
ic
k
m
o
u
o
o
s
t

n
u
a
t
o
n
k

e
d
r
o
n
g
e

ss,

-
ing
n

e-

mi-
i-
2
ow

pes-
e
cti-

of
t 2
on 5

g,
na-
m
the
of

the
he
he

General Framework for Removal of Clock Network Pessimism

Jindrich Zejda
Synopsys, Inc.

700 East Middlefield Road
Mountain View, CA 94043, U.S.A.

+1 650 584-5067
zejdaj@synopsys.com

Paul Frain
Synopsys, Inc.

Blanchardstown Corporate Park
Dublin 15, Ireland
+353 1 809-8816

pfrain@synopsys.com
Abstract

The paper presents a simple yet powerful general theoret
framework and efficient implementation for removal of cloc
network timing pessimism. We address pessimism in static ti
ing analysis (STA) tools caused by considering delay variati
along common segments of clock paths. The STA tools comp
setup (hold) timing slack based on conservative combinations
late (early) launching and early (late) capturing arrival times. T
avoid exponential-time path-based analysis the STA tools u
both early and late arrival times on gates common to bo
launching and capturing paths. It is impossible in real circuit a
is observed as the clock network pessimism in STA. O
approach supports any kind of delay variation though the typic
causes of the pessimism are process, voltage, and tempera
on-chip variation, and reconvergence in clock network. We pr
pose a new theoretical framework that allows to apply know
graph algorithms instead of time consuming forward and bac
ward multi-pass tracing algorithms and heuristics that are lim
ited to some network topologies [4]. The new graph-bas
framework supports clock networks of virtually any size an
type, e.g., tree, mesh, hybrid, clock gating, chains of multiplie
and dividers, loops in such chains, etc. The implementati
based on the proposed framework has proven its strength i
commercial sign-off static timing analyzer and thus is helpin
hundreds of designers to achieve faster clock speeds of th
chips.

General Terms
Verification, Design, Algorithms.
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Keywords
Clock network reconvergence, static timing analysis, proce
voltage and temperature delay variation, deep sub-micron.

1. Introduction

In static timing analysis, delay variation in clock network con
tributes to unwanted pessimism that skews the actual tim
properties of the circuit. This results in “leaving performance o
the table”, i.e., concluding the circuit can operate at lower fr
quency than the actual silicon implementation.
The paper is organized as follows: Section 1 defines the ter
nology, explains the difficulty in removing clock network pess
mism in STA, and surveys the existing solutions. Section
describes the new graph-based framework. It also shows h
dominator and common predecessor algorithms are used for
simism removal in this framework, and how it interacts with th
STA engine in slack calculation. Section 3 describes the pra
cal implementation and experimental results on several state
the art ASIC designs taped out by various vendors in pas
years. Pros and cons are discussed in Section 4, and Secti
lists references.

1.1. Terminology - Circuit Description
For any sequential timing check (e.g., setup, hold, clock gatin
recovery) we define launching clock path, data path and desti
tion clock path (Figure 1). The launching path is the path fro
the clock source to the clock pin of the register that launches
data path signal. The data path is the path from the clock pin
the launching register to the data pin of the register where
sequential check is performed (called capturing register). T
capturing clock path is the path from the clock source to t
clock pin of the capturing register. Then satisfaction of the tim
ing constraint is determined from the arrival times along th
launching clock path, the data path, the destination clock pa
and the constraint itself.
It is fairly straightforward to evaluate a constraint under th
assumption that all delays are constant. In practice, however
STA tool must consider many instances of the physical circuit
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its model. That is achieved by modeling delay variation, by e.g.,
interval delay model or delay distribution [5, 7]. In the interval
delay model each gate, net, and constraint is assigned two delay
values: minimum (shortest) and maximum (longest). The delay
distribution model assigns probability to each value of delay,
usually as a probabilistic function for a continuous range of
delay [8].
When evaluating, e.g., setup constraint on pin FF2/D the longest
delay along the launching path, the data path, the longest con-
straint, and the shortest delay along the capturing path are used.

1.2. Pessimism on Common Segment of Clock Net-
work

But a problem arises with buffer U1. It was assigned both the
shortest and the longest delays at the same time which is physi-
cally impossible. Actually, the launching and capturing clock
transitions may propagate at the same time only for zero-cycle
hold checks. But in general, the launching and capturing transi-
tions are one or at most few clock periods apart. Since the largest
delay variations are not caused by any effects that change during

few clock periods1 they appear as a pessimism in STA model
when compared to the physical circuit. Without pessimism
removal the STA tool reports worse violation than the physical
circuit has and forces synthesis and optimization tools to waste
effort on paths that meet the target clock frequency.
It is easy to remove the clock pessimism in our simple example
in Figure 1. The pessimism is the max delay of U1 minus the
min delay of U1. In general, it is the difference of the latest and
earliest arrival times at the last common pin of the launching and
capturing clock paths (Figure 2, or [4]). The clock pessimism
can be removed by adding its absolute value to the final timing
slack of the constraint.

1.3. Difficulty in Pessimism Removal in STA
The real problem is that the amount of clock pessimism th
needs to be removed is path-specific. E.g., in Figure 2 regis
FF1 launches signal that is captured by both FF2 and FF3. T
common pin and thus the clock pessimism are different for ea
capturing register.
Example: Assume that all combinational gates in Figure 2 ha
shortest delay of 1, longest of 6, denoted (1, 6). All registe
have delay clock to Q of (1, 2), and setup constraint of (3, 4
except FF3 which has setup (0, 2). Data path has delay of (3
5), nets have zero delay (0, 0). Clock period is T. Then timin
slack on FF2 is T+1+1 - (6+6+6+2+5+4) = T-27. Common poi
clock pessimism is 6+6 - (1+1) = 10, and slack after removal
pessimism is T-17. On FF3 slack is T+1 - (6+6+6+2+5+2) =
26. Clock pessimism is 6 - 1 = 5, andslack after removal of pes-
simism is T-21.
Note that the critical path without clock network pessimis
removal is FF1→ FF2. The real critical path once the pessimis
is considered is FF1→ FF3. Because in deep submicron da
paths are shorter, clocks are faster, and clock networks
longer to accommodate larger chips, it is essential in STA
consider such pessimism. Not only to get more accurate p
timing, but also to identify the critical paths.

1.4. Existing Solutions
Many other methods exist for calculation of delays consideri
min-max variation and their correlation (starting with [7]), an
even for exact delay calculation under such conditions (the fi
comprehensive framework was [5]). But, first, these metho
address only delays in data path. Second, even without extend
for clock network, they are very complex in terms of CPU tim
which makes them unsuitable for full chip STA.
The existing practical solutions for removal of clock networ
pessimism fall into two categories: path-based and backtracki
based. Thepath-basedsolution is the most straightforward. Crit-
ical paths are identified without considering the pessimism fir
Then for each path the common pin is found by a simple wa
through the launching and capturing segments of the pa
Finally, slack of each path is adjusted by the amount of pes
mism on the common pin. The obvious disadvantage is runti
since the number of paths is exponential. Thus practical imp
mentations must rely on limiting the number of tested path
therefore may not be able to identify the most critical paths
all. The advantages are the simplicity and that it can be in
grated with any STA tool as a postprocessing step.
The backtracking methodsrely on modified arrival time propa-
gation and backtracking to identify the common pin. An exce
lent description of such a method is given in [4]. The key idea
to perform initial timing analysis to identify potential common
pins (called CCPPS, or critical common path point set in [4
For each violating slack backtracking is performed to identi
which CCPPS the worst arrivals passed through. The arrival ti
is propagated then again forward and is labeled by the CCP
the trace passes through. The CCPPS defines bounds on p
mism included in the arrival time at any point on the data a
clock paths. Slack calculation on registers or other constrain

Figure 1: Clock network pessimism

1. E.g., period-to-period clock jitter is thus excluded from pessimism
removal.

Figure 2: Common pin of the clock network
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points is done as usual by comparing early/late arrival and
required (arrival along the capturing clock path) times. Then
slack is increased by the amount of pessimism. If the arrival and
required times have same CCPPS then the right-most CCPP
determines the pessimism. If however, they are not (which is
common in complex circuits), a backtrace is needed to identify
the right-most CCPP. This process of several forward and back-
ward tracing is repeated iteratively for all slacks from the initial
timing analysis. The iteration stops when the overall worst slack
is positive or the last computed slack adjusted for clock network
pessimism is worse than the next slack without pessimism
removal. The advantages are that paths do not need to be enu-
merated, and bounds on the pessimism are known for any pin in
the design. The disadvantage is the costly processing of one
slack at a time, each with multiple forward and backward traces.
Further, some of the traces are exponential for non-tree clock
networks. Also, as [4] points out, finding CCPPS is costly.
Therefore [4] proposes heuristics and manual user input to elim-
inate this bottleneck.
In past we have used a path-based solution. As mentioned ear-
lier, it was extremely slow, or even never finished on some
designs, or did not always identify the critical path thus prevent-
ing static timing sign off.
Today’s circuits are large (tens of millions of gates), have large
clock networks (hundreds of thousands of gates), and long
chains of dependent clocks that are derived from each other by
dividers and multipliers (an example is node 5 in Figure 5). Such
chains can be very long in system on chip (SOC) designs, usu-
ally 5 to 100 clocks per chain. Such clock circuits cannot be han-
dled by backtracking methods because the CCPP sets would
have hundreds or thousands elements and the number of needed
backtracks becomes unacceptable.

2. Solution

Based on our past experience with sizes and types of circuits that
need to be handled by an STA tool it was clear that path enumer-
ation or backtracking based algorithms are not an acceptable
solution. The key idea of the new solution is to eliminate the
path tracing and backtracking and perform as much work up
front, without timing the entire design.

2.1. Overview of Pessimism Removal Engine
The steps involved in STA with pessimism removal are
described in Figure 3.
First, the circuit clock network is represented by a directed
cyclic graph. Gate pins are nodes of the graph, nets and gates are
edges. The graph is reduced as explained later in Section 2.2.
The reduction leaves only potential common nodes and some
key nodes such as clock sources and register clock pins. Arrival
times are propagated in a single forward pass while treating the
potential common nodes as through points of timing exceptions
as described in [2]. Once the arrival times on register clock pins
and data pins are known then the timing engine evaluates all rel-

evant [2] combinations of arrival and required times. The arriv
time propagation is similar to the second forward propagation
[4]. However, instead of labeling the arrival times with a pointe
to the set of all potentially common nodes the arrival trace pas
through, only a reference to a representative register clock
node in the clock network graph is used. Thus any slack calcu
tion uniquely identifies the launching and capturing groups
register clock nodes. Then the closest common clock node
identified by graph operations as explains in Section 2.3. This
the most difficult part and the main focus of the paper. Once t
common node and transition sense on it are known, the min a
max arrival times on the node are used to calculate clock pe
mism. The clock pessimism is added to the timing slack. Th
approach theoretically takes more memory than [4] since m
slacks need to be calculated. As discussed later, the increas
relatively low in practical circuits. The main benefit is that th
powerful combination of node grouping, arrival propagation [2
and dominator analysis eliminates backtracking and the iterat
search for the “next worst slack” which results in faster perfo
mance.

2.2. Graph Description of Clock Network
The Clock Network Graph (CNG) is built to represent compl
cated clock network as simply as possible, therefore only the f
lowing objects are represented as nodes in the CNG:
1. Register clock pins
2. Clocks
3. Potential common nodes (pins with fanout >1)
4. Clock dividers and multipliers
Figure 4 below shows how the circuit in Figure 2 would be represen
as a CNG.

Figure 3: Overview of the pessimism removal engine

Figure 4: Circuit of Figure 2 represented as a CNG

Generate graph description of clock network
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Propagate arrival times
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te
ph

on
we
his
en-
to
e

,

est

le

is

nd

m-

-

The CNG is built by tracing forward from all clocks in the
design and adding nodes for pins that fit the previously men-
tioned conditions. Together with topological information the
CNG also stores on each node a record of what edges (rising,
falling, or both) result from individual clock edges.
An example of full CNG for a small circuit is shown in Figures 5
and 6. The clock node 1 is the start node of the graph. Leaf nodes
such as 8 and 9 represent register clock pins. Node 5 is clock of
half the frequency of clock in node 1.
The graph is reduced in several ways. First, nodes that do not
drive register clock pins, clock gating cells, or chains of gener-
ated clocks are eliminated. Second, nodes are grouped according
to their arrival time distance from their predecessors. The maxi-
mum arrival time difference among all the nodes in each group
determines how much pessimism is not removed (per path; they
do not accumulate). The limit is fully controllable and thus
allows the user to further trade off speed for pessimism removal.
A reasonable limit is few picoseconds for designs below 1 GHz.
The grouping step is essential and greatly reduces the number of
potential common nodes that the arrival propagation engine has
to consider. The key advantage is that only the clock network
needs to be timed. There is no need to time the entire circuit (no
datapath or slack calculation is done).

2.3. Finding Common Clock Nodes
The graph representation of the circuit allows us to transla
topological search in the circuit onto a graph problem. In gra
theory the closest common clock node can be defined based
the paths from start nodes to register clock pin nodes or, as
show later in this section, based on graph dominators. In t
section we define a theoretical graph-based framework for id
tification of common clock nodes. The framework allows us
quickly answer question “given 2 register clock pins, what is th
common clock node”.

2.3.1. Theoretical definition of common clock node

The clock network circuit is described by graph

whereV is set of vertices (nodes),E set of edges, ,S

set of start nodes, .

Path between two nodesv1, vm in graphG is defined

by a set of nodes(v1, v2, …, vm) and edges such that

, , and , . Them

is the length of pathp.
For each nodevi on pathp we define distanced from the final

nodevm on the path, .

Intersection ofn pathsΠ is a set of nodes common to all the
paths, .

Then closest common clock nodeγ(R) of set of nodes is the
node in the intersection of all paths starting in S and ending in R, clos
to the final node of any such path containing it:

(1)

For a given launching register clock pin (nodeL) and capturing
register clock pin (nodeC) the closest common clock node is
then , denoted . The (1) also defines a simp

path-enumeration method to compute . This, indeed,
not practical since the setP of all paths in the circuits is expo-

nential in size, , or for paths from start

nodes.
Let’s relax (1) by removing the requirement of minimum distance a
reducing size ofR to a single noder. Thenγ(R) is reduced to the defini-
tion of setδ(r) of dominators of noder:

(2)

Dominator sets define a new relation in the graph, “being a do
inator of” or dominance∆: . Dominance is reflexive,
antisymmetric, and transitive.
Dominator graphΦ is a graph representation of∆:

(3)

Dominator graph is a forest for any non-trivial graphG
because relation∆ is antisymmetric and transitive for an arbi
trary graph. In literature,Φ is usually referred to as “dominator

Figure 5: Sample circuit - schematic

Figure 6: Sample circuit - clock network graph
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 
 
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tree” because most algorithms only need to consider cases with a
single start node, or root. For clock network analysis there are
usually multiple start nodes corresponding to individual clocks,
hence the forest.
Assume that we can construct the dominator graph (3). Then the closest
common clock node (1) can be defined using dominator definition (2) as
follows:

(4)

where the is an ordering relation defined on based

on the distance from the start nodes T. Since is a forest

then there is exactly one path , ,

, and .
The (4) tells us how to find the closest common clock nodeγ:
first identify dominator forest, then intersect dominator sets of
register pins and find the dominator closest to the register pins.

2.3.2. Example of dominator based search forγ(L,C)
An example of closest common clock node is given in Figure 7.
Note that it may seem counter-intuitive to calculateγ(5, 7) = {1}
rather than 2. Unlike a simulator, STA tools typically cannot
analyze all possible reconvergent arrival times thus the signal
arrival on node 4 would be determined by both paths through
nodes 2 and 3 in the STA model of the circuit. Hence definition
of theγ ensures that STA with pessimism removal remains con-
servative.

Computing dominators alone is, however, costly. Despite of
being a well understood common tool in design of software
compilers, there is no practical linear-time, linear-memory, low-
overhead algorithm. Compared to basic blocks in software com-
pilers the clock network analysis is very different. First, software
programs have tens or hundreds of blocks for which dominators
need to be calculated. Our needs are several orders of magnitude
higher. Second major difference is that we do not need to com-
pute full dominator graph, but per (4) only relevant subsets

and , i.e., dominators of register clock pins.
Several powerful dominator algorithms exist. There are even lin-
ear time algorithms such as [1] which is however a purely theo-
retical study since to achieve linear behavior in time it requires
exponential amount of memory. Our goal is not to search for the
best theoretical dominator algorithm but rather use and extend
strengths of existing algorithms to solve a very hard practical
problem in hardware verification. If better dominator algorithms

are invented in the future, they can be plugged into our engine
a new dominator solver.

2.4. Practical Dominator and Common Node
Analysis Engine

It is not practically possible to compute all the closest comm
clock nodes for all pairs of register clock pins. First, most dom
nator algorithms require too much memory. Second, not all pa
of registers have data path between them.
The first problem is addressed by limiting the search space
which dominators are computed. We use a partial on-dema
dominator analysis. Theγ is always computed for only two
nodes at a time, but as an (intended) side effect the search
produce dominators for other nodes. The second is addresse
on-demand calculation driven by the timing engine arrival tim
tracing procedure with aggressive caching.
We use multiple solvers to get theγ. Each solver either finds the
solution or indicates that it cannot operate on the given circ
topology. In such case the pair of register clock pins is passed
the next solver.

2.4.1. Trivial case solver
Trivial closest common clock node solver is used when the tw
register clock pinsL and C have a common predecessor nod
and fanin of 1. Typical example are register clock pin nodes
and 8 in Figure 7. It correspond to the same buffer driving bo
register clock pins.

2.4.2. Tree based solver
This solver is used for H-type clock trees or hybrid mesh-
(high-level mesh, lower level H tree) clock networks but no
hybrid H-mesh. The hybrid mesh-H clock networks must ha
the closest common clock node within the tree part of the n
work.
The advantage of the multiple solver architecture is that
explicit knowledge of the type of clock network is needed u
front. The tree solver either finds theγ or detects that the relevant
part of the clock network is not a tree.
Assume clock network in Figure 8. The top node (1) is a clo
node. The leaf level nodes are register clock pins (7 to 13). T
γ(7, 10) can be found by traversing backward from each regis
node until any common node is found. In this case the paths
7, 4, 2, 1 and 10, 5, 2, 1. The first common node is 2 which is t
γ(7, 10).

A general solution for finding closest common predecessor
trees is described in [3]. However, it is a solution for arbitra

Figure 7: Example of closest common dominator
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 
 
 

=

w′ w≤ Φ G( )
Φ G( )

π t … w′ … w … r, , , , , ,( )= t T∈
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number of nodes. We only need closest common node for two
registers therefore the implementation complexity of [3] can be
easily avoided. Our algorithm is described in Figure 9. It is a
simple backward graph traversal of a single pair of paths. The
complexity of the search is linear in the length of the path from
register node to theγ. That means that the worst complexity for
the entire circuit is bounded by length of the longest clock path
and the number of register clock pin pairs. That indeed would be
unacceptable in practice. In practice, the average complexity for
the entire circuit is linear in the number of register clock pins
(not pairs of pins) because of both caching ofγ and use of an
STA approach.

Note that, in example in Figure 8, node 1 is never visited. In this
case node 2 is theγ, thus the search stops there. Therefore the
fast tree algorithm works even on hybrid mesh-H clock net-
works. If theγ is not in the tree portion of the clock network then
the next solver is used.

2.4.3. Arbitrary graph solver
The solver is based on the basic Tarjan-Lengauer algorithm (TJ,
[6]). The advantage of using TJ is that it can handle any directed
graph - including graphs with loops. It may sound as an exces-
sive requirement for clock network analysis tools but many prac-
tical circuits do have loops in the clock network graph. The
reason are paths shared for both clock and data, clock gating and
especially clock shaping (divider and multiplier) circuits with
their feedback logic. Handling arbitrary directed graphs is an
essential feature.
The TJ performs first a DFS to identify semi-dominators (sets of
nodes that include all dominators but also some non-dominators)
and then refine them iteratively based on immediate dominator
relation on each node.
The TJ in its simplest form has memory complexity square in the
number N of graph nodes but good speed - average CPU com-

plexity is roughly1 O(N log(N)), worst O(N2). In graphs that
describe practical clock networks the memory complexity is the
limiting factor.
One natural way to cope with the TJ memory complexity is by
identifying the smallest possible relevant part of the clock net-
work graph for the two given register nodes and then apply TJ

algorithm. That works fine for individual pairs of registers. How
ever, the identified space for any register pair usually overla
with the space for another register pair. Thus average comple

of the calculation for the entire design would be O(N2 log(N))
assuming that the STA timing engine analyzes about O(N) reg
ter pairs which is the case for full chip in most cases. Though
might not be the case for individual tiny subblocks like barr
shifters, multipliers or graphics processors - but for us is impo
tant only the relationship for the entire analyzed chip.
One way to reduce the overall complexity is to give up some
the search space reduction with the overall speed goal in mi
The search space is extended to the fanout of the intersectio
fanin cones of the registers (Figure 10).

The computed dominators , and closest comm

clock nodes are cached independently. Thus one
dominator calculation results in knowing dominators of a
nodes in the search space. Then any otherγ calculation in the
same search space lookups up dominators and finds theγ by
ordering dominators as defined in (4).
You can imagine that there are clock network topologies f
which each search space is easily 30 to 90% of the clock n
work. That can mean tens of thousands or even millions of clo
nodes. The basic TJ algorithm cannot handle such cases.
If the number of nodes in the search space is greater than ab
hundred then we further reduce the search space by mapp
part the physical search space onto a virtual search space.
virtual search space represents various subgraphs of the grap
a smaller equivalent representation. An example of such m
ping rule is that a fanin cone of node is replaced by set of
dominators if they are already known. The virtual space us
during the search in Figure 10 could then map to the correspo
ing physical space depicted in Figure 11.

Note that the theoretical worst case memory complexity of th

solver is again O(N2). However, the worst case is not a practica
circuit. For example, to construct a circuit that is equivalent
full graph, all drivers in the clock network would have to be bid
rectional and have fanout of N each. We have encountered cl
networks with many bidirectional drivers, and also nodes wi
fanout of tens of thousands (e.g., a block that does not h

Figure 9: Tree-based common clock node solver

1. Roughly - because the complexity depends on the type of graph. We
consider average practical types of clock networks, thus abstracting
from the number of edges in the graph.

While exist predecessors {
extend path fromlaunch node backward
if the reachednode is on the backwardcapture path

extend path fromcapture node backward

if any reached node has>1 predecessor then

if the reachednode is on the backwardlaunch path

returnnot_a_tree
}

return node

return node

returnno_γ Figure 10: Reduction of search space

Figure 11: Virtual search space

L C L C

Minimum search space Used search space

δ L( ) δ C( )
γ L C,( )

L C
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clock network synthesized yet). But such features cannot exist
on all nodes, neither they can all be combined in one circuit to be
a practical clock distribution network.

2.5. Transition Sense Propagation
To remove the pessimism due to delay variation we use stricter
requirements than that the clock signal passes through the com-
mon pinγ as was shown in Figure 1. It must also pass through
the same transistor (pull up or pull down) of the output pin of the
gate. That translates to a requirement of same (rising or falling)
transition onγ in the gate-level representation (Figure 12).

2.5.1. Finding transition sense onγ
The transition sense on register clock pins is known. For rising
edge-triggered register the sense is rising, for falling edge-trig-
gered register the sense is falling, for level-sensitive latches we
use a set of both rising and falling.
The sense relative to the clock is precomputed at the time of cre-
ation of the clock network graph. The absolute transition sense
on theγ is computed from the clock phase and the relative sense
between the clock and theγ and the relative sense between the
clock and the register clock pins.

2.5.2. Delay correlation
Even for mismatching senses some pessimism can be removed.
We provide an option to consider a simple correlation as shown
in Figure 13 because it is conservative, easy to understand and
implement. Indeed, it is conservative as long as such correlation
exists. Therefore many silicon vendors adhere to the strict (same
transition sense) correlation model in CMOS circuits. They use
the correlation model in Figure 13 only for removal of pessi-
mism due to wire delay of tester probes. The presented frame-
work for removal of clock network pessimism is independent of
the correlation model. Any model can be used.

3. Experimental Results

The clock network pessimism removal engine was implemen
in C as a part of a commercial STA tool. The results are pr
sented for a set of customer designs on hand that were provi
to us for testing the tool or as testcases for bug reports. T
designs include a 128-bit graphics chip, signal processor, MP
decoder, and various chips with large clock networks and co
plicated clocking schema. The purpose of several other chip
not known to us. Many more designs that had CPU time a
memory problems with the path-based solution were run off-s
by individual customers to their satisfaction. CPU time resu
are for UltraSparc-III 750MHz processor (Table 1). The “CP
time for γ” is the key measurement. It is the CPU time for build
ing CNG, grouping nodes, finding dominators, finding commo
clock nodes, propagating sense, and computing pessimi
Since it does not include arrival time and slack calculation t
total CPU time is important as well. The “# of pins in the cloc
network” is the size of the problem that theγ algorithm has to
deal with. The total memory and CPU time are for complete r
of the tool including reading design files, delay calculation, a
reporting. The very last column is the total CPU time for ou
previous path-based solution. The∞ in that column means that
the run could not finish in 3 days. We do not present any resu
for commonly used ISCAS or MCNC circuits because of tw
reasons: 1) they are too small, 2) in their most publicly us
form they do not have synthesized clock network, gate and
delay, or post-layout parasitics.

Figure 12: Mismatching transition senses onγ

Figure 13: Simple rise/fall gate or path delay correlation

FF1Clock FF2γ

Rise delay

Fall delay

mR MR

mF MF

Correlated

Uncorrelated, not removed

P = minimum (MR-mR, MF-mF)

In this case P is MR-mR.

mR = min rise

MF = max fall
…

Legend:
P = pessimism

Table 1: Experimental results

Cir
cuit

#
clo
cks

# gates # pins
# pins

in clock
network

CPU
time
for γ
[s]

Total
CPU
time
[s]

Total
Mem
ory

[MB]

Path-
based
CPU
[s]

d1 19 320921 1384933 42450 159 5047 1444 ∞
d2 6 72142 304043 14873 3 74 227 122

d3 28 295012 1228821148879 115 762 357 ∞
d4 1 143142 686867 21022 178 718 408 ∞
d5 37 198254 682102 29159 5 380 235 54377

d6 7 48177 179525 6732 11 313 539 ∞
d7 2 64611 247007 9558 2 110 117 303

d8 4 28687 121463 5659 1 65 55 2603

d9 4 30038 136324 5452 2 62 83 1466

d10 19 320921 1384933 42450 157 5011 1445 ∞
d11 1 37158 271327187622 429 727 442 13982

d12 24 360449 1529113 66751 15 2122 898 ∞
d13 1 45757 154824 14000 2 41 62 28989

d14 26 285697 963358 30548 6 267 283 24246

d15 16 851464 3109263123057 44 3560 952 ∞
d16 10 500966 1886949 54566 10 858 558 33405

d17 1 35965 267498187574 120 239 473 ∞
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The experimental results show very good performance of the
pessimism removal solver. In many cases most closest common
nodes are found by the trivial or tree-based solver (cases where
CPU time is around 10 seconds). In all other cases a mix of all
solvers is used because the designs have more complex meshed
or hybrid clock networks involving thousands of nodes. The total
runtime is much faster compared to the previous path-based
solution. Since no implementation of [4] was available to us we
were not able to compare the runtime. The predicted perfor-
mance is that [4] is faster on small circuits, and significantly
slower on medium and large ones.
An important question is how much pessimism is removed. An
example of a large circuit with many violations is shown in
Figure 14. The endpoint slacks for all checks including setup,
hold, clock gating, … are binned according to their slack into 10
bins. The left-most bin is the worst slack, -4.5ns to about -4ns,
the right-most bin is the best slack, about -0.4ns to 0. Non-criti-
cal endpoints are not shown. The figure shows that several thou-
sand violations were due to clock network pessimism. Also the
overall design worst slack has improved by at least 10% once the
clock network pessimism has been removed (the left-most bin is
empty). The number of violating endpoints decreased from
91937 to 26564. Similar improvement in slack was observed on
other designs. In all 17 designs, the number of violating end-
points decreased from 352296 to 169048, i.e., to less than half.

4. Conclusions

We have presented a new theoretical framework and a practical
solution for fast removal of pessimism in clock network due to
on-chip variation of delays in static timing analysis. The key
idea is to initially time only clock network, describe it by
abstract CNG model, and perform node grouping up front. Then
propagate sufficient number of arrival times identifying groups
of registers with significant amount of clock network pessimism.
The difficult part, identification of the common points in clock
network during slack calculation is addressed by a systematic

approach based on dominator graph algorithms which ensu
support of non-tree clock networks. The second most diffic
part, the identification and analysis of the “next worst slac
(which the path-based and backtracking [4] methods suf
from) is solved by a combination of up front analysis of cloc
network graph and use of a timing exception-aware arrival pro
agation [2].
On a set of real customer designs the new method far outp
formed the previous path-based solution and showed signific
reduction of pessimism. Compared to backtracking methods
the main advantage is elimination of time consuming multip
forward and backward tracing, elimination of the iteration ov
“next worst slack”, ability to remove pessimism even on no
violating paths which is useful for budgeting, and support
meshed and hybrid clock networks. The advantage of [4] is th
bounds on pessimism are included in arrival times on each
which may help during in place optimization (IPO).
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Figure 14: Violating endpoints with and without clock network
pessimism removal for circuit d1
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