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General Fuzzy Min-Max Neural Network for
Clustering and Classification

Bogdan Gabrys and Andrzej Bargiela

Abstract—This paper describes a general fuzzy min-max
(GFMM) neural network which is a generalization and extension
of the fuzzy min-max clustering and classification algorithms de-
veloped by Simpson. The GFMM method combines the supervised
and unsupervised learning within a single training algorithm.
The fusion of clustering and classification resulted in an algo-
rithm that can be used as pure clustering, pure classification,
or hybrid clustering classification. This hybrid system exhibits
an interesting property of finding decision boundaries between
classes while clustering patterns that cannot be said to belong to
any of existing classes. Similarly to the original algorithms, the
hyperbox fuzzy sets are used as a representation of clusters and
classes. Learning is usually completed in a few passes through the
data and consists of placing and adjusting the hyperboxes in the
pattern space which is referred to as an expansion–contraction
process. The classification results can be crisp or fuzzy. New data
can be included without the need for retraining. While retaining
all the interesting features of the original algorithms, a number
of modifications to their definition have been made in order to
accommodate fuzzy input patterns in the form of lower and upper
bounds, combine the supervised and unsupervised learning, and
improve the effectiveness of operations.

A detailed account of the GFMM neural network, its compar-
ison with the Simpson’s fuzzy min-max neural networks, a set of
examples, and an application to the leakage detection and identifi-
cation in water distribution systems are given.

Index Terms—Classification, clustering, fuzzy systems, fuzzy
min-max neural networks, pattern recognition.

I. INTRODUCTION

DESPITE significant progress, computer-based pattern
recognition faces continuous challenge from human

recognition. Humans seem to be more efficient in solving many
complex classification tasks which still cannot be handled
easily by computers.

One of the more promising approaches to computer-based
pattern recognition is the use of artificial neural networks. They
have been successfully used in many pattern recognition prob-
lems [7], [16], [29]. There are two main training strategies for
pattern classification procedures: supervised and unsupervised
learning. In supervised learning, often referred to as a pattern
classification problem, class labels are provided with input pat-
terns and the decision boundary between classes that minimizes
misclassification is sought. In unsupervised learning, often re-
ferred to as a cluster analysis problem, the training pattern data
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is unlabeled and one has to deal with the task of splitting a set of
patterns into a number of more or less homogenous clusters with
respect to a suitable similarity measure. Patterns which are sim-
ilar are allocated to the same cluster, while the patterns which
differ significantly are put in different clusters. Regardless of the
clustering method the final result is always a partition of patterns
in disconnected or overlapped clusters.

Very often these two training strategies are treated separately
since they have their specific environments and applications.
However, it can be observed that one of the humans’ strengths
in solving classification problems is the ability to combine la-
beled and unlabeled data. When one does not know how to clas-
sify a new object (pattern), one is able to remember its charac-
teristic features for later referencing or subsequent association
with other objects.

Another important characteristic of human reasoning is the
ease with of coping with uncertain or ambiguous data encoun-
tered in real life. The traditional (statistical) approaches to pat-
tern classification have been found inadequate in such circum-
stances and this shortcoming has prompted the search for a more
flexible labeling in classification problems. The theory of fuzzy
sets was suggested as a way to remedy this difficulty. The sem-
inal publication reporting the use of fuzzy sets in pattern recog-
nition was that of Bellmanet al. [4]. Since then the combina-
tion of fuzzy sets and pattern classification has been studied
by many researchers [5], [6], [26]. The flexibility of fuzzy sets
and the computational efficiency of neural networks with their
proven record in pattern recognition problems has caused a great
amount of interest in the combination of the two [2], [6], [9],
[10], [17], [22], [25], [27], [30], [31].

The pattern recognition method reported in this paper orig-
inated from our investigation into uncertain information pro-
cessing in the context of decision support (DS) for operational
control of industrial processes [4], [12]. The essential require-
ments of such a system were: the ability to process input data
in form of confidence limits; the ability to incorporate new in-
formation without need to completely retrain the network; and
the ability to combine the supervised and unsupervised learning
strategies within a single algorithm.

The fuzzy min-max (FMM) clustering and classification
neural networks [30], [31], with their representation of classes
as hyperboxes in -dimensional pattern space and their con-
ceptually simple but powerful learning process, provided a
natural basis for our development. Interesting derivatives of the
original FMM can also be found in [17] and [21].

The proposed generalized fuzzy min-max (GFMM) neural
network incorporates significant modifications that improve
the effectiveness of the original algorithms. In developing the
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GFMM algorithm a number of issues have been addressed
which have also drawn the attention of other researchers in
recent years. These include the problems of distinguishing
between ignorance and equal evidence or interpretation of de-
grees of membership as a measure of typicality or compatibility
[18], incorporating labeled data into clustering algorithms
[28], interval analysis [23], and combination of supervised and
unsupervised learning.

An important development of the GFMM algorithm relates
to the interpretation of the membership values, both during the
training and the operation of the GFMM neural network, as the
degree of belonging or compatibility as advocated by Krishna-
puram and Keller [18]. By relaxing the probabilistic constraint
that the memberships of a data point across classes have to add
up to one (used in Bezdek’s fuzzy C-means algorithm [5]) and
suitably modifying an objective function to be minimized during
the clustering process, the possibilistic C-means algorithm was
proposed that not only provided the membership values corre-
sponding more closely to the notion of typicality, but also proved
to be more immune to noise.

Due to the fact that the fuzzy membership functions proposed
by Simpson and used in FMM algorithms can assign a relatively
high membership value to an input vector which is quite far from
the cluster prototype, as illustrated in Figs. 3 and 4, it was nec-
essary to propose a new membership function which monoton-
ically decreases with a growing distance from a cluster proto-
type, as illustrated in Fig. 5, thus eliminating the likely confu-
sion between cases of “equally likely” and “unknown” inputs. It
will also be shown that after modification of expansion criteria
the GFMM can create larger (in volumetric sense) hyperboxes
with greater ability to identify outliers and reduce their influ-
ence on data partitioning.

In many applications uncertainty associated with input data is
quantified and presented in form of confidence intervals or con-
fidence limits [3], [14], [20]. The interval analysis [23], which
underlies the fuzzy sets and fuzzy numbers theory, was initially
used for accounting for a finite tolerance of elements and rec-
ognized that some physical entities can take any value from an
interval rather than be described by a single crisp value. The
input to GFMM neural network has been generalized from a
point in -dimensional pattern space to a hyperbox which is a
multidimensional representation of a set of variables given in
the form of lower and upper limits—intervals in. This, com-
bined with the modified membership function and an internal
representation of data clusters as hyperboxes, provided a way
of processing that type of uncertain inputs in a very efficient
manner. The compatibility between the type of input and cluster
representation has also been utilized in neural network structure
optimization, i.e., reducing a number of hyperbox clusters en-
coded in the network without loss of recognition performance.

Another problem addressed in this paper concerns the
combination of supervised and unsupervised learning within
the framework of fuzzy min-max neural networks. While
Simpson presented two separate approaches to neural network
training: one for clustering problem and one for classification
problem, the GFMM combines them in a single algorithm.
Pedrycz and Waletzky, in their paper concerning clustering with
partial supervision [28], have pointed out that quite often the

real-world applications call for many intermediate modes of the
structural search in the data set, the efficiency of which could
be substantially enhanced by a prudent use of the available
domain knowledge about the classification problem at hand. It
was shown that even a small percentage of the labeled patterns
substantially improved the results of clustering. While Pedrycz
and Waletzky’s algorithm is based on minimization of the
suitably formulated objective function, the positive effect of
labeled patterns on generated clusters have also been observed
in GFMM as reported in this paper.

The problems of generalization, overfitting and reducing
the number of hyperboxes created during the training were
addressed by proposing an adaptive maximum size of hyperbox
scheme. The maximum hyperbox sizeis the most important
user-specified parameter which decides how many hyperboxes
will be created. Generally, the larger, the fewer hyperboxes
are created. This has an effect of increasing the generalization
ability of the network but it decreases the ability to capture
nonlinear boundaries between classes. On the other hand,
small may lead to data overfitting with the extreme case
of individual inputs memorised as separate hyperboxes. The
scheme attempting to find a compromise between these two
conflicting options has been implemented in GFMM.

The essential characteristics of the proposed GFMM can be
summarized in the following points.

1) Input patterns can be fuzzy hyperboxes in the pattern
space, or crisp-points in the pattern space.

2) The fuzzy hyperbox membership function and basic hy-
perbox expansion constraint proposed in [30] and [31]
have been modified.

3) The labeled and unlabeled input patterns can be processed
at the same time which resulted in an algorithm that can
be used as pure clustering, pure classification, or hybrid
clustering/classification system.

4) The parameter regulating the maximum hyperbox size
can be changed adaptively in the course of GFMM neural
network training.

The remainder of this paper is organized as follows. Sec-
tion II gives a short description of the original fuzzy min-max
algorithm. In Section III, the detailed description of the GFMM
neural network with emphasis on new features and reasons be-
hind changes to the original fuzzy min-max neural networks is
given. Section IV presents a set of examples demonstrating dif-
ferent aspects of the GFMM neural network operations. Its com-
parison with the original fuzzy min-max neural network for the
IRIS data and some results of applying it to the leakage detection
and identification in water distribution systems are also given.
Finally, the conclusions are outlined in Section V.

II. THE ORIGINAL FUZZY MIN-MAX ALGORITHMS

The fuzzy min-max clustering and classification neural net-
works [30], [31] are built using hyperbox fuzzy sets. A hyperbox
defines a region of the-dimensional pattern space, and all pat-
terns contained within the hyperbox have full cluster/class mem-
bership. A hyperbox is completely defined by its min point and
its max point. The combination of the min-max points and the
hyperbox membership function defines a fuzzy set (cluster). In
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the case of a classification, hyperbox fuzzy sets are aggregated
to form a single fuzzy set class.

Learning in the fuzzy min-max clustering and classification
neural networks consists of creating and expanding/contracting
hyperboxes in a pattern space. The learning process begins by
selecting an input pattern and finding the closest hyperbox to
that pattern that can expand (if necessary) to include the pattern.
If a hyperbox cannot be found that meets the expansion criteria,
a new hyperbox is formed and added to the system. This growth
process allows existing clusters/classes to be refined over time,
and it allows new clusters/classes to be added without retraining.
One of the undesirable effects of hyperbox expansion are over-
lapping hyperboxes. Because hyperbox overlap causes ambi-
guity and creates possibility of one pattern fully belonging to
two or more different clusters/classes, a contraction process is
utilized to eliminate any undesired hyperbox overlaps. In the
case of a classification NN the overlap is eliminated only for
hyperboxes that represent different classes.

In summary, the fuzzy min-max neural network learning al-
gorithm is a four-step process consisting ofInitialization, Ex-
pansion, Overlap Test, andContractionwith the last three steps
repeated for each training input pattern.

III. GFMM A LGORITHM

This section provides a description of the proposed GFMM
algorithm based on the principle of expansion/contraction
process. For the reference and comparison purposes, the nota-
tion used in the following section have been kept consistent,
as far as possible, with the original papers introducing fuzzy
min-max neural networks.

A. Basic Definitions

1) Input: The first extension introduced in the GFMM spec-
ification concerns the form of the input patterns that can be pro-
cessed. The input is specified as the ordered pair

(1)

where is the th input pattern in a form of
lower, , and upper, , limits vectors contained within the

-dimensional unit cube ; and is the
index of one of the classes, where means that the
input vector is unlabeled.

In other words, instead of a point in-dimensional space that
has to be classified one has a hyperbox with the min point de-
termined by the vector and the max point determined by the
vector . It can be observed, that when and are equal
this hyperbox shrinks to a point. Therefore, the proposed rep-
resentation of inputs is a generalization of a more conventional
representation as points in-dimensional space.

While for some simple classification problems the complete
set of possible input vectors can be explicitly stated and learned,
for the real, high dimensional problems typically there is a huge
number of potential input vectors. Also, such data is often a
mixture of labeled and unlabeled instances.

To reflect this input data complexity an additional index
for unlabeled data has been introduced. Using neural

network phraseology, we attempt to define hybrid, supervised
(labeled inputs—classification) and unsupervised (unlabeled
inputs—clustering), NN.

2) Fuzzy Hyperbox Membership Function:The fuzzy hy-
perbox membership function plays a crucial role in the fuzzy
min-max classification and clustering algorithms. The decision
whether the presented input pattern belongs to a particular class
or cluster, thus whether the corresponding hyperbox is to be ex-
panded, depends mainly on the membership value describing
the degree to which an input pattern fits within the hyperbox.
Following Simpson [30], let theth hyperbox fuzzy set, , be
defined by the ordered set

(2)

for all , where is the th input
pattern, is the min point for the th
hyperbox, is the max point for the
th hyperbox, and the membership function for theth hyperbox

is .
For a decision support system that intends to quantify the con-

fidence limit on its advice, it is a natural assumption that the de-
gree of membership of for the hyperbox is one if is
contained within the hyperbox , and the degree of member-
ship decreases as moves away from the hyperbox .

It should be noted that neither the membership function pre-
sented in [30] (shown in Fig. 3) nor the membership function
presented in [31] (shown in Fig. 4) satisfies this assumption.
The two-dimensional (2-D) example shows that even for pat-
terns that are far from the hyperbox, the membership values are
large. It can also be observed that the membership values do not
decrease steadily with increasing distance from the hyperbox.

To meet the required criteria a new membership function
(shown in Fig. 5) has been defined as

(3)

where
if
if
if

—two parameter ramp

threshold function; —sensitivity parame-
ters regulating how fast the membership values decrease.

The short interpretation of this function could be put in words
as the minimum value of the maximum min-max hyperbox
points violations for all dimensions. The 1-D membership
function is shown in Fig. 1.

The 1-D illustration of membership value finding for an input
in form of lower and upper bounds is shown in Fig. 2. The hy-
perbox min, , and max, , points can be violated by both
lower, , and upper, , bound points at the same time. The
smaller membership value is yield, however, by the upper bound
value when the max hyperbox point is violated [Fig. 2(a)] and by
the lower bound value when the min hyperbox point is violated
[Fig. 2(c)]. On the basis of this observation, the upper bound
of the input pattern is applied to max hyperbox points and the
lower bound is applied to the min hyperbox points as shown in
(3).
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Fig. 1. One-dimensional (1-D) membership function for the hyperboxB and
ith dimension. Examples for different.

B. GFMM Learning Algorithm

1) Initialization: When a new hyperbox needs to be created
its min, , and max, , points are initialized in such a way
that the hyperbox adjusting process used in the expansion part
of the learning algorithm can be automatically used. Theand

are set initially to

and (4)

This initialization means that when theth hyperbox is ad-
justed for the first time using the input pattern
the min and max points of this hyperbox would be

and (5)

identical to the input pattern.
2) Hyperbox Expansion:When the th input pattern is

presented, the hyperbox with the highest degree of member-
ship and allowing expansion (if needed) is found. The expansion
criterion, that has to be met before the hyperboxcan expand
to include the input , consists of the following two parts:

(6)

and

if

else

then adjust

if class

adjust

class
adjust

else
take

another

(7)

with theadjust operation defined as

for each

for each

If neither of the existing hyperboxes include or can expand to
include the input , then a new hyperbox is created (see
Initialization), adjusted, and labeled by settingclass .

Fig. 2. The 1-D illustration of membership value finding for an input in form
of lower and upper bounds.

The parameter is a user-defined value that
imposes a bound on the maximum size of a hyperbox and its
value significantly affects the effectiveness of the training algo-
rithm.

In contrast to the FMM, the GFMM algorithm defines the
constraint regulating the maximum size of the hyperbox (6) so
as to control the size of the hyperbox for each dimension. We
can thus ensure that the difference between max and min value
for each dimension will not be greater than the user-specified
value . Example 3 in Section IV illustrates that this additional
control can result in a more robust performance in presence of
outliers.
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Fig. 3. The example of membership functionb presented in [30] for the hyperbox defined by min pointV = [0:20:2] and max pointW = [0:30:4]: Sensitivity
parameter = 4:

Fig. 4. The example of membership functionb presented in [31] for the hyperbox defined by min pointV = [0:20:2] and max pointW = [0:30:4]: Sensitivity
parameter = 4:

The other differences in the expansion constraint result from
admitting both labeled and unlabeled input patterns. While
being a part of the expansion criterion, condition (7) describes
an inference process that attempts to use all the available
information carried by both labeled and unlabeled patterns to
the full.

Assuming that the part of the hyperbox expansion constraint
represented by (6) has been met, we have to consider the fol-
lowing possibilities represented by (7).

1) If the input pattern is not labeled then the
hyperbox can be adjusted to include this pattern. Since
there is no information to the contrary, it is assumed that
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Fig. 5. The 2-D example of membership functionb used in the GFMM classification/clustering algorithm. The hyperbox is defined by min pointV = [0:20:2]
and max pointW = [0:30:4]: Sensitivity parameter = 4:

such input could have originated from any class or cluster
to which it is close enough.

2) If the input pattern is labeled —belongs to
the particular class specified by—the three additional
cases have to be considered.

a) If the hyperbox is not a part of any of the existing
classesclass , then adjust the hyperbox

to include the input pattern and since this
input is labeled as belonging to the class specified
by , setclass . In this case, an associ-
ation process takes place whereby a group of data
represented by the hyperbox is given a label on
the basis of one labeled exemplar that is similar
(close) enough to be included into the.

b) If the hyperbox is a part of the class speci-
fied by index of the current input pattern
class , then adjust the hyperbox .

c) If neither a nor b then take another hyperbox and
test for possible expansion.

3) Hyperbox Overlap Test:Because of the admittance of la-
beled and unlabeled input patterns in the GFMM the problem of
overlapping hyperboxes includes the consideration of not only
different classes (like in the FMM classification) but also of all
these hyperboxes that are not labeled.

The resulting scheme can be described as follows.

1) If the hyperbox , expanded in the last expansion step,
is not labeled then test for overlapping with all the other
hyperboxes. This ensures that all unlabeled hyperboxes
do not overlap with any of the other existing ones.

2) If the hyperbox , expanded in the last expansion step,
belongs to one of the existing classes then test for the
overlap only with the hyperboxes not being part of the
same class as . Notice that this allows to overlap the
hyperboxes belonging to the same class.

The full hyperbox overlap test can be therefore summarized
as follows.

Assuming that hyperbox was expanded in the previous
step, test for overlapping with if

class

test for overlapping
with all the other
hyperboxes

else

test for overlapping
only if
class class

(8)

The principle of minimal adjustment, where only the smallest
overlap for one dimension is adjusted to resolve the overlap, is
used. Consequently, the smallest overlap along any dimension,
the index of the dimension and the index of the case are saved.

The four cases are being considered (where initially
).

Case 1:

Case 2:

Case 3:

Case 4:

If overlap for the th dimension has been detected (one of the
above four cases is valid) and , then ,
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andcase —the case for which
the smallest overlap was found).

If overlap for the th dimension has not been detected, set
signifying that the contraction step is not necessary.

4) Hyperbox Contraction:If then only the th di-
mensions of the two hyperboxes are adjusted.

Having saved the index of overlapping case in the previous
step we can go to adjusting stage without examining the cases
again.

The adjusting process is the same as in min-max classifica-
tion algorithm although alternative formulas for cases 1 and 2
have been proposed and tested. The differences between the two
contraction procedures for these two cases will be discussed in
more detail later when presenting examples of the GFMM op-
eration.

Case 1:

or alternatively

Case 2:

or alternatively

Case 3:

if then

otherwise

Case 4:

if then

otherwise

5) An Adaptive Maximum Size of the Hyperbox:In the orig-
inal FMM NN’s the user defined parameter controlling the
maximum size of created hyperboxes is set up at the beginning
of the learning process and stays the same all the time. To find
the best value of this parameter the network has to be trained
for several different s and verified by checking the number of
misclassifications.

After having tested the algorithm for different types of data
we can say that fixing parameterduring the training of the net-
work can have undesired effects on performance and the number
of created hyperboxes. A large value ofcan cause too many
misclassifications, especially when there are complex, overlap-
ping classes. On the other hand, whenis small, many un-
necessary hyperboxes may be created, especially for concen-
trated, stand-alone groups of data which normally would form
one class. But of course small helps to resolve overlapping
classes.

These problems have been addressed by introducing an adap-
tive maximum size of the hyperbox.

The idea is to start training the network with largeand de-
crease it (if necessary) in subsequent presentations of the data.

In original versions of the algorithm the training stops after
presenting the data once. Using the adaptive maximum size of
the hyperbox requires defining the stopping condition. In other
words when the training should be assumed to be completed.

Let us first consider the simplified case where input patterns
are points in -dimensional space. Assuming that there are no
two identical points in the data which are labeled as belonging to
two different classes, we can say that the training is completed
when after presentation of all input patterns there have been
no misclassifications for the training data. This, however, may
lead to memorization of individual data patterns (overfitting)
and deterioration in recognition performance for an independent
testing data set.

In the case of input patterns being represented by lower and
upper bound values for each dimension it is a reasonable as-
sumption that two patterns labeled as belonging to two different
classes can have overlapping regions. In such a case, an at-
tempt to resolve the overlap over the subsequent presentations
of the data, might lead to infinite adjusting of hyperboxes. Con-
sequently, the stopping condition has to be augmented in order
to ensure a finite training time.

Both goals have been achieved by specifying the minimum
value that the parametercan take. On one hand, it prevents the
memorization of the individual input patterns while on the other
hand it ensures that the inputs in form of confidence limits can
be accommodated and the training stops when this minimum
value is reached.

Reflecting the above the stopping condition is defined as fol-
lows.

The training is completed when:

a) after presentation of all training patterns there have been
no misclassifications for the training data;

b) or the minimum user-specified value of the parameter
has been reached.

The value of is modified after each presentation of the
training data as follows:

(9)

where —the coefficient responsible for the speed of decrease
of .

C. Implementation of the Neural Network

The neural network that implements the GFMM clus-
tering/classification algorithm is shown in Fig. 6. It is a
three-layer feedforward neural network that grows adaptively
to meet the demands of the problem. The input layer has
processing elements, two for each of thedimensions of
the input pattern . Each second-layer node
represents a hyperbox fuzzy set where the connections of
the first and second layers are the min-max points and the
transfer function is the hyperbox membership function. The
connections are adjusted using the algorithm described in
Section III-B. The min points matrix is applied to the first
n input nodes representing the vector of lower boundsof
the input pattern and the max points matrixis applied to the
other input nodes representing the vector of upper bounds

of the input pattern. The connections between the second-
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Fig. 6. The three-layer neural network that implements the GFMM
clustering/classification algorithm.

and third-layer nodes are binary values. They are stored in the
matrix . The equation for assigning the values ofis

if is a hyperbox for class
otherwise

(10)

where is the th second-layer node and is the th third-
layer node. Each third-layer node represents a class. The output
of the third-layer node represents the degree to which the input
pattern fits within the class . The transfer function for each
of the third-layer nodes is defined as

(11)

for each of the third-layer nodes. Node represents all
unlabeled hyperboxes from the second layer. The outputs of the
class layer nodes can be fuzzy when calculated using (11) di-
rectly, or crisp when a value of one is assigned to the node with
the largest and zero to the other nodes.

The topology of the network depicted in Fig. 6 is almost iden-
tical to the original fuzzy min-max neural network topology ex-
cept for two changes. First, the number of input nodes has been
extended from to . This has eliminated the need for double
connections from input nodes to second-layer nodes. Second, an
additional node representing all the unlabeled hyperboxes from
the second layer has been introduced in the output layer.

IV. SIMULATION RESULTS AND EXAMPLES

A. Example 1—Classification of Patterns in Form of Lower
and Upper Boundaries Vectors

The data set used in this example was constructed in order to
show the performance of GFMM algorithm on fuzzy input pat-
terns and, at the same time, to present the potential advantages
of the adaptive maximum size of a hyperbox scheme. This data
set consists of 42 input patterns representing three classes. The
first and second classes have been constructed in such a way
that finding the boundaries between them is nontrivial while the
third class is a set of patterns standing alone and not overlapping
with the other two. Two slightly different contraction procedures
have been used in this experiment. The difference is reported in
the table given at the bottom of the page and regards only Cases
1 and 2 of the contraction part of the algorithmy.

To illustrate the superior performance of the algorithm with
the adaptive maximum size of a hyperbox, compared to the al-
gorithms with parameter preset and kept constant during the
training, the training of the network for a few different constant

’s have been carried out. The results are shown in Fig. 7.
The table alongside Fig. 7 gives a statistical information on

a number of hyperboxes created and a number of misclassifica-
tions for values of ranging between 0.08 and 0.033.

To obtain the perfect recall (zero misclassifications) for the
training data the growth parameter had to be set to
resulting in the formation of 17 hyperboxes as compared to 9
(for Procedure 1) or 8 (for Procedure 2) hyperboxes formed
while using the adaptive scheme. Notice that five hyperboxes
(Fig. 7) have been formed for class 3 while one would be suffi-
cient.

The training of the GFMM for both contraction procedures
was performed in 11 passes through the data set and testing
produced a perfect recall. The starting growth parameter was

and the coefficient responsible for the decrease of
was In this example, using the second contraction
procedure, giving preference to the new inputs, resulted in all
training patterns having full memberships in appropriate hyper-
boxes (classes).

B. Example 2—The Example of Clustering/Classification of
Labeled and Unlabeled Fuzzy Input Patterns

This example was constructed to show the ability of the al-
gorithm to process fuzzy labeled and unlabeled input patterns.
The data set consists of 26 patterns from which 15 are labeled

Procedure 1 Procedure 2

Case 1:

Case 2:

Case 1:

Case 2:
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Fig. 7. The result of NN training for the 42 input pattern data set (three
classes). Left: the hyperboxes created for� = 0:033—the biggest� for which
there have been no misclassifications for the training data. Right: the table
showing the number of created hyperboxes and number of misclassifications
for various� (� was constant during training).

as belonging to one of four classes and the remaining 11 are un-
labeled. The starting growth parameter and
The training has been completed in three passes through the data
set and four hyperboxes have been formed. The GFMM algo-
rithm performed well and dealt successfully with both labeled
and unlabeled patterns as shown in Fig. 8. GFMM allowed all
unlabeled patterns to be included into the labeled hyperboxes
while resolving all overlappings between hyperboxes from dif-
ferent classes.

C. Example 3—Clustering in Presence of Outliers

A simple 2-D example has been included to illustrate the
enhanced error-rejection characteristics of the GFMM which
derives from the modified expansion criteria and membership
function. The data consisted of 41 patterns, 40 of which were
randomly generated around point [0.25 0.25] within0.05
range, and the remaining one represented an outlier. Fig. 9
and Table I illustrate the advantage of GFMM expansion
criteria, where the maximum size along individual dimensions
can be controlled, over the original expansion criteria where
only an average value from all the dimensions is restricted by
parameter . This difference means that GFMM can produce
larger hyperboxes (in volumetric sense) and still avoid the
undesired effect of including outliers into created hyperboxes.
The advantage of the GFMM is even more pronounced for high
dimensional cases.

This is to be expected since in the original FMM expansion
criteria, the maximum hyperbox size for an individual dimen-
sion (in the worst case) is restricted by . The growing di-

Fig. 8. The example of clustering/classification of the fuzzy labeled and
unlabeled patterns. The unlabeled patterns are the rectangles with an “*” mark
inside.

mension of the input vectors may mean that a practical value for
, for which the outliers could be identified (not included into

other hyperboxes), is unobtainable.
Table I also shows that using modified contraction proce-

dure (Procedure 2 from Example 1) significantly improves the
number of runs required for cluster stabilization.

D. Standard Data Sets

The performance of the GFMM have also been tested on
standard data sets used in various clustering and classification
studies. The IRIS, wine, and ionosphere data sets have been ob-
tained from the machine learning repository of the University
of California at Irvine [8]. The repository also contains the de-
tails of these data sets with some statistics and experimental re-
sults. In our study the experimental results have been restricted
to the direct comparison between original FMM algorithms and
GFMM. For comparative results for various statistical, fuzzy,
and neural clustering and classification techniques (including
Simpson’s FMM), the interested readers may refer to [17].

In order to provide a meaningful comparison the algorithms
have been tested in the same environment for the same splits of
data sets for training and testing, the same orders of input pattern
presentations and a full range of parameters.

The results shown in Table II have been obtained for a fixed
parameter ranging from zero (when FMM and GFMM col-
lapse to a nearest neighbor method with a distance measure
provided by respective membership functions) to one with step
0.01. The only difference between FMM and GFMM in this ex-
periment was the membership functions and expansion crite-
rion. High recognition rates were obtained in both cases with
GFMM having a slight edge for IRIS and ionosphere data sets.
It has been observed that the number of hyperboxes created de-
creases with the increase of parameterand reaches its min-
imum equal to the number of classes represented in the data set
for large enough to encapsulate all the data from each of the
classes.

After this initial testing, we have decided to concentrate on
the IRIS data set and in the following we examine the issues
concerning the adaptive maximum size of hyperbox scheme,
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Fig. 9. The clustering in presence of outlier. (a) and (b) GFMM with modified membership function, expansion criterion, and contraction procedure. (c) and (d)
Original FMM algorithm.

TABLE I
THE RESULTSILLUSTRATING THE NUMBER OF CREATED HYPERBOXES ANDNUMBER OF RUNS REQUIRED FORSTABILIZATION OF CLUSTERS FORSIMPLE 2-D

CLUSTERING IN PRESENCE OFOUTLIER

classification with superimposed noise and potential advantages
of representing the input patterns in form of confidence inter-
vals, clustering/classification with partial supervision and pure
clustering.

The Fisher IRIS data set was selected because of the huge
number of published results for a wide range of classification
techniques that can provide a measure of relative performance.
The IRIS data consists of 150 four-dimensional (4-D) feature
vectors (patterns) in three separate classes, 50 for each class. In
a way this example is very similar to Example 1. In Example 1,
we considered the case of three classes where two of them were

overlapping and the third was easily distinguishable from the
others. In the case of IRIS data we have two species of flowers
that can be confused (similar features—classes 2 and 3) and the
third one with characteristic features allowing to distinguish it
from the other two (class 1). Several test data sets have been
used to determine the performance of the GFMM algorithm in
different conditions.

The results presented here concern the following test data
sets:

1) 25 randomly selected patterns from each class have been
used for training and the remaining 75 for testing;
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TABLE II
RECOGNITION RATES FORGFMM AND FMM NEURAL NETWORKS FORTHREE REAL WORLD DATA SETS. RESULTS OBTAINED FOR FIXED

MAXIMUM HYPERBOX SIZES RANGING FROM ZERO TOONE WITH STEP 0.01

TABLE III
THE RESULTS OFCLASSIFICATION OF THEFISHERIRIS DATA BY THE PROPOSEDGENERAL FUZZY CLASSIFICATION-CLUSTERINGNEURAL NETWORKS

2) all available data patterns have been used for training and
testing.

1) Comparison of FMM with GFMM Including the Adaptive
Hyperbox Size Scheme:For the first test data set (as defined
above), the results presented in [30] are as follows. The growth
parameter was and the number of hyperboxes built
was 48. Training was performed in a single pass through the data
set. The number of misclassifications was two. This has been
consistent with our implementation and testing of Simpson’s
algorithm.

In comparison our algorithm produced five hyperboxes for
starting parameter and Training was com-
pleted in three passes through the data set. The number of mis-
classifications was one.

The algorithm has been tested for various starting parameters
ranging from zero to one with the minimum changing

each time from zero to starting, two different contraction pro-
cedures (presented in Example 2), and using both test data sets.
A representative set of the results is shown in Table III.

It can be observed that the GFMM method produced, in gen-
eral, considerably fewer hyperboxes then the fuzzy min-max
classification NN and also it resulted in fewer misclassifications.

The influence of the changes of parameteron classification
performance has been tested for values ranging from 0.98 to 0.5.
No significant changes in recognition rates were noticed.

The comparison of the performance of the proposed algo-
rithm with several other neural, fuzzy, and traditional classifiers
on the same data set is presented in Table IV. This comparative
performance test demonstrates that the proposed algorithm per-
formed better then other listed classifiers.

2) Addition of Noise to Data:A noise with amplitude of
0.04 has been superimposed on training and testing data sets
from point 1. The point representations have been used in

TABLE IV
A COMPARISON OF THECLASSIFICATION PERFORMANCE OFVARIOUS

TRADITIONAL , FUZZY, AND NEURAL CLASSIFIERS

Simpson’s FMM. The same level of noise has been represented
as hyperboxes where was generated by adding 0.04 to
and was generated by subtracting 0.04 from. The testing
was carried for the full range of and the best recognition level
for FMM was recorded at 96% with a significant deterioration
in recognition rates for a vast majority of tested examples. The
best recognition level for GFMM, trained and tested using data
in form of upper and lower limits, was recorded at 98.67%.
It has also been observed that the uncertainty associated with
high level of noise was directly reflected in the decrease of the
membership values when the input data is given in form of
hyperboxes. The level of information uncertainty (if available)
cannot be represented in FMM and although the data is very
noisy each point is treated as if it was absolutely accurate and
with the same level of confidence irrespective of presence or
absence of noise.
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Fig. 10. Classification results for IRIS data with superimposed noise using
GFMM with adaptive maximum size of hyperbox. Starting� = 0:4:

Fig. 10 illustrates how, for noisy data, a suitable choice of
can prevent overfitting, which occurs for small , and

at the same time provides a mechanism for resolving legitimate
nonlinearities when algorithm starts with relatively large value
of . If is too large the recognition rate decreases because
of too general representation of the encoded data (too small
number of hyperboxes).

3) Combination of Labeled and Unlabeled Data (Partial Su-
pervision): In order to show the potential benefits of combing
labeled and unlabeled data a number of experiments involving
various proportions of labeled and unlabeled input patterns in
the training data set have been carried out. The training data set
from point 1 was used with the percentage of labeled patterns
ranging from 100% (all training data labeled—pure classifica-
tion problem) to 10% (a case of clustering with partial supervi-
sion). All the training data were used in the GFMM algorithm
while the results for FMM were obtained by either applying the
pure classification using only the labeled patterns or pure clus-
tering discarding the available labels. A clear advantage in using
hybrid approach is illustrated in Fig. 11 where the results are
presented for all three approaches.

As rightly observed in [28], for the benefits of partial supervi-
sion to be noticed the labeled patterns have to be representative
of the data set to be clustered.

4) Clustering Performance:All 150 data points of IRIS data
set were used to determine the performance of GFMM in a pure
clustering task. Similarly to the FMM algorithm the clustering
has been performed for a fixed and only after the clusters
(hyperboxes) were formed a class information was used to de-
termine how well the underlying data structure was identified.
The experiments were carried out forranging from 0.03 to 0.3
with step 0.01 for GFMM and ranging from 0.01 to 0.2 with
step 0.01 for FMM algorithm. Representative results for both al-
gorithms are shown in form of confusion matrices in Fig. 12. It
has been observed that generally the GFMM required a smaller
number of hyperboxes to obtain the same level of recognition
performance as FMM, which corroborates the results presented
in Example 3.

Fig. 11. Comparison of the recognition performance for the IRIS data using
the training sets with varying % of labeled and unlabeled data (0%—pure
clustering; 100%—pure classification). (a) FMM using only labeled data—pure
classification. (b) FMM using all available data but discarding the labels—pure
clustering. (c) GFMM using all available data—hybrid clustering/classification
approach.

E. Leakage Detection and Identification in Water Distribution
Systems

The GFMM neural network has been also applied to a com-
plex decision support task of classification of the states of a
water distribution system. Due to the space limitation, only a
general description of the training and testing data sets and the
performance of the neural recognition system applied to leakage
detection and identification will be given. A more detailed anal-
ysis can be found in [4] and [15].

While for the well-maintained water distribution systems the
normal operating state data can be found in abundance the in-
stances of abnormal events are not that readily available. In
order to observe the effects of abnormal events in the physical
system, one sometimes is forced to resort to deliberate closing of
valves to simulate a blocked pipe or opening of hydrants to sim-
ulate leakages. Although such experiments can be very useful
to confirm the agreement between the behavior of the physical
system and the mathematical model, it is not feasible to carry
out such experiments for all pipes and valves in the system for
an extended period of time as might be required in order to ob-
tain a representative set of labeled data.

It is an accepted practice that, for processes where the phys-
ical interference is not recommended or even dangerous, math-
ematical models and computer simulations are used to predict
the consequences of some emergencies so that one might be pre-
pared for quick response. In our case, the computer simulations
were used to generate data covering 24-h period of the water
distribution network operations.

The simulated water distribution network was the Doncaster
Eastern Zone of the Yorkshire Water Authority and consisted of
29 nodes and 38 pipes. By systematically working through the
network, ten levels of leakages were introduced, one at a time,
in every single pipe for every hour of the 24-h period. By ap-
plying the confidence limit analysis [3], [12], [14], the possible
variations of individual input patterns have been quantified and
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Fig. 12. Representative results, in form of confusion matrices, of comparison between FMM and GFMM for pure clustering problem.

TABLE V
MISCLASSIFICATION RATES FOR THETESTING SET CONSISTING OF91 440 EXAMPLES

stored in form of lower and upper limits. In other words, the data
used in training stage were hyperboxes rather than points in the
pattern space.

As a result, a training data set comprising of 9144 examples
of 35 dimensional input patterns and representing 39 categories
has been compiled. These categories stood for normal operating
state and leakages in 38 pipes of the network.

For testing purposes an independent large testing set con-
sisting of 91 440 patterns have been generated. But this time,
the patterns to be classified were the best state estimates (points
in the pattern space) obtained for measurements with superim-
posed random errors.

A two-level recognition system has been used. The first level
consisted of one neural network and its purpose was to distin-
guish different typical behaviors of the water system (i.e., night
load, peak load, etc.) by selecting one of the second-level neural
networks. These neural networks can be viewed as “experts”
since each of them was trained using only a part of the training
set and covered a distinctive part of 24 hour operational period.

The “experts” were responsible for detection of anomalies for
some characteristic load patterns.

The training of all six second-level neural networks has been
completed in a single pass through the data. Parameterwas
determined separately for each dimension of each of the six sub-
sets of the training set and was set to the value of the largest input
hyperbox for each of these six subsets. There were no misclas-
sifications for the training data set.

The classification results for the testing data set are shown in
Table V. The percentage of misclassified input patterns for the
class with the highest membership value, top two, three, and five
alternatives, have been used as a means of assessing the ability
to correctly detect and locate leakages. Additionally, the share of
patterns representing different levels of leakages in the overall
misclassification rate is presented.

The first row in Table V illustrates the overall rate of misclas-
sified patterns for the class with the highest membership value.
This is equivalent to the hard decision classifiers that are specif-
ically designed to choose only one class which is closest to the
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input pattern. The rate of almost 17% of misclassified testing
patterns leaves some room for improvement although over 62%
of all those misclassifications were recorded for patterns repre-
senting small leakages of magnitude less or equal to 8 [l/s]. It
is interesting to note that as much as 56% of all 2 [l/s] leakages
from the testing set were misclassified. Let us, however, empha-
size that the variation of some of the consumptions can be as
much as 14 [l/s] which can easily hide the 2 [l/s] leakage. Nev-
ertheless, it is clear that the hard classifier is not the best option
in this case. The subsequent rows of the Table V illustrate the
flexibility of the recognition system based on the GFMM neural
networks. In contrast to the hard decision classifiers, a number
of alternatives can be easily obtained and sorted with respect to
the membership values. Utilizing this property the tests for the
top two, three, and five alternatives have been carried out and
misclassification rates calculated. Looking at the top two alter-
natives the overall misclassification rate has been dramatically
improved to average 6.11%. When the top five alternatives have
been considered the overall misclassification fell to 1.51% and
practically there were no misclassifications for leakages larger
or equal to 11 [l/s].

As it is very difficult to detect and pinpoint the actual location
of small leakages the fuzzy outputs of the classification system
have proved to be extremely useful. In this particular application
when an input pattern is not distinctive enough to be classified,
with a reasonable level of confidence, as belonging to only one
class, the system can return a number of viable alternatives. In
terms of a leakage detection problem the algorithm facilitates
the identification of a problematic area if there is not enough
evidence to pinpoint the leaking pipe.

V. CONCLUSIONS

A neural algorithm for clustering and classification called
the General Fuzzy Min-Max has been presented. The develop-
ment of this neural network resulted from a number of exten-
sions and modifications made to the fuzzy min-max neural net-
works developed by Simpson. Similarly to the original methods
the GFMM utilizes min-max hyperboxes as fuzzy sets. The ad-
vantages of the GFMM clustering/classification neural network
over the fuzzy min-max neural networks discussed in [30] and
[31] can be summarized as follows.

1) GFMM allows processing both fuzzy (hyperboxes in pat-
tern space) and crisp (points in pattern space) input pat-
terns. This means that the uncertainty associated with
input patterns, represented by confidence limits, can be
processed explicitly.

2) The fusion of clustering and classification in GFMM al-
lows the algorithm to be used for pure clustering, pure
classification or hybrid clustering/classification. As it was
also advocated in [28], where incorporation of labeled
data into clustering algorithm was investigated, a pru-
dent use of all available information in pattern recogni-
tion problems can significantly improve the recognition
performance and improve the process of finding the un-
derlying structure of the data at hand.

3) The adaptation of the size of hyperboxes in the GFMM al-
gorithm tends to result in larger hyperboxes without sac-

rificing the recognition rate. As it has been shown in case
of the Fisher IRIS data, GFMM produced considerably
fewer hyperboxes (compared to FMM) with fewer mis-
classifications.

4) Modifications to the membership function ensured con-
sistent interpretation of membership values which dis-
tinguishes between the cases of “equal evidence” (class
membership values high enough and equal for a number
of alternatives) and “ignorance” (all class membership
values equal or very close to zero).

The training of the GFMM neural network is very fast and,
as long as there are no identical data belonging to two different
classes, the recognition rate for training data is 100%. Since all
the manipulations of the hyperboxes involve only simple com-
pare, add, and subtract operations, the resulting algorithm is ex-
tremely efficient.

Since the GFMM forms the decision boundaries by covering
the pattern space with hyperboxes, its performance will deteri-
orate when the characteristics of the training and test data will
be very different. Therefore, it is important to provide as rep-
resentative training data for the problem as possible. However,
even when a large representative data set is available, the use of
hyperboxes may lead to inefficient representation when one has
to deal with elongated and rotated clusters of hyperelipsoidal
data. In a similar manner where hyperboxes were preferred in
this paper as a representation of clusters because of the spe-
cific nature of data to be processed (inputs in form of confi-
dence limits), a suitable cluster representation should be used in
problems where evidence suggests that it could be more efficient
from the point of view of encoding or recognition performance.
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