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General Franklin systems as bases in H'[0, 1]
by

GEGHAM G. GEVORKYAN (Yerevan) and ANNA KAMONT (Sopot)

Abstract. By a general Franklin system corresponding to a dense sequence of knots
T = (tn,n > 0) in [0,1] we mean a sequence of orthonormal piecewise linear functions
with knots 7, that is, the nth function of the system has knots tg, . .., tn. The main result
of this paper is a characterization of sequences 7 for which the corresponding general
Franklin system is a basis or an unconditional basis in H'[0, 1].

1. INTRODUCTION

The classical Franklin system is a complete orthonormal system con-
sisting of piecewise linear continuous functions with dyadic knots. It was
introduced by Ph. Franklin [7] in 1928 as an example of a complete or-
thonormal system which is a basis in C|0, 1]. Since then, it has been studied
by many authors from different points of view, and various extensions and
generalizations of this system have been considered. In particular, it is well
known that this system is an unconditional basis in LP[0,1], 1 < p < oo (see
S. V. Bochkarev [1]) and in H'[0, 1] (see P. Wojtaszczyk [17]).

The present paper is a continuation of [10]. In both papers, we study the
properties of a generalization of the classical Franklin system obtained by
replacing the dyadic knots by a general sequence of knots. Given a sequence
of knots 7 = (tp,n > 0) in [0, 1] admitting at most double knots and dense
in [0,1], by a general Franklin system corresponding to 7 we mean the
complete orthonormal system consisting of piecewise linear functions with

2000 Mathematics Subject Classification: 42C10, 46E30.

Key words and phrases: general Franklin system, basis, unconditional basis, H' space.

Part of this work was done when A. Kamont was visiting the Institute of Mathematics
of the National Academy os Sciences of Armenia in May 2003. The paper was prepared
for publication when A. Kamont was visiting Institut fiir Analysis der Johannes Kepler
Universitdt in Linz in the Autumn of 2003. A. Kamont’s stay and travel to Linz were
supported by FWF project P150907-N08 and P. Wojtaszczyk’s professor subsidy of the
Foundation of Polish Science.

[259]



260 G. G. Gevorkyan and A. Kamont

knots 7 (see Section 2.1 for the precise definition). We are interested in the
properties of this system as a basis in various function spaces. For the spaces
LP[0,1], 1 < p < oo, or C0,1], these properties are now fully understood:
Z. Ciesielski [4] has proved that the L>-norm of the orthogonal projection
onto the space of piecewise linear functions with arbitrary knots does not
exceed 3, which implies that each general Franklin system is a basis in
L?]0,1], 1 < p < o0, and if all knots are simple (so all functions of the system
are continuous), it is a basis in C[0,1]. The question of unconditionality
of this basis in L?[0,1], 1 < p < oo, has also been considered. In G. G.
Gevorkyan and A. Kamont [9] and G. G. Gevorkyan and A. A. Sahakian
[11], some partial answers have been obtained, under additional assumptions
on the structure (in both papers, quasi-dyadic structure) and regularity of
the sequence of knots. Finally, in [10], we have proved that for each sequence
of knots the corresponding general Franklin system is an unconditional basis
in LP[0,1], 1 < p < o0.

In the present paper, we are interested in the properties of the general
Franklin system as a basis in the real Hardy space H'[0, 1]. We have already
studied this question in [9] and proved that, for a quasi-dyadic sequence of
knots, the general Franklin system is a basis in H'[0,1] if and only if the
sequence of knots satisfies a strong regularity condition; moreover, if it is a
basis in H'[0, 1], then it is an unconditional basis. However, the result of
[10] does not require any assumption on the structure of the sequence of
knots. This has been the motivation for returning to the H'[0, 1] case and
seeing what happens if we do not assume the quasi-dyadic structure. In this
generality, we have arrived at two conditions on regularity of knots, which
we call strong regularity for pairs and strong regularity (the latter being
the same as in [9]). We prove that strong regularity for pairs is a necessary
and sufficient condition for the general Franklin system to be a basis in
H'[0,1], and that strong regularity is a necessary and sufficient condition
for the system to be an unconditional basis in H'[0,1] (for definitons etc.
see Section 2.2). These are the main results of this paper, Theorems 2.1
and 2.2. Let us remark that for quasi-dyadic sequences of partitions strong
regularity and strong regularity for pairs coincide.

Finally, as the paper concerns unconditional bases in H'!, let us briefly
recall the main results in this direction. The existence of an unconditional
basis in H' was first proved by B. Maurey [13], but his proof was not con-
structive. The first explicit construction is due to L. Carleson [2]. Then
P. Wojtaszczyk proved that the classical Franklin system is an uncondi-
tional basis in H!, and Sung-Yung A. Chang and Z. Ciesielski [3] proved
this for spline systems of higher orders (with dyadic knots). Analogous re-
sults are also well known for (sufficiently regular) wavelets (cf. e.g. books
[14] or [18]).
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The paper is organized as follows. In Section 2 we give the basic defi-
nitions and formulate the main results, Theorems 2.1 and 2.2. In Section 3
we collect some properties of a single general Franklin function and of a
general Franklin system. Section 4 concerns the relations between uncondi-
tional convergence in L! of a general Franklin series, integrability of square
and maximal functions of such series and being the Fourier—Franklin se-
ries of a function from H! (see conditions (A)-(D) there). The results in
this direction are: Fact 4.2 and Propositions 4.3, 4.5, 4.6 and 4.7; see also
Corollary 5.3. Section 5 contains the proofs of the main results. In addition,
we note that if a general Franklin system (normalized in H') is an uncon-
ditional basis in H'[0, 1], then it is also a greedy basis in this space (see
Corollary 5.4).

Notation. Throughout the paper, the following notation is used. For a
set A C [0, 1], we denote by x4 the characteristic function of A, by |A] its
Lebesgue measure, and by A€ its complement in [0, 1]; for ¢ € [0, 1], dist(¢, A)
is the distance from ¢ to A. For a finite set B, # B denotes the number of
elements of B. For a function f : [0,1] — R, Mf is the Hardy—Littlewood
maximal function of f. We use the notation x Vy = max(z,y), t Ay =
min(z,y). Finally, a ~ b means that there are positive constants ci, ¢,
independent of the variables of a, b, such that cia < b < c2a, and a ~ b
means that the implied constants may depend only on the parameter ~y, but
not on other variables of a, b.

2. BASIC DEFINITIONS AND FORMULATION
OF THE MAIN RESULTS

2.1. Basic definitions. Let us recall the definition of real Hardy spaces
H'[0,1]. We use the atomic definition, first introduced in [6].

A function a : [0,1] — R is called an atom if either a = 1, or there is an
interval I" C [0, 1] such that suppa C I', sup|a| < 1/|I'| and S(l) a(u) du = 0.
A function f € L'[0,1] is said to belong to H'[0, 1] if there are atoms a; and
real coefficients c;, j € N, with 3322, |c;| < oo such that f = >2, ¢ja;. The
norm in H'[0, 1] is defined as || ||z = inf(3°72 ) [¢j]), where the infimum is
taken with respect to all atomic decompositions of f.

Next, let us recall the definitions of a general Franklin function and a
general Franklin system.

Let 0 = (s;,0 < i < N) be a partition of [0, 1], admitting at most double
knots, i.e., a sequence of knots in [0, 1] such that
{0280<81§--~§SN_1<8N=1,

(2.1) |
S; < Sip2 for0<i < N —2.
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Denote by S(o) the space of piecewise linear functions on [0, 1] with knots o,
i.e., linear on each (s;, s;4+1), left-continuous at each s; (and right-continuous
at sp = 0) and continuous at each s;, 1 <i < N — 1, satisfying ;-1 < s; <
Si+1. By {IN5.i,0 < i < N} we denote the usual B-spline basis corresponding
to the knots o: if s; is a simple knot in o then N, ; is the unique piecewise
linear and continuous function with knots o satisfying No.;(si) = 0; k; when
si—1 = 8;, then Ny ;_1, Ny; are the unique piecewise linear functions with
knots o, continuous and taking value 0 at all knots different from the double
knot s;_1 = s;, left-continuous at s;_1 = s;, and satisfying Ny ;—1(s;—1) = 1,
lims_)sltl Navifl(s) = 0, No,i(si) =0 and hms—>s;r Na‘,i(s) =1.

Now, let 0 = (s5;,0 < i < N) and 0* = (57,0 < i < N + 1) be a pair
of partitions of [0, 1] satisfying (2.1) and such that ¢* is obtained from o
by adding one knot s*. Note that s* may be different from all knots of o
(in this case, for some i, we have s* = s and s;_; < sj < s, ), or for
some i, s* = s; (then sj_; < sj = s* = 57| < sj,,). In each case, there is
a unique function ¢ € S(o*) such that ¢ is orthogonal to S(o) in L?[0,1],
llelle = 1 and ¢(s*) > 0. This function ¢ is called the general Franklin
function corresponding to the pair of partitions (o,0™).

Now, we turn to sequences of partitions and general Franklin systems.

Let 7 = (t;,i > 0) be a sequence of knots in [0, 1], admitting at most
double knots, with tg = 0,¢; = 1,¢; € (0,1) for s > 2 and dense in [0, 1]. Such
a sequence of knots is called admissible. For n > 1, let 7,, = (¢;,0 < < n),
and let m, = (0 =tpo < tp1 < -+ < tpn-1 < tpn = 1) be a partition of
[0, 1] obtained by nondecreasing rearrangement of 7,. Let us introduce some
notation, which will be used throughout the paper:

(2.2) Ing = [tni—1,tnils  Ani = [Ingl = tni — tni-1.
Note that each m,, satisfies (2.1), and m, is obtained from 7,1 by adding
one knot t,,.

DEFINITION 2.1. Let 7 be an admissible sequence of knots. A general
Franklin system with knots 7 is a sequence of functions { f,,,n > 0} given by

fo) =1, fi(t) = V3(2t — 1),

and for n>2, f, is the general Franklin function corresponding to (m,—1, 7).

2.2. The main results. For the main results, we need to formulate
two regularity conditions for 7', and this is done with the notation of (2.2).

DEFINITION 2.2. Let 7 be an admissible sequence of knots. We say that
T satisfies the strong regularity condition with parameter v > 1 if for each
n>1and 2<i<n,

1
5 Anji—1 < A < YAnjiet.
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DEFINITION 2.3. Let 7 be an admissible sequence of knots. We say that
T satisfies the strong regularity condition for pairs with parameter v > 1 if
foreachn >2and 1 <i<mn,

1
5 (Anic1 + i) < i + Anik1 < y(Anim1 + Ansi),

with the convention A\, 0 = Ay 41 = 0.

Now, we formulate the main result of this paper, Theorems 2.1 and 2.2,
which characterize those sequences of partitions for which the corresponding
Franklin system is a basis or an unconditional basis in H1[0, 1].

THEOREM 2.1. Let T be an admissible sequence of knots in [0, 1] with
the corresponding Franklin system {fn,n > 0}. Then {f,,n > 0} is a basis
in H'[0,1] if and only if T satisfies the strong reqularity condition for pairs
with some parameter v > 1.

THEOREM 2.2. Let T be an admissible sequence of knots in [0, 1] with
the corresponding Franklin system {fn,n > 0}. Then {fn,n > 0} is an
unconditional basis in H'[0, 1] if and only if T satisfies the strong reqularity
condition with some parameter v > 1.

2.2.1. Comments. In [9] we have discussed general Franklin systems as
bases in H'[0, 1], but only for quasi-dyadic sequences of knots. By this we
mean the following: consider a sequence of partitions P; = {7;4,0 < k < 27},
J = 0, such that 0 = 750 < 751 < -+ < 795 =1 and 7j11 9k = 7 for all
4.k, 0 <k <27, ie. between each pair of knots of Pj, one new knot of Pji1q
is inserted. Putting g = 0, ¢ty = 1 and ¢, = 7211 for n = 2+ k with j >0
and 1 < k < 27, we get an admissible sequence 7 = (t,,n > 0) of simple
knots with quasi-dyadic structure.

The first of the above regularity conditions, the strong regularity condi-
tion, has been used in [9]. Theorem 5.3 of [9] states that for quasi-dyadic
sequences of knots, a general Franklin system is a basis in H'[0, 1] iff it is an
unconditional basis in H'[0, 1], and both these conditions are equivalent to
the strong regularity of the sequence of knots. It turns out that for general
Franklin systems without any structural constraints on the corresponding
sequence of knots, the properties of being a basis in H'[0,1] and being an
unconditional basis in H'[0, 1] are no longer equivalent.

Clearly, for quasi-dyadic sequences of knots strong regularity and strong
regularity for pairs are equivalent. In addition, the quasi-dyadic structure
of a strongly regular sequence of knots implies the following polynomial
propagation of lengths of intervals: there are o, and C,,, depending only on
the regularity parameter v, such that for all j > 0 and 1 < k,[ < 27,

(2.3) CoH(E =1 +1)7 Xy < Agjy < Oy (k= 1) + 1) Mgy
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(cf. Proposition 2.6(ii) of [9]). This property has been used in [9], and it
enabled us to treat also the case of HP[0, 1] with p < 1. However, for general
strongly regular sequences of knots, an analogue of (2.3) need not hold.
The proofs in this paper do not make use of (2.3), but we have to restrict
ourselves to the case p = 1. As in [10], the technique of proofs depends on
the analysis of the canonical intervals associated with Franklin functions (cf.
Section 3.1).

Finally, note that strong regularity implies that all knots of 7" are simple,
while double knots are allowed for sequences enjoying strong regularity for
pairs. Both strong regularity and strong regularity for pairs can be encoun-
tered in the context of spline approximation: strong regularity is just the
boundedness of the local mesh ratio, while strong regularity for pairs is
equivalent to the boundedness of the ratios of the lengths of the supports of
the basic functions Ny, ;,0 <i <n.

3. BASIC PROPERTIES OF A GENERAL FRANKLIN SYSTEM

3.1. Properties of a single Franklin function. We recall some definitions
and estimates for a general Franklin function. For a more detailed description
and proofs we refer to Section 3.1 of [10].

As in [10], to simplify notation, assume that

T={0=7 <7< <Ta<n<--<mg <7 =1,

and 7* = rU{7} with 7_1 <7 =719 < 71 (wWith 7; < 7;42). As in Section 2.1,
¢ denotes the general Franklin function corresponding to (7, 7*). In this
section, we use the notation

(3.1) Ai = Ti — Ti-1-

First, we recall the definition of a “canonical” interval J associated with
¢ (cf. Section 3.1 of [10]). The definition depends on whether 7 is a simple
or a double knot of 7*.

First, let 7 be a simple knot of 7%, i.e. 71 < 7 = 19 < 71. Consider the
intervals

(3.2) I=lr,nl, Im=[rg,m, IT=lmn,mn,
and set
(3.3) v=|\Il, v_=|I"|, vi=|IT|, p=min(v",v,v").

(Incase k = 1orl =1, we take 7_5 = 0 or 75 = 1, respectively.) Now, choose
I* = [ry+, Ti=12] to be one of the intervals 17, I, I such that p = |I*|, and
consider its left and right parts I*! = [r;«, 7+ 41], I*" = [Ti* 41, Ti* 42). Finally,
let J be one of the intervals I*!, I*" such that |J| = max(|I*!|,|I*"|). Note
that in this case |J| < p < 2|J|. In what follows, we also need the following
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notation:
T =71, Tt =1.

Now, let 7 be a double knot of 7*, i.e. 7_1 <7 =79 = 11 < T9. Consider
the intervals I~ = [r_1, 7], IT = [r1,72] and let g = min(|I~|,|IT|). Now,
take as J one of I~ ,I" such that |.J| = u. Moreover, we put 7~ = 7_1 and

+_
T =T9.

Pointwise estimates for a general Franklin function have been discussed
in [9], [11] and [10]. We will need some estimates from [10, Propositions 3.1
and 3.2]. The estimates are formulated in terms of the coefficients &; of the
representation ¢ = Zi’:—k &Nz« ;. Note that if 7; is a simple knot of 7*
then & = ¢(7;), and if 7,1 = 7, then &_1 = p(1-1) = limt_W; ) ©(t) and
& =lim, _+ ¢(t). As ¢ is linear on each (7;_1,7;), it is clear that estimates
for &_1,&; izmply estimates for ¢ and ¢’ on (1;-1,7;).

To formulate the estimates, we need some additional notation. As in [10],
for z,y € [0,1], we denote by d«(z,y) the number of knots of 7* between
x and y, counting multiplicities, i.e.

dee(z,y) =#{i:x Ny <7 <z Vyl
By d+(x) we denote the number of knots of 7* between x and J, counting
multiplicities and endpoints of J, with the understanding that d.«(z) = 0
when x € J. Similarly, for an interval V' C [0,1], we denote by d«(V)
the number of knots of 7* between V and J, counting multiplicities and
endpoints of J or V, with the understanding that d.«(V) = 0 whenever
VndJd#0.

PROPOSITION 3.1. Let 7* = wU {70} be as described above, and let ¢ be
the general Franklin function corresponding to (mw,7*), ¢ = Eﬁsz & Npx .
If T =19 is a simple knot of ©*, then
{ lpllp ~ p/P7172, 1< p < oo,

‘5—1’ ~ :Ull/z/yiv ’50’ ~ :UJ1/2/V7 ‘51’ ~ :ul/Q/l/Jr’
with the implied constants independent of (w,7*) and p.

If T =719 =71 is a double knot of ©*, then

(35) el ~ P72 1<p<oo, |Gl ~ i ho, ]~ i N

with the implied constants independent of (w,7*) and p.
In both cases (i.e. T being either a simple or a double knot of 7*)

(3.6) lellzoer ~ lellp ~ [J]7P712, 1< p < oo,
with the implied constants independent of p, m, 7*. In addition, we have 1&i| =
(—1)'”& and the following localization of the support of ¢: if i1 =7 <71~

(respectively, 7T < 7, = T;41), then supp ¢ C [, 1] (respectively, supp ¢ C
[0,7]).

(3.4)



266 G. G. Gevorkyan and A. Kamont

Moreover, there is a constant C, independent of w, 7", such that

2 doex (75) |J‘1/2
3.7 | < Cl = - 1.
37 6l =< <3> |J| + dist(7, J) + Tig1 — Ti-1 for all'i

In addition, with ¢ = (/2 +1)/3, in the case when T is a simple knot
i ", we have the following estimates:

(a) fori <i+s<-1:

T s Ti+s
€
Jlemldt < — | le@)]dt,
0 Tits—1
i I4]
€
Jle@ldt < —llelh,
0 €
(b) for1<i—s<i:
1 e Ti—s+1
Jleldt < 37— | le(t)]dt,
! ; lil
t)dt <
Ittt < 7= el

Ti

If 7 is a double knot of ©*, then (a) holds for i < i+ s <0, and (b) holds
fori>i—s>1.

3.2. Properties of a general Franklin system. Let T = {t,,n > 0} be
an admissible sequence of knots with the corresponding Franklin system
{fn,n > 0}. By L, I, Jp, tn, dy etc. we denote the intervals and quanti-
ties defined above for a general Franklin function and corresponding to the
function f,, and partition 7,. In addition, ¢, ¢, correspond to t, and m,_1

in the same way as 7~, 7+ correspond to 7 and 7 in Section 3.1.

The following properties of a general Franklin system have been proved
in [10, Lemmas 3.4 and 3.5]:

LEMMA 3.2. Let T = (tp,n > 0) be an admissible sequence of knots with
the corresponding Franklin system {fn,,n > 0}. Let k,l > 0 be such that
tr < t; and there is no i < max(k,l) with t; € (tx,t;). Then

#{n tJp = [tkatl]} < 57
#{n s Jy C [tk,tl] and ‘Jn| > |[tk,tl]|/2} < 25.

The following property of a general Franklin system has also been ob-
tained in [10, Lemma 4.6]:
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LEMMA 3.3. Let T be an admissible sequence of knots in [0, 1] with the
corresponding Franklin system {f,,n > 0}. There is a constant C > 0,
independent of T, such that for each interval V = [, 5] C [0, 1],

Yo LV Ifmlde< v,
n:J,CV Ve
Now, we prove some additional properties of general Franklin systems
needed in what follows.

LEMMA 3.4. Let T be an admissible sequence of knots in [0, 1] satisfying
the strong regularity condition with parameter v > 1. Let {f,,n > 0} be the
corresponding Franklin system, with the corresponding family of J-intervals

{Jn,n > 0}. For firted A = I, ; for some n,i, and k > 0, let
N(Ak)={n>0: f, is linear on A and d,(A) = k}.
Then there is a constant C, depending only on vy, such that

|Jn]
g < Cy(k+1).
nENCAK) |Jn| + dist(Jn, A) + | 4|

Proof. First, consider the case k > 0. Then J,, C A and the set N (A, k)
splits into two subsets N1 (A, k), N~ (A, k), according to the position of .J,,
with respect to A: J, is to the right of A for n € NT(A, k), and to the left
of Aforne N™(Ak).

Consider first the case of n € NT(A, k). The corresponding intervals .J,,
can be grouped into packets, with intervals in one packet having common
left endpoint, and with maximal intervals from different packets disjoint.
Let J], denote the right half of J,. Note that

|Jn| + dist(Jy, A) + |A] ~ dist(t, A) + |4A|  fort e J),

and by Lemma 3.2, each point belongs to at most 25 intervals J;. In addition,
as d,(A) = k, it follows by strong regularity of 7 that

|Jn] <AMA] and  dist(J,, A) < CyF|A],

where C, depends only on «. Combining these facts we get

| 1
> <c > |= dt
ReNTAR) |Jn| + dist(Jn, A) + [A] N TTAR) dist(t, A) + |A|

77 |A|
<c | -at
t
|4
= C(In(Cy*|A]) — In|A]) < Cyk.

The other part ), N—(Ak) - is treated analogously.
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The case k = 0 is similar, but it also requires consideration of the case
Jn = A. However, by Lemma 3.2, the number of such n’s does not exceed 5. u

LEMMA 3.5. Let T be an admissible sequence of knots in [0, 1] satisfying
the strong reqularity condition for pairs with parameter v > 1.

(i) Let A, I' be two adjacent intervals of the partition m, such that |A| <
%|F|, and let s = min{i > n :t; € AUI'}. Then ts € I'. Moreover,

if I', T is the splitting of I' by ts with I adjacent to A, then |I"'| >
1

r.
2’y|

(ii) Let I', A, I, I and s be as in (i), and let A be the other neighbour of
I' in ws—1. Then |A| < ~|I'|, and consequently

AL+ [T, [T+ T [ 57+ AL~y [T

(iii) Let Vi D Vo D V3 D Vy be four different intervals from the sequence of
partitions corresponding to T . Then

Val < 2v+1

Proof. To prove (i), note first that the assumption |A| < %]F | and the
fact that the knots are at most double imply that |I'| > 0. Suppose that
ts € A. Then t4 splits A into A’, A”, with A’ denoting the part adjacent
to I'. Then A’, A" I' are intervals of 7s, and moreover A’, A” and A’, I" are
neighbouring pairs. But then, by strong regularity for pairs,

L] < 0|+ A < A(A] + A7) = 414] < | 11/2,
which is impossible. Thus, t; € I', and it splits I" into intervals IV, I"”, with
I'" adjacent to A. Now, A, I'', I'" are intervals of 75, and (A, I"), (I, I"")
are adjacent pairs. If || < %]F |, then, by strong regularity for pairs,
|| =[]+ || < ~(JA]+[T7]) < | T,
which is impossible. This completes the proof of part (i).

To check (ii), note that I, I and I'”, A are neighbouring pairs in 7s.
Therefore, by strong regularity for pairs,

Vil

1
5 (7" +[AD) < 7| = [T + 1] < A (17 + | A,

This, (i) and the assumption on |A| give (ii).

Now, we turn to the proof of (iii). It is enough to consider the case when
each Vj;1 is obtained by the first splitting of V; by a knot of 7.

Let V{,V{' = V4 be the intervals obtained by the first splitting of V;.
If Vo < %Wﬂ, then the result follows. If not, then we have |V{| <

5711Vil < 25[Val. Tt follows by (i) that the first knot of 7 falling into V{UV5
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must be in V2 and if V4, V5" are the intervals obtained by the first splitting
of Vo, with VJ being a neighbour of V/, then |Vj| > %|V2] Consequently,
VY| < 23—;1]1@ < 2A,+1’V1| Thus, if V3 = VJ/, then the result follows. It
remains to consider the case V3 = VJ. If |[V]| > %"/3’ or |VJ/| > %|V3|, then

V3] < 27 +1 |V1], and the result follows. If not, the two neighbours of V3 are
V{ and V3'. Therefore, by (i), the first knot of 7 falling into V] U V3 U V'
must be in V3. Note that if V4, V3’ are the intervals obtained by the first
splitting of V3, then one of them is a neighbour of V{, and the other is a
neighbour of V3, so (i) also implies that |Vy],|V{| > 5 3| V3| Consequently,
V41, V3| < 27 1|V3] < 2’Y+1H/1| As Vj is one of V3,V3”, this completes the
proof of (iii). =

3.2.1. Properties of orthogonal projections onto S(o). Partial sums with
respect to a general Franklin system are orthogonal projections onto spaces
of piecewise linear functions with corresponding knots. Therefore, we will
need some properties of these orthogonal projections.

As above, let o be a (finite) sequence of at most double knots in [0, 1]
and let S(o) be the space of piecewise linear functions with knots o. Let
Qo be the orthogonal (in L2[0,1]) projection onto S(c). We will need the
following properties of Q,:

PROPOSITION 3.6. (i) Let 1 < p < oo and f € LP[0,1]. Then ||Qsflp

< 3[[flp-

(i) Let f € L'[0,1]. Then sup, |Qsf| < 64 Mf, and if t is a Lebesgue
point of f then Qusf(t) — f(t) as |o| — 0 (where |o| denotes the
diameter of the partition o).

Part (i) of Proposition 3.6 comes from [4], and part (ii) from [5].

4. SOME AUXILIARY RESULTS

Let 7 be an admissible sequence of knots with the corresponding gen-
eral Franklin system {f,,n > 0}. For a sequence a = (an,n > 0) of coeffi-
cients, let

PO = (2ar20)” 50 =sw |3 anno)]
n=0 m20" =0

If f € L'0,1], then we denote by Pf, Sf the functions P, S corresponding
to ap = an(f) = (fa fn)
Consider the following conditions:
(A) PelLto,1].
(B)  The series Y oo ay fy converges unconditionally in L'[0, 1].
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(C) SelLon].
(D)  There is f € H'[0, 1] such that a, = (f, fa)-

In this section we discuss the relations between these conditions under
various regularity assumptions on 7.

Let us recall that in the case of the classical Franklin system (i.e. with
dyadic knots), or of spline systems of higher order (also with dyadic knots),
the relations (and equivalences) between these conditions have been studied
in several papers (see e.g. [3], [15], [16], [8]), including also the case p < 1.
For higher order spline systems, the results are known for the range of p
depending on the order of splines (see [15], [16]), while for the classical
Franklin system it is known that conditions (A), (B), (C) are equivalent for
all 0 < p <1 (see [8]). In [9], the equivalence of these conditions has been
proved for quasi-dyadic strongly regular sequences of knots (also including
the case p < 1).

Here, we study the mutual relations of these conditions under weaker
assumptions, but only for p = 1. The general schemes of proofs are similar
to those in [8] and [9], but now we have to avoid arguments like (2.3), i.e.
comparison of lengths of intervals which are far apart. This kind of argument
is replaced by investigation of the geometry of the intervals J,, similarly

o [10].

For the proofs below, the following known property of polynomials is

needed:

FacT 4.1. Let k € N and 0 < o < 1 be fixed. There is a constant M =
My, p, depending only on k and o, such that for every interval [a,b], set
A C [a,b] with |A| > o|[a,b]| and polynomial Q of degree k,

t€la,b]

b
max |Q(t)] < My, sup Q1) {|Q(1)] dt < My, | 1Q(t)] dt.
teA @ A

Implication (B)=-(A). The implication (B)=(A) is an immediate conse-
quence of the Khinchin inequality. We formulate it just for general Franklin
systems:

Fact 4.2. Let T be an admissible sequence of knots with the correspond-
ing general Franklin system {fn,,n > 0}, and let a = (an,n > 0) be a se-
quence of coefficients. If the series Y > o anfn converges unconditionally in
L0, 1], then P € L'[0,1]. Moreover, there is a constant C' > 0, independent
of T and a, such that

IPli<c s | ananfn

£= 5n)n>0:5n

Implications (A)=-(B) and (A):(C). We show that these implications
hold for any admissible sequence 7.
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PROPOSITION 4.3. Let T be an admissible sequence of knots with the
corresponding general Franklin system {fn,n > 0}, and let a = (an,n > 0)
be a sequence of coefficients such that P € L[0,1]. Then S € L'[0,1] and
the series Y oo o an fn converges unconditionally in L'[0,1]. Moreover, there
is a constant C' > 0, independent of T and a, such that

ISl < ClIP|L, n Zenanfn < CI|P|h

€=(&n )n>07 En=

Proof. For convenience, assume ||PH1 = 1. Deﬁne
Ir = {1 <i <y,
n>1
where I, ; are as in (2.2), and M7 (f,t) = supseiner, ,(1/|In,i]) SIM |f(u)| du.
Let Ey = By = [0,1], and for r > 1,

E, = {t €[0,1] :iaifz(t) > 2’”},

B, = {t € [0,1] : Mr(xp,.t) > 1/2}.

B, =J1I

I1€Z,
where Z,. is the collection of maximal intervals of Z7 included in B,.. Further,

for I € 7, let
Y = Z anfn-
n:JnCl, Jn@ Byt

Since Jp, ¢ Byy1, we have |E; ;N J,| > |Ju]/2, so by Fact 4.1 and (3.6) for
p =2,

Then

{ roa>c| fwd>c

ES 1Ny In
Therefore
vl = > a, <C > a; | fAva
n:JnCI, JnZ Bry1 n:JnCl, JngBrpr  ES NJn
< | > a2 f2(t) dt < C27|1).

INES y n:JnCI, JnZ Bry1

The rest of the proof is analogous to the proof of Lemma 4.6 of [9] or
Theorem 1.1 (sufficiency part) in [8], but we present it for completeness.
For e = (en,n > 0) with ¢, € {—1,1} and I € Z,, let

1/}1,5 = Z gnanfn-

n:JnCI, JnZ Br41



272 G. G. Gevorkyan and A. Kamont

The series defining 1 . converges in L2[0, 1], so also in L1[0, 1]. Therefore, to
prove the unconditional convergence of Y °° a, f, in L'[0,1], it is enough
to show that

Yo el <

r=0 I€Z,

For this, we need to estimate [|¢7 c||1. First, by the Cauchy—Schwarz inequal-
ity we have

(4.1) V@) dt < [[erella - xzll2 < C2772|1).
T

To estimate the integral over I¢, note that if J, ¢ B,y1, then |a,| <
C27/2|J,|*/?. Indeed, f,, is linear on J,,, and supy | fal ~ | Jn| 712 (cf. (3.6)),
so by Fact 4.1 there is C' > 0 such that |f,| > C|J,|~/? on a subset V C .J,
with [V| > |Jn|/2. If |an| > (1/C)20FD/2J, |12 then |a, fn| > 20+D/2 on
V, which implies P? > 27! on V, and consequently .J,, C B,;1, contrary
to the choice of .J,,. Now, using this estimate for a, and Lemma 3.3 we get

Veclat< S0 Janl | 1fult)] dt

Ic n:JnCI, JnZ Bry1 Ic
< Cc2r/? > [ Tal' 2 | fu(B)] dt < C2772|1).
n:JnCI, JnZBri1 Ic

Combining the last inequality with (4.1) we find |[¢rc|1 < C27/?|I|. This
implies that

Z > relh <CZ > 2 <CZ2”/2!B |

r=0I€Z, r= OIEIT

<Oy 2R < Pl = C
r=0

yielding both the unconditional convergence of > o ay, f, in L'[0,1] and

the estimate
o
sgp H Z;)sna"f" ) <C
n—=

It remains to estimate [|S||;. Clearly, |[S|li < >2720 > ez 1S%1]]1, and
Svr <> ..7.cr Ind Brya |an fr|. Moreover, it follows from Proposition 3.6(ii)
and (2, 2)-type of M that ||SvYr]l2 < C||Myr|l2 < C||¢1]|2. Therefore, split-
ting ||S]|y into §, ... and {,. ..., and treating each part as the corresponding
part of the estimate for ¢7. we find ||Syz|l; < C27/2|I|, where I € Z,.
Finally, summing over r > 0 and I € Z, we get ||S|[; <C. =
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Implications (D)=(A) and (D)=(C). We show that these implications
hold for strongly regular sequences 7.

It is enough to prove (D)=-(A), since then (D)=-(C) follows by Proposi-
tion 4.3. However, the direct proof of (D)=-(C) uses the same arguments as
the proof of (D)=-(A), so we present them together.

LEMMA 4.4. Let T be an admissible sequence of knots with the corre-
sponding general Franklin system {fn,n > 0}. Let v > 1 and assume that
T satisfies the strong reqularity condition with parameter ~. Then there is a
constant C.,, depending only on vy, such that for each atom ¢,

156lh < Gy 11Po] < C,

Proof. Clearly, the estimates hold for ¢ = 1. Now, let ¢ be an atom
such that S(l) ¢(u)du = 0, and let I" be an interval such that supp¢ C I,
I' = [a,f], sup |¢| < 1/|I'|. Write ap, = an(¢) = (¢, fn). Let np = max{n :
#(mp,NI) <1} and

o0

ro=(Sar)” po-( Y @)’
n=0

n=npr+1
m m
S1¢ = max anfnl, So¢p= sup } an fnl.
0<m<nr 7;) nan m>np+1 Tl%}":-‘rl e

It is enough to show that

(4.2) P11 [ P2l 151811 152611 < Cs.

First, we show that
(4.3) S Jaul - full < €.

nnp

Indeed, for n < np, let I3, o and I, g be the intervals of linearity of f,
containing a and (3, respectively (for some n, these intervals may coincide).
As I' C I'y o U I, g, strong regularity with parameter v implies that

1
@L4) |]1Lah‘lh¢ﬂ > STJTI|IW‘

Observe that by linearity of f,, on I, o and I}, 3, and by (3.7) of Proposi-

tion 3.1, for p = «a, B we have

dn(I) I ‘1/2 1
‘fvlz’ :nn,p§C<_> - = :
3 | Jul + dist(Jn, Inp) + [Tnpl - [Tl

Let 7 € m, NI As § . ¢(t) dt = 0, we get

on I, .
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anl = | o) (falt) = Falr) d]
r
S Mo * |t - T‘

S Mg [t — 7l
1|

1|

IN

dt + dt < C(an,a + an,ﬁ)a

Fn,amp Fnyﬁﬂ]—‘

where

<2>dn(F) |Jn|l/2 |F| /6

np, = | = - . , =, .

" 7\3) Tl dist(n, Lup) + Lol Tugl” "

Let us treat the case of ay, o; the case of a, g is analogous. Let Ay D --- D A,

be the collection of all different intervals appearing as I, o for n < np. By
strong regularity,

1 Y
4.5 — A < |Aip1] < ——= A
(4.5) %Lll zl_\z+1l_7+1|z|

Now, fix A; and k > 0, and consider n such that I, , = 4A; and d,,(I") = k.
As there is at most one knot of 7, in I", we have |d,(I") —d,(4;)| < 1. In ad-
dition, by the definition of a,, , and the estimates of norms in Proposition 3.1
(cf. (3.4)) we have

2" A 1
n,o|lJn SC Y . . .
anclfulls <3> | Jn| + dist(Jn, A7) + A A
Now, it follows from Lemma 3.4 that

o\* |
2 an,alfnlllgay(kﬂ)(g) ||A||'

n:Ina=2;,dn(I)=k

Using the last inequality, (4.5) and (4.4) we get

s

Z an,aanHl = ZZ Z an,cc”anl

n<np i=1 k>0 n: 1y a=A;,dn(I)=k

~ | 2\"
<o, s (_>
iAo
||
<Cy——<0C,.
— |As| —=
The part of the sum corresponding to a, g is treated analogously, so we
get (4.3).
It follows from (4.3) that

(4.6) [1P1oll1, |51 < Cs.

Now, we turn to estimating || P2¢||; and ||S2¢|1. Consider the parti-
tion 7y, ,4+1. By the definition of np, there are exactly two knots of 7,41
in I". To simplify the notation, let 7,11 = {0 =70 <71 < -+ < Tp, 41 = 1},
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and let j be such that 7;, 7,11 € I'. Define further
Vo =[rj.ml,  V =I[1-1,742],
Vo=lnonn) Vi =lmanmirel, V=[mosmeal.
As Vo C I' C V, it follows from the strong regularity of 7 that
(4.7) Vol [V VI VHL V]~ 1T

Observe that ||¢||2 <|I"|~*/2. Therefore, using (4.7) and the Cauchy-Schwarz
inequality we get

(4.8) } Pao(t) dt < [lxirll2 - 0]l <
1%

It follows by Proposition 3.6(ii) that Sy¢ < 128 M¢. Since M is of type

(2,2), by an analogous argument we find

(4.9) | S20(t) dt < C,.

1%
It remains to estimate (. Pog(t)dt and {i. Sad(t)dt. To this end, it is
sufficient to show that

“7’1/2
o =

(o]
(4.10) > an| { Ifa(®)]dt < C.
n=np+1 Ve
For each n > np, the endpoints of 1% are knots of m,, so there are three
possible positions of J, with respect to V: Jn C V or J, is to the right
of V, or Jy, is to the left of V.
If J, C V, then by (3.4) and the fact that ¢ is an atom,

Il fnll1 EARS
<C
1| ||

janl = | § o) u(t) dt| <
r

Therefore, applying Lemma 3.3 to V and using (4.7) we get

(a11) Sl flnlas o <o,

n:J,CV Ve
Now, let J,, be to the right of V. Denote by (' the right endpoint of
V, and by L, the interval of linearity of f,, with right endpoint 5. By the
choice of V, for each n_> np there is at least one knot of 7, between 3 and
the right endpoint of V. Since J,, is to the right of V this guarantees that
B <t,.Since I' C V, the estimates of Proposition 3.1( ) and (3.7) yield

janl < |F|S|fn()\dt |F|S|fn()\dt

“e g dn(B8") |Jn’1/2 ' |Ln|
- \3 | Jn| + dist(Jn, Ly) + |Ln| ||
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Let A1 D As D --- be the collection of all different intervals appearing
as L,. Observe that A = V*. Fix A; and k > 0, and consider n such that
L, = A; and d,(8") = k. Then (cf. (3.4) for the estimate of || f,|1)

92 k
n nt dtg ni " n SC Py . T
ol § 0 < ol -5 2) e

Applying Lemma 3.4 we get

\Ai!.
1|

k
(4.12) > lal§ln0lasc(3) e

n: Ly=A;,dn(8")=k e

Strong regularity yields
1 8l
— A < A < —— |44
’y—l—l‘ z’_’ H_l‘_’y—i-l‘ z’

As |Ay| ~, |T'|, by summing (4.12) over ¢ and k we get

) ) k
S el s e S e (3)

n: Jn totheright of v Ve

The case of J,, to the left of V is treated analogously. Putting together these
cases and (4.11) we get (4.10). This completes the proof of Lemma 4.4. =

As an immediate consequence of Lemma 4.4 we get the following:

PROPOSITION 4.5. Let 7 be an admissible sequence of knots with the
corresponding general Franklin system {fn,n > 0}. Let v > 1 and assume
that T satisfies the strong regularity condition with parameter ~. Then there
is a constant C.,, depending only on vy, such that for each f € H'0,1],

ISFlle < Cyllfllees NPl < Cllf 1

The next proposition indicates that the above result cannot be extended
to arbitrary partitions.

PROPOSITION 4.6. Let T be an admissible sequence of knots from [0, 1]
satisfying the strong reqularity condition for pairs with parameter 7y, but not
satisfying any strong reqularity condition. Let { f,,n > 0} be the correspond-
ing Franklin system. Then

sup [|sup |an () fn| [[1 = oo,
n>0

where the supremum is taken over all atoms ¢, and a,(p) = (¢, fn).
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Proof. Fix k > 0. As 7 is not strongly regular, there are ng > 0 and two
neighbouring intervals A, I'y of the partition m,, such that

1 k+Q'y
\ms(ﬂ) I

where the choice of g, > 1 will be explained later. First, consider the case
when A is a non-degenerate interval, i.e. |A| > 0. For convenience, assume
that the common endpoint 7 of A and I is the right endpoint of A and left
endpoint of I'y. Consider the function

1
(4.13) ¢ = AT (XA = X[rr+14])-
Clearly, it is an atom. Let
ny = min{n > ng : t, € AU and ¢, is not an endpoint of I}.

Next, we will find a pair of disjoint intervals Iy, Ly C Iy such that A, I} are
neighbouring intervals of some partition m; with [ > n;, and

1 k—1+0~
@ M= ()AL lan@ @l 1
Ly

It follows from Lemma 3.5(i) (note that by the strong regularity for
pairs, in our situation only the right endpoint of Iy may be a double knot
in some 7, with ng < n < ny) that t,, € Iy, and for I} = [, t,,] we have
|5 > %|F0|. Note that both t,, and 7 = ¢, are simple knots in 7, and
moreover the right endpoint of I is ¢, .- To simplify the notation, we assume
that the right endpoint of I} is also a simple knot of m,,; the case when it

is a double knot is similar, but instead of fy, () we use limtﬁﬁlf0 fny (2).
Then by Lemma 3.5(ii) and (3.4) of Proposition 3.1,

(4.15) | fry (Eny) s \fm(t:[l)], | fra (7)) ~y |F0|71/2-

These estimates, the sign changes of f,, (cf. Proposition 3.1) and piecewise
linearity of f,, imply that, denoting by (n,,7,, the values of f] on A and

I}, respectively, we have
ol e L MO
A B T Myl ~y 77—
T4 Y

Denoting by C, > ¢, the constants from these equivalences we have

‘Cm +77n1’ < ‘Cm‘ + ‘Um‘

| To| /2 |4] |To|~1/2 1
< - )< —=Jr
SO Mt 9 T U ae )

|Gy +77n1’ > ‘Cn1| = 1, |

!Fo|_1/2< |/1|> IFol‘l/Q( Cy )
>— |y —Cy | 2> Cy — .
I VT N 1Y A VA N




278 G. G. Gevorkyan and A. Kamont

Now, we fix g, > 1 large enough to guarantee ¢, — Cy/(47)? > ¢y/2. It
should be clear that ¢, depends only on 1.
Let us estimate ay, (¢). Since |A| < |I}}|, we have supp ¢ C AU I, and

1 1
ans (@) = | 60 f (8) dt| = | S8 (6) = fua (7))
0 0

1 T T+[4]
= 2‘—/1} V Gu-t—myat— | -(t—T)dt’
T—|A| T
= il/l! |1Cny =+ My | Y |F0’_1/2-
This and (4.15) imply that
(4.26)  an, () far (tna)ls [an, (&) fua (7)]s lany (&) fy (t3,)] ~ 1/1T0]-
If |17 > %U”O’], then we put Ly = I'f = [tn,,t}] and It = Iy = [1,ty,]: in

this case, we have |I] > %\I})], which gives

1\ F-l+er 1\ k14
Al < [ — — I < | — Il
as(£) pmis(g) Il

Moreover, it follows from (4.16) (cf. Fact 4.1) that {; |an, (¢) fn, (t)| dt ~ 1.
So in this case L1, I satisfy (4.14).

If |IY] < %|F6], then |I7| > %U})]. Moreover, the two neighbours of
I'l in 7y, are A and I, both of length < %\Fé\ Therefore, by Lemma 3.5(i),
if ¢; is the first knot in 7 with [ > n; and belonging to AU I'j U I], then
t; € Ij. Now t; splits I}) into two parts: (I7)’, adjacent to A, and (I})”,
adjacent to I]. Lemma 3.5(i) also shows that both these intervals are of
length > %]FO’| > ﬁﬂ}ﬂ. In this case we put It = (I3)’ = [7,] and
Ly = (I})" = [ti, tn,], and (4.14) is checked as in the previous case.

Now, by an induction argument, for each ¢, 0 < ¢ < k — 1, having an
interval I'; adjacent to A and such that |A] < (%)k_lﬂjllﬂ, we find n;4q
and disjoint intervals I';41, L;+1 C I such that A and I';41 are neighbouring
intervals in some partition m; with { > n;11, and

1\ A+ D ey
4= (4) Tl | Janes (8 fas (D] e~y 1.
Li1
It follows from the construction that the intervals Li,..., L; are disjoint.
Therefore, for ¢ given by (4.13) we have
1 k
Jsap o (6)f ()] dt = 3 § L, (6) (1) it~y

on= i=1L;
As this can be done for each k& > 1, this completes the proof if |A| > 0.
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The case of |A] = 0 requires only minor changes. In this case, for some
n;, the point 7 is a double knot for all partitions m,, with n > n.. If I" is
an interval of some 7, with n > n, and has left endpoint 7, and I/, I'” are
intervals obtained by the first splitting of I" by a knot ¢s with s > n and ¢
not equal to the right endpoint of I', and with I having left endpoint 7,
then by Lemma 3.5(i) we get || ~, |I'|. In addition, if |[I'"| < 21 ||, then
(I'"),(I'")", i.e. the first splitting of I"', satisfies [(I")| ~~ [(I") ”] ~ 1.
Therefore, we can find an infinite increasing sequence (n;, i 2 1) and assoc1—
ated intervals I',, such that I3, is an interval of m,,_1 with left endpoint 7,
tn; € I, and t,,, is a simple knot in m,,, and the splitting I, , I}, of I}, by
tn, satisfies |7, | ~ |I})| ~, |Iy,|, where I has left endpoint 7. It follows
that I7,,,, C I, and the intervals I, are pairwise disjoint. Observe that

MNi41

7 =1, ,and by (3.4) in Proposition 3.1,
Hm [ fp, ()], [ frs (), hrn ’fnl(t” ~y \Fm!*l/z‘

tﬂtn +0 t—>tn

Moreover, as 7 is a double knot in m,,_1, we have f,,(t) = 0 for t € [0,7)
(cf. Proposition 3.1). Now, let & > 1, and let

1
bk = 3T7
Clearly, ¢, is an atom, and by arguments analogous to the previous case,
|an, (¢1)] ~ny | Ty | 712 for 1 < < k. Consequently,

1

Ssuplan(cék)fn ) dt > Z T lans (@) fur (8)] dt ~ .

i= lF”

’(X[T iy, |7l = X1,)-

This completes the proof of Proposition 4.6. u

Implication (C)=-(D). We show that this implication holds for partitions
satisfying the strong regularity condition for pairs.

PROPOSITION 4.7. Let T be an admissible sequence of knots with the
corresponding general Franklin system {fn,n > 0}. Let v > 1 and assume
that T satisfies the strong reqularity condition for pairs with parameter .
Let (an,m > 0) be a sequence of coefficients such that S € L1[0,1]. Then
there is f € H'[0,1] such that a, = (f, fn) for each n > 0. Moreover, there
is a constant C., depending only on vy, such that for each f € H'0,1],

1Al < 1SS

Proof. If S € L1[0,1], then there is f € L[0,1] such that f=>"°° a, fn,
with the series convergent in L![0, 1]; this follows by the relative weak com-
pactness in L![0, 1] of a uniformly integrable subset. We need to show that
f € H'[0,1], and for this, we find a suitable atomic decomposition of f.



280 G. G. Gevorkyan and A. Kamont

For convenience, assume that ||S||; = 1. Let Ey = By = [0, 1], and for
r =1,
E,={te€[0,1]:S(t) > 2"},

B, =<tel0,1] : M ,t) > .
Since M is of weak type (1,1), we have |B,| < C,|E,|. As |S|1 = 1, we
have |E,|,|B,| — 0 as r — oo.

Now,

(4.17) B, = |J I
KES,

where the set (2, of indices is at most countable, {1’ .. : k € 2} is a collection
of disjoint intervals no two of which have a common endpoint, and the
equality in (4.17) is up to a set of zero Lebesgue measure. As B, is an
open set, the collection {I}., : k£ € (2.} can be taken as the collection
of level sets of positive measure of the continuous nondecreasing function
h(t) = |[0,t] N Bg|. Observe that if I ¢ appears in the representation
(4.17) of By41, then in the representation (4.17) of B, there is I, such
that Fr+17§ C FTJ{'

Consider the following sequence of functions: gy = S(l) f(t)dt, and for
r>1,

f(t) for t € BS,
_ 1
(4.18) gr(t) = T | fw)du fortel,,.
K Jol

Observe that f = go + > oo o(gr+1 — gr), With the series convergent in L.
As B,41 C By, it follows from the definition of g, g.4+1 that g,41 — g =0
on B¢. In addition, for each r, x we have

S gry1(t) dt = S gr41(t) dt + S gre1(t) dt
Fr,m Fr,mnB$+1 Fr,ntr+l
= | rwa+ > | f)at
Fr,ﬁmB$+1 £€Qr+1:Fr+l,5CFr,ﬁ Fr+1,§
— | sdt= | g
F’V‘,N F’r,m

The main step in the proof is to show that
(4.19) lg-(t)] < C,2"  almost everywhere on [0, 1].
Once this inequality is proved, we take ¢g = 1, g = Sé f(u) du, and

(g’l”"!‘]- - gT)XFr,n
Co2 Trn]

brr = Nrw = Cy2" I} .|  forr >0, Kk € (2.
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It then follows that ¢q, ¢, . are atoms, and

o) 1 00
ol + 30 3 el < [ [ F@1 e+ 0,30 ST 2

r=0 K€ 0 r=0 ke,

<|ISlh +Cy > 27| By
r=0

o
<|Slh +Cy ) 27| E] < GISTh = C.
r=0
This implies that f = 1ogo + > e D e 0, Trs®rs is an atomic decomposi-
tion of f, and || f|| g < C4.

Thus, it remains to prove (4.19). First, let t € B¢ and let ¢ be a Lebesgue
point of f. It is enough to consider ¢t ¢ 7. Fix m > 0, and let V,, be
an interval of linearity of S,, = >_"" janf, containing t. Then V,, ¢ B,
and consequently |Vy, N ES| > 2|V;,|. Since [Sp| < 27 on EE, it follows
by Fact 4.1 that |S,,| < C2" on V,,, and in particular |S,,(t)] < C2".
Since Sy (t) — f(t) as m — oo (cf. Proposition 3.6(ii)), this implies that
9 (8)] = |F(8)] < S(t) < C2.

Now, fix k € {2, and consider g, on I' = I'. ;. For further convenience,
write I' = [a, 8]. Let N(I") be the collection of indices n > 0 satisfying one
of the following: either (i) #(m, N I") < 1, or (ii) #(m, N I") = 2, but the
interval V' C I' of the partition m, is “short” in the sense that if V is the
“parent interval” for V', i.e. V' is one of the two intervals obtained from the
first splitting of V' by a knot from 7', then |V| < |V]/2. (Recall that to find
#(m,NI"), we count knots of 7, with their multiplicities in 7,.) In case (ii),
the situation that V' is a degenerate interval, i.e. |V| = 0, is also allowed.

Note that if n € N(I') and n’ <n thenn’ € N(I'). Let np = max N(I") +1.
It follows by the definition of nr that ¢,,,. € I'. Let Uy, W be the intervals of
the partition 7., containing o and 3, respectively. In case a (respectively [3)
is a knot of m,,., then Uy (respectively Wp) is a nondegenerate interval of
Tn With right endpoint « (respectively, left endpoint (3). It should be clear
that the interiors of Uy, Wy are disjoint.

Let Sp = > .2y anfn. Note that |Uy N B,| < |Up|; otherwise, Uy U I"
would replace I" in the representation (4.17). If maxy, [Sr| > M /52", then
by Fact 4.1, |Sr| > 2" on a subset of Uy of measure |Up|/2, and consequently
|Uo N Ey| > |Up|/2. But then Uy C By, contrary to |Uy N B,| < |Up|. Thus
maxyy, |Sr| < M;/2". By an analogous argument we have maxyy, |Sr| <
Ml/227'.

The next step is to prove that |Up|, [Wo| < 29[| and [Sp| < M, /92"
on I'. Consider two cases. First suppose that all n € N(I") satisfy (i). Then
#(mp, N I) = 2, but the interval V' of m,,. included in I" is “long”, i.e.
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V| > |V|/2, where V is the “parent interval” for V. Since t,,,. is one of the
endpoints of V, either V= VuUy or V= V' UWj. Suppose that V= Vuly.
Then |Uy| < |V| < |I'|. Moreover, Uy, V' and V, W, are neighbouring pairs
in 7, ., so by the strong regularity for pairs,

[Wol < [Wol + [V <A(IVI+[Uol) < 29|V < 20|T7].

The case V =V U W, is analogous. Note that in both cases we have |Up| +
|[Wo| < (2v+1)|V]. On the other hand, I" C UyUV UW, which implies |I'| <
(27 +2)|V]. If we had maxy |Sr| > M; /52", then by Fact 4.1, [Sr| > 2" on a
subset of V of measure |V'|/2,so |[VNE,| > |V]/2. Let A = UgUVUW,. Note
that A is an interval properly containing I', and |V| < |A| < (2v + 2)|V].
Thus, we would have
Vi _14]
ANE = IVNE| > H > ook

This would imply A C B,, so I" could not be one of intervals in the repre-
sentation (4.19), which contradicts the definition of I'. Thus, |Sr| < M /52"
on V. Putting together this inequality, the previous estimates for |Sp| on
Up and Wy and the fact that I' C Uy UV U Wy, we infer that [Sp| < M /52"
on I

Now, let us consider the case when some n € N(I") satisfy (ii). Then
#(mp, NI) = 3 and I' contains two neighbouring intervals of m, ., say
V', V" (one of them may be degenerate); for convenience, we assume that
V' is to the left of V" and |V’| > |V”|. Then (U, V'), (V', V"), (V" ,Wp)
are three consecutive pairs of intervals of 7, .. Then by strong regularity for
pairs,

Uo] < |Uo| + V'] < A(IV'] + [V"]) < 7|71,

and by an analogous argument |Wy| < ~|I'|. Further, setting A = UyUV'U
V" U Wy, we find that

A < [To] + [V + V7] + [Wol < 2y + (V'] + V")) < (47 + 2)IV].

If we had maxy: [Sp| > M /52", then, again by Fact 4.1, we would get
V' N E.| > |V'|/2. Consequently, |AN E,| > |A]/(8y+4) and A C B,,
which contradicts the definition of I'. Therefore, maxy [Sp| < M /2" Tt
remains to consider S on V", and we need to do this only for [V"| > 0.
But then, since there are only three knots of m,, in I', and one of them
is the left endpoint of V', both endpoints of V" are simple knots in 7,,..
This means that S is continuous at the endpoints of V”. Suppose now that
maxyw |Sp| > My 2", Since Sp is linear on V", [Sp| takes its maximum
at one of the endpoints of V”. But the left endpoint of V" is the right
endpoint of V/; and the right endpoint of V" is the left endpoint of Wj.
This implies that if maxy~ [Sp| > M /52", then either maxy [Sp| > M /52"
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or maxyy, |Sr| > M; /22"; but we have already proved that none of these is
possible. Therefore, maxy [Sp| < M /52"
Summarizing the above considerations, we have shown

|Uol, [Wol < 29[|, |Sr| < My52"  on Uy, Wp and I

In particular, this implies that

(4.20) V1Sr(t)dt < My ;27 |T).
r
Next, we need to estimate | {. > . anfa(t)dt|. For this, we define

inductively two sequences {(u;,U;),7 > 0} and {(w;, W;),i > 0} of indices
and intervals: put ug = np, wo = np, and Uy, Wy as above. Having defined
(ui, U;) for 0 < i < s, we proceed as follows: if « is a double knot in m,_,
then the procedure terminates. Otherwise, let usyq be the first n > ug such
that t, € Us. If a is not a knot of m,,,,, then Usy 1 is defined to be the
unique interval of this partition containing o; if a is a knot of m,,,, (note
that it is not a double knot of 7, ), then Usy; is a nondegenerate interval
of my,,, with right endpoint a.

The sequence (w;, W;) is defined analogously, by using the point 8 and
choosing nondegenerate intervals with left endpoint J3.

It follows from the construction that U; 1 C U; and W; 1 C W;. More-
over, by arguments analogous to those used for Uy, Wy we find that U; ¢ B,
and W; ¢ B,. In addition, the interiors of U; and W; are disjoint for any ¢, j.

Assume now that o and 3 are not double knots in 7. For a pair of indices
i, 7, let @; ; be the following piecewise linear function: @; ; is equal to 0 to the
left of the left endpoint of U; and to the right of the right endpoint of W;,
it is 1 between the right endpoint of U; and the left endpoint of W;, and
it is linear on U; and Wj. Then @; ; is piecewise linear with knots 7y, vw;-
Note that z; = &; ; - xy, does not depend on W; and y; = &;; - xw, does
not depend on U;.

For i,j > 0, consider two splittings of the set of indices {n : n > np}:

Lii)={n:u; <n<uiq1}, R@y)={n:wj<n<wj}.
For n € L(i) N R(j) we have (f,,®; ;) =0, and consequently
1

421) fa()dt = fu(t)dt =\ fo(£)®i () dt = Ai(fn) + Bj(f),
r r 0
where

Ai(fn) = S Jn— S fn(t)zi() dt,

rnu; U;

Bi(fa)= | fa— | fa()y;(2) dt.

rnw;
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This implies

az || S anfn(t)dt‘—‘i S anlAil) + Bi()

I'n=npr+1 1,j=0 ne L(i)NR(j)
S| S asw| a2 [ Y akio|ar
i=0 U; neL(i) J=0W; neR(j)

Consider the first sum on the right hand side. Observe that }, <1 ;) anfn(t)
is linear on U;. Therefore, if maxy, ’ZneL an fn(t)] > M1/22’”+1, then by
Fact 4.1, |3 i) anfnl > 271 on a set U* C U; with |Uf| = |Ui|/2.
But this implies that max(| > ui g anfols | D ono anfnl) > 2" on U;. Conse-
quently, |[E, NU;| > |U}| > \UZ-]/Q and U; C By, which is impossible. Thus,
maxy, | Y peri) anfa(t)| < M; 52"+, which gives

| ( 3 anfn(t)(dt < My 2.

U; neL(i)
Combining Lemma 3.5(iii), the inclusions U;y1 C U; and the inequality
|Uo| < 27|I'"| we see that .2 |U;| < C,|I"|. Thus, we get

iﬁ ( > anfn(t)(dt < C,2"|T).

=0 U; neL(3)

The second sum on the right hand side of (4.22) is estimated analogously,

giving
> } > anfn(t)}dtscyzfyry.

J=0W; neR(j)
Combining these estimates with (4.22) and (4.20) we find

e =] > aufult) at| < c,27|1).
r I'n=0

This implies inequality (4.19) on I

If o is a double knot in 7', then let ) be such that u,, is the last u; chosen
before the end of the procedure of choosing (u;, U;)’s. For i < n, ®;; and
L; are defined as previously. In addition, we put L(n) = {n : n > u,} and
take modified functions @, ;: @, ; is equal to 0 on [0, ] and to the right
of the right endpoint of W, it is 1 between o and the left endpoint of W,
and linear on W;. Note that &,, ; is a piecewise linear function with knots
Tuyvw; - Now, for n € L(n) we write formula (4.21) with @, ; for suitable j.
Note that then the support of f, is included either in [0, a] or in [«, 1] (cf.
Proposition 3.1), and consequently the “left” term A,.(f,) is zero.
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If 3 is a double knot in 7, then take ¢ to be such that w is the last
w; chosen. As above, take the modified functions ®; ¢, having 3 as a double
knot, and for n > w¢, write formula (4.21) with @; ¢,.. Then the “right” term
Be+(frn) is zero.

If both @ and 3 are double knots in 7, then for n > w,, V w¢ the support
of fy is included either in I', [0, a], or [3, 1], according as t,, € I', t,, < @ or
t, > 3. In any of these cases we have {,. f,(t) dt = 0.

This completes the proof of Proposition 4.7. =

5. PROOFS OF THE MAIN RESULTS

5.1. Proof of Theorem 2.1. Recall that 7 is an admissible sequence of
knots in [0, 1], with the corresponding Franklin system {f,,n > 0}. Note
that the continuous functions are dense in H![0,1], and for f € C[0,1],
If = Q. fllo = 0 as n — o0. As ||f = Qn, fllm < |f — Qr,, flloo, this
implies that the collection {f,,n > 0} is linearly dense in H'[0,1]. Clearly,
it is also minimal. Therefore, {f,,n > 0} is a basis in H'[0, 1] if and only if
the corresponding sequence of partial sum operators is bounded in H'[0, 1],
that is, iff there is a constant C'r such that

(5.1)  |Qm, |l = |1Qm, = H'[0,1] — H'[0,1]| < Cr  for all n > 0.

For the proof of the necessity part, let us recall Lemma 5.2 of [9] (version
forp=1):

LEMMA 5.1. Let ¢ > 0 and let 1 = {7;,0 < i < m} be a partition of
[0,1] such that there exist three consecutive intervals Ag—1, Ak, Ag11, where
Ay = [1—1, 7], with the following property: either

[Aps1] < €lApa| and || < ] Ap-a],

[Ap—1| < elApya]  and  [Ap] < e[ Appq].

Let Qn be the orthogonal projection onto Sp. Then there are g > 0 and
C > 0 such that for all partitions w satisfying the above condition with
0 < e < e,

Qx| = Clog(1/e).

Lemma 5.2 of [9] has been proved for partitions with simple knots.
Let us discuss briefly the changes needed in the proof when double knots
are allowed. The proof in [9] proceeds by indicating an atom ¢ for which
Qx| g1 > Clog(1l/e). Let us consider the case when the first set of in-
equalities in Lemma 5.1 is satisfied. If |Ag| > 0, then both the choice of the

atom
XA = Xlrp—1—|Agl,m—1]

| A

o=
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and further considerations are as in the proof of Lemma 5.2 of [9], even
if |Ag4+1] = 0, or some knot of 7 other than 7 is double. If |Ax| = 0, i.e.
Tk = Tk—1, then |Agy1| > 0, and it is enough to consider

Tp+1 — 1
P(t) =2 T4 XA (8) — Ara] X[re—|Ap i1l ()

Since 7, = T;_1 is a double knot of 7, for this ¢ we have

Qw‘b(ﬂ = 7’7;;_1 ‘Qt XAg+1 (t> for t > 7,
and by arguments analogous to those from [9], |Q~¢(t)| < 15/|Ak—1| for
t < 7. When we know this, considerations analogous to those in [9] (with
7k replacing yy) give the required lower bound for ||Qr¢| g1-

Now, if 7 does not satisfy the strong regularity condition for pairs with
any 7y > 0, then for each € we can find n. such that 7,,_ satisfies the conditions
of Lemma 5.1. Consequently, ||Qx,_|/z1 > C'log(1/¢), and condition (5.1) is
not satisfied.

To complete the proof of Theorem 2.1, we need to show that strong
regularity for pairs implies (5.1). This is the content of

LEMMA 5.2. Let T = (t;,i > 0) be a sequence of knots in [0, 1] satisfying
the strong regularity condition for pairs with parameter . Let T, = (t;,0 <
i <n), let m, be the partition of [0,1] obtained by nonincreasing rearrange-
ment of T, and let Qr, be the orthogonal projection on S(my,). Then there
is a constant C, such that for every n > 1 and every f € H'0,1],

1@, fllzrr < Cl[f |72
Proof. Write 7, = (tn,0 < i < n), tn; <tpit1.

First, let ¢ be an atom. To simplify the notation, let n = @, ¢. We are
going to construct a suitable atomic decomposition for 7.

Ifp=1,thenn=1, and 5 is anatom

Now, let ¢ be an atom such that S t)dt =0, suppop C I' = [«, ],
and |¢| < 1/|I'|. Moreover, let A = [t,x,t ] be the minimal interval with
endpoints in 7, containing I'. That is, I' C A, and there are no knots of 7,
in ( TLk’? ] [/67 nl)

For 0 < i < n,let N = Nupi Xtniositnils Niw = Nawi* X(bnsstmara]
with the understanding that N, = 0 and N,I = 0; note that if tni-1 = tng,
then N, = Ny, ;,—1, NS, =0and N, =0, N;' = N, ;.

As n € S(m,), there are coefficients (a;,0 < i < n) such that n =
Z?:o a; Ny, i- Now, introduce the functions

(5 2) ¢0 = %QONﬂn,O + %ale, Y = %an—antl + %anNﬂn,n’
P = a,Z 1N,:1 + %aZ'NM’Z- + %aiHNijrl for 1<i<n-—1.

They will be used to get the required atomic decomposition for 7.
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Since Ny, ; = N; + N;r, we have

(5.3) n=> v
=0

Set L; = supp Ny, i; recall that supp Ny, ; = [tn,i—1,tnit1] for 1 <i<n-—1,
supp Nﬂ'n,O = [tn,Oa tn,l] and supp Nﬂ'n,n = [tn,n—l, tn,n]~ Note that

(5.4) supp¥; C Ly, 0<i<n.

Moreover, we have

An An
(1, Ney0) = =5 ao + =5 ar = [ (t) d,
3 6 5
1

aj+1 = S'Lﬂz(t) dt
0
for1 <i<n-—1,

Ani Ani + A Ani
(n;an,i) _ g,z a1+ .0 +3 n,i+1 a; + ng—i—l

1

A'ﬂn A'nn
(0, Neym) = =2 a1+ “2% an = \ P (t) dt.
6 3 0

Note that (7, Nr,.i) = (¢, Nx,.i). Now, we split the system (5.5) into three
parts: (I) equations with 0 < ¢ < k — 1, (II) equations with k& < ¢ <, (III)
equations with [ +1 <7 < n.

First consider the subsystem (I); note that this case appears only when
k> 0. For 0 <7 < k — 1, the supports of ¢ and N, ; are disjoint, so
(¢, Nr,..i) = 0. In particular, this implies that

1
(5.6) Vei(tydt =0 fori<k-—1.
0
By arguments analogous to those used e.g. in the proof of Lemma 5.2 of
[9] we get, for 0 <i <k —1,
la;| < 2 Anit1r
3 i + Anigt

Since ||¢||1 < 1 and [|Qr, |1 < 3 (see Proposition 3.6(i)), we have [|n||; < 3.
But

1
aiair1 <0, ai| < 5 |ait1l, |lait1].

(5.7) Il ~ ) lasl i + Ani1) = lan] A + Aner)-
=0

From the last two inequalities we get, for ¢ < k — 1,
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k—i k—1
2 ! )\n,jJrl
lai) < | 5 — I |ay|
3 i Ang + Ang

—3 k—1
3 AniF Anit 2oy Ang FAugr T \3) A+ Anin

As ||¥i]|co < max(|ai—1],]ai|, |ai+1]), the above estimates (together with (5.7)
in case i = k — 1), strong regularity for pairs and (5.4) imply that

3\ C
(5.8) = Pi(t)| < =L for t€ Ly, i <k-—1.
2 |Li]
Now, put
- 1 3 k—i ) k—i .
(5.9) Vi = C_’Y <§> vi, by =0C, <§> fori <k —1.

It follows from (5.6) and (5.8) that Ji, 0<i<k-—1, are atoms.
By analogous considerations for the subsystem (III), we get

= |(3) sol<

forte L, i >1+1.

~

Put -
~ 1 /3\"
(5~10) i = CT, <§> i, bi = Cv(

It follows that {Z;Z-, [+ 1 <i<mn, are atoms.
It remains to consider the part corresponding to (II). To this end, put
A= [tn,k—lvtn,l-‘rl] and

(5.11) Y=+ F Y
It follows by the partition of unity property for Ny, ;’s and (¢, Ny, ;) = 0
forigk—landi>l+1that

i—1
) fori>1+1.

wl N

1 n l
0= Sd) = X ZNﬂ'n,l Z(d)’ 7Tn,’L) Z(d)’ 7Tn,’L)
0 0 1=0 i=k
Using this equality, (5.4) and (5.5) we obtain
1 l
(5.12) suppy* C A, Sz/;* Z(¢, Nz, i) =0.
0 i=k

It remains to show that ||¢*||- < C5/ |Al. For this, consider two cases.
(II-a) { > k+3. In this case, I" contains the intervals [t,, x11,tp x+3] and
[tn1—3,tni—1]. By strong regularity for pairs,

tnge—1s tnrt]l ~y kst tnprsll,  |Eng—ss tng—1ll ~y |[Eni—1; tnara]l-
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Since [A] ~ 7]+ [t g1, toet]l + [[fa—1, tngs]l, we find that

(]~ |1,
Further, since ||¢||oc < 1/|I'|, by Proposition 3.6(i) we get
3 .
|ail < nlloc < 3ll¢flec < op 0 sisn
Therefore in case (II-a) we get
3 C
5.13 < =L
( ) H¢ HOO kl<<l+1’ ’—|F| |A|

(II-b) k 4+ 1 <1 < k+ 3. In this case, by strong regularity for pairs we
get N
A+ Anjit1 ~y 14, E—1<i<Il+1

Moreover, from ||¢[[; < 1 and Proposition 3.6(i) we deduce that

I+1 n
Y lail i + M) < D lail g + Ansn) ~ Il < 3ol < 3.
i=k—1 1=0

These considerations imply that

]ai\g% fork—1<i<l+1.

Thus, also in case (II-b) we get

C,
. o0 (2 <
(5.14) 9 <, _poas | lod < 2.
Combining (5.12), (5.13) in case (II-a) and (5.14) in case (II-b) and

setting
~ 1

(5.15) P = aw*, b=0C,,

we find that 1’/; is an atom.
It follows from the above considerations (cf. (5.3), (5.9), (5.10), (5.11)
and (5.15)) that

(5.16) U—Zbﬂ/}ﬁwar Z biti, Z|br+|b|+ Z |bi| < C,

i=l+1 i=l+1

where all zp, zpi, i <k—1ori>I[+1, are atoms. Thus, formula (5.16) gives
an atomic decomposition of 7.

To complete the proof, let f € H'[0,1]. Let f = Z;’;O ¢ be an atomic
decomposition of f such that > 7% |d;| < 2[|f| 1. Without loss of general-

ity, we may assume that ¢g = 1, dg = So t)dt and ¢; # 1 for j > 1. Let
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f: Qr, [ and n; = Qr,¢;. Since the atomic decomposition of f converges
to f in L'[0,1] and the linear operator @, is bounded on L![0, 1], we have
f=>2320d;n;, with the series convergent in Lo, 1].

For j = 0, n9 = 1 is an atom. For j > 1, let n; = > . bmzzi,j be an
atomic decomposition of n; having at most n + 1 nonzero terms and with
> 1bij| < C,; for example, it can be the decomposition given by (5.16).
Then we have the following atomic decomposition of f

f=yvom+ Zyi,j@,jv where yo = do, yi; =djbi; forj =1
Z"j
Observe that

ol + Y lyisl = Idol + Y 1di1 > [bigl < €3 D ldyl < 26 || fllzn-

Jj=0
This implies || f[| g1 < 20, || f|| g1, and the proof of Lemma 5.2 is complete. =

5.2. The proof of Theorem 2.2. We start with the sufficiency part.
Clearly, if 7 satisfies the strong regularity condition, then it also satisfies
the strong regularity condition for pairs, so by Theorem 2.1, the correspond-
ing Franklin system {f,,n > 0} is a basis in H'[0,1]. Let f € H'[0,1],
=30 0anfn, € = (en,n > 0) with e, € {—1,1.}. We need to prove the
convergence in H'[0,1] of the series fo ~ Y > enap fn.

It follows from Proposition 4.5 that Pf € L'[0,1] and ||[Pf|:1 <
Cyl|fllgr. Since Pf = Pf., applying Propositions 4.3 and 4.7 to the se-
quence of partial sums of the series defining f. we find that it is a Cauchy se-
quence in H'[0, 1], Consequently, the series defining f. converges in H'[0, 1],
f- € H'0,1] and

[fellm < CHlISfelly < CylIPfells = CylIPflly < Cy [l f |-

This implies that {f,,n > 0} is an unconditional basis in H'[0,1].

Now we turn to the necessity part. If 7 does not satisfy the strong reg-
ularity condition for pairs, then by Theorem 2.1 the corresponding Franklin
system is not a basis in H'[0, 1]. It remains to consider the case when 7 sat-
isfies the strong regularity condition for pairs, but fails the strong regularity
condition. Then the corresponding Franklin system is a basis in H 1[0, 1],
and we need to show that this basis is not unconditional.

Suppose it is unconditional. Let f € H'0,1], f = Yo anf, and
e = (en,n > 0) with ¢, € {—1,1.}. By unconditionality of {f,,n > 0}
in H'[0,1] we get fo = > 00 jenanfyn € H[0,1] (with the series convergent
in H'(0,1]). Since |- |l1 < |||z, this implies that Y"°° ; ay f, converges un-

conditionally in L'[0, 1], so by Fact 4.2, Pf € L'[0,1]. Moreover, by Fact 4.2
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and unconditionality of {f,,,n > 0} in H'[0, 1] we get, for each f € H'[0, 1],
(5.17) [Pfllx < Csup||felly < Csup || felloy < Ol f|a,
€ £

with the constant C'7 independent of f. But it follows from Proposition 4.6
that inequality (5.17) does not hold, even for atoms. This contradiction
completes the proof. =

COROLLARY 5.3. Let T be an admissible sequence of knots in [0,1] sat-
isfying the strong regularity condition with parameter . Let a = (an,n > 0)
be a sequence of coefficients. Then conditions (A)—(D) from Section 4 are
equivalent. Moreover, they are equivalent to the following condition (E):
(E)  The series > o2 g anfn converges unconditionally in H'[0,1].

In addition, for f € HY0,1], f = Y% anfn, we have

12~ 1Py~ 1S5~ | Zenanfn

e=(en, n>0 ane{ 1,1}

i

with the implied constants depending only on ~y.

Finally, let us remark that when an admissible sequence of knots satisfies
the strong regularity condition, then the corresponding Franklin system is a
greedy basis in H'[0,1]. For the definition of greedy basis see [12], where this
notion has been introduced, or e.g. to [10], where we have checked that each
general Franklin system (properly normalized) is a greedy basis in L0, 1],
1 <p<oo.

COROLLARY 5.4. Let T be an admissible sequence of knots in [0,1] sat-
isfying the strong regularity condition with parameter . Then {fn /|l fallm1,
n > 0}, the corresponding Franklin system, normalized in H'[0,1], is a
greedy basis in H'[0,1].

Proof. We just give a sketch of the proof, because it follows the lines of
the proof of Corollary 2.2 in [10].

It has been proved in [12] that a basis in a Banach space is greedy
if and only if it is unconditional and democratic (see [12] or [10] for the
definition). Theorem 2.2 guarantees that for strongly regular sequences of
knots, {fn/||fallzr1,n > 0} is an unconditional basis in H'[0,1]. To prove
that this system is democratic, we check that for each m and ny < --- < nyy,

H fo . fum
|

(5.18) . L m.

Pl [ foom e | e

But it follows from Corollary 5.3 that || f,|| g1 ~|| fn||1. Therefore, the equiva-
lence (5.18) is checked in the same way as the democracy of { f,, /|| fn|lp, n >0}
in LP[0,1] (cf. the proof of Corollary 2.2 in [10]), with the use of || f|| g1 ~,
|Pf]l1 and Proposition 4.5 of [10]. =




292 G. G. Gevorkyan and A. Kamont
References

[1] S. V. Bochkarev, Some inequalities for the Franklin series, Anal. Math. 1 (1975),
249-257.

[2] L. Carleson, An explicit unconditional basis in H', Bull. Sci. Math. (2) 104 (1980),
405-416.

[3] S.-Y. A. Chang and Z. Ciesielski, Spline characterizations of H' Studia Math. 75
(1983), 183-192.

[4] Z. Ciesielski, Properties of the orthonormal Franklin system, ibid. 23 (1963), 141—
157.

[6] Z. Ciesielski and A. Kamont, Projections onto piecewise linear functions, Funct.
Approx. Comment. Math. 25 (1997), 129-143.

[6] R. R. Coifman, A real variable characterization of HP, Studia Math. 51 (1974),
269-274.

[7] Ph. Franklin, A set of continuous orthogonal functions, Math. Ann. 100 (1928),
522-528.

[8] G. G. Gevorkyan, Some theorems on unconditional convergence and the majorant
of Franklin series and their application to Re Hp, Trudy Mat. Inst. Steklova 190
(1989), 49-74 (in Russian); English transl.: Proc. Steklov Inst. Math. 1992, 49-76.

[9] G. G. Gevorkyan and A. Kamont, On general Franklin systems, Dissertationes
Math. 374 (1998).

[10] —, —, Unconditionality of general Franklin system in LP[0,1], 1 < p < oo, Studia
Math. 164 (2004), 161-204.

[11] G. G. Gevorkyan and A. A. Sahakian, Unconditional basis property of general
Franklin systems, 1zv. Nats. Akad. Nauk Armenii Mat. 35 (2000), no. 4, 7-25 (in
Russian); English transl.: J. Contemp. Math. Anal. 35 (2000), no. 4, 2-22.

[12] S.V.Konyagin and V. N. Temlyakov, A remark on greedy approzimation in Banach
spaces, East J. Approx. 5 (1999), 1-15.

[13] B. Maurey, Isomorphismes entre espaces Hy, Acta Math. 145 (1980), 79-120.

[14] Y. Meyer, Wavelets and Operators, Cambridge Univ. Press, Cambridge, 1992.

[15] P. Sjolin, Convergence almost everywhere of spline expansions in Hardy spaces,
in: Topics in Modern Harmonic Analysis (Turin/Milan, 1982), Ist. Naz. Alta Mat.
Francesco Severi, Roma, 1983, 645-651.

[16] P.Sjolin and J. O. Stromberg, Basis properties of Hardy spaces, Ark. Mat. 21 (1983),
111-125.

[17] P. Wojtaszczyk, The Franklin system is an unconditional basis in H', ibid. 20
(1982), 293-300.

[18] —, A Mathematical Introduction to Wavelets, Cambridge Univ. Press, Cambridge,
1997.

Department of Mathematics Institute of Mathematics

Yerevan State University Polish Academy of Sciences

Alex Manoukian St. 1 Abrahama 18

375049 Yerevan, Armenia 81-825 Sopot, Poland

E-mail: ggg@arminco.com E-mail: A.Kamont@impan.gda.pl

Received July 13, 200/ (5454)



