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General Franklin systems as bases in H1[0, 1]

by

Gegham G. Gevorkyan (Yerevan) and Anna Kamont (Sopot)

Abstract. By a general Franklin system corresponding to a dense sequence of knots
T = (tn, n ≥ 0) in [0, 1] we mean a sequence of orthonormal piecewise linear functions
with knots T , that is, the nth function of the system has knots t0, . . . , tn. The main result
of this paper is a characterization of sequences T for which the corresponding general
Franklin system is a basis or an unconditional basis in H1[0, 1].

1. INTRODUCTION

The classical Franklin system is a complete orthonormal system con-
sisting of piecewise linear continuous functions with dyadic knots. It was
introduced by Ph. Franklin [7] in 1928 as an example of a complete or-
thonormal system which is a basis in C[0, 1]. Since then, it has been studied
by many authors from different points of view, and various extensions and
generalizations of this system have been considered. In particular, it is well
known that this system is an unconditional basis in Lp[0, 1], 1 < p <∞ (see
S. V. Bochkarev [1]) and in H1[0, 1] (see P. Wojtaszczyk [17]).

The present paper is a continuation of [10]. In both papers, we study the
properties of a generalization of the classical Franklin system obtained by
replacing the dyadic knots by a general sequence of knots. Given a sequence
of knots T = (tn, n ≥ 0) in [0, 1] admitting at most double knots and dense
in [0, 1], by a general Franklin system corresponding to T we mean the
complete orthonormal system consisting of piecewise linear functions with
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knots T (see Section 2.1 for the precise definition). We are interested in the
properties of this system as a basis in various function spaces. For the spaces
Lp[0, 1], 1 < p < ∞, or C[0, 1], these properties are now fully understood:
Z. Ciesielski [4] has proved that the L∞-norm of the orthogonal projection
onto the space of piecewise linear functions with arbitrary knots does not
exceed 3, which implies that each general Franklin system is a basis in
Lp[0, 1], 1 ≤ p <∞, and if all knots are simple (so all functions of the system
are continuous), it is a basis in C[0, 1]. The question of unconditionality
of this basis in Lp[0, 1], 1 < p < ∞, has also been considered. In G. G.
Gevorkyan and A. Kamont [9] and G. G. Gevorkyan and A. A. Sahakian
[11], some partial answers have been obtained, under additional assumptions
on the structure (in both papers, quasi-dyadic structure) and regularity of
the sequence of knots. Finally, in [10], we have proved that for each sequence
of knots the corresponding general Franklin system is an unconditional basis
in Lp[0, 1], 1 < p <∞.

In the present paper, we are interested in the properties of the general
Franklin system as a basis in the real Hardy space H1[0, 1]. We have already
studied this question in [9] and proved that, for a quasi-dyadic sequence of
knots, the general Franklin system is a basis in H1[0, 1] if and only if the
sequence of knots satisfies a strong regularity condition; moreover, if it is a
basis in H1[0, 1], then it is an unconditional basis. However, the result of
[10] does not require any assumption on the structure of the sequence of
knots. This has been the motivation for returning to the H1[0, 1] case and
seeing what happens if we do not assume the quasi-dyadic structure. In this
generality, we have arrived at two conditions on regularity of knots, which
we call strong regularity for pairs and strong regularity (the latter being
the same as in [9]). We prove that strong regularity for pairs is a necessary
and sufficient condition for the general Franklin system to be a basis in
H1[0, 1], and that strong regularity is a necessary and sufficient condition
for the system to be an unconditional basis in H1[0, 1] (for definitons etc.
see Section 2.2). These are the main results of this paper, Theorems 2.1
and 2.2. Let us remark that for quasi-dyadic sequences of partitions strong
regularity and strong regularity for pairs coincide.

Finally, as the paper concerns unconditional bases in H1, let us briefly
recall the main results in this direction. The existence of an unconditional
basis in H1 was first proved by B. Maurey [13], but his proof was not con-
structive. The first explicit construction is due to L. Carleson [2]. Then
P. Wojtaszczyk proved that the classical Franklin system is an uncondi-
tional basis in H1, and Sung-Yung A. Chang and Z. Ciesielski [3] proved
this for spline systems of higher orders (with dyadic knots). Analogous re-
sults are also well known for (sufficiently regular) wavelets (cf. e.g. books
[14] or [18]).



General Franklin systems 261

The paper is organized as follows. In Section 2 we give the basic defi-
nitions and formulate the main results, Theorems 2.1 and 2.2. In Section 3
we collect some properties of a single general Franklin function and of a
general Franklin system. Section 4 concerns the relations between uncondi-
tional convergence in L1 of a general Franklin series, integrability of square
and maximal functions of such series and being the Fourier–Franklin se-
ries of a function from H1 (see conditions (A)–(D) there). The results in
this direction are: Fact 4.2 and Propositions 4.3, 4.5, 4.6 and 4.7; see also
Corollary 5.3. Section 5 contains the proofs of the main results. In addition,
we note that if a general Franklin system (normalized in H1) is an uncon-
ditional basis in H1[0, 1], then it is also a greedy basis in this space (see
Corollary 5.4).

Notation. Throughout the paper, the following notation is used. For a
set A ⊂ [0, 1], we denote by χA the characteristic function of A, by |A| its
Lebesgue measure, and by Ac its complement in [0, 1]; for t ∈ [0, 1], dist(t, A)
is the distance from t to A. For a finite set B, #B denotes the number of
elements of B. For a function f : [0, 1] → R, Mf is the Hardy–Littlewood
maximal function of f . We use the notation x ∨ y = max(x, y), x ∧ y =
min(x, y). Finally, a ∼ b means that there are positive constants c1, c2,
independent of the variables of a, b, such that c1a ≤ b ≤ c2a, and a ∼γ b
means that the implied constants may depend only on the parameter γ, but
not on other variables of a, b.

2. BASIC DEFINITIONS AND FORMULATION
OF THE MAIN RESULTS

2.1. Basic definitions. Let us recall the definition of real Hardy spaces
H1[0, 1]. We use the atomic definition, first introduced in [6].

A function a : [0, 1]→ R is called an atom if either a = 1, or there is an
interval Γ ⊂ [0, 1] such that supp a ⊂ Γ , sup |a| ≤ 1/|Γ | and

� 1
0 a(u) du = 0.

A function f ∈ L1[0, 1] is said to belong to H1[0, 1] if there are atoms aj and
real coefficients cj , j ∈ N, with

∑∞
j=1 |cj| <∞ such that f =

∑∞
j=1 cjaj . The

norm in H1[0, 1] is defined as ‖f‖H1 = inf(
∑∞

j=1 |cj|), where the infimum is
taken with respect to all atomic decompositions of f .

Next, let us recall the definitions of a general Franklin function and a
general Franklin system.

Let σ = (si, 0 ≤ i ≤ N) be a partition of [0, 1], admitting at most double
knots, i.e., a sequence of knots in [0, 1] such that

{ 0 = s0 < s1 ≤ · · · ≤ sN−1 < sN = 1,

si < si+2 for 0 ≤ i ≤ N − 2.
(2.1)
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Denote by S(σ) the space of piecewise linear functions on [0, 1] with knots σ,
i.e., linear on each (si, si+1), left-continuous at each si (and right-continuous
at s0 = 0) and continuous at each si, 1 ≤ i ≤ N − 1, satisfying si−1 < si <
si+1. By {Nσ,i, 0 ≤ i ≤ N} we denote the usual B-spline basis corresponding
to the knots σ: if si is a simple knot in σ then Nσ,i is the unique piecewise
linear and continuous function with knots σ satisfying Nσ,i(sk) = δi,k; when
si−1 = si, then Nσ,i−1, Nσ,i are the unique piecewise linear functions with
knots σ, continuous and taking value 0 at all knots different from the double
knot si−1 = si, left-continuous at si−1 = si, and satisfying Nσ,i−1(si−1) = 1,
lims→s+i−1

Nσ,i−1(s) = 0, Nσ,i(si) = 0 and lims→s+i Nσ,i(s) = 1.

Now, let σ = (si, 0 ≤ i ≤ N) and σ∗ = (s∗i , 0 ≤ i ≤ N + 1) be a pair
of partitions of [0, 1] satisfying (2.1) and such that σ∗ is obtained from σ
by adding one knot s∗. Note that s∗ may be different from all knots of σ
(in this case, for some i, we have s∗ = s∗i and s∗i−1 < s∗i < s∗i+1), or for
some i, s∗ = si (then s∗i−1 < s∗i = s∗ = s∗i+1 < s∗i+2). In each case, there is
a unique function ϕ ∈ S(σ∗) such that ϕ is orthogonal to S(σ) in L2[0, 1],
‖ϕ‖2 = 1 and ϕ(s∗) > 0. This function ϕ is called the general Franklin
function corresponding to the pair of partitions (σ, σ∗).

Now, we turn to sequences of partitions and general Franklin systems.
Let T = (ti, i ≥ 0) be a sequence of knots in [0, 1], admitting at most

double knots, with t0 = 0, t1 = 1, ti ∈ (0, 1) for i ≥ 2 and dense in [0, 1]. Such
a sequence of knots is called admissible. For n ≥ 1, let Tn = (ti, 0 ≤ i ≤ n),
and let πn = (0 = tn,0 < tn,1 ≤ · · · ≤ tn,n−1 < tn,n = 1) be a partition of
[0, 1] obtained by nondecreasing rearrangement of Tn. Let us introduce some
notation, which will be used throughout the paper:

In,i = [tn,i−1, tn,i], λn,i = |In,i| = tn,i − tn,i−1.(2.2)

Note that each πn satisfies (2.1), and πn is obtained from πn−1 by adding
one knot tn.

Definition 2.1. Let T be an admissible sequence of knots. A general
Franklin system with knots T is a sequence of functions {fn, n ≥ 0} given by

f0(t) = 1, f1(t) =
√

3(2t− 1),

and for n≥2, fn is the general Franklin function corresponding to (πn−1, πn).

2.2. The main results. For the main results, we need to formulate
two regularity conditions for T , and this is done with the notation of (2.2).

Definition 2.2. Let T be an admissible sequence of knots. We say that
T satisfies the strong regularity condition with parameter γ ≥ 1 if for each
n ≥ 1 and 2 ≤ i ≤ n,

1
γ
λn,i−1 ≤ λn,i ≤ γλn,i−1.
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Definition 2.3. Let T be an admissible sequence of knots. We say that
T satisfies the strong regularity condition for pairs with parameter γ ≥ 1 if
for each n ≥ 2 and 1 ≤ i ≤ n,

1
γ

(λn,i−1 + λn,i) ≤ λn,i + λn,i+1 ≤ γ(λn,i−1 + λn,i),

with the convention λn,0 = λn,n+1 = 0.

Now, we formulate the main result of this paper, Theorems 2.1 and 2.2,
which characterize those sequences of partitions for which the corresponding
Franklin system is a basis or an unconditional basis in H1[0, 1].

Theorem 2.1. Let T be an admissible sequence of knots in [0, 1] with
the corresponding Franklin system {fn, n ≥ 0}. Then {fn, n ≥ 0} is a basis
in H1[0, 1] if and only if T satisfies the strong regularity condition for pairs
with some parameter γ > 1.

Theorem 2.2. Let T be an admissible sequence of knots in [0, 1] with
the corresponding Franklin system {fn, n ≥ 0}. Then {fn, n ≥ 0} is an
unconditional basis in H1[0, 1] if and only if T satisfies the strong regularity
condition with some parameter γ > 1.

2.2.1. Comments. In [9] we have discussed general Franklin systems as
bases in H1[0, 1], but only for quasi-dyadic sequences of knots. By this we
mean the following: consider a sequence of partitions Pj = {τj,k, 0 ≤ k ≤ 2j},
j ≥ 0, such that 0 = τj,0 < τj,1 < · · · < τj,2j = 1 and τj+1,2k = τj,k for all
j, k, 0 ≤ k ≤ 2j , i.e. between each pair of knots of Pj , one new knot of Pj+1
is inserted. Putting t0 = 0, t1 = 1 and tn = τj,2k−1 for n = 2j +k with j ≥ 0
and 1 ≤ k ≤ 2j , we get an admissible sequence T = (tn, n ≥ 0) of simple
knots with quasi-dyadic structure.

The first of the above regularity conditions, the strong regularity condi-
tion, has been used in [9]. Theorem 5.3 of [9] states that for quasi-dyadic
sequences of knots, a general Franklin system is a basis in H1[0, 1] iff it is an
unconditional basis in H1[0, 1], and both these conditions are equivalent to
the strong regularity of the sequence of knots. It turns out that for general
Franklin systems without any structural constraints on the corresponding
sequence of knots, the properties of being a basis in H1[0, 1] and being an
unconditional basis in H1[0, 1] are no longer equivalent.

Clearly, for quasi-dyadic sequences of knots strong regularity and strong
regularity for pairs are equivalent. In addition, the quasi-dyadic structure
of a strongly regular sequence of knots implies the following polynomial
propagation of lengths of intervals: there are αγ and Cγ , depending only on
the regularity parameter γ, such that for all j ≥ 0 and 1 ≤ k, l ≤ 2j ,

C−1
γ (|k − l|+ 1)−αγλ2j ,k ≤ λ2j ,l ≤ Cγ(|k − l|+ 1)αγλ2j ,k(2.3)
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(cf. Proposition 2.6(ii) of [9]). This property has been used in [9], and it
enabled us to treat also the case of Hp[0, 1] with p < 1. However, for general
strongly regular sequences of knots, an analogue of (2.3) need not hold.
The proofs in this paper do not make use of (2.3), but we have to restrict
ourselves to the case p = 1. As in [10], the technique of proofs depends on
the analysis of the canonical intervals associated with Franklin functions (cf.
Section 3.1).

Finally, note that strong regularity implies that all knots of T are simple,
while double knots are allowed for sequences enjoying strong regularity for
pairs. Both strong regularity and strong regularity for pairs can be encoun-
tered in the context of spline approximation: strong regularity is just the
boundedness of the local mesh ratio, while strong regularity for pairs is
equivalent to the boundedness of the ratios of the lengths of the supports of
the basic functions Nπn,i, 0 ≤ i ≤ n.

3. BASIC PROPERTIES OF A GENERAL FRANKLIN SYSTEM

3.1. Properties of a single Franklin function. We recall some definitions
and estimates for a general Franklin function. For a more detailed description
and proofs we refer to Section 3.1 of [10].

As in [10], to simplify notation, assume that

π = {0 = τ−k < τ−k+1 ≤ · · · ≤ τ−1 < τ1 ≤ · · · ≤ τl−1 < τl = 1},
and π∗ = π∪{τ} with τ−1 < τ = τ0 ≤ τ1 (with τi < τi+2). As in Section 2.1,
ϕ denotes the general Franklin function corresponding to (π, π∗). In this
section, we use the notation

λi = τi − τi−1.(3.1)

First, we recall the definition of a “canonical” interval J associated with
ϕ (cf. Section 3.1 of [10]). The definition depends on whether τ is a simple
or a double knot of π∗.

First, let τ be a simple knot of π∗, i.e. τ−1 < τ = τ0 < τ1. Consider the
intervals

I = [τ−1, τ1], I− = [τ−2, τ0], I+ = [τ0, τ2],(3.2)

and set

ν = |I|, ν− = |I−|, ν+ = |I+|, µ = min(ν−, ν, ν+).(3.3)

(In case k = 1 or l = 1, we take τ−2 = 0 or τ2 = 1, respectively.) Now, choose
I∗ = [τi∗ , τi∗+2] to be one of the intervals I−, I, I+ such that µ = |I∗|, and
consider its left and right parts I∗,l = [τi∗ , τi∗+1], I∗,r = [τi∗+1, τi∗+2]. Finally,
let J be one of the intervals I∗,l, I∗,r such that |J | = max(|I∗,l|, |I∗,r|). Note
that in this case |J | ≤ µ ≤ 2|J |. In what follows, we also need the following
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notation:
τ− = τ−1, τ+ = τ1.

Now, let τ be a double knot of π∗, i.e. τ−1 < τ = τ0 = τ1 < τ2. Consider
the intervals I− = [τ−1, τ0], I+ = [τ1, τ2] and let µ = min(|I−|, |I+|). Now,
take as J one of I−, I+ such that |J | = µ. Moreover, we put τ− = τ−1 and
τ+ = τ2.

Pointwise estimates for a general Franklin function have been discussed
in [9], [11] and [10]. We will need some estimates from [10, Propositions 3.1
and 3.2]. The estimates are formulated in terms of the coefficients ξi of the
representation ϕ =

∑l
i=−k ξiNπ∗,i. Note that if τi is a simple knot of π∗

then ξi = ϕ(τi), and if τi−1 = τi, then ξi−1 = ϕ(τi−1) = limt→τ−i−1
ϕ(t) and

ξi = limt→τ+
i
ϕ(t). As ϕ is linear on each (τi−1, τi), it is clear that estimates

for ξi−1, ξi imply estimates for ϕ and ϕ′ on (τi−1, τi).
To formulate the estimates, we need some additional notation. As in [10],

for x, y ∈ [0, 1], we denote by dπ∗(x, y) the number of knots of π∗ between
x and y, counting multiplicities, i.e.

dπ∗(x, y) = #{i : x ∧ y ≤ τi ≤ x ∨ y}.
By dπ∗(x) we denote the number of knots of π∗ between x and J , counting
multiplicities and endpoints of J , with the understanding that dπ∗(x) = 0
when x ∈ J . Similarly, for an interval V ⊂ [0, 1], we denote by dπ∗(V )
the number of knots of π∗ between V and J , counting multiplicities and
endpoints of J or V , with the understanding that dπ∗(V ) = 0 whenever
V ∩ J 6= ∅.

Proposition 3.1. Let π∗ = π ∪ {τ0} be as described above, and let ϕ be
the general Franklin function corresponding to (π, π∗), ϕ =

∑l
i=−k ξiNπ∗,i.

If τ = τ0 is a simple knot of π∗, then
{ ‖ϕ‖p ∼ µ1/p−1/2, 1 ≤ p ≤ ∞,
|ξ−1| ∼ µ1/2/ν−, |ξ0| ∼ µ1/2/ν, |ξ1| ∼ µ1/2/ν+,

(3.4)

with the implied constants independent of (π, π∗) and p.
If τ = τ0 = τ1 is a double knot of π∗, then

‖ϕ‖p ∼ µ1/p−1/2, 1 ≤ p ≤ ∞, |ξ0| ∼ µ1/2/λ0, |ξ1| ∼ µ1/2/λ2,(3.5)

with the implied constants independent of (π, π∗) and p.
In both cases (i.e. τ being either a simple or a double knot of π∗)

‖ϕ‖Lp(J) ∼ ‖ϕ‖p ∼ |J |1/p−1/2, 1 ≤ p ≤ ∞,(3.6)

with the implied constants independent of p, π, π∗. In addition, we have |ξi| =
(−1)|i|ξi and the following localization of the support of ϕ: if τi−1 = τi ≤ τ−
(respectively , τ+ ≤ τi = τi+1), then suppϕ ⊂ [τi, 1] (respectively , suppϕ ⊂
[0, τi]).
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Moreover , there is a constant C, independent of π, π∗, such that

|ξi| ≤ C
(

2
3

)dπ∗(τi) |J |1/2
|J |+ dist(τi, J) + τi+1 − τi−1

for all i.(3.7)

In addition, with ε = (
√

2 + 1)/3, in the case when τ is a simple knot
in π∗, we have the following estimates:

(a) for i ≤ i+ s ≤ −1:
τi�

0

|ϕ(t)| dt ≤ εs

1− ε

τi+s�

τi+s−1

|ϕ(t)| dt,

τi�

0

|ϕ(t)| dt ≤ ε|i|

1− ε ‖ϕ‖1,

(b) for 1 ≤ i− s ≤ i:
1�

τi

|ϕ(t)| dt ≤ εs

1− ε

τi−s+1�

τi−s

|ϕ(t)| dt,

1�

τi

|ϕ(t)|dt ≤ ε|i|

1− ε ‖ϕ‖1,

If τ is a double knot of π∗, then (a) holds for i ≤ i + s ≤ 0, and (b) holds
for i ≥ i− s ≥ 1.

3.2. Properties of a general Franklin system. Let T = {tn, n ≥ 0} be
an admissible sequence of knots with the corresponding Franklin system
{fn, n ≥ 0}. By In, I∗n, Jn, µn, dn etc. we denote the intervals and quanti-
ties defined above for a general Franklin function and corresponding to the
function fn and partition πn. In addition, t−n , t+n correspond to tn and πn−1
in the same way as τ−, τ+ correspond to τ and π in Section 3.1.

The following properties of a general Franklin system have been proved
in [10, Lemmas 3.4 and 3.5]:

Lemma 3.2. Let T = (tn, n ≥ 0) be an admissible sequence of knots with
the corresponding Franklin system {fn, n ≥ 0}. Let k, l ≥ 0 be such that
tk ≤ tl and there is no i ≤ max(k, l) with ti ∈ (tk, tl). Then

#{n : Jn = [tk, tl]} ≤ 5,

#{n : Jn ⊂ [tk, tl] and |Jn| > |[tk, tl]|/2} ≤ 25.

The following property of a general Franklin system has also been ob-
tained in [10, Lemma 4.6]:
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Lemma 3.3. Let T be an admissible sequence of knots in [0, 1] with the
corresponding Franklin system {fn, n ≥ 0}. There is a constant C > 0,
independent of T , such that for each interval V = [α, β] ⊂ [0, 1],

∑

n : Jn⊂V
|Jn|1/2

�

V c

|fn(t)| dt ≤ C|V |.

Now, we prove some additional properties of general Franklin systems
needed in what follows.

Lemma 3.4. Let T be an admissible sequence of knots in [0, 1] satisfying
the strong regularity condition with parameter γ ≥ 1. Let {fn, n ≥ 0} be the
corresponding Franklin system, with the corresponding family of J-intervals
{Jn, n ≥ 0}. For fixed ∆ = In,i for some n, i, and k ≥ 0, let

N(∆, k) = {n ≥ 0 : fn is linear on ∆ and dn(∆) = k}.
Then there is a constant Cγ , depending only on γ, such that

∑

n∈N(∆,k)

|Jn|
|Jn|+ dist(Jn,∆) + |∆| ≤ Cγ(k + 1).

Proof. First, consider the case k > 0. Then Jn ⊂ ∆c and the set N(∆, k)
splits into two subsets N+(∆, k), N−(∆, k), according to the position of Jn
with respect to ∆: Jn is to the right of ∆ for n ∈ N+(∆, k), and to the left
of ∆ for n ∈ N−(∆, k).

Consider first the case of n ∈ N+(∆, k). The corresponding intervals Jn
can be grouped into packets, with intervals in one packet having common
left endpoint, and with maximal intervals from different packets disjoint.
Let Jrn denote the right half of Jn. Note that

|Jn|+ dist(Jn,∆) + |∆| ∼ dist(t,∆) + |∆| for t ∈ Jrn,
and by Lemma 3.2, each point belongs to at most 25 intervals J rn. In addition,
as dn(∆) = k, it follows by strong regularity of T that

|Jn| ≤ γk|∆| and dist(Jn,∆) ≤ Cγγk|∆|,
where Cγ depends only on γ. Combining these facts we get

∑

n∈N+(∆,k)

|Jn|
|Jn|+ dist(Jn,∆) + |∆| ≤ C

∑

n∈N+(∆,k)

�

Jrn

1
dist(t,∆) + |∆| dt

≤ C
Cγγk|∆|�

|∆|

1
t
dt

= C(ln(Cγγk|∆|)− ln |∆|) ≤ Cγk.
The other part

∑
n∈N−(∆,k) . . . is treated analogously.
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The case k = 0 is similar, but it also requires consideration of the case
Jn = ∆. However, by Lemma 3.2, the number of such n’s does not exceed 5.

Lemma 3.5. Let T be an admissible sequence of knots in [0, 1] satisfying
the strong regularity condition for pairs with parameter γ ≥ 1.

(i) Let Λ, Γ be two adjacent intervals of the partition πn such that |Λ| ≤
1

2γ |Γ |, and let s = min{i > n : ti ∈ Λ ∪ Γ}. Then ts ∈ Γ . Moreover ,
if Γ ′, Γ ′′ is the splitting of Γ by ts with Γ ′ adjacent to Λ, then |Γ ′| ≥
1

2γ |Γ |.

(ii) Let Γ , Λ,Γ ′, Γ ′′ and s be as in (i), and let ∆ be the other neighbour of
Γ in πs−1. Then |∆| ≤ γ|Γ |, and consequently

|Λ|+ |Γ ′|, |Γ ′|+ |Γ ′′|, |Γ ′′|+ |∆| ∼γ |Γ |.

(iii) Let V1 ⊃ V2 ⊃ V3 ⊃ V4 be four different intervals from the sequence of
partitions corresponding to T . Then

|V4| ≤
2γ

2γ + 1
|V1|.

Proof. To prove (i), note first that the assumption |Λ| ≤ 1
2γ |Γ | and the

fact that the knots are at most double imply that |Γ | > 0. Suppose that
ts ∈ Λ. Then ts splits Λ into Λ′, Λ′′, with Λ′ denoting the part adjacent
to Γ . Then Λ′, Λ′′, Γ are intervals of πs, and moreover Λ′, Λ′′ and Λ′, Γ are
neighbouring pairs. But then, by strong regularity for pairs,

|Γ | ≤ |Γ |+ |Λ′| ≤ γ(|Λ′|+ |Λ′′|) = γ|Λ| ≤ |Γ |/2,
which is impossible. Thus, ts ∈ Γ , and it splits Γ into intervals Γ ′, Γ ′′, with
Γ ′ adjacent to Λ. Now, Λ, Γ ′, Γ ′′ are intervals of πs, and (Λ,Γ ′), (Γ ′, Γ ′′)
are adjacent pairs. If |Γ ′| < 1

2γ |Γ |, then, by strong regularity for pairs,

|Γ | = |Γ ′|+ |Γ ′′| ≤ γ(|Λ|+ |Γ ′|) < |Γ |,
which is impossible. This completes the proof of part (i).

To check (ii), note that Γ ′, Γ ′′ and Γ ′′,∆ are neighbouring pairs in πs.
Therefore, by strong regularity for pairs,

1
γ

(|Γ ′′|+ |∆|) ≤ |Γ | = |Γ ′|+ |Γ ′′| ≤ γ(|Γ ′′|+ |∆|).

This, (i) and the assumption on |Λ| give (ii).
Now, we turn to the proof of (iii). It is enough to consider the case when

each Vi+1 is obtained by the first splitting of Vi by a knot of T .
Let V ′1 , V

′′
1 = V2 be the intervals obtained by the first splitting of V1.

If |V2| ≤ 2γ
2γ+1 |V1|, then the result follows. If not, then we have |V ′1 | <

1
2γ+1 |V1| < 1

2γ |V2|. It follows by (i) that the first knot of T falling into V ′1∪V2
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must be in V2 and if V ′2 , V
′′

2 are the intervals obtained by the first splitting
of V2, with V ′2 being a neighbour of V ′1 , then |V ′2| ≥ 1

2γ |V2|. Consequently,

|V ′′2 | ≤ 2γ−1
2γ |V2| ≤ 2γ

2γ+1 |V1|. Thus, if V3 = V ′′2 , then the result follows. It
remains to consider the case V3 = V ′2 . If |V ′1| ≥ 1

2γ |V3| or |V ′′2 | ≥ 1
2γ |V3|, then

|V3| ≤ 2γ
2γ+1 |V1|, and the result follows. If not, the two neighbours of V3 are

V ′1 and V ′′2 . Therefore, by (i), the first knot of T falling into V ′1 ∪ V3 ∪ V ′′2
must be in V3. Note that if V ′3 , V

′′
3 are the intervals obtained by the first

splitting of V3, then one of them is a neighbour of V ′1 , and the other is a
neighbour of V ′′2 , so (i) also implies that |V ′3 |, |V ′′3 | ≥ 1

2γ |V3|. Consequently,

|V ′3 |, |V ′′3 | ≤ 2γ−1
2γ |V3| ≤ 2γ

2γ+1 |V1|. As V4 is one of V ′3 , V
′′

3 , this completes the
proof of (iii).

3.2.1. Properties of orthogonal projections onto S(σ). Partial sums with
respect to a general Franklin system are orthogonal projections onto spaces
of piecewise linear functions with corresponding knots. Therefore, we will
need some properties of these orthogonal projections.

As above, let σ be a (finite) sequence of at most double knots in [0, 1]
and let S(σ) be the space of piecewise linear functions with knots σ. Let
Qσ be the orthogonal (in L2[0, 1]) projection onto S(σ). We will need the
following properties of Qσ:

Proposition 3.6. (i) Let 1 ≤ p ≤ ∞ and f ∈ Lp[0, 1]. Then ‖Qσf‖p
≤ 3‖f‖p.

(ii) Let f ∈ L1[0, 1]. Then supσ |Qσf | ≤ 64Mf , and if t is a Lebesgue
point of f then Qσf(t) → f(t) as |σ| → 0 (where |σ| denotes the
diameter of the partition σ).

Part (i) of Proposition 3.6 comes from [4], and part (ii) from [5].

4. SOME AUXILIARY RESULTS

Let T be an admissible sequence of knots with the corresponding gen-
eral Franklin system {fn, n ≥ 0}. For a sequence a = (an, n ≥ 0) of coeffi-
cients, let

P (·) =
( ∞∑

n=0

a2
nf

2
n(·)

)1/2
, S(·) = sup

m≥0

∣∣∣
m∑

n=0

anfn(·)
∣∣∣.

If f ∈ L1[0, 1], then we denote by Pf, Sf the functions P, S corresponding
to an = an(f) = (f, fn).

Consider the following conditions:

(A) P ∈ L1[0, 1].
(B) The series

∑∞
n=0 anfn converges unconditionally in L1[0, 1].
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(C) S ∈ L1[0, 1].
(D) There is f ∈ H1[0, 1] such that an = (f, fn).

In this section we discuss the relations between these conditions under
various regularity assumptions on T .

Let us recall that in the case of the classical Franklin system (i.e. with
dyadic knots), or of spline systems of higher order (also with dyadic knots),
the relations (and equivalences) between these conditions have been studied
in several papers (see e.g. [3], [15], [16], [8]), including also the case p < 1.
For higher order spline systems, the results are known for the range of p
depending on the order of splines (see [15], [16]), while for the classical
Franklin system it is known that conditions (A), (B), (C) are equivalent for
all 0 < p ≤ 1 (see [8]). In [9], the equivalence of these conditions has been
proved for quasi-dyadic strongly regular sequences of knots (also including
the case p < 1).

Here, we study the mutual relations of these conditions under weaker
assumptions, but only for p = 1. The general schemes of proofs are similar
to those in [8] and [9], but now we have to avoid arguments like (2.3), i.e.
comparison of lengths of intervals which are far apart. This kind of argument
is replaced by investigation of the geometry of the intervals Jn, similarly
to [10].

For the proofs below, the following known property of polynomials is
needed:

Fact 4.1. Let k ∈ N and 0 < % < 1 be fixed. There is a constant M =
Mk,%, depending only on k and %, such that for every interval [a, b], set
A ⊂ [a, b] with |A| ≥ %|[a, b]| and polynomial Q of degree k,

max
t∈[a,b]

|Q(t)| ≤Mk,% sup
t∈A
|Q(t)|

b�

a

|Q(t)| dt ≤Mk,%

�

A

|Q(t)| dt.

Implication (B)⇒(A). The implication (B)⇒(A) is an immediate conse-
quence of the Khinchin inequality. We formulate it just for general Franklin
systems:

Fact 4.2. Let T be an admissible sequence of knots with the correspond-
ing general Franklin system {fn, n ≥ 0}, and let a = (an, n ≥ 0) be a se-
quence of coefficients. If the series

∑∞
n=0 anfn converges unconditionally in

L1[0, 1], then P ∈ L1[0, 1]. Moreover , there is a constant C > 0, independent
of T and a, such that

‖P‖1 ≤ C sup
ε=(εn)n≥0, εn=±1

∥∥∥
∞∑

n=0

εnanfn

∥∥∥
1
.

Implications (A)⇒(B) and (A)⇒(C). We show that these implications
hold for any admissible sequence T .
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Proposition 4.3. Let T be an admissible sequence of knots with the
corresponding general Franklin system {fn, n ≥ 0}, and let a = (an, n ≥ 0)
be a sequence of coefficients such that P ∈ L1[0, 1]. Then S ∈ L1[0, 1] and
the series

∑∞
n=0 anfn converges unconditionally in L1[0, 1]. Moreover , there

is a constant C > 0, independent of T and a, such that

‖S‖1 ≤ C‖P‖1, sup
ε=(εn)n≥0, εn=±1

∥∥∥
∞∑

n=0

εnanfn

∥∥∥
1
≤ C‖P‖1.

Proof. For convenience, assume ‖P‖1 = 1. Define

IT =
⋃

n≥1

{In,i : 1 ≤ i ≤ n},

where In,i are as in (2.2), andMT (f, t) = supt∈intIn,i(1/|In,i|)
�
In,i
|f(u)| du.

Let E0 = B0 = [0, 1], and for r ≥ 1,

Er =
{
t ∈ [0, 1] :

∞∑

n=0

a2
nf

2
n(t) > 2r

}
,

Br =
{
t ∈ [0, 1] :MT (χEr , t) > 1/2

}
.

Then
Br =

⋃

I∈Ir
I,

where Ir is the collection of maximal intervals of IT included in Br. Further,
for I ∈ Ir let

ψI =
∑

n :Jn⊂I, Jn 6⊂Br+1

anfn.

Since Jn 6⊂ Br+1, we have |Ec
r+1 ∩ Jn| ≥ |Jn|/2, so by Fact 4.1 and (3.6) for

p = 2, �

Ec
r+1∩Jn

f2
n(t) dt ≥ C

�

Jn

f2
n(t) dt ≥ C.

Therefore

‖ψI‖22 =
∑

n :Jn⊂I, Jn 6⊂Br+1

a2
n ≤ C

∑

n : Jn⊂I, Jn 6⊂Br+1

a2
n

�

Ec
r+1∩Jn

f2
n(t) dt

≤
�

I∩Ec
r+1

∑

n : Jn⊂I, Jn 6⊂Br+1

a2
nf

2
n(t) dt ≤ C2r|I|.

The rest of the proof is analogous to the proof of Lemma 4.6 of [9] or
Theorem 1.1 (sufficiency part) in [8], but we present it for completeness.

For ε = (εn, n ≥ 0) with εn ∈ {−1, 1} and I ∈ Ir, let

ψI,ε =
∑

n : Jn⊂I, Jn 6⊂Br+1

εnanfn.
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The series defining ψI,ε converges in L2[0, 1], so also in L1[0, 1]. Therefore, to
prove the unconditional convergence of

∑∞
n=0 anfn in L1[0, 1], it is enough

to show that
∞∑

r=0

∑

I∈Ir
‖ψI,ε‖1 ≤ C.

For this, we need to estimate ‖ψI,ε‖1. First, by the Cauchy–Schwarz inequal-
ity we have �

I

|ψI,ε(t)| dt ≤ ‖ψI,ε‖2 · ‖χI‖2 ≤ C2r/2|I|.(4.1)

To estimate the integral over Ic, note that if Jn 6⊂ Br+1, then |an| ≤
C2r/2|Jn|1/2. Indeed, fn is linear on Jn, and supJn |fn| ∼ |Jn|−1/2 (cf. (3.6)),
so by Fact 4.1 there is C > 0 such that |fn| ≥ C|Jn|−1/2 on a subset V ⊂ Jn
with |V | > |Jn|/2. If |an| > (1/C)2(r+1)/2|Jn|1/2, then |anfn| > 2(r+1)/2 on
V , which implies P 2 > 2r+1 on V , and consequently Jn ⊂ Br+1, contrary
to the choice of Jn. Now, using this estimate for an and Lemma 3.3 we get

�

Ic

|ψI,ε(t)| dt ≤
∑

n : Jn⊂I, Jn 6⊂Br+1

|an|
�

Ic

|fn(t)| dt

≤ C2r/2
∑

n : Jn⊂I, Jn 6⊂Br+1

|Jn|1/2
�

Ic

|fn(t)| dt ≤ C2r/2|I|.

Combining the last inequality with (4.1) we find ‖ψI,ε‖1 ≤ C2r/2|I|. This
implies that

∞∑

r=0

∑

I∈Ir
‖ψI,ε‖1 ≤ C

∞∑

r=0

∑

I∈Ir
2r/2|I| ≤ C

∞∑

r=0

2r/2|Br|

≤ C
∞∑

r=0

2r/2|Er| ≤ C‖P‖1 = C,

yielding both the unconditional convergence of
∑∞

n=0 anfn in L1[0, 1] and
the estimate

sup
ε

∥∥∥
∞∑

n=0

εnanfn

∥∥∥
1
≤ C.

It remains to estimate ‖S‖1. Clearly, ‖S‖1 ≤
∑∞

r=0
∑

I∈Ir ‖SψI‖1, and
SψI ≤

∑
n :Jn⊂I, Jn 6⊂Br+1

|anfn|. Moreover, it follows from Proposition 3.6(ii)
and (2, 2)-type ofM that ‖SψI‖2 ≤ C‖MψI‖2 ≤ C‖ψI‖2. Therefore, split-
ting ‖S‖1 into

�
I . . . and

�
Ic . . . , and treating each part as the corresponding

part of the estimate for ψI,ε we find ‖SψI‖1 ≤ C2r/2|I|, where I ∈ Ir.
Finally, summing over r ≥ 0 and I ∈ Ir we get ‖S‖1 ≤ C.
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Implications (D)⇒(A) and (D)⇒(C). We show that these implications
hold for strongly regular sequences T .

It is enough to prove (D)⇒(A), since then (D)⇒(C) follows by Proposi-
tion 4.3. However, the direct proof of (D)⇒(C) uses the same arguments as
the proof of (D)⇒(A), so we present them together.

Lemma 4.4. Let T be an admissible sequence of knots with the corre-
sponding general Franklin system {fn, n ≥ 0}. Let γ ≥ 1 and assume that
T satisfies the strong regularity condition with parameter γ. Then there is a
constant Cγ , depending only on γ, such that for each atom φ,

‖Sφ‖1 ≤ Cγ , ‖Pφ‖1 ≤ Cγ .

Proof. Clearly, the estimates hold for φ ≡ 1. Now, let φ be an atom
such that

� 1
0 φ(u) du = 0, and let Γ be an interval such that suppφ ⊂ Γ ,

Γ = [α, β], sup |φ| ≤ 1/|Γ |. Write an = an(φ) = (φ, fn). Let nΓ = max{n :
#(πn ∩ Γ ) ≤ 1} and

P1φ =
( nΓ∑

n=0

a2
nf

2
n

)1/2
, P2φ =

( ∞∑

n=nΓ+1

a2
nf

2
n

)1/2
,

S1φ = max
0≤m≤nΓ

∣∣∣
m∑

n=0

anfn

∣∣∣, S2φ = sup
m≥nΓ+1

∣∣∣
m∑

n=nΓ+1

anfn

∣∣∣.

It is enough to show that

‖P1φ‖1, ‖P2φ‖1, ‖S1φ‖1, ‖S2φ‖1 ≤ Cγ.(4.2)

First, we show that
∑

n≤nΓ
|an| · ‖fn‖1 ≤ Cγ .(4.3)

Indeed, for n ≤ nΓ , let Γn,α and Γn,β be the intervals of linearity of fn
containing α and β, respectively (for some n, these intervals may coincide).
As Γ ⊂ Γn,α ∪ Γn,β, strong regularity with parameter γ implies that

|Γn,α|, |Γn,β| ≥
1

γ + 1
|Γ |.(4.4)

Observe that by linearity of fn on Γn,α and Γn,β, and by (3.7) of Proposi-
tion 3.1, for ρ = α, β we have

|f ′n| = ηn,ρ ≤ C
(

2
3

)dn(Γ ) |Jn|1/2
|Jn|+ dist(Jn, Γn,ρ) + |Γn,ρ|

· 1
|Γn,ρ|

on Γn,ρ.

Let τ ∈ πnΓ ∩ Γ . As
�
Γ φ(t) dt = 0, we get
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|an| =
∣∣∣

�

Γ

φ(t)(fn(t)− fn(τ)) dt
∣∣∣

≤
�

Γn,α∩Γ

ηn,α · |t− τ |
|Γ | dt+

�

Γn,β∩Γ

ηn,β · |t− τ |
|Γ | dt ≤ C(an,α + an,β),

where

an,ρ =
(

2
3

)dn(Γ ) |Jn|1/2
|Jn|+ dist(Jn, Γn,ρ) + |Γn,ρ|

· |Γ ||Γn,ρ|
, ρ = α, β.

Let us treat the case of an,α; the case of an,β is analogous. Let ∆1 ⊃ · · · ⊃ ∆s

be the collection of all different intervals appearing as Γn,α for n ≤ nΓ . By
strong regularity,

1
γ + 1

|∆i| ≤ |∆i+1| ≤
γ

γ + 1
|∆i|.(4.5)

Now, fix ∆i and k ≥ 0, and consider n such that Γn,α = ∆i and dn(Γ ) = k.
As there is at most one knot of πn in Γ , we have |dn(Γ )−dn(∆i)| ≤ 1. In ad-
dition, by the definition of an,α and the estimates of norms in Proposition 3.1
(cf. (3.4)) we have

an,α‖fn‖1 ≤ C
(

2
3

)k |Jn|
|Jn|+ dist(Jn,∆i) + |∆i|

· |Γ ||∆i|
.

Now, it follows from Lemma 3.4 that
∑

n :Γn,α=∆i, dn(Γ )=k

an,α‖fn‖1 ≤ Cγ(k + 1)
(

2
3

)k |Γ |
|∆i|

.

Using the last inequality, (4.5) and (4.4) we get
∑

n≤nΓ
an,α‖fn‖1 =

s∑

i=1

∑

k≥0

∑

n :Γn,α=∆i, dn(Γ )=k

an,α‖fn‖1

≤ Cγ
s∑

i=1

|Γ |
|∆i|

∑

k≥0

(k + 1)
(

2
3

)k

≤ Cγ
|Γ |
|∆s|

≤ Cγ .

The part of the sum corresponding to an,β is treated analogously, so we
get (4.3).

It follows from (4.3) that

‖P1φ‖1, ‖S1φ‖1 ≤ Cγ .(4.6)

Now, we turn to estimating ‖P2φ‖1 and ‖S2φ‖1. Consider the parti-
tion πnΓ+1. By the definition of nΓ , there are exactly two knots of πnΓ+1

in Γ . To simplify the notation, let πnΓ+1 = {0 = τ0 < τ1 < · · · < τnΓ+1 = 1},
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and let j be such that τj , τj+1 ∈ Γ . Define further

V0 = [τj , τj+1], V = [τj−1, τj+2],

V − = [τj−1, τj ], V + = [τj+1, τj+2], Ṽ = [τj−3, τj+4].

As V0 ⊂ Γ ⊂ V , it follows from the strong regularity of T that

|V0|, |V −|, |V |, |V +|, |Ṽ | ∼γ |Γ |.(4.7)

Observe that ‖φ‖2≤|Γ |−1/2. Therefore, using (4.7) and the Cauchy–Schwarz
inequality we get

�

Ṽ

P2φ(t) dt ≤ ‖χṼ ‖2 · ‖φ‖2 ≤
|Ṽ |1/2
|Γ |1/2 ≤ Cγ .(4.8)

It follows by Proposition 3.6(ii) that S2φ ≤ 128Mφ. Since M is of type
(2, 2), by an analogous argument we find

�

Ṽ

S2φ(t) dt ≤ Cγ.(4.9)

It remains to estimate
�
Ṽ c P2φ(t) dt and

�
Ṽ c S2φ(t) dt. To this end, it is

sufficient to show that ∞∑

n=nΓ+1

|an|
�

Ṽ c

|fn(t)| dt ≤ Cγ .(4.10)

For each n > nΓ , the endpoints of Ṽ are knots of πn, so there are three
possible positions of Jn with respect to Ṽ : Jn ⊂ Ṽ , or Jn is to the right
of Ṽ , or Jn is to the left of Ṽ .

If Jn ⊂ Ṽ , then by (3.4) and the fact that φ is an atom,

|an| =
∣∣∣

�

Γ

φ(t)fn(t) dt
∣∣∣ ≤ ‖fn‖1|Γ | ≤ C

|Jn|1/2
|Γ | .

Therefore, applying Lemma 3.3 to Ṽ and using (4.7) we get
∑

n : Jn⊂Ṽ

|an|
�

Ṽ c

|fn(t)| dt ≤ C |Ṽ ||Γ | ≤ Cγ.(4.11)

Now, let Jn be to the right of Ṽ . Denote by β′ the right endpoint of
V , and by Ln the interval of linearity of fn with right endpoint β ′. By the
choice of Ṽ , for each n > nΓ there is at least one knot of πn between β′ and
the right endpoint of Ṽ . Since Jn is to the right of Ṽ , this guarantees that
β′ ≤ t−n . Since Γ ⊂ V , the estimates of Proposition 3.1(a) and (3.7) yield

|an| ≤
1
|Γ |

�

Γ

|fn(t)| dt ≤ C

|Γ |
�

Ln

|fn(t)| dt

≤ C
(

2
3

)dn(β′) |Jn|1/2
|Jn|+ dist(Jn, Ln) + |Ln|

· |Ln||Γ | .
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Let Λ1 ⊃ Λ2 ⊃ · · · be the collection of all different intervals appearing
as Ln. Observe that Λ1 = V +. Fix Λi and k ≥ 0, and consider n such that
Ln = Λi and dn(β′) = k. Then (cf. (3.4) for the estimate of ‖fn‖1)

|an|
�

Ṽ c

|fn(t)| dt ≤ |an| · ‖fn‖1 ≤ C
(

2
3

)k |Jn|
|Jn|+ dist(Jn, Λi) + |Λi|

· |Λi||Γ | .

Applying Lemma 3.4 we get

∑

n :Ln=Λi, dn(β′)=k

|an|
�

Ṽ c

|fn(t)| dt ≤ Cγ
(

2
3

)k
(k + 1)

|Λi|
|Γ | .(4.12)

Strong regularity yields

1
γ + 1

|Λi| ≤ |Λi+1| ≤
γ

γ + 1
|Λi|.

As |Λ1| ∼γ |Γ |, by summing (4.12) over i and k we get

∑

n : Jn to the right of Ṽ

|an|
�

Ṽ c

|fn(t)| dt ≤ Cγ
∞∑

i=1

|Λi|
|Γ |

∞∑

k=0

(k + 1)
(

2
3

)k

≤ Cγ
|Λ1|
|Γ | ≤ Cγ.

The case of Jn to the left of Ṽ is treated analogously. Putting together these
cases and (4.11) we get (4.10). This completes the proof of Lemma 4.4.

As an immediate consequence of Lemma 4.4 we get the following:

Proposition 4.5. Let T be an admissible sequence of knots with the
corresponding general Franklin system {fn, n ≥ 0}. Let γ ≥ 1 and assume
that T satisfies the strong regularity condition with parameter γ. Then there
is a constant Cγ , depending only on γ, such that for each f ∈ H1[0, 1],

‖Sf‖1 ≤ Cγ‖f‖H1 , ‖Pf‖1 ≤ Cγ‖f‖H1 .

The next proposition indicates that the above result cannot be extended
to arbitrary partitions.

Proposition 4.6. Let T be an admissible sequence of knots from [0, 1]
satisfying the strong regularity condition for pairs with parameter γ, but not
satisfying any strong regularity condition. Let {fn, n ≥ 0} be the correspond-
ing Franklin system. Then

sup ‖sup
n≥0
|an(φ)fn| ‖1 =∞,

where the supremum is taken over all atoms φ, and an(φ) = (φ, fn).
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Proof. Fix k > 0. As T is not strongly regular, there are n0 > 0 and two
neighbouring intervals Λ,Γ0 of the partition πn0 such that

|Λ| ≤
(

1
4γ

)k+%γ

|Γ0|,

where the choice of %γ ≥ 1 will be explained later. First, consider the case
when Λ is a non-degenerate interval, i.e. |Λ| > 0. For convenience, assume
that the common endpoint τ of Λ and Γ0 is the right endpoint of Λ and left
endpoint of Γ0. Consider the function

φ =
1

2|Λ| (χΛ − χ[τ,τ+|Λ|]).(4.13)

Clearly, it is an atom. Let

n1 = min{n > n0 : tn ∈ Λ ∪ Γ0 and tn is not an endpoint of Γ0}.
Next, we will find a pair of disjoint intervals Γ1, L1 ⊂ Γ0 such that Λ,Γ1 are
neighbouring intervals of some partition πl with l ≥ n1, and

|Λ| ≤
(

1
4γ

)k−1+%γ

|Γ1|,
�

L1

|an1(φ)fn1(t)| dt ∼γ 1.(4.14)

It follows from Lemma 3.5(i) (note that by the strong regularity for
pairs, in our situation only the right endpoint of Γ0 may be a double knot
in some πn with n0 < n ≤ n1) that tn1 ∈ Γ0, and for Γ ′0 = [τ, tn1 ] we have
|Γ ′0| ≥ 1

2γ |Γ0|. Note that both tn1 and τ = t−n1
are simple knots in πn1, and

moreover the right endpoint of Γ0 is t+n1
. To simplify the notation, we assume

that the right endpoint of Γ0 is also a simple knot of πn1 ; the case when it
is a double knot is similar, but instead of fn1(t+n1

) we use limt→t+n1−0 fn1(t).
Then by Lemma 3.5(ii) and (3.4) of Proposition 3.1,

|fn1(tn1)|, |fn1(t+n1
)|, |fn1(τ)| ∼γ |Γ0|−1/2.(4.15)

These estimates, the sign changes of fn (cf. Proposition 3.1) and piecewise
linearity of fn imply that, denoting by ζn1 , ηn1 the values of f ′n1

on Λ and
Γ ′0, respectively, we have

|ζn1| ∼γ
|Γ0|−1/2

|Λ| , |ηn1 | ∼γ
|Γ0|−1/2

|Γ0|
.

Denoting by Cγ ≥ cγ the constants from these equivalences we have

|ζn1 + ηn1 | ≤ |ζn1 |+ |ηn1 |

≤ Cγ
|Γ0|−1/2

|Λ|

(
1 +

|Λ|
|Γ0|

)
≤ Cγ

|Γ0|−1/2

|Λ|

(
1 +

1
(4γ)%γ

)
,

|ζn1 + ηn1 | ≥ |ζn1 | − |ηn1 |

≥ |Γ0|−1/2

|Λ|

(
cγ − Cγ

|Λ|
|Γ0|

)
≥ |Γ0|−1/2

|Λ|

(
cγ −

Cγ
(4γ)%γ

)
.
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Now, we fix %γ ≥ 1 large enough to guarantee cγ − Cγ/(4γ)%γ ≥ cγ/2. It
should be clear that %γ depends only on γ.

Let us estimate an1(φ). Since |Λ| < |Γ ′0|, we have suppφ ⊂ Λ ∪ Γ ′0, and

|an1(φ)| =
∣∣∣

1�

0

φ(t)fn1(t) dt
∣∣∣ =

∣∣∣
1�

0

φ(t)(fn1(t)− fn1(τ)) dt
∣∣∣

=
1

2|Λ|
∣∣∣

τ�

τ−|Λ|
ζn1 · (t− τ) dt−

τ+|Λ|�

τ

ηn1 · (t− τ) dt
∣∣∣

= 1
4 |Λ| |ζn1 + ηn1 | ∼γ |Γ0|−1/2.

This and (4.15) imply that

|an1(φ)fn1(tn1)|, |an1(φ)fn1(τ)|, |an1(φ)fn1(t+n1
)| ∼γ 1/|Γ0|.(4.16)

If |Γ ′′0 | ≥ 1
2γ |Γ ′0|, then we put L1 = Γ ′′0 = [tn1 , t

+
n1

] and Γ1 = Γ ′0 = [τ, tn1 ]: in
this case, we have |Γ1| ≥ 1

2γ |Γ0|, which gives

|Λ| ≤
(

1
4γ

)k−1+%γ

· 1
4γ
|Γ0| ≤

(
1

4γ

)k−1+%γ

|Γ1|.

Moreover, it follows from (4.16) (cf. Fact 4.1) that
�
L1
|an1(φ)fn1(t)| dt ∼γ 1.

So in this case L1, Γ1 satisfy (4.14).
If |Γ ′′0 | ≤ 1

2γ |Γ ′0|, then |Γ ′0| ≥ 2γ
2γ+1 |Γ0|. Moreover, the two neighbours of

Γ ′0 in πn1 are Λ and Γ ′′0 , both of length ≤ 1
2γ |Γ ′0|. Therefore, by Lemma 3.5(i),

if tl is the first knot in T with l > n1 and belonging to Λ ∪ Γ ′0 ∪ Γ ′′0 , then
tl ∈ Γ ′0. Now tl splits Γ ′0 into two parts: (Γ ′0)′, adjacent to Λ, and (Γ ′0)′′,
adjacent to Γ ′′0 . Lemma 3.5(i) also shows that both these intervals are of
length ≥ 1

2γ |Γ ′0| ≥ 1
2γ+1 |Γ0|. In this case we put Γ1 = (Γ ′0)′ = [τ, tl] and

L1 = (Γ ′0)′′ = [tl, tn1], and (4.14) is checked as in the previous case.
Now, by an induction argument, for each i, 0 ≤ i ≤ k − 1, having an

interval Γi adjacent to Λ and such that |Λ| ≤
( 1

4γ

)k−i+%|Γi|, we find ni+1

and disjoint intervals Γi+1, Li+1 ⊂ Γi such that Λ and Γi+1 are neighbouring
intervals in some partition πl with l ≥ ni+1, and

|Λ| ≤
(

1
4γ

)k−(i+1)+%γ

|Γi+1|,
�

Li+1

|ani+1(φ)fni+1(t)| dt ∼γ 1.

It follows from the construction that the intervals L1, . . . , Lk are disjoint.
Therefore, for φ given by (4.13) we have

1�

0

sup
n≥0
|an(φ)fn(t)| dt ≥

k∑

i=1

�

Li

|ani(φ)fni(t)| dt ∼γ k.

As this can be done for each k ≥ 1, this completes the proof if |Λ| > 0.
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The case of |Λ| = 0 requires only minor changes. In this case, for some
nτ , the point τ is a double knot for all partitions πn with n ≥ nτ . If Γ is
an interval of some πn with n > nτ and has left endpoint τ , and Γ ′, Γ ′′ are
intervals obtained by the first splitting of Γ by a knot ts with s > n and ts
not equal to the right endpoint of Γ , and with Γ ′ having left endpoint τ ,
then by Lemma 3.5(i) we get |Γ ′| ∼γ |Γ |. In addition, if |Γ ′′| < 1

2γ |Γ ′|, then
(Γ ′)′, (Γ ′)′′, i.e. the first splitting of Γ ′, satisfies |(Γ ′)′| ∼γ |(Γ ′)′′| ∼γ |Γ ′|.
Therefore, we can find an infinite increasing sequence (ni, i ≥ 1) and associ-
ated intervals Γni such that Γni is an interval of πni−1 with left endpoint τ ,
tni ∈ Γni and tni is a simple knot in πni , and the splitting Γ ′ni , Γ

′′
ni of Γni by

tni satisfies |Γ ′ni | ∼γ |Γ ′′ni | ∼γ |Γni |, where Γ ′ni has left endpoint τ . It follows
that Γni+1 ⊂ Γ ′ni and the intervals Γ ′′ni are pairwise disjoint. Observe that
τ = t−ni , and by (3.4) in Proposition 3.1,

lim
t→t−ni+0

|fni(t)|, |fni(tni)|, lim
t→t+ni−0

|fni(t)| ∼γ |Γni |−1/2.

Moreover, as τ is a double knot in πni−1, we have fni(t) = 0 for t ∈ [0, τ)
(cf. Proposition 3.1). Now, let k ≥ 1, and let

φk =
1

2|Γ ′nk |
(χ[τ−|Γ ′nk |,τ ] − χΓ ′nk ).

Clearly, φk is an atom, and by arguments analogous to the previous case,
|ani(φk)| ∼γ |Γni |−1/2 for 1 ≤ i ≤ k. Consequently,

1�

0

sup
n≥0
|an(φk)fn(t)| dt ≥

k∑

i=1

�

Γ ′′ni

|ani(φk)fni(t)| dt ∼γ k.

This completes the proof of Proposition 4.6.

Implication (C)⇒(D). We show that this implication holds for partitions
satisfying the strong regularity condition for pairs.

Proposition 4.7. Let T be an admissible sequence of knots with the
corresponding general Franklin system {fn, n ≥ 0}. Let γ ≥ 1 and assume
that T satisfies the strong regularity condition for pairs with parameter γ.
Let (an, n ≥ 0) be a sequence of coefficients such that S ∈ L1[0, 1]. Then
there is f ∈ H1[0, 1] such that an = (f, fn) for each n ≥ 0. Moreover , there
is a constant Cγ , depending only on γ, such that for each f ∈ H1[0, 1],

‖f‖H1 ≤ Cγ‖Sf‖1.
Proof. If S ∈ L1[0, 1], then there is f ∈ L1[0, 1] such that f=

∑∞
n=0 anfn,

with the series convergent in L1[0, 1]; this follows by the relative weak com-
pactness in L1[0, 1] of a uniformly integrable subset. We need to show that
f ∈ H1[0, 1], and for this, we find a suitable atomic decomposition of f .
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For convenience, assume that ‖S‖1 = 1. Let E0 = B0 = [0, 1], and for
r ≥ 1,

Er = {t ∈ [0, 1] : S(t) > 2r},

Br =
{
t ∈ [0, 1] :M(χEr , t) >

1
8γ + 5

}
.

Since M is of weak type (1, 1), we have |Br| ≤ Cγ |Er|. As ‖S‖1 = 1, we
have |Er|, |Br| → 0 as r →∞.

Now,

Br =
⋃

κ∈Ωr
Γr,κ,(4.17)

where the set Ωr of indices is at most countable, {Γr,κ : κ ∈ Ω} is a collection
of disjoint intervals no two of which have a common endpoint, and the
equality in (4.17) is up to a set of zero Lebesgue measure. As Br is an
open set, the collection {Γr,κ : κ ∈ Ωr} can be taken as the collection
of level sets of positive measure of the continuous nondecreasing function
hr(t) = |[0, t] ∩ Bc

r |. Observe that if Γr+1,ξ appears in the representation
(4.17) of Br+1, then in the representation (4.17) of Br there is Γr,κ such
that Γr+1,ξ ⊂ Γr,κ.

Consider the following sequence of functions: g0 ≡
� 1
0 f(t) dt, and for

r ≥ 1,

gr(t) =





f(t) for t ∈ Bc
r ,

1
|Γr,κ|

�

Γr,κ

f(u) du for t ∈ Γr,κ.(4.18)

Observe that f = g0 +
∑∞

r=0(gr+1 − gr), with the series convergent in L1.
As Br+1 ⊂ Br, it follows from the definition of gr, gr+1 that gr+1 − gr = 0
on Bc

r . In addition, for each r, κ we have
�

Γr,κ

gr+1(t) dt =
�

Γr,κ∩Bc
r+1

gr+1(t) dt+
�

Γr,κ∩Br+1

gr+1(t) dt

=
�

Γr,κ∩Bc
r+1

f(t) dt+
∑

ξ∈Ωr+1 :Γr+1,ξ⊂Γr,κ

�

Γr+1,ξ

f(t) dt

=
�

Γr,κ

f(t) dt =
�

Γr,κ

gr(t) dt.

The main step in the proof is to show that

|gr(t)| ≤ Cγ2r almost everywhere on [0, 1].(4.19)

Once this inequality is proved, we take φ0 ≡ 1, η0 =
� 1
0 f(u) du, and

φr,κ =
(gr+1 − gr)χΓr,κ
Cγ2r|Γr,κ|

, ηr,κ = Cγ2r|Γr,κ| for r ≥ 0, κ ∈ Ωr.



General Franklin systems 281

It then follows that φ0, φr,κ are atoms, and

|η0|+
∞∑

r=0

∑

κ∈Ωr
|ηr,κ| ≤

∣∣∣
1�

0

f(t) dt
∣∣∣+ Cγ

∞∑

r=0

∑

κ∈Ωr
2r|Γr,κ|

≤ ‖S‖1 + Cγ

∞∑

r=0

2r|Br|

≤ ‖S‖1 + Cγ

∞∑

r=0

2r|Er| ≤ Cγ‖S‖1 = Cγ.

This implies that f = η0φ0 +
∑∞

r=0
∑

κ∈Ωr ηr,κφr,κ is an atomic decomposi-
tion of f , and ‖f‖H1 ≤ Cγ.

Thus, it remains to prove (4.19). First, let t ∈ Bc
r and let t be a Lebesgue

point of f . It is enough to consider t 6∈ T . Fix m ≥ 0, and let Vm be
an interval of linearity of Sm =

∑m
n=0 anfn containing t. Then Vm 6⊂ Br,

and consequently |Vm ∩ Ec
r | ≥ 1

2 |Vm|. Since |Sm| ≤ 2r on Ec
r , it follows

by Fact 4.1 that |Sm| ≤ C2r on Vm, and in particular |Sm(t)| ≤ C2r.
Since Sm(t) → f(t) as m → ∞ (cf. Proposition 3.6(ii)), this implies that
|gr(t)| = |f(t)| ≤ S(t) ≤ C2r.

Now, fix κ ∈ Ωr, and consider gr on Γ = Γr,κ. For further convenience,
write Γ = [α, β]. Let N(Γ ) be the collection of indices n ≥ 0 satisfying one
of the following: either (i) #(πn ∩ Γ ) ≤ 1, or (ii) #(πn ∩ Γ ) = 2, but the
interval V ⊂ Γ of the partition πn is “short” in the sense that if Ṽ is the
“parent interval” for V , i.e. V is one of the two intervals obtained from the
first splitting of Ṽ by a knot from T , then |V | ≤ |Ṽ |/2. (Recall that to find
#(πn∩Γ ), we count knots of πn with their multiplicities in πn.) In case (ii),
the situation that V is a degenerate interval, i.e. |V | = 0, is also allowed.

Note that if n∈N(Γ ) and n′<n then n′∈N(Γ ). Let nΓ = maxN(Γ ) +1.
It follows by the definition of nΓ that tnΓ ∈ Γ . Let U0,W0 be the intervals of
the partition πnΓ , containing α and β, respectively. In case α (respectively β)
is a knot of πnΓ , then U0 (respectively W0) is a nondegenerate interval of
πnΓ with right endpoint α (respectively, left endpoint β). It should be clear
that the interiors of U0,W0 are disjoint.

Let SΓ =
∑nΓ

n=0 anfn. Note that |U0 ∩ Br| < |U0|; otherwise, U0 ∪ Γ
would replace Γ in the representation (4.17). If maxU0 |SΓ | > M1/22r, then
by Fact 4.1, |SΓ | > 2r on a subset of U0 of measure |U0|/2, and consequently
|U0 ∩ Er| ≥ |U0|/2. But then U0 ⊂ Br, contrary to |U0 ∩ Br| < |U0|. Thus
maxU0 |SΓ | ≤ M1/22r. By an analogous argument we have maxW0 |SΓ | ≤
M1/22r.

The next step is to prove that |U0|, |W0| ≤ 2γ|Γ | and |SΓ | ≤ M1/22r

on Γ . Consider two cases. First suppose that all n ∈ N(Γ ) satisfy (i). Then
#(πnΓ ∩ Γ ) = 2, but the interval V of πnΓ included in Γ is “long”, i.e.
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|V | > |Ṽ |/2, where Ṽ is the “parent interval” for V . Since tnΓ is one of the
endpoints of V , either Ṽ = V ∪U0 or Ṽ = V ∪W0. Suppose that Ṽ = V ∪U0.
Then |U0| ≤ |V | ≤ |Γ |. Moreover, U0, V and V,W0 are neighbouring pairs
in πnΓ , so by the strong regularity for pairs,

|W0| ≤ |W0|+ |V | ≤ γ(|V |+ |U0|) ≤ 2γ|V | ≤ 2γ|Γ |.
The case Ṽ = V ∪W0 is analogous. Note that in both cases we have |U0|+
|W0| ≤ (2γ+1)|V |. On the other hand, Γ ⊂ U0∪V ∪W0, which implies |Γ | ≤
(2γ+2)|V |. If we had maxV |SΓ | > M1/22r, then by Fact 4.1, |SΓ | > 2r on a
subset of V of measure |V |/2, so |V ∩Er| ≥ |V |/2. Let ∆ = U0∪V ∪W0. Note
that ∆ is an interval properly containing Γ , and |V | ≤ |∆| ≤ (2γ + 2)|V |.
Thus, we would have

|∆ ∩Er| ≥ |V ∩Er| ≥
|V |
2
≥ |∆|

4γ + 4
.

This would imply ∆ ⊂ Br, so Γ could not be one of intervals in the repre-
sentation (4.19), which contradicts the definition of Γ . Thus, |SΓ | ≤M1/22r

on V . Putting together this inequality, the previous estimates for |SΓ | on
U0 and W0 and the fact that Γ ⊂ U0 ∪ V ∪W0, we infer that |SΓ | ≤M1/22r

on Γ .
Now, let us consider the case when some n ∈ N(Γ ) satisfy (ii). Then

#(πnΓ ∩ Γ ) = 3 and Γ contains two neighbouring intervals of πnΓ , say
V ′, V ′′ (one of them may be degenerate); for convenience, we assume that
V ′ is to the left of V ′′ and |V ′| ≥ |V ′′|. Then (U0, V

′), (V ′, V ′′), (V ′′,W0)
are three consecutive pairs of intervals of πnΓ . Then by strong regularity for
pairs,

|U0| ≤ |U0|+ |V ′| ≤ γ(|V ′|+ |V ′′|) ≤ γ|Γ |,
and by an analogous argument |W0| ≤ γ|Γ |. Further, setting ∆ = U0 ∪ V ′ ∪
V ′′ ∪W0, we find that

|∆| ≤ |U0|+ |V ′|+ |V ′′|+ |W0| ≤ (2γ + 1)(|V ′|+ |V ′′|) ≤ (4γ + 2)|V ′|.
If we had maxV ′ |SΓ | > M1/22r, then, again by Fact 4.1, we would get
|V ′ ∩ Er| ≥ |V ′|/2. Consequently, |∆ ∩ Er| ≥ |∆|/(8γ + 4) and ∆ ⊂ Br,
which contradicts the definition of Γ . Therefore, maxV ′ |SΓ | ≤ M1/22r. It
remains to consider SΓ on V ′′, and we need to do this only for |V ′′| > 0.
But then, since there are only three knots of πnΓ in Γ , and one of them
is the left endpoint of V ′, both endpoints of V ′′ are simple knots in πnΓ .
This means that SΓ is continuous at the endpoints of V ′′. Suppose now that
maxV ′′ |SΓ | > M1/22r. Since SΓ is linear on V ′′, |SΓ | takes its maximum
at one of the endpoints of V ′′. But the left endpoint of V ′′ is the right
endpoint of V ′, and the right endpoint of V ′′ is the left endpoint of W0.
This implies that if maxV ′′ |SΓ | > M1/22r, then either maxV ′ |SΓ | > M1/22r
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or maxW0 |SΓ | > M1/22r; but we have already proved that none of these is
possible. Therefore, maxV ′′ |SΓ | ≤M1/22r.

Summarizing the above considerations, we have shown

|U0|, |W0| ≤ 2γ|Γ |, |SΓ | ≤M1/22r on U0,W0 and Γ.

In particular, this implies that
�

Γ

|SΓ (t)| dt ≤M1/22r|Γ |.(4.20)

Next, we need to estimate |
�
Γ

∑∞
n=nΓ+1 anfn(t) dt|. For this, we define

inductively two sequences {(ui, Ui), i ≥ 0} and {(wi,Wi), i ≥ 0} of indices
and intervals: put u0 = nΓ , w0 = nΓ , and U0,W0 as above. Having defined
(ui, Ui) for 0 ≤ i ≤ s, we proceed as follows: if α is a double knot in πus ,
then the procedure terminates. Otherwise, let us+1 be the first n > us such
that tn ∈ Us. If α is not a knot of πus+1 , then Us+1 is defined to be the
unique interval of this partition containing α; if α is a knot of πus+1 (note
that it is not a double knot of πus), then Us+1 is a nondegenerate interval
of πus+1 with right endpoint α.

The sequence (wi,Wi) is defined analogously, by using the point β and
choosing nondegenerate intervals with left endpoint β.

It follows from the construction that Ui+1 ⊂ Ui and Wi+1 ⊂ Wi. More-
over, by arguments analogous to those used for U0,W0 we find that Ui 6⊂ Br
and Wi 6⊂ Br. In addition, the interiors of Ui and Wj are disjoint for any i, j.

Assume now that α and β are not double knots in T . For a pair of indices
i, j, let Φi,j be the following piecewise linear function: Φi,j is equal to 0 to the
left of the left endpoint of Ui and to the right of the right endpoint of Wj ,
it is 1 between the right endpoint of Ui and the left endpoint of Wj , and
it is linear on Ui and Wj . Then Φi,j is piecewise linear with knots πui∨wj .
Note that xi = Φi,j · χUi does not depend on Wj and yj = Φi,j · χWj does
not depend on Ui.

For i, j ≥ 0, consider two splittings of the set of indices {n : n > nΓ }:
L(i) = {n : ui < n ≤ ui+1}, R(j) = {n : wj < n ≤ wj+1}.

For n ∈ L(i) ∩R(j) we have (fn, Φi,j) = 0, and consequently

�

Γ

fn(t) dt =
�

Γ

fn(t) dt−
1�

0

fn(t)Φi,j(t) dt = Ai(fn) +Bj(fn),(4.21)

where

Ai(fn) =
�

Γ∩Ui
fn −

�

Ui

fn(t)xi(t) dt,

Bj(fn) =
�

Γ∩Wj

fn −
�

Wj

fn(t)yj(t) dt.
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This implies

(4.22)
∣∣∣

�

Γ

∞∑

n=nΓ+1

anfn(t) dt
∣∣∣ =

∣∣∣
∞∑

i,j=0

∑

n∈L(i)∩R(j)

an(Ai(fn) +Bj(fn))
∣∣∣

≤ 2
∞∑

i=0

�

Ui

∣∣∣
∑

n∈L(i)

anfn(t)
∣∣∣ dt+ 2

∞∑

j=0

�

Wj

∣∣∣
∑

n∈R(j)

anfn(t)
∣∣∣ dt.

Consider the first sum on the right hand side. Observe that
∑

n∈L(i) anfn(t)
is linear on Ui. Therefore, if maxUi |

∑
n∈L(i) anfn(t)| > M1/22r+1, then by

Fact 4.1, |∑n∈L(i) anfn| > 2r+1 on a set U∗i ⊂ Ui with |U∗i | = |Ui|/2.
But this implies that max(|∑ui

n=0 anfn|, |
∑ui+1

n=0 anfn|) > 2r on U∗i . Conse-
quently, |Er ∩ Ui| ≥ |U∗i | ≥ |Ui|/2 and Ui ⊂ Br, which is impossible. Thus,
maxUi |

∑
n∈L(i) anfn(t)| ≤M1/22r+1, which gives

�

Ui

∣∣∣
∑

n∈L(i)

anfn(t)
∣∣∣ dt ≤M1/22r+1|Ui|.

Combining Lemma 3.5(iii), the inclusions Ui+1 ⊂ Ui and the inequality
|U0| ≤ 2γ|Γ | we see that

∑∞
i=0 |Ui| ≤ Cγ|Γ |. Thus, we get

∞∑

i=0

�

Ui

∣∣∣
∑

n∈L(i)

anfn(t)
∣∣∣ dt ≤ Cγ2r|Γ |.

The second sum on the right hand side of (4.22) is estimated analogously,
giving

∞∑

j=0

�

Wj

∣∣∣
∑

n∈R(j)

anfn(t)
∣∣∣ dt ≤ Cγ2r|Γ |.

Combining these estimates with (4.22) and (4.20) we find
∣∣∣

�

Γ

f(t) dt
∣∣∣ =

∣∣∣
�

Γ

∞∑

n=0

anfn(t) dt
∣∣∣ ≤ Cγ2r|Γ |.

This implies inequality (4.19) on Γ .
If α is a double knot in T , then let η be such that uη is the last ui chosen

before the end of the procedure of choosing (ui, Ui)’s. For i < η, Φi,j and
Li are defined as previously. In addition, we put L(η) = {n : n > uη} and
take modified functions Φη∗,j : Φη∗,j is equal to 0 on [0, α] and to the right
of the right endpoint of Wj , it is 1 between α and the left endpoint of Wj ,
and linear on Wj. Note that Φη∗,j is a piecewise linear function with knots
πuη∨wj . Now, for n ∈ L(η) we write formula (4.21) with Φη∗,j for suitable j.
Note that then the support of fn is included either in [0, α] or in [α, 1] (cf.
Proposition 3.1), and consequently the “left” term Aη∗(fn) is zero.
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If β is a double knot in T , then take ζ to be such that wζ is the last
wj chosen. As above, take the modified functions Φi,ζ∗ having β as a double
knot, and for n > wζ , write formula (4.21) with Φi,ζ∗. Then the “right” term
Bζ∗(fn) is zero.

If both α and β are double knots in T , then for n > uη ∨wζ the support
of fn is included either in Γ , [0, α], or [β, 1], according as tn ∈ Γ , tn < α or
tn > β. In any of these cases we have

�
Γ fn(t) dt = 0.

This completes the proof of Proposition 4.7.

5. PROOFS OF THE MAIN RESULTS

5.1. Proof of Theorem 2.1. Recall that T is an admissible sequence of
knots in [0, 1], with the corresponding Franklin system {fn, n ≥ 0}. Note
that the continuous functions are dense in H1[0, 1], and for f ∈ C[0, 1],
‖f − Qπnf‖∞ → 0 as n → ∞. As ‖f − Qπnf‖H1 ≤ ‖f − Qπnf‖∞, this
implies that the collection {fn, n ≥ 0} is linearly dense in H1[0, 1]. Clearly,
it is also minimal. Therefore, {fn, n ≥ 0} is a basis in H1[0, 1] if and only if
the corresponding sequence of partial sum operators is bounded in H1[0, 1],
that is, iff there is a constant CT such that

‖Qπn‖H1 = ‖Qπn : H1[0, 1]→ H1[0, 1]‖ ≤ CT for all n ≥ 0.(5.1)

For the proof of the necessity part, let us recall Lemma 5.2 of [9] (version
for p = 1):

Lemma 5.1. Let ε > 0 and let π = {τi, 0 ≤ i ≤ m} be a partition of
[0, 1] such that there exist three consecutive intervals Λk−1, Λk, Λk+1, where
Λl = [τl−1, τl], with the following property : either

|Λk+1| ≤ ε|Λk−1| and |Λk| ≤ ε|Λk−1|,
or

|Λk−1| ≤ ε|Λk+1| and |Λk| ≤ ε|Λk+1|.
Let Qπ be the orthogonal projection onto Sπ. Then there are ε0 > 0 and
C > 0 such that for all partitions π satisfying the above condition with
0 < ε ≤ ε0,

‖Qπ‖H1 ≥ C log(1/ε).

Lemma 5.2 of [9] has been proved for partitions with simple knots.
Let us discuss briefly the changes needed in the proof when double knots
are allowed. The proof in [9] proceeds by indicating an atom φ for which
‖Qπφ‖H1 ≥ C log(1/ε). Let us consider the case when the first set of in-
equalities in Lemma 5.1 is satisfied. If |Λk| > 0, then both the choice of the
atom

φ =
χΛk − χ[τk−1−|Λk|,τk−1]

|Λk|
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and further considerations are as in the proof of Lemma 5.2 of [9], even
if |Λk+1| = 0, or some knot of π other than τk is double. If |Λk| = 0, i.e.
τk = τk−1, then |Λk+1| > 0, and it is enough to consider

φ(t) = 2
τk+1 − t
|Λk+1|2

χΛk+1(t)− 1
|Λk+1|

χ[τk−|Λk+1|,τk](t).

Since τk = τk−1 is a double knot of π, for this φ we have

Qπφ(t) = 2
τk+1 − t
|Λk+1|2

χΛk+1(t) for t > τk,

and by arguments analogous to those from [9], |Qπφ(t)| ≤ 15/|Λk−1| for
t ≤ τk. When we know this, considerations analogous to those in [9] (with
τk replacing yk) give the required lower bound for ‖Qπφ‖H1 .

Now, if T does not satisfy the strong regularity condition for pairs with
any γ > 0, then for each ε we can find nε such that πnε satisfies the conditions
of Lemma 5.1. Consequently, ‖Qπnε‖H1 ≥ C log(1/ε), and condition (5.1) is
not satisfied.

To complete the proof of Theorem 2.1, we need to show that strong
regularity for pairs implies (5.1). This is the content of

Lemma 5.2. Let T = (ti, i ≥ 0) be a sequence of knots in [0, 1] satisfying
the strong regularity condition for pairs with parameter γ. Let Tn = (ti, 0 ≤
i ≤ n), let πn be the partition of [0, 1] obtained by nonincreasing rearrange-
ment of Tn, and let Qπn be the orthogonal projection on S(πn). Then there
is a constant Cγ such that for every n ≥ 1 and every f ∈ H1[0, 1],

‖Qπnf‖H1 ≤ Cγ‖f‖H1 .

Proof. Write πn = (tn,i, 0 ≤ i ≤ n), tn,i ≤ tn,i+1.
First, let φ be an atom. To simplify the notation, let η = Qπnφ. We are

going to construct a suitable atomic decomposition for η.
If φ ≡ 1, then η ≡ 1, and η is an atom.
Now, let φ be an atom such that

� 1
0 φ(t) dt = 0, suppφ ⊂ Γ = [α, β],

and |φ| ≤ 1/|Γ |. Moreover, let ∆ = [tn,k, tn,l] be the minimal interval with
endpoints in πn containing Γ . That is, Γ ⊂ ∆, and there are no knots of πn
in (tn,k, α], [β, tn,l).

For 0 ≤ i ≤ n, let N−i = Nπn,i · χ(tn,i−1,tn,i], N
+
i = Nπn,i · χ(tn,i,tn,i+1],

with the understanding that N−0 ≡ 0 and N+
n ≡ 0; note that if tn,i−1 = tn,i,

then N−i−1 = Nπn,i−1, N+
i−1 ≡ 0 and N−i ≡ 0, N+

i = Nπn,i.
As η ∈ S(πn), there are coefficients (ai, 0 ≤ i ≤ n) such that η =∑n
i=0 aiNπn,i. Now, introduce the functions

{
ψ0 = 2

3a0Nπn,0 + 1
3a1N

−
1 , ψn = 1

3an−1N
+
n−1 + 2

3anNπn,n,

ψi = 1
3ai−1N

+
i−1 + 2

3aiNπn,i + 1
3ai+1N

−
i+1 for 1 ≤ i ≤ n− 1.

(5.2)

They will be used to get the required atomic decomposition for η.
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Since Nπn,i = N−i +N+
i , we have

η =
n∑

i=0

ψi.(5.3)

Set Li = suppNπn,i; recall that suppNπn,i = [tn,i−1, tn,i+1] for 1 ≤ i ≤ n−1,
suppNπn,0 = [tn,0, tn,1] and suppNπn,n = [tn,n−1, tn,n]. Note that

suppψi ⊂ Li, 0 ≤ i ≤ n.(5.4)

Moreover, we have




(η,Nπn,0) =
λn,1

3
a0 +

λn,1
6

a1 =
1�

0

ψ0(t) dt,

(η,Nπn,i) =
λn,i
6

ai−1 +
λn,i + λn,i+1

3
ai +

λn,i+1

6
ai+1 =

1�

0

ψi(t) dt

for 1 ≤ i ≤ n− 1,

(η,Nπn,n) =
λn,n

6
an−1 +

λn,n
3

an =
1�

0

ψn(t) dt.

(5.5)

Note that (η,Nπn,i) = (φ,Nπn,i). Now, we split the system (5.5) into three
parts: (I) equations with 0 ≤ i ≤ k − 1, (II) equations with k ≤ i ≤ l, (III)
equations with l + 1 ≤ i ≤ n.

First consider the subsystem (I); note that this case appears only when
k > 0. For 0 ≤ i ≤ k − 1, the supports of φ and Nπn,i are disjoint, so
(φ,Nπn,i) = 0. In particular, this implies that

1�

0

ψi(t) dt = 0 for i ≤ k − 1.(5.6)

By arguments analogous to those used e.g. in the proof of Lemma 5.2 of
[9] we get, for 0 ≤ i ≤ k − 1,

aiai+1 ≤ 0, |ai| ≤
1
2
|ai+1|, |ai| ≤

2
3

λn,i+1

λn,i + λn,i+1
|ai+1|.

Since ‖φ‖1 ≤ 1 and ‖Qπn‖1 ≤ 3 (see Proposition 3.6(i)), we have ‖η‖1 ≤ 3.
But

‖η‖1 ∼
n∑

i=0

|ai|(λn,i + λn,i+1) ≥ |ak|(λn,k + λn,k+1).(5.7)

From the last two inequalities we get, for i ≤ k − 1,
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|ai| ≤
(

2
3

)k−i k−1∏

j=i

λn,j+1

λn,j + λn,j+1
|ak|

=
(

2
3

)k−i λn,k|ak|
λn,i + λn,i+1

k−1∏

j=i+1

λn,j
λn,j + λn,j+1

≤ C
(

2
3

)k−i 1
λn,i + λn,i+1

.

As ‖ψi‖∞ ≤ max(|ai−1|, |ai|, |ai+1|), the above estimates (together with (5.7)
in case i = k − 1), strong regularity for pairs and (5.4) imply that

∣∣∣∣
(

3
2

)k−i
ψi(t)

∣∣∣∣ ≤
Cγ
|Li|

for t ∈ Li, i ≤ k − 1.(5.8)

Now, put

ψ̃i =
1
Cγ

(
3
2

)k−i
ψi, bi = Cγ

(
2
3

)k−i
for i ≤ k − 1.(5.9)

It follows from (5.6) and (5.8) that ψ̃i, 0 ≤ i ≤ k − 1, are atoms.
By analogous considerations for the subsystem (III), we get

1�

0

ψi(t) dt = 0,

∣∣∣∣
(

3
2

)i−l
ψi(t)

∣∣∣∣ ≤
Cγ
|Li|

for t ∈ Li, i ≥ l + 1.

Put

ψ̃i =
1
Cγ

(
3
2

)i−l
ψi, bi = Cγ

(
2
3

)i−l
for i ≥ l + 1.(5.10)

It follows that ψ̃i, l + 1 ≤ i ≤ n, are atoms.
It remains to consider the part corresponding to (II). To this end, put

∆̃ = [tn,k−1, tn,l+1] and

ψ∗ = ψk + · · ·+ ψl.(5.11)

It follows by the partition of unity property for Nπn,i’s and (φ,Nπn,i) = 0
for i ≤ k − 1 and i ≥ l + 1 that

0 =
1�

0

φ(t) dt =
1�

0

φ(t)
n∑

i=0

Nπn,i(t) dt =
n∑

i=0

(φ,Nπn,i) =
l∑

i=k

(φ,Nπn,i).

Using this equality, (5.4) and (5.5) we obtain

suppψ∗ ⊂ ∆̃,
1�

0

ψ∗(t) dt =
l∑

i=k

(φ,Nπn,i) = 0.(5.12)

It remains to show that ‖ψ∗‖∞ ≤ Cγ/|∆̃|. For this, consider two cases.
(II-a) l > k+ 3. In this case, Γ contains the intervals [tn,k+1, tn,k+3] and

[tn,l−3, tn,l−1]. By strong regularity for pairs,

|[tn,k−1, tn,k+1]| ∼γ |[tn,k+1, tn,k+3]|, |[tn,l−3, tn,l−1]| ∼γ |[tn,l−1, tn,l+1]|.
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Since |∆̃| ∼ |Γ |+ |[tn,k−1, tn,k+1]|+ |[tn,l−1, tn,l+1]|, we find that

|∆̃| ∼γ |Γ |.
Further, since ‖φ‖∞ ≤ 1/|Γ |, by Proposition 3.6(i) we get

|ai| ≤ ‖η‖∞ ≤ 3‖φ‖∞ ≤
3
|Γ | , 0 ≤ i ≤ n.

Therefore in case (II-a) we get

‖ψ∗‖∞ ≤ max
k−1≤i≤l+1

|ai| ≤
3
|Γ | ≤

Cγ

|∆̃|
.(5.13)

(II-b) k + 1 ≤ l ≤ k + 3. In this case, by strong regularity for pairs we
get

λn,i + λn,i+1 ∼γ |∆̃|, k − 1 ≤ i ≤ l + 1.

Moreover, from ‖φ‖1 ≤ 1 and Proposition 3.6(i) we deduce that
l+1∑

i=k−1

|ai|(λn,i + λn,i+1) ≤
n∑

i=0

|ai|(λn,i + λn,i+1) ∼ ‖η‖1 ≤ 3‖φ‖1 ≤ 3.

These considerations imply that

|ai| ≤
Cγ

|∆̃|
for k − 1 ≤ i ≤ l + 1.

Thus, also in case (II-b) we get

‖ψ∗‖∞ ≤ max
k−1≤i≤l+1

|ai| ≤
Cγ

|∆̃|
.(5.14)

Combining (5.12), (5.13) in case (II-a) and (5.14) in case (II-b) and
setting

ψ̃ =
1
Cγ

ψ∗, b = Cγ ,(5.15)

we find that ψ̃ is an atom.
It follows from the above considerations (cf. (5.3), (5.9), (5.10), (5.11)

and (5.15)) that

η =
k−1∑

i=0

biψ̃i + bψ̃ +
n∑

i=l+1

biψ̃i,

k−1∑

i=0

|bi|+ |b|+
n∑

i=l+1

|bi| ≤ Cγ ,(5.16)

where all ψ̃, ψ̃i, i ≤ k− 1 or i ≥ l+ 1, are atoms. Thus, formula (5.16) gives
an atomic decomposition of η.

To complete the proof, let f ∈ H1[0, 1]. Let f =
∑∞

j=0 djφj be an atomic
decomposition of f such that

∑∞
j=0 |dj| ≤ 2‖f‖H1 . Without loss of general-

ity, we may assume that φ0 ≡ 1, d0 =
� 1
0 f(t) dt and φj 6≡ 1 for j ≥ 1. Let
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f̃ = Qπnf and ηj = Qπnφj . Since the atomic decomposition of f converges
to f in L1[0, 1] and the linear operator Qπn is bounded on L1[0, 1], we have
f̃ =

∑∞
j=0 djηj , with the series convergent in L1[0, 1].

For j = 0, η0 ≡ 1 is an atom. For j ≥ 1, let ηj =
∑

i bi,jψ̃i,j be an
atomic decomposition of ηj having at most n + 1 nonzero terms and with∑

i |bi,j| ≤ Cγ; for example, it can be the decomposition given by (5.16).
Then we have the following atomic decomposition of f̃ :

f̃ = y0η0 +
∑

i,j

yi,jψ̃i,j , where y0 = d0, yi,j = djbi,j for j ≥ 1.

Observe that

|y0|+
∑

i,j

|yi,j | = |d0|+
∑

j

|dj|
∑

i

|bi,j | ≤ Cγ
∑

j≥0

|dj| ≤ 2Cγ‖f‖H1 .

This implies ‖f̃‖H1 ≤ 2Cγ‖f‖H1 , and the proof of Lemma 5.2 is complete.

5.2. The proof of Theorem 2.2. We start with the sufficiency part.
Clearly, if T satisfies the strong regularity condition, then it also satisfies
the strong regularity condition for pairs, so by Theorem 2.1, the correspond-
ing Franklin system {fn, n ≥ 0} is a basis in H1[0, 1]. Let f ∈ H1[0, 1],
f =

∑∞
n=0 anfn, ε = (εn, n ≥ 0) with εn ∈ {−1, 1.}. We need to prove the

convergence in H1[0, 1] of the series fε ∼
∑∞

n=0 εnanfn.
It follows from Proposition 4.5 that Pf ∈ L1[0, 1] and ‖Pf‖1 ≤

Cγ‖f‖H1 . Since Pf = Pfε, applying Propositions 4.3 and 4.7 to the se-
quence of partial sums of the series defining fε we find that it is a Cauchy se-
quence in H1[0, 1], Consequently, the series defining fε converges in H1[0, 1],
fε ∈ H1[0, 1] and

‖fε‖H1 ≤ Cγ‖Sfε‖1 ≤ Cγ‖Pfε‖1 = Cγ‖Pf‖1 ≤ Cγ‖f‖H1 .

This implies that {fn, n ≥ 0} is an unconditional basis in H1[0, 1].
Now we turn to the necessity part. If T does not satisfy the strong reg-

ularity condition for pairs, then by Theorem 2.1 the corresponding Franklin
system is not a basis in H1[0, 1]. It remains to consider the case when T sat-
isfies the strong regularity condition for pairs, but fails the strong regularity
condition. Then the corresponding Franklin system is a basis in H1[0, 1],
and we need to show that this basis is not unconditional.

Suppose it is unconditional. Let f ∈ H1[0, 1], f =
∑∞

n=0 anfn and
ε = (εn, n ≥ 0) with εn ∈ {−1, 1.}. By unconditionality of {fn, n ≥ 0}
in H1[0, 1] we get fε =

∑∞
n=0 εnanfn ∈ H1[0, 1] (with the series convergent

in H1[0, 1]). Since ‖ ·‖1 ≤ ‖·‖H1 , this implies that
∑∞

n=0 anfn converges un-
conditionally in L1[0, 1], so by Fact 4.2, Pf ∈ L1[0, 1]. Moreover, by Fact 4.2
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and unconditionality of {fn, n ≥ 0} in H1[0, 1] we get, for each f ∈ H1[0, 1],

‖Pf‖1 ≤ C sup
ε
‖fε‖1 ≤ C sup

ε
‖fε‖H1 ≤ CT ‖f‖H1 ,(5.17)

with the constant CT independent of f . But it follows from Proposition 4.6
that inequality (5.17) does not hold, even for atoms. This contradiction
completes the proof.

Corollary 5.3. Let T be an admissible sequence of knots in [0, 1] sat-
isfying the strong regularity condition with parameter γ. Let a = (an, n ≥ 0)
be a sequence of coefficients. Then conditions (A)–(D) from Section 4 are
equivalent. Moreover , they are equivalent to the following condition (E):

(E) The series
∑∞

n=0 anfn converges unconditionally in H1[0, 1].

In addition, for f ∈ H1[0, 1], f =
∑∞

n=0 anfn, we have

‖f‖H1 ∼γ ‖Pf‖1 ∼γ ‖Sf‖1 ∼γ sup
ε=(εn, n≥0), εn∈{−1,1}

∥∥∥
∞∑

n=0

εnanfn

∥∥∥
1
,

with the implied constants depending only on γ.

Finally, let us remark that when an admissible sequence of knots satisfies
the strong regularity condition, then the corresponding Franklin system is a
greedy basis in H1[0, 1]. For the definition of greedy basis see [12], where this
notion has been introduced, or e.g. to [10], where we have checked that each
general Franklin system (properly normalized) is a greedy basis in Lp[0, 1],
1 < p <∞.

Corollary 5.4. Let T be an admissible sequence of knots in [0, 1] sat-
isfying the strong regularity condition with parameter γ. Then {fn/‖fn‖H1 ,
n ≥ 0}, the corresponding Franklin system, normalized in H1[0, 1], is a
greedy basis in H1[0, 1].

Proof. We just give a sketch of the proof, because it follows the lines of
the proof of Corollary 2.2 in [10].

It has been proved in [12] that a basis in a Banach space is greedy
if and only if it is unconditional and democratic (see [12] or [10] for the
definition). Theorem 2.2 guarantees that for strongly regular sequences of
knots, {fn/‖fn‖H1 , n ≥ 0} is an unconditional basis in H1[0, 1]. To prove
that this system is democratic, we check that for each m and n1 < · · · < nm,∥∥∥∥

fn1

‖fn1‖H1
+ · · ·+ fnm

‖fnm‖H1

∥∥∥∥
H1
∼γ m.(5.18)

But it follows from Corollary 5.3 that ‖fn‖H1∼‖fn‖1. Therefore, the equiva-
lence (5.18) is checked in the same way as the democracy of {fn/‖fn‖p, n≥0}
in Lp[0, 1] (cf. the proof of Corollary 2.2 in [10]), with the use of ‖f‖H1 ∼γ
‖Pf‖1 and Proposition 4.5 of [10].
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