3
The incorporation of global Euclidean symmetry as a priori knowledge
provided to the message-passing deep-learning framework in the
DeepH-E3 model has led to its outstanding performance in terms of
efficiency and accuracy. A remarkable capability of DeepH-E3 is to
learn from DFT data on small structures and make predictions on
varying structures of different sizes without having to perform further
DFT calculations. This enables highly efficient electronic structure
calculations of large-scalematerial systemsat ab initio accuracy. All the
DFT Hamiltonian matrices used for deep learning in this work
are computedby theOpenMXcodeusing the PAObasis. After example
studies on monolayer graphene and MoS2 datasets, we will first
demonstrate the capability of DeepH-E3 by investigating twisted
bilayer graphene (TBG), especially the well-known magic-angle TBG
whose DFT calculation is important but quite challenging due to its
huge Moiré supercell. Next, we will apply DeepH-E3 to study twisted
van der Waals (vdW) materials with strong SOC, including bilayers of
bismuthene, Bi2Se3, and Bi2Te3, for demonstrating the effectiveness of
our equivariant approach to construct the spin–orbital DFT Hamilto-
nian. Finally, we will use our model to illustrate the SOC-induced
topological quantum phase transition in twisted bilayer Bi2Te3, giving
an example of exploring exotic physical properties in large-scale
material systems.

Study of monolayer graphene and MoS2
Before going to large-scale materials, we first validate our method on
the datasets used in ref. 25 to benchmark DeepH-E3’s performance.
The datasets are comprised of DFT supercell calculation results of
monolayer graphene and MoS2, and different geometric configura-
tions are sampled from ab initio molecular dynamics. The test results
are summarized in Table 1 and compared with those of the original
DeepH method25, which, instead of using an explicitly equivariant
approach, applied the local coordinate technique in handling the
covariant transformation property of the Hamiltonian. Our experi-
ments show that the mean absolute errors (MAEs) of Hamiltonian
matrix elements averaged over atom pairs are all within a fraction of a
meV, which are reduced approximately by a factor of 2 or more in all
prediction targets compared with DeepH. Benefiting from the high
accuracy of the deep-learning DFT Hamiltonian, band structures

Table 1 | MAEs of DFT Hamiltonian matrix elements averaged
over atompairs formonolayer graphene andMoS2, all in units
of meV.a

Graphene MoS2

C-C Mo-Mo Mo-S S-Mo S-S

DeepH 2.1 1.3 1.0 0.8 0.7

DeepH-E3 0.40 0.51 0.46 0.45 0.37
aThe best result of each target ismarked as bold. ForMoS2, there are four different types of atom
pairs whose MAEs are listed separately.
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predicted by DeepH-E3 can accurately reproduce DFT results (Sup-
plementary Fig. 1).

Application to twisted vdW materials
Our deep learning method is particularly useful for studying the
electronic structure of twisted vdW materials. This class of materials
has attracted great interest for research and applications since their
Moiré super periodicity offers a new degree of freedom to tunemany-
body interactions and brings in emergent quantum phenomena, such
as correlated states32, unconventional superconductivity33, and higher-
order band topology34. Traditionally, it is challenging to perform
computationally demanding DFT calculations on large Moiré struc-
tures. However, this challenge could be largely overcome by DeepH-
E3. One may train the neural network models by DFT data on small,
nontwisted, randomly perturbed structures and predict the DFT
Hamiltonian of arbitrarily twisted structures bypassing DFT via deep
learning, as illustrated in Fig. 4a. This procedure demands much less
computational resources than directly doing DFT calculations on large
twisted superstructures.

Once the model is trained, it can be applied to study TBGs of
varying twist angles. Theperformance is comparedwith that ofDeepH.
Test data includes DFT results for systems containing up to more than
one thousand atoms per supercell. As summarized in Fig. 4b, DeepH-
E3 significantly reduces the averagedMAEs of DFT Hamiltonianmatrix
elements bymore than a factor of 2 as compared to DeepH, consistent
with the above conclusion. Moreover, the MAEs reach ultralow values
of 0.2–0.3meV and gradually decreasewith increasingMoiré supercell
size (or decreasing twist angle). This demonstrates the good general-
izability of DeepH-E3. The method is thus expected to be suitable for
studying TBGs with small twist angles that are of current interest35.

We take the magic-angle TBG with θ = 1.08∘ and 11,164 atoms per
supercell as a special example. The discoveries of novel physics rele-
vant to flat bands in this system have triggered enormous interest in
investigating twisted vdW materials. Due to the large supercell, DFT
study of magic-angle TBG is a formidable task, but DeepH-E3 can
routinely study such kind ofmaterial systems in a particularly accurate
and efficient way. As shown in Fig. 4c, the electronic bands of magic-
angle TBG with relaxed structure computed by DeepH-E3 agree well
with the published results obtained by DFT and low-energy effective
continuum model35. The flat bands near the Fermi level are well
reproduced. Some minor discrepancies appear away from the Fermi

level, which could be partially explained by the methodological dif-
ference: the benchmark work uses the plane-wave basis, whereas our
work employs the atomic-like basis, and the pseudopotential used is
also different. Detailed discussions about the influence of basis set and
pseudopotential are included in Supplementary Note 2.

Most remarkably, DeepH-E3 has the capability to reduce the
computational cost of studying these largematerial systems by several
orders of magnitude. The DFT calculation (including structural
relaxation) on magic-angle TBG performed in ref. 35 took around
1 month on about five thousand CPU cores. In contrast, the major
computational cost of DeepH-E3 comes from neural network training.
Typically, only a few hundreds of DFT training calculations are needed,
and the training process usually takes tens of GPU hours, but all these
are only required to be done once. After that, DFT Hamiltonian
matrices can be constructed very efficiently via neural network infer-
ence. The process time is on the order of minutes by one GPU for
magic-angle TBG, which grows linearly with Moiré supercell size.
Generalized eigenvalue problems are solved for 60 bands near the
Fermi level to obtain the band dispersion, which only requires about
8min per k-point for magic-angle TBG using 64 CPU cores. The low
computational cost and high accuracy of DeepH-E3 demonstrate its
potential power in resolving the accuracy-efficiency dilemma of ab
initio calculation methods, and it would be highly favorable to future
scientific research.

Study of twisted vdW materials with strong SOC
Wehave tested the performance ofDeepH-E3 on studying twisted vdW
materials with strong SOC, including twisted bilayers of bismuthene,
Bi2Se3, and Bi2Te3. The latter two materials are more complicated,
which include two quintuple layers and two kinds of elements (Fig. 5a
for Bi2Te3). The strong SOC introduces additional complexity in their
electronic structure problems. Despite all these difficulties, the cap-
ability of DeepH-E3 is not influenced to any extent. Our method
reaches sub-meV accuracy in predicting DFT Hamiltonians of test
material samples, including nontwisted and twisted structures of bis-
muthene, Bi2Se3, and Bi2Te3 bilayers. Impressively, the band structures
predicted by DeepH-E3 match well with those obtained from DFT
(Supplementary Fig. 3). Moreover, we observe the remarkable ability
of ourmodel to fit a tremendous amount of data withmoderatemodel
capacity and relatively small computational complexity. For instance,
the neural network model is able to fit 2.8 × 109 nonzero complex-

structure 1

Twisted

Generalization

a b c

structure 2

Non-twisted DFT dataset

Fig. 4 | Application of DeepH-E3 to study twisted bilayer graphene (TBG).
aWorkflow of DeepH-E3. The neural network model is first trained on DFT data of
small, nontwisted, randomly perturbed structures and then generalized to study
arbitrarily twisted structures without invoking DFT anymore. b Performance of
DeepH-E3 vs. the original DeepHmethod25 on studying TBGs of varying twist angle
θ. The averagedmean absolute errors (MAEs) of theDFTHamiltonian are displayed
for Moiré supercells of varied sizes. c Band structure of the magic-angle TBG

(θ = 1.08∘, 11,164 atoms per supercell, structure relaxed by previous work35) com-
puted by DeepH-E3, DFT, and continuum model35. Here the DFT benchmark cal-
culations were performed with a different code using a plane-wave basis instead of
an atomic-like basis and different pseudopotential, which could introduce
numerical differences with respect to DeepH-E3. Source data are provided with
this paper.
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valued Hamiltonian matrix elements in the dataset with about 105 real
parameters. The training time is about onedayon a singleGPU inorder
to reach sub-meV accuracy. More details are presented in Supple-
mentary Note 3. Through these experiments, the capability of DeepH-
E3 to represent the spin–orbital DFT Hamiltonian is well
demonstrated.

In physics, the SOC can inducemany exotic quantumphenomena,
leading to emergent research fields of spintronics, unconventional
superconductivity, topological states of matter, etc. Investigation of
SOC effects is thus of fundamental importance to the research of
condensed matter physics and materials science. The functionality of
analyzing SOC effects is easily implemented by DeepH-E3. Specifically,
we apply two neural network models to learn DFT Hamiltonians with
full SOC (Ĥ1) and without SOC (Ĥ0) separately for the same material
system. Then, we define a virtual Hamiltonian as a function of SOC
strength (λ): Ĥλ = Ĥ0 + λĤSOC, where ĤSOC = Ĥ1 � Ĥ0. By studying the
virtual Hamiltonian at different λ, we can systematically analyze the
influence of SOC effects on material properties.

As an example application, we employ the approach to
investigate the topological properties of twisted bilayer Bi2Te3.
DeepH-E3 can accurately predict the DFT Hamiltonian for both
cases with or without SOC, as confirmed by band structure cal-
culations using the predicted ĤDFT (Fig. 5b, c). Herein the SOC is
extremely strong as caused by the heavy elements in the material.
Consequently, the band structure changes considerably when
SOC is turned on. The evolution of band structure as a function of
SOC strength (Fig. 5d) provides rich information on the SOC
effects. Importantly, the band gap closes and reopens when
increasing the SOC strength, indicating a topological quantum
phase transition from Z2 = 0 to Z2 = 1. This is further confirmed by
applying symmetry indicators based on Kohn-Sham orbital

analysis and by performing Brillouin-zone integration of Berry
connection and curvature over all occupied states via the Fukui-
Hatsugai-Suzuki formalism36. The topological invariant Z2 turns
out to be nonzero for the spin–orbital coupled system, suggest-
ing that the twisted bilayer Bi2Te3 (θ = 21.8∘) is topologically
nontrivial. As DeepH-E3 works well for varying twist angles, the
dependence of band topology on twist angle can be system-
atically computed, which will enrich the research of twisted vdW
materials.

Discussion
Since the DFT Hamiltonian ĤDFT transforms covariantly between
reference frames, it is natural and advantageous to construct the
mapping from crystal structure fRg to ĤDFT in an explicitly equivariant
manner. In this context, we have developed a general framework to
represent ĤDFT with a deep neural network DeepH-E3 that fully
respects the principle of covariance even in the presence of SOC. We
have presented the theoretical basis, code implementation, and
practical applications of DeepH-E3. The method enables accurate and
efficient electronic structure calculation of large-scale material sys-
tems beyond the scope of traditional ab initio approaches, opening
possibilities to investigate richphysics andnovelmaterial properties at
a particularly low computational cost.

However, as the structure becomes larger, it becomes increasingly
difficult to diagonalize the Hamiltonian matrix in order to obtain
wavefunction-related physical quantities. This difficulty, instead of the
limitations of DeepH-E3 method itself, will eventually become the
bottleneck of accurate electronic structure predictions. Nevertheless,
benefiting from the sparseness of the DFT Hamiltonian matrix under
localized atomic orbital basis,many efficientO(N) algorithmswith high
parallel efficiency are available for studying large-scale systems (e.g.,

1a b c

d
Bi Te

Fig. 5 | Application of DeepH-E3 to study spin–orbit coupling (SOC) effects of
twisted vdWmaterials. a Schematic structure of twisted bilayer Bi2Te3. b, c Band
structures of bilayer Bi2Te3with twist angleθ = 21.8∘ predicted byDeepH-E3without
SOC (λ =0) and with full SOC (λ = 1), compared to DFT results. d Evolution of band

structure as a function of SOC strength predicted by DeepH-E3. Closing and
reopening of the band gap at the Γ point are visualized, indicating a topological
quantum phase transition from Z2 = 0 to Z2 = 1 driven by SOC. Source data are
provided with this paper.
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supercells including up to 107 atoms37). A combination of theDeepH-E3
method with such efficient linear algebra algorithms will be a pro-
mising direction for future study.

The unique abilities of DeepH-E3, together with the general fra-
mework of incorporating symmetry requirements and physical
insights into neural network model design, might find wide applica-
tions in various directions. For example, the method can be applied to
build a material database for a diverse family of Moiré-twisted mate-
rials. For each kind of material, only one trained neural networkmodel
will be needed for all the twisted structures in order to have full access
to their electronic properties, which is a great advantage for high
throughput material discovery. Moreover, since the deep-learning
method does not rely on periodic boundary conditions, 2D materials
with incommensurate twist angles can alsobe investigated,making the
ab initio study of quasi-crystal phases possible. In addition, we could
go one step further by calculating the derivative of the electronic
Hamiltonian with respect to atomic positions via automatic differ-
entiation techniques. This enables deep-learning investigation of the
physics of electron-phonon coupling in large-scale materials, which
has the potential to outperform the computationally expensive tradi-
tional methods of frozen phonon or density functional perturbation
theory38. Furthermore, one may combine the deep learning method
with advanced methods beyond the DFT level, such as hybrid func-
tionals, many-body perturbation theory, time-dependent DFT, etc.
These important generalizations, if any of them are realized, would
greatly enlarge the research scope of ab initio calculation.

Methods
Datasets
Data generated in this study is available in public repositories at
Zenodo39–41.

Monolayer graphene: The dataset is taken from ref. 25. The
dataset consists of 450 graphene structures with 6 × 6 supercells,
generatedbyab initiomolecular dynamicsperformedby theVienna ab
initio simulation package (VASP)42, using the PBE43 exchange-
correlation functional and the projector-augmented wave (PAW)
pseudopotentials44,45. The cutoff energy of the plane waves is 450 eV,
and only the Γ point is used in our k-mesh. Five thousand frames are
obtained at 300K with time step 1fs, and then one frame is taken out
every 10 frames starting from the 500th frame. Thus, there are
450 structures in the dataset. The Hamiltonians for training are cal-
culated with the OpenMX code using the PBE functional and norm-
conserving pseudopotential with C6.0-s2p2d1 PAOs with 5 × 5Γ-cen-
tered k-sampling. Here 6.0 denotes the orbital cutoff radius in Bohr,
s2p2d1 means there are 2 × 1 = 2 s-orbitals, 2 × 3 = 6 p-orbitals, and
1 × 5 = 5 d-orbitals.

Monolayer MoS2: The dataset is also taken from ref. 25. Five
hundred structures with 5 × 5 supercells are generated by ab initio
molecular dynamics performed by VASP with PAW pseudopotential
and PBE functional. The cutoff energy of the planewaves is 450eV, and
only the Γ point is used in our k-mesh. One thousand frames are taken
at 300K with time step 1fs. The first 500 unequilibrated structures are
discarded, and the remaining 500 structures are taken into thedataset.
The Hamiltonians for training are calculated with the OpenMX code
using the PBE functional and norm-conserving pseudopotential with
Mo7.0-s3p2d2 and S7.0-s2p2d1 PAOs with 5 × 5Γ-centered k-sampling.

Bilayer graphene: The dataset is also taken from ref. 25. Three
hundred structureswith 4 × 4nontwisted supercells are generatedby a
uniform shift of one of the two vdW layers and inserting random
perturbations to atomic positions in themean time. The perturbations
are within 0.1Å along three cartesian directions. The supercells are
constructed from bilayer unit cell structures relaxed with VASP42 using
PBE functionalwith vdW interaction corrected byDFT-D3methodwith
Becke–Jonson damping46. The optimal interlayer spacing is found to
be 3.35Å. The Hamiltonians of the dataset and twisted structures are

all calculated with the OpenMX code using the PBE functional and
norm-conserving pseudopotential with C6.0-s2p2d1 PAOs.

Bilayer bismuthene, Bi2Se3, and Bi2Te3: The same procedure is
used to generate nontwisted 3 × 3 bilayer supercells. The numbers of
structures are 576, 576, and 256 for bismuthene, Bi2Se3, and Bi2Te3,
respectively, but only a randomly selected subset is used for training
(details can be found in Supplementary Note 4). The interlayer spacing
is 3.20Å, 2.50Å, and 2.61Å for bismuthene, Bi2Se3, and Bi2Te3,
respectively. The interlayer spacing is defined to be the vertical dis-
tancebetween the lowest atom in the upper layer and the highest atom
in the lower layer. The Hamiltonians of the dataset and twisted struc-
tures are all calculatedwith theOpenMXcode using the PBE functional
and norm-conserving pseudopotential with Bi8.0-s3p2d2, Se7.0-
s3p2d1 and Te7.0-s3p2d2 PAOs.

Details of neural network models
All the neural network models presented in this article are trained by
directly minimizing the mean-squared errors of the model output
compared to the Hamiltonian matrices computed by DFT packages,
and the reported MAEs are also obtained from comparing model
output to the DFT results. All physical quantities of materials are
derived from the output Hamiltonian matrix.

Some details of neural network building blocks are described
here. The Gaussian basis is adapted from ref. 4, which is defined as:

eBð∣rij ∣Þn = exp �
∣rij ∣� rn

� �2

2Δ2

0
B@

1
CA, ð11Þ

where rn, n =0, 1,… are evenly spaced, with intervals equal to Δ. The
E3Linear layer is defined as:

E3Linear ðxÞðlÞcm =
XnðlÞ

c0 = 1

W ðlÞ
cc0x

ðlÞ
c0m + bðlÞ

c , ð12Þ

whereW ðlÞ
cc0 ,b

ðlÞ
c are learnable weights and biases, bðlÞ

c =0 for l ≠0. In the
gate layer, the l = 0part of the input feature is separated into twoparts,
denoted as xð0Þ1c and xð0Þ2c . Notice that the index m is omitted because
l = 0. The output feature is calculated by

Gate ðxÞðlÞcm =
ϕ1ðxð0Þ1c Þ, l =0

ϕ2ðxð0Þ
2c ÞxðlÞ

cm, l ≠0

(
: ð13Þ

Here ϕ1 and ϕ2 are activation functions. In this work, we use
ϕ1=SiLU and ϕ2=Sigmoid following ref. 7.

The ENN is implemented with the e3nn library31 in version 0.3.5
and PyTorch47 in version 1.9.0. The Gaussian basis expansion used as
input to the EquiConv layer has a length of 128. The fully connected
neural network in the EquiConv layer is composed of two hidden lay-
ers, eachwith 64 hidden neurons, using the SiLU function as nonlinear
activation and a linear layer as output. A description of neural network
hyperparameters for eachmaterial system and their selection strategy
can be found in Supplementary Note 4.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets for monolayer graphene, monolayer MoS2, bilayer gra-
phene, and bilayer bismuthene are available in ref. 39. Dataset for
bilayer Bi2Se3 is available in ref. 40. Dataset for bilayer Bi2Te3 is avail-
able in ref. 41. Instructions on reproducing the DeepH-E3 models on
these datasets can also be found in the corresponding reposi-
tories. Source data are provided with this paper.
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Code availability
The code used in the current study is available at GitHub (https://
github.com/Xiaoxun-Gong/DeepH-E3) and Zenodo48.
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