
Articles

62 AI MAGAZINE

■ A general game playing system is one that can accept a formal description of a game and play the game effec-
tively without human intervention. Unlike specialized game players, such as Deep Blue, general game players
do not rely on algorithms designed in advance for specific games; and, unlike Deep Blue, they are able to play
different kinds of games. In order to promote work in this area, the AAAI is sponsoring an open competition at
this summer’s Twentieth National Conference on Artificial Intelligence. This article is an overview of the tech-
nical issues and logistics associated with this summer’s competition, as well as the relevance of general game
playing to the long range-goals of artificial intelligence.

AI Magazine Volume 26 Number 2 (2005) (© AAAI)

Articles

SUMMER 2005 63

Games of strategy, such as chess, couple
intellectual activity with competition.
We can exercise and improve our intel-

lectual skills by playing such games. The com-
petition adds excitement and allows us to
compare our skills to those of others. The same
motivation accounts for interest in computer
game playing as a testbed for artificial intelli-
gence: programs that think better should be
able to win more games, and so we can use
competitions as an evaluation technique for in-
telligent systems.

Unfortunately, building programs to play
specific games has limited value in AI. To begin
with, specialized game players are very narrow:
they focus only on the intricacies of a particu-
lar game. IBM’s Deep Blue may have beaten the
world chess champion, but it has no clue how
to play checkers; it cannot even balance a
checkbook. A second problem with specialized
game-playing systems is that they do only part
of the work. Most of the interesting analysis
and design is done in advance by their pro-
grammers, and the systems themselves might
as well be teleoperated.

However, we believe that the idea of game
playing can be used to good effect to inspire
and evaluate good work in AI, but it requires
moving more of the mental work to the com-
puter itself. This can be done by focusing atten-
tion on general game playing (GGP).

General game players are systems able to ac-
cept declarative descriptions of arbitrary games
at run time and able to use such descriptions to
play those games effectively (without human
intervention). Unlike specialized game players
such as Deep Blue, general game players cannot

rely on algorithms designed in advance for spe-
cific games. General game-playing expertise
must depend on intelligence on the part of the
game player itself and not just intelligence of
the programmer of the game player. In order to
perform well, general game players must incor-
porate various AI technologies, such as knowl-
edge representation, reasoning, learning, and
rational decision making; these capabilities
must work together in an integrated fashion.

Morever, unlike specialized game players, a
general game player must be able to play differ-
ent kinds of games. It should be able to play
simple games (like tic-tac-toe) and complex
games (like chess), games in static or dynamic
worlds, games with complete and partial infor-
mation, games with varying numbers of play-
ers, with simultaneous or alternating play, with
or without communication among the players.

While general game playing is a topic with
inherent interest, work in this area has practi-
cal value as well. The underlying technology
can be used in a variety of other application ar-
eas, such as business process management,
electronic commerce, and military operations.

In order to promote work in this research
area, the AAAI is running an open competition
on general game playing at this summer’s
Twentieth National Conference on Artificial In-
telligence. The competition is open to all com-
puter systems, and a $10,000 prize will be
awarded to the winning entrant.

This article summarizes the technical issues
and logistics for this summer’s competition.
The next section defines the underlying game
model. The “Game Descriptions” section pre-
sents the language used for describing games

Copyright © 2005, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2005 / $2.00

General Game
Playing:

Overview of the

AAAI Competition

Michael Genesereth, Nathaniel Love, and Barney Pell

Articles

64 AI MAGAZINE

according to this model. The “General Game
Players” section outlines issues and strategies
for building general game players capable of us-
ing such descriptions; it is followed by the
“Game Management Infrastructure” section,
which discusses the associated general game
management infrastructure. Our conclusion of-
fers some perspective on the relationship be-
tween general game playing and the long-range
goals of AI.

Game Model
In general game playing, we consider finite,
synchronous games. These games take place in
an environment with finitely many states, with
one distinguished initial state and one or more
terminal states. In addition, each game has a
fixed, finite number of players; each player has
finitely many possible actions in any game
state, and each terminal state has an associated

goal value for each player. The dynamic model
for general games is synchronous update: all
players move on all steps (although some
moves could be “no-ops”), and the environ-
ment updates only in response to the moves
taken by the players.

In its most abstract form, we can think of a
finite, synchronous game as a state machine
with the following components:

S, a set of game states
r1, ..., rn, the n roles in an n-player game.
I1, ..., In, n sets of actions, one set for each role.
l1, ..., ln, where each li ⊆ Ii × S. These are the le-
gal actions in a state.
n, an update function mapping

Ii × ... × In × S → S.
s1, the initial game state, an element of S.
g1, ..., gn, where each gi ⊆ S × [0 ... 100].
t, a subset of S corresponding to the terminal
states of the game.

A game starts out in state s1. On each step, each

c i

b e

d

y/y

y/x

x/x

y/y x/y

y/x

x/x

x/yx/x

x/y

x/y

x/xx/x

x/y

x/x y/yx/x

y/y

x/y

y/x

g j

h

a kf

Figure 1. Simultaneous Actions.

Articles

SUMMER 2005 65

they can be conceptualized in terms of pieces,
squares, rows and columns and diagonals, and
so forth. By exploiting this structure, it is pos-
sible to encode games in a form that is more
compact than direct representation.

Game definition language (GDL) is a formal
language for defining discrete games with com-
plete information. GDL supports compact rep-
resentation by relying on a conceptualization
of game states as databases and by relying on
logic to define the notions of legality, state up-
date, and so on.

In what follows, we look at a model for
games in which states take the form of databas-
es. Each game has an associated database
schema, and each state of the game is an in-
stance of this schema. Different states corre-
spond to different instances, and changes in
the world correspond to movement among
these database instances.

A database schema is a set of objects, a set of
tables, and a function that assigns a natural
number to each table (its arity—the number of
objects involved in any instance of the rela-
tionship). The Herbrand base corresponding to
a database schema is defined as the set of ex-
pressions of the form r(a1, ..., an), where r is a
relationship of arity n and a1, ... , an are objects.
An instance of a database schema, then, is a
subset of the corresponding Herbrand base.

As an example of this conceptualization of
games, let us look at the game of tic-tac-toe.
The game environment consists of a 3 by 3 grid
of cells where each cell is either blank or con-

player ri makes a move mi ∈ Ii such that li(mi, s1)
is true. The game then advances to state n(m1,
..., mn, s1). This continues until the game enters
a state s ∈ S such that t(s) is true, at which point
the game ends. The value of a game outcome to
a player ri is given by gi(s, value). Note that gen-
eral games are not necessarily zero-sum, and a
game may have multiple winners. Figure 1
shows a state machine representation for a gen-
eral game with S = {a, b, c, d, e, f, g, h, i, j, k}, s1
= a, and t = {c, i, k}. The shading of states c, g, h,
and k indicates that these are highly valued
states for two different players of the game (de-
termined by the gi for those players).

Figure 1 exhibits the transition function n
with double arrows labeled with the set of
moves made by the players on a step of the
game. This is a two player game, and each play-
er can perform actions x or y. Note that it is not
the case that every state has an arc correspond-
ing to every action pair: only the legal actions
in Ii can be made in a particular state. For exam-
ple, from state d, one player can legally play
both x and y, while the other player’s only legal
move is x.

This definition of games is similar to the tra-
ditional extensive normal form definition in
game theory, with a few exceptions. In exten-
sive normal form, a game is modeled as a tree
with actions of one player at each node. In
state machine form, a game is modeled as a
graph, and all players’ moves are synchronous.
State machine form has a natural ability to ex-
press simultaneous moves; with extensions, ex-
tensive normal form could also do this, albeit
with some added cost of complexity. Addition-
ally, state machine form makes it possible to
describe games more compactly, and it makes
it easier for players to play games efficiently.

Game Descriptions
Since all of the games that we are considering
are finite, it is possible, in principle, to describe
such games in the form of lists (of states and ac-
tions) and tables (to express legality, goals, ter-
mination, and update). Unfortunately, such
explicit representations are not practical in all
cases. Even though the numbers of states and
actions are finite, they can be extremely large;
and the tables relating them can be larger still.
For example, in chess, there are thousands of
possible moves and approximately 1030 states.

All is not lost, however: in the vast majority
of games, states and actions have composite
structure that allows us to define a large num-
ber of states and actions in terms of a smaller
number of more fundamental entities. In
chess, for example, states are not monolithic;

X

O

Figure 2. A Tic-Tac-Toe Game State.

tains an X or an O. Figure 2 portrays one possi-
ble state of this game.

To describe game states, we assume a ternary
relation cell that relates a row number {1, 2, 3},
a column number {1, 2, 3}, and a content des-
ignator {X, O, B}. Although it is not strictly nec-
essary, we include an auxiliary relation control
that designates the player with the authority to
make a mark. The following data encode the
game state shown above.

cell(1, 1, X)
cell(1, 2, b)
cell(1, 3, b)
cell(2, 1, b)
cell(2, 2, O)
cell(2, 3, b)
cell(3, 1, b)
cell(3, 2, b)
cell(3, 3, b)
control(white)

By itself, the switch from monolithic states
to databases does not help. We must still en-
code tables that are as large as in the state mod-
el. However, with the database model, it is pos-
sible to describe these tables in a more compact
form by encoding the notions of legality, goal-
hood, termination, and update as sentences in
logic rather than as explicit tables.

In our GGP framework, we use a variant of
first-order logic enlarged with distinguished
names for the key components of our concep-
tualization of games.

Articles

66 AI MAGAZINE

Object variables: X, Y, Z
Object constants: a, b, c
Function constants: f, g, h
Relation constants: p, q, r
Logical operators: ~, |, &, =>, <=, <=>
Quantifiers: A, E
Terms: X, Y, Z, a, b, c, f(a), g(b, c)
Relational sentences: p(a, b)
Logical sentences: r(a, c) <= r(a, b) & r(b, c)
Quantified sentences: p(a, S) <= Ex.q(x, S)

GDL uses an indexical approach to defining
games. A GDL game description takes the form
of a set of logical sentences that must be true in
every state of the game. The distinguished vo-
cabulary words that support this are described
below:

role(<r>) means that <r> is a role (player) in the
game.
init(<p>) means that the datum <p> is true in
the initial state.
true(<p>) means that the datum <p> is true in
the current state.
does(<r>, <a>) means that player <r> performs
action <a> in the current state.
next(<p>) means that the datum <p> is true in
the next state.
legal(<r>, <a>) means it is legal for <r> to play
<a> in the current state.
goal(<r>, <v>) means that player <r> would re-
ceive the goal value <v> in the current state,
should the game terminate in this state.
terminal means that the current state is a termi-
nal state.
distinct(<p>, <q>) means that the datums <p>
and <q> are syntactically unequal.

GDL is an open language in that this vocabu-
lary can be extended; however, the significance
of these basic vocabulary items is fixed for all
games.

As an example of GDL, the following
demonstrates how the game tic-tac-toe is for-
malized as a general game. First, we define the
roles for the game:

role(white)
role(black)

Next, we characterize the initial state. In this
case, all cells are blank, and white holds
control, a term that gains meaning through the
descriptions of legal moves that follow.

init(cell(1, 1, b))
init(cell(1, 2, b))
init(cell(1, 3, b))
init(cell(2, 1, b))
init(cell(2, 2, b))
init(cell(2, 3, b))
init(cell(3, 1, b))
init(cell(3, 2, b))
init(cell(3, 3, b))
init(control(white))

Articles

SUMMER 2005 67

goal(black, 100) <= line(o)
goal(black, 50) <=

~line(x) &
~line(o) &
~open

goal(black, 0) <= line(x)

A specific game description may require
some supporting concepts. In tic-tac-toe, we
define a line as a row of marks of the same type
or a column or a diagonal. A row of marks
means that there are three marks with the same
first coordinate. The column and diagonal rela-
tions are defined analogously. We also need to
define open, a condition that holds whenever
the board is not yet full of marks.

line(W) <= row(M, W)
line(W) <= column(M, W)
line(W) <= diagonal(W)

row(M, W) <=
true(cell(M, 1, W)) &
true(cell(M, 2, W)) &
true(cell(M, 3, W))

column(M, W) <=
true(cell(1, N, W)) &
true(cell(2, N, W)) &
true(cell(3, N, W))

diagonal(W) <=
true(cell(1, 1, W)) &
true(cell(2, 2, W)) &
true(cell(3, 3, W))

diagonal(W) <=
true(cell(1, 3, W)) &
true(cell(2, 2, W)) &
true(cell(3, 1, W))

open <= true(cell(M, N, b)

Note that, under the full information as-
sumption, any of these relations can be as-
sumed to be false if it is not provably true.
Thus, we have complete definitions for the re-
lations legal, next, goal, terminal in terms of true
and does. The true relation starts out identical to
init and on each step is changed to correspond
to the extension of the next relation on that
step. The upshot of this is that in every state of
the game, each player can determine legality,
termination, and goal values and—given the
joint move of all players—can update the state.

Although GDL is designed for use in defining
complete information games, it may also be ex-
tended to partial information games relatively
easily. Unfortunately, the resulting descriptions
are more verbose and more expensive to
process. This extension to GDL is the subject of
a future document.

Given the state machine model for games,
we can define notions of playability and

Next, we define legality. A player may mark
a cell if that cell is blank and the player has
control. Otherwise, so long as there is a blank
cell, the only legal action is noop.

legal(Y, mark(M, N)) <=
true(cell(M, N, b)) &
true(control(Y))

legal(white, noop) <=
true(cell(M, N, b)) &
true(control(black))

legal(black, noop) <=
true(cell(X, Y, b)) &
true(control(white))

Next, we look at the update rules for the
game. A cell is marked with an X or an O if the
appropriate player marks that cell. If a cell con-
tains a mark, it retains that mark on the subse-
quent state. If a cell is blank and is not marked,
then it remains blank. Finally, control alter-
nates on each play.

next(cell(M, N, x)) <=
does(white, mark(M, N)) &
true(cell(M, N, b))

next(cell(M, N, o)) <=
does(black, mark(M, N)) &
true(cell(M, N, b))

next(cell(M, N, W)) <=
true(cell(M, N, W)) &
distinct(W, b)

next(cell(M, N, b)) <=
does(W, mark(J, K)) &
true(cell(M, N, W)) &
(distinct(M, J) | distinct(N, K))

next(control(white)) <= true(control(black))
next(control(black)) <= true(control(white))

A game terminates whenever either player
has a line of marks of the appropriate type. The
line and open relations are defined as follows.

terminal <= line(x)
terminal <= line(o)
terminal <= ~open

The following rules define the players’ goals.
The white player achieves the maximal goal if
there is a line of xs; the black player does so if
there is a line of os. The final termination con-
dition (when the board is full) may be true in a
state in which neither player has a line, and
this necessitates the goal rules with a value of
50:

goal(white, 100) <= line(x)
goal(white, 50) <=

~line(x) &
~line(o) &
~open

goal(white, 0) <= line(o)

Articles

68 AI MAGAZINE

winnability. While any description built in the
language described above defines a game, for
the purposes of analyzing intelligent behavior,
we are interested in “good” games: games
where players are able to move and have some
chance of achieving their goals.

A game is playable if and only if every player
has at least one legal move in every nontermi-
nal state. In the GGP setting, we require that
every game be playable.

A game is strongly winnable if and only if, for
some player, there is a sequence of individual
moves of that player that leads to a terminal
state of the game where that player’s goal value
is maximal. A game is weakly winnable if and
only if, for every player, there is a sequence of
joint moves of all players that leads to a termi-
nal state where that player’s goal is maximal. In
the GGP setting, every game must be weakly
winnable, and all single-player games are
strongly winnable. This means that in any gen-
eral game, every player at least has a chance of
winning.

General Game Players
Having a formal description of a game is one
thing; being able to use that description to play
the game effectively is something else entirely.
In this section, we examine some of the prob-
lems of building general game players and dis-
cuss strategies for dealing with these difficul-
ties.

Let us start with automated reasoning. Since
game descriptions are written in logic, it is ob-
viously necessary for a game player to do some
degree of automated reasoning.

There are various choices here. (1) A game
player can use the game description interpre-
tively throughout a game. (2) It can map the
description to a different representation and
use that interpretively. (3) It can use the de-
scription to devise a specialized program to
play the game. This is effectively automatic
programming. There may be other options as
well.

The good news is that there are powerful rea-
soners for first-order logic freely available. The
bad news is that such reasoners do not, in and
of themselves, solve the real problems of gener-
al game playing, which are the same whatever
representation for the game rules is used,
namely dealing with indeterminacy, size, and
multigame commonalities.

The simplest sort of game is one in which
there is just one player and the number of
states and actions is relatively small. For such
cases, traditional AI planning techniques are
ideal. Depending on the shape of the search

space, the player can search either forward or
backward to find a sequence of actions/plays
that convert the initial state into an acceptable
goal state. Unfortunately, not all games are so
simple.

To begin with, there is the indeterminacy
that arises in games with multiple players. Re-
call that the succeeding state at each point in a
game depends on the actions of all players, and
remember that no player knows the actions of
the other players in advance. Of course, in
some cases, it is possible for a player to find se-
quences of actions guaranteed to achieve a goal
state. However, this is quite rare.

More often, it is necessary to create condi-
tional plans in which a player’s future actions
are determined by the player’s earlier actions
and those of the other players. For such cases,
more complex planning techniques are neces-
sary.

Unfortunately, even this is not always suffi-
cient. In some cases, there may be no guaran-
teed plan at all, not even a conditional plan.
Tic-tac-toe is a game of this sort. Although it
can be won, there is no guaranteed way to win
in general. It is not really clear what to do in
such situations. The key to winning in such sit-
uations is to move and hope that the moves of
the other players put the game into a state from
which a guaranteed win is possible. However,
this strategy leaves open the question of which
moves to make prior to arrival at such a state.
One can fall back on probabilistic reasoning.
However, this is not wholly satisfactory since
there is no justifiable way of selecting a proba-
bility distribution for the actions of the other
players. Another approach, of primary use in
directly competitive games, is to make moves
that create more search for the other players so
that there is a chance that time limitations will
cause those players to err.

Another complexity, independent of inde-
terminacy, is sheer size. In tic-tac-toe, there are
approximately 5,000 distinct states. This size is
large but manageable. In chess there are ap-
proximately 1030 states. A state space of this
size, being finite, is fully searchable in principle
but not in practice. Moreover, the time limit on
moves in most games means that players must
select actions without knowing with certainty
whether they are the best or even good moves
to make.

In such cases, the usual approach is to con-
duct a partial search of some sort, examining
the game tree to a certain depth, evaluating the
possible outcomes at that point, and choosing
actions accordingly. Of course, this approach
relies on the availability of an evaluation func-
tion for nonterminal states that is roughly mo-

Articles

SUMMER 2005 69

ments such as this summer’s GGP competition.
Gamemaster has three major components—

the Arcade, the Game Editor, and the Game
Manager. The Arcade is a database of informa-
tion about games, players, and matches. The
Game Editor assists individuals in creating and
analyzing games. The Game Manager is respon-
sible for running games or, precisely, matches,
that is, instances of games. Of these compo-
nents, the Game Manager is the most relevant
to the theme of this paper. In the interest of
brevity, we skip over the details of the Arcade
and the Game Editor and devote the remainder
of this section to the Game Manager. Figure 3
illustrates Game Manager operation.

To run a match with Gamemaster, an indi-
vidual (hereafter called the game director) first
creates a match by specifying (1) a game al-
ready known to the system, (2) the requisite
number of players, (3) a startclock value (in sec-
onds) and (4) a playclock value (in seconds).

Once this is done, the director can cause the
match at any time by pressing the start button
associated with the match he has created. The
Game Manager then assumes all responsibiity
for running the game (unless the director press-
es the stop button to abort the match). It com-
municates with players via messages using
HTTP.

The process of running a game goes as fol-
lows: upon receiving a request to run a match,
the Game Manager first sends a Start message to
each player to initiate the match. Once game
play begins, it sends Play messages to each play-
er to get the plays and simulates the results.
This part of the process repeats until the game
is over. The Game Manager then sends Stop
messages to each player. Figure 4 illustrates
these exchanges for a game of tic-tac-toe, show-
ing just the messages between the Game Man-
ager and one of the players

The Start message lists the name of the
match, the role the player is to assume (for ex-
ample, white or black in chess), a formal de-
scription of the associated game (in GDL), and
the startclock and playclock associated with the
match. The startclock determines how much
time remains before play begins. The playclock
determines how much time each player has to
make each move once play begins.

Upon receiving a Start message, each player
sets up its data structures and does whatever
analysis it deems desirable in the time avail-
able. It then replies to the Game Manager that
it is ready for play. Having sent the Start mes-
sage, the Game Manager waits for replies from
the players. Once it has received these replies or
once the startclock is exhausted, the Game
Manager commences play.

notonic in the actual probability of achieving a
goal. While, for specific games, such as chess,
programmers are able to build in evaluation
functions in advance, this is not possible for
general game playing, since the structure of the
game is not known in advance. Rather, the
game player must analyze the game itself in or-
der to find a useful evaluation function.

Another approach to dealing with size is ab-
straction. In some cases, it is possible to refor-
mulate a state graph into a more abstract state
graph with the property that any solution to
the abstract problem has a solution when re-
fined to the full state graph. In such cases, it
may be possible to find a guaranteed solution
or a good evaluation function for the full
graph. Various researchers have proposed tech-
niques along these lines (Sacerdoti 1974;
Knoblock 1991), but more work is needed.

The third issue is not so much a problem as
an opportunity: multigame commonalities. Af-
ter playing multiple instances of a single game
or after playing multiple games against a given
player, it may be possible to identify common
lessons that can be transferred from one game
instance to another. A player that is capable of
learning such lessons and transferring them to
other game instances is likely to do better than
one without this capability.

One difficulty with this approach is that, in
our current framework, players are not told the
names of games, only the axioms. In order to
transfer such lessons, a player must be able to
recognize that it is the same game as before. If
it is a slightly different game, the player must
realize which lessons still apply and which are
different.

Another difficulty, specific to this year’s
competition, is that players are not told the
identity of the other players. So, lessons specific
to players cannot be transferred, unless a player
is able to recognize players by their style of
play. (In future years, the restriction on supply-
ing identity information about players may be
removed, making such learning more useful.)

Game Management
Infrastructure

In order to engage in competitive play, general
game players need a central mediator to distrib-
ute game axioms, maintain an official game
state, update it with player moves, verify the le-
gality of those moves, and determine winners.
Gamemaster is a generally available web service
designed to assist the general game-playing
community in developing and testing general
game players by performing these functions. It
is also intended to be used in managing tourna-

On each step, the Game Manager sends a
Play message to each player. The message in-
cludes information about the actions of all
players on the preceding step. (On the first
step, the argument is “nil”). On receiving a
Play message, players spend their time trying to
decide their moves. They must reply within the
amount of time specified by the match’s play-
clock.

The Game Manager waits for replies from the
players. If a player does not respond before the
playclock is exhausted, the Game Manager se-
lects an arbitrary legal move. In any case, once
all players reply or the playclock is exhausted,
the Game Manager takes the specified moves or
the legal moves it has determined for the play-
ers and determines the next game state. It then

Articles

70 AI MAGAZINE

evaluates the termination condition to see if
the game is over. If the game is not over, the
Game Manager sends the moves of the players
to all players and the process repeats.

Once a game is determined to be over, the
Game Manager sends a Stop message to each
player with information about the last moves
made by all players. The Stop message allows
players to clean up any data structures for the
match. The information about previous plays
is supplied so that players with learning com-
ponents can profit from their experience. Hav-
ing stopped all payers, the Game Manager
then computes the rewards for each player,
stores this information together with the play
history in the Arcade database, and ceases op-
eration.

Figure 3. Game Manager.

Game Manager

Player

Graphics for
Spectators

.

TCP/IP

Player Player

Game
Descriptions

Match
Records

Temporary
State Data

. . .

TCP/IP

. . .

Competition Details
The AAAI competition is designed to test the
abilities of general game-playing systems by
comparing their performance on a variety of
games. The competition will consist of two
phases: a qualification round and a runoff com-
petition.

In the qualification round, entrants will
play several different types of games, including
single player games (such as maze search),
competitive games (such as tic-tac-toe or some
variant of chess), games with both competitors
and cooperators. In some cases, the game will
be exhaustively searchable (as in tic-tac-toe); in
other cases, this will not be possible (as in
chess). Players will have to handle these possi-
bilities. For this year’s competition, in all cases,
complete information of the game will be
available (as in chess or tic-tac-toe); in future
competitions, only partial information will be
available (as in battleship). Entrants will be
evaluated on the basis of consistent legal play,
ability to attain winning positions, and overall
time; and the best will advance to the second
round.

In the runoff round, the best of the qualifiers
will be pitted against each other in a series of
games of increasing complexity. The entrant to

win the most games in this round will be the
winner of the overall competition.

A $10, 000 prize will be awarded to the win-
ning entrant. The competition is open to all
computer systems, except those generated by
affiliates of Stanford University. Clearly, no hu-
man players are allowed. The competition web-
site1 contains further details, including the de-
scription of the underlying framework, the
game description language, and the program-
matic interfaces necessary to play the games.

Conclusion
General game playing is a setting within which
AI is the essential technology. It certainly con-
centrates attention on the notion of specifica-
tion-based systems (declarative systems, self-
aware systems, and, by extension, reconfigurable
systems, self-organizing systems, and so forth).
Building systems of this sort dates from the early
years of AI.

In 1958, John McCarthy invented the con-
cept of the “advice taker.” The idea was simple:
he wanted a machine that he could program by
description. He would describe the intended
environment and the desired goal, and the ma-
chine would use that information in determin-

Articles

SUMMER 2005 71

Figure 4. Game Communication.

Game Player Response

(START MATCH.435 WHITE
description 90 30)

READY

(PLAY MATCH.435 (NIL NIL)) (MARK 2 2)

(PLAY MATCH.435 ((MARK 2 2) NOOP)) NOOP

(PLAY MATCH.435 (NOOP (MARK 1 3)) (MARK 1 2)

(PLAY MATCH.435 ((MARK 1 2) NOOP)) NOOP

.

(STOP MATCH.435 ((MARK 3 3) NOOP) DONE

Game Manager Message

It Going? Paper presented at the Symposium on Arti-
ficial Intelligence, Canberra, Australia.

Heinlein, R. 1973. Time Enough for Love. New York:
Berkely Books, 1973.

Knoblock, C. A. 1991. Search Reduction in Hierarchi-
cal Problem Solving. In Proceedings of the Ninth Na-
tional Conference on Artificial Intelligence. Menlo Park,
CA: AAAI Press.

McCarthy, J. 1959. Programs with Common Sense. In
Proceedings of the Teddington Conference on the Mecha-
nization of Thought Processes, 75–91. London: Her
Majesty’s Stationary Office.

Sacerdoti, E. D. 1974. Planning in a Hierarchy of Ab-
straction Spaces. Artificial Intelligence Journal 5(2):
115–135.

Michael Genesereth is an associ-
ate professor in the Computer Sci-
ence Department at Stanford Uni-
versity. He received his Sc.B. in
physics from the Massachusetts In-
stitute of Technology and his
Ph.D. in applied mathematics
from Harvard University. Gene-
sereth is most known for his work

on computational logic and applications of that work
in enterprise computing and electronic commerce.

Nathaniel Love is a Ph.D. candi-
date in computer science at Stan-
ford University. His research inter-
ests include computational logic,
behavioral constraints, and their
applications to both legal and
game-playing domains. He earned
a B.A. in mathematics and in com-
puter science from Wesleyan Uni-

versity. He can be reached at natlove@stanford.edu.

Barney Pell, Ph.D. holds a B.S. de-
gree from Stanford University,
where he graduated Phi Beta Kap-
pa, and a Ph.D. in computer sci-
ence from Cambridge University,
where he was a Marshall Scholar.
Pell’s doctoral research introduced
the idea of a general game-playing
competition, developed the first

program to generate interesting chesslike games, and
created METAGAMER, the first program to play exist-
ing and new chesslike games without any human as-
sistance. Pell spent 7 of the previous 11 years at
NASA, during which he was the architect of the Re-
mote Agent, the first AI system to fly onboard and
control a spacecraft, and later the manager of the 80-
person ”Collaborative Assistant Systems“ research
area. From 1998 to 2002, Pell served as vice president
of Strategy and Business Development for two start-
up companies, StockMaster.com and Whizbang!
Labs. Pell is currently an entrepreneur in residence at
Mayfield, a leading venture capital firm in the Silicon
Valley.

ing its behavior. There would be no program-
ming in the traditional sense. McCarthy pre-
sented his concept in a paper that has become
a classic in the field of AI:

The main advantage we expect the advice taker
to have is that its behavior will be improvable
merely by making statements to it, telling it
about its environment and what is wanted from
it. To make these statements will require little,
if any, knowledge of the program or the previ-
ous knowledge of the advice taker (McCarthy
1959).

An ambitious goal! But that was a time of
high hopes and grand ambitions. The idea
caught the imaginations of numerous subse-
quent researchers—notably Bob Kowalski, the
high priest of logic programming, and Ed
Feigenbaum, the inventor of knowledge engi-
neering. In a paper written in 1974, Feigen-
baum gave his most forceful statement of Mc-
Carthy’s ideal:

The potential use of computers by people to ac-
complish tasks can be one-dimensionalized in-
to a spectrum representing the nature of the in-
struction that must be given the computer to
do its job. Call it the what-to-how spectrum. At
one extreme of the spectrum, the user supplies
his intelligence to instruct the machine with
precision exactly how to do his job step-by-
step…. At the other end of the spectrum is the
user with his real problem…. He aspires to com-
municate what he wants done … without hav-
ing to lay out in detail all necessary subgoals for
adequate performance (Feigenbaum 1974).

Some have argued that the way to achieve in-
telligent behavior is through specialization.
That may work so long as the assumptions one
makes in building such systems are true. Gen-
eral intelligence, however, requires general in-
tellectual capabilities, and generally intelligent
systems should be capable of performing well
in a wide variety of tasks. In the words of
Robert Heinlein (1973):

A human being should be able to change a dia-
per, plan an invasion, butcher a hog, conn a
ship, design a building, write a sonnet, balance
accounts, build a wall, set a bone, comfort the
dying, take orders, give orders, cooperate, act
alone, solve equations, analyze a new problem,
pitch manure, program a computer, cook a
tasty meal, fight efficiently, die gallantly. Spe-
cialization is for insects.

We may wish to require the same of intelligent
computer systems.

Note
1. http://games.stanford.edu.

References
Feigenbaum, E. A. 1974. Artificial Intelligence Re-
search: What Is It? What Has It Achieved? Where Is

Articles

72 AI MAGAZINE

