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Abstract

Much of the massive quantities of digitized
datawidely available,e.g.,text, speech,hand-
written sequences, are either given directly,
or, as a result of some prior processing, as
weightedautomata. Theseare compact rep-
resentations of a large number of alternative
sequencesandtheir weightsreflectingthe un-
certainty or variability of the data. Thus,
the indexation of suchdatarequiresindexing
weightedautomata.

We present a generalalgorithm for the index-
ation of weightedautomata.The resultingin-
dex is representedby a deterministic weighted
transducerthatis optimalfor search:thesearch
for aninput stringtakestime linearin thesum
of the size of that string and the number of
indicesof the weighted automatawhereit ap-
pears.We alsointroducea generalframework
basedon weighted transducers that general-
izes this indexation to enablethe searchfor
morecomplex patterns including syntacticin-
formation or for different typesof sequences,
e.g.,word sequencesinsteadof phonemicse-
quences. The useof this framework is illus-
tratedwith severalexamples.

We appliedour generalindexation algorithm
andframework to theproblem of indexationof
speechutterancesandreport the resultsof our
experimentsin several tasksdemonstratingthat
our techniquesyield comparableresultsto pre-
viousmethods,while providing greater gener-
ality, including thepossibilityof searchingfor
arbitrary patterns represented by weightedau-
tomata.

1 Moti vation

Much of the massive quantities of digitized datawidely
availableis highlyvariable or uncertain. Thisuncertainty
affectstheinterpretationof thedataandits computational
processingat various levels, e.g.,naturallanguage texts
areabundantly ambiguous,speechandhand-written se-
quencesarehighlyvariable andhardto recognizein pres-
enceof noise,biological sequencesmaybealteredor in-
complete.

Searchingor indexing suchdatarequiresdealingwith
a largenumberof rankedor weightedalternatives.These
maybefor example thedifferentparsesof aninput text,
the various responsesto a searchengine or information
extraction query, or the besthypothesesof a speechor
hand-written recognition system.In mostcases,alterna-
tivesequencescanbecompactly representedby weighted
automata. The weights may be probabilities or some
otherweightsusedto rankdifferenthypotheses.

This motivatesour study of the generalproblem of
indexation of weightedautomata. This is moregeneral
than the classicalindexation problems since, typically,
therearemany distinct hypothesesor alternatives asso-
ciatedwith thesameindex, e.g.,a specificinput speech
orhand-writtensequencemayhavealargenumberof dif-
ferenttranscriptionsaccording to thesystemandmodels
used. Moreover, the problem requires taking into con-
siderationtheweightof eachalternative, which doesnot
haveacounterpartin classicalindexation problems.

We describe a general indexation algorithm for
weightedautomata. The resultingindex is represented
by adeterministic weightedtransducerthatis optimalfor
search: the searchfor an input string takes time linear
in the sumof the sizeof that string and the number of
indicesof theweightedautomatawhereit appears.

In somecases,onemaywishtosearchusingsequences
in somelevel, e.g. word sequences,differentfrom the
level of the sequencesof the index, e.g. phonemicse-
quences. Onemay alsowish to searchfor complex se-
quencesincluding bothwordsandparts-of-speech, or re-



strict thesearchbyeitherrestrictingtheweightsorproba-
bilities or thelengthsor typesof sequences.We describe
a general indexationframework coveringall thesecases.
Our framework is basedon theuseof filtering weighted
transducersfor restrictionor othertransducersmapping
betweendistinct information levels or knowledgestruc-
tures. We illustratethe useof this framework with sev-
eralexamplesthatdemonstrateits relevanceto a number
of indexationtasks.

We appliedour framework andalgorithms to the par-
ticular problem of speechindexation. In recentyears,
spoken document retrieval systemshave made large
archives of broadcast news searchable and browsable.
Most of thesesystemsuseautomatic speechrecognition
to convert speechinto text, which is then indexed us-
ing standardmethods. Whena userpresentsthesystem
with aquery, documentsthatarerelevant to thequeryare
found usingtext-basedinformationretrieval techniques.

As speechindexation andretrieval systemsmove be-
yondthedomainof broadcastnews to more challenging
spokencommunications, the importancefor the indexed
materialto containmore thanjust asimpletext represen-
tation of the communication is becoming clear. Index-
ation andretrieval techniquesmustbe extendedto han-
dle more general representationsincluding for example
syntacticinformation.In addition to thenow familiar re-
trieval systemsor searchengines,otherapplicationssuch
asdataminingsystemscanbeusedto automaticallyiden-
tify usefulpatternsin largecollectionsof spokencommu-
nications. Informationextraction systemscanbeusedto
gather high-level informationsuchasnamed-entities.

For a giveninput speechutterance,a large-vocabulary
speechrecognition systemoften generatesa lattice, a
weightedautomaton representing a range of alternative
hypotheseswith someassociatedweightsor probabilities
usedto rankthem.Whentheaccuracy of asystemis rel-
atively low asin many conversationalspeechrecognition
tasks,it is notsafeto rely onlyonthebesthypothesisout-
put by thesystem.It is thenpreferableto useinsteadthe
full latticeoutput by therecognizer.

We report the results of our experiments in sev-
eral tasks demonstrating that our techniques yield
comparable results to the previous methods of
SaraclarandSproat(2004), while providing greater
generality, including the possibility of searching for
arbitrary patterns representedby weightedautomata.

Thepaperis organizedasfollows. Section2 introduces
thenotationandthedefinitionsusedin therestof thepa-
per. Section3 describesourgeneral indexationalgorithm
for weightedautomata. Thealgorithm for searchingthat
index is presentedin Section4 andour general indexa-
tion framework is describedandillustratedin Section5.
Section6 reportstheresultsof ourexperimentsin several
tasks.

2 Preliminaries

Definition 1 A system �������	��
	� �
� ��� is a semiring
(Kuich and Salomaa,1986) if: �������	� ��� is a commuta-
tivemonoid with identityelement� ; ������
	� ��� isamonoid
with identityelement� ; 
 distributesover � ; and � is an
annihilator for 
 : for all ����������
 ��� ��
���� � .
Thus,a semiringis a ring that may lack negation. Two
semiringsoften usedin speechprocessingare: the log
semiring � �!��"$#&%('*)+����, -�./��0	��'*���+� (Mohri, 2002)
which is isomorphic to the familiar real or probability
semiring ��"213��0	�/45���6�7��� via a 8:9+; morphismwith, for
all �<��=��>"?#@%('*) :

�5��, -A.B=C�ED>8:9+;F�HGJILKM�NDO�L�M0&GPILKM�QD�=P�Q�
and the convention that: GPILKM�QD�'�� � � andD>8:9+;����+�R�S' , andthe tropical semiring TU�U�V" 1 #%('*)+�AW�X:YZ��0	��'[�A�+� which canbe derived from the log
semiringusingtheViterbi approximation.

Definition 2 A weightedfinite-statetransducer \ over a
semiring � is an 8-tuple \]�^�`_���a���b��Ac��AdC��ef��gM�QhL�
where: _ is the finite input alphabetof the transducer;a is thefinite output alphabet; b is a finite setof states;c*ijb the setof initial states; dkilb the setof final
states;emi*bn4>�o_�#p%�q7)r�B4s��at#p%rqJ)(�u4f�v4Rb a finite
setof transitions; gxw6c�yz� the initial weightfunction;
and hxw
d{y|� thefinal weightfunction mapping d to� .

A Weightedautomaton }!�~�`_���b��Ac��AdC��ef��gM�QhL� is de-
fined in a similar way by simply omitting the output la-
bels. We denoteby ���V}��xi~_�� the set of stringsac-
ceptedby an automaton } and similarly by ���H�x� the
stringsdescribed by a regular expression� . We denote
by � }��/��� bR�J0�� e�� thesizeof } .

Givena transition �@�[e , we denote by ��� �7� its input
label, �B� �7� its origin or previous stateand ��� �7� its desti-
nationstateor next state,��� �7� its weight,o[e] its output
label (transducercase).Givena state�>��b , we denote
by eR� ��� thesetof transitionsleaving � .

A path ���!�+�B�7�J�Q�(� is an elementof ef� with con-
secutive transitions: ��� ���H� � �O���B� �r�V� , �����L�7�J�J�7��� . We
extend � and � to pathsby setting: ��� ���R�~��� �L��� and��� ���@����� �(��� . A cycle � is a path whoseorigin and
destinationstatescoincide: ��� ���5�E��� ��� . We denoteby� �V� ���(¡¢� the setof pathsfrom � to � ¡ andby

� �V� �Q£��A�+¡¤�
and
� �V� �Q£��Q¥��A�/¡¢� the set of paths from � to ��¡ with in-

put label £ � _�� andoutput label ¥ (transducer case).
Thesedefinitionscanbeextendedto subsets¦���¦f¡�i�b ,
by:
� ��¦	�A£M��¦§¡¨�©�ª#2«�¬/­B®o«Q¯H¬/­Z¯ � �V� �Q£��A�(¡¨� . The label-

ing functions � (and similarly ° ) and the weight func-
tion � canalsobe extendedto pathsby definingthe la-
bel of a path as the concatenation of the labels of its
constituent transitions, and the weight of a path as the
 -product of the weightsof its constituent transitions:



��� ���O�{��� � � ���J�J�Q��� � � � , ��� �����±�	� � � ��
²�7�J��
*��� � � � . We
also extend � to any finite set of paths ³ by setting:��� ³5�3�µ´�¶ ¬�· ��� ��� . The outputweight associatedby} to eachinputstring £s�¸_�� is:

� � }O� �o�V£<�¹� º¶ ¬/»u¼:½7® ¾/® ¿
À gM�Á��� ���¤�B
Â�	� ���6
Âh��H��� ���¤�
� � }O� �o�V£<� is definedto be � when

� �Vc��Q£M��d3�f�!Ã . Simi-
larly, theoutput weightassociatedby a transducer\ to a
pairof input-output string �H£��Q¥6� is:

� � \5� �Ä�H£M�A¥6��� º¶ ¬/»2¼:½7® ¾�® År® ¿MÀ g��Æ�B� ���H��
&��� ���L
&h<�V��� ���H�
� � \O� �Ä�H£��Q¥6�¸� � when

� �Vc��Q£��Q¥��Ad3�¸��Ã . A successful
path in a weightedautomaton or transducer Ç is a path
from aninitial stateto a final state. Ç is unambiguous if
for any string £¸�s_�� thereis atmostonesuccessfulpath
labeledwith £ . Thus,anunambiguous transducerdefines
a function.

For any transducer \ , denote by ³�È+�V\�� theautomaton
obtained by projecting \ onits output, thatis by omitting
its input labels.

Notethatthesecondoperation of thetropical semiring
andthelog semiringaswell astheir identityelementsare
identical. Thus the weightof a pathin an automaton }
over thetropicalsemiringdoesnotchange if } is viewed
asa weightedautomaton over the log semiringor vice-
versa.

Given two strings É and Ê in _ � , Ê is a factor of É ifÉ©�n£�Ê+¥ for some£ and ¥ in _§� ; if ¥���q then Ê is also
asuffix of É . Moregenerally, Ê is a factor (resp.suffix) of�[i�_5� if Ê is a suffix (resp.factor) of someÉ©�@� . We
denote by � £B� thelengthof astring £¸�¸_3� .
3 Indexation Algorithm

Thissectionpresentsanalgorithmfor theconstructionof
anefficient index for a largesetof speechutterances.

We assumethat for eachspeechutteranceÉu� of the
datasetconsidered, ���!�/�7�J�7�P�Q� , a weightedautomaton}�� over thealphabet _ andthelog semiring,e.g.,phone
or wordlatticeoutputby anautomaticspeechrecognizer,
is given. The problem consistsof creatinga full index,
that is onethatcanbeusedto searchdirectly any factor
of any stringacceptedby theseautomata. Note that this
problem crucially differsfrom classicalindexationprob-
lems in that the input datais uncertain. Our algorithm
mustmake useof the weightsassociatedto eachstring
by theinputautomata.

Themain ideabehindthedesignof thealgorithm de-
scribedis that the full index can be representedby a
weightedfinite-statetransducer\ mapping eachfactor£ to thesetof indicesof theautomatain which £ appears
and the negative log of the expectedcountof £ . More

precisely, let
� � betheprobability distributiondefinedby

theweightedautomaton } � over thesetof strings _�� and
let ËÌ¾F�VÉ�� denotethe number of occurrencesof a factor£ in É , then,for any factor £?�Â_3� andautomaton index�Í�©%+�+�J�7�J�P�A�u) :

� � \5� �Ä�H£M�A�N����D>8¢9/;F��eO»/Î7� ËÌ¾(�H� (1)

Ouralgorithm for theconstruction of theindex is simple,
it is basedon generalweightedautomataandtransducer
algorithms. We describe theconsecutive stagesof theal-
gorithm.

This algorithm can be seenas a generalization to
weightedautomataof thenotion of suffix automaton and
factor automaton for strings.Thesuffix (factor) automa-
ton of a string É is the minimal deterministic finite au-
tomatarecognizing exactly thesetof suffixes (resp. fac-
tors)of É (Blumeret al., 1985; Crochemore,1986). The
sizeof bothautomatais linearin thelengthof É andboth
can be built in linear time. Theseare classicalrepre-
sentationsusedin text indexation (Blumer et al., 1987;
Crochemore,1986).

3.1 Preprocessing

When the automata } � are word or phone latticesout-
put by a speechrecognition or other natural language
processingsystem,the pathweightscorrespond to joint
probabilities. We can apply to } � a general weight-
pushing algorithm in the log semiring (Mohri, 1997)
which converts theseweightsinto the desired(negative
log of) posterior probabilities. More generally, the path
weightsin the resultingautomata can be interpretedas
log-likelihoods. We denote by

� � the corresponding
probability distribution. Whentheinput automaton }�� is
acyclic, thecomplexity of theweight-pushingalgorithm
is linear in its size( Ï��A� } � � � ). Figures1(b)(d) illustrates
the application of the algorithmto the automataof Fig-
ures1(a)(c).

3.2 Construction of Transducer Index \
Let Ð������`_���b��N��cP�A�AdB�Q��eO�Q��gF�A�Qh ��� denotethe resultof
theapplication of theweightpushing algorithm to theau-
tomaton} � . Theweightassociatedby Ð � to eachstring
it acceptscanbeinterpretedasthelog-likelihood of that
stringfor theutteranceÉB� giventhemodels usedto gen-
eratetheautomata. More generally, Ð � definesa proba-
bility distribution

� � over all strings£¸�s_�� which is just
the sumof the probability of all pathsof Ð � in which £
appears.

For eachstate���?b�� , denoteby Ñ<� ��� theshortestdis-
tancefrom c � to � (or - 8¢9/; of theforwardprobability) and
by Òu� ��� theshortestdistancefrom � to d (or - 8¢9/; of the
backward probability):

Ñ<� ���
� º , -�.¶ ¬/»u¼¢½ Î ® «NÀ
�`g � �Æ�B� ���H�M0&��� ���¤� (2)
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Figure1: Weightedautomataover therealsemiring(a) } � , (b) Ð � obtainedby applying weightpushing to } � , (c) }�È
and(d) Ð È obtainedby applying weightpushing to } È .

Òu� ���Z� º , -�.¶ ¬/»2¼¢«�® ¿ Î À
�H�	� ���F0Âh � �H��� ���¤�A� (3)

TheshortestdistancesÑ�� ��� and Òu� ��� canbecomputedfor
all states�²��b�� in linear time ( Ï��A� Ð���� � ) when Ð�� is
acyclic (Mohri, 2002). Then,

D�8¢9/;<�Ve » ÎP� Ë ¾ �¤�¹� º , -�.�VÓ ¶(ÔÖÕ ¾
Ñ<� �B� ���¢�L0&��� ���L0$Òu� ��� ���:� (4)

From the weightedautomaton Ð�� , one can derive a
weightedtransducer \ � in two steps:

1. FactorSelection. In the general casewe selectall
thefactorsto beindexedin thefollowing way:× Replaceeachtransition�Á�M�����A�3�A���5�>b � 43_s4"�4Cb3� by �Á�M�A�<�����A�3�A���5�>b��(45_R4O_f4C"345b�� ;× Createa new state Ø�Ù�Sb3� and make Ø the

unique initial state;× Createa new state �ÚÙ�Sb3� and make � the
unique final state;× Createanew transition ��Ø+�Aq���q7��Ñ�� ���o�A��� for each
state�	�¸b � ;× Createanew transition �V� �Aq��A����Òu� ���o�A�(� for each
state�	�¸b � ;

2. Optimization. The resultingtransducer canbe op-
timized by applying weighted q -removal, weighted
determinization, and minimization over the log
semiringby viewing it as an acceptor, i.e., input-
output labelsareencodeda singlelabels.

It is clearfrom Equation 4 thatfor any factor £¸�¸_�� :
� � \Z�H� �Ä�H£��Q�N�Í�ED>8:9+;F�VeO»+ÎJ� ËÌ¾(�H� (5)

Thisconstruction is illustratedby Figures2(a)(b). Our
full index transducer \ is theconstructedby× takingthe �§, -�. -sum(or union) of all thetransducers\ � , �B���+�J�7�J�P�A� ;× defining \ as the result of determinization (in the

log semiring) appliedto thattransducer.

Figure3 is illustratingthisconstruction andoptimization.
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Figure2: Constructionof \ � index of the weightedau-
tomataÐ�� given Figure1(b): (a) intermediary resultafter
factorselectionand(b) resultingweightedtransducer \ � .
4 Search

The full index representedby the weightedfinite-state
transducer \ is optimal. Indeed, \ containsno transi-
tion with input q otherthanthe final transitionslabeled
with an output index and it is deterministic. Thus, the
setof indices c7¾ of the weightedautomata containing a
factor £ canbeobtained in Ï��A� £B�J0v� c/¾�� � by reading in \
theuniquepathwith inputlabel £ andthenthetransitions
with input q whichhaveeacha distinctoutput label.

Theuser’s queryis typically anunweightedstring,but
it can be given as an arbitraryweightedautomaton � .
Thiscoversthecaseof Booleanqueriesor regular expres-
sionswhichcanbecompiledintoautomata.Theresponse
to a query � is computedusingthegeneral algorithm of
compositionof weightedtransducers(Mohri etal.,1996)
followedby projectionon theoutput:

³�È+�V�±Û¹\�� (6)

which is then q -removed and determinized to give di-
rectly the list of all indicesandtheir corresponding log-
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Figure 3: Weighted transducer \ obtained by index-
ing the weighted automata Ðf� and Ð È given in Fig-
ures1(b)(d)

likelihoods.Thefinal resultcanbepruned to includeonly
themostlikely responses.Thepruning threshold maybe
usedto vary thenumberof responses.

5 General Indexation Framework

The indexation technique just outlinedcanbeeasilyex-
tendedto includemany of thetechniquesusedfor speech
indexation.Thiscanbedoneby introducinga transducerd that convertsbetweendifferent levels of information
sourcesor structures,or thatfiltersoutor reweightsindex
entries.Thefilter d canbeapplied(i) before, (ii) during
or (iii) aftertheconstruction of theindex. For case(i), the
filter is useddirectlyontheinput andtheindexationalgo-
rithm is appliedto theweightedautomata �Vd@Û
}���� ��Ü � Ü�Ý .
For case(ii), filtering is done after the factor selection
stepof thealgorithm andthefilter appliesto thefactors,
typically to restrictthe factors thatwill be indexed. For
case(iii), the filter is appliedto the index. Obviously
different filters canbe usedin combination at different
stages.

Whensuchafilter is used,theresponseto aquery � is
obtained usinganothertransducer dp¡ 1 andthefollowing
compositionandprojection:

³�È/�V�{ÛÌd ¡ Û¹\�� (7)

Sincecomposition is associative, it doesnot imposea
specificorder to its application. However, in practice,
it is oftenadvantageous to compute �{ÛCd�¡ before appli-
cationof \ . The following areexamples of somefilter
transducersthatcanbeof interestin many applications.

1In mostcases,ÞÌß is theinverseof Þ .

× Pronunciation Dictionary: a pronunciation dic-
tionary can be usedto map word sequences into
their phonemic transcriptions, thustransform word
lattices into equivalent phone lattices. This map-
ping can representedby a weighted transducer d .
Using an index basedon phone lattices allows a
user to searchfor words that are not in the ASR
vocabulary. In this case, the inverse transduc-
tion d3¡ is a graphemeto phonemeconverter, com-
monly presentin TTS front-ends. Among others,
WitbrockandHauptmann(1997) present a system
where a phonetic transcript is obtained from the
wordtranscript andretrieval is performedusingboth
wordandphone indices.× Vocabulary Restriction: in somecasesusinga full
index canbe prohibitive andunnecessary. It might
bedesirableto dopartialindexing by ignoring some
words (or phones) in the input. For example, we
might wish to index only “named entities”, or just
the consonants. This is mostly motivated by the
reduction of the size of the index while retaining
the necessaryinformation. A similar approach is
to applya many to onemapping to index groupsof
phones,or metaphones(Amir et al., 2001), to over-
comephoneticerrors.× Reweighting: a weightedtransducer can be used
to emphasizesomewords in the input while de-
emphasizingother. Theweights,for example might
correspond to TF-IDF weights. Another reweight-
ing methodmight involveeditdistanceor confusion
statistics.× Classification: anextremeformof summarizing the
informationcontainedin the indexed materialis to
assigna classlabel, suchas a topic label, to each
input. The querywould also be classifiedand all
answerswith thesameclasslabelwouldbereturned
asrelevant.× Length Restriction: a common way of indexing
phone stringsis to index fixed length overlapping
phone strings(Loganet al., 2002). This resultsin a
partial index with only fixed length strings. More
generally a minimum and maximum string length
maybe imposedon the index. An example restric-
tion automaton is given in Figure4. In this case,
thefilter applies to thefactorsandhasto beapplied
during or afterindexation. Therestrictedindex will
besmallerin sizebut contains lessinformationand
may result in degradationin retrieval performance,
especiallyfor longqueries.

The lengthrestrictionfilter requiresa modification of
the searchprocedure. Assumea fixed – say à – length
restrictionfilter anda stringquery of length � . If �@á à ,
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Figure4: (a)Filter d restrictingto stringsof length2. (b)
Restrictedindex dEÛ�\ , where \ is the weightedtrans-
ducergivenin Figure3(b).

thenwe needto padthe input to length à with _�â � � . If�>ã à , thenwe mustsearchfor all substringsof length à
in theindex. A stringis presentin acertainlatticeif all its
substringsare(andnotviceversa).So,theresultsof each
substringsearchmustbe intersected.Theprobability of
eachsubstring£ � 1 â � �� for �3��%+�/�7�J�7�P����0n�§D à ) is an
upper bound on theprobability of thestring £ � � , andthe
count of eachsubstringis anupperboundonthecountof
thestring,sofor �¹�@%��/�7�J�J�J����0*�5D à )

eO»5� Ë��H£ �� �o�Bä$eO»�� Ë��V£ � 1 â � �� �Ä�`�
Therefore,the intersectionoperationmustuseminimum
for combining theexpectedcountsof substrings.In other
words,the expectedcount of the string is approximated
by the minimum of the probabilitiesof eachof its sub-
strings,

eO»5� Ë��H£ �� �o�
å W�X:Y��Ü � Ü���1B� � â eO»�� Ë��V£
� 1 â � �� �Ä�`�

In addition to a filter transducer, pruning can be ap-
plied at different stagesof the algorithm to reducethe
sizeof theindex. Pruningeliminatesleastlikely pathsin
a weightedautomaton or transducer. Applying pruning
to }�� canbeseenaspartof theprocessthatgenerates the
uncertain inputdata.Whenpruningis appliedto Ð � , only
themorelikely alternativeswill beindexed. If pruning is
appliedto \ � , or to \ , pruning takestheexpectedcounts
into considerationandnot theprobabilities.Notethatthe
threshold usedfor this typeof pruning is directlycompa-
rableto thethresholdusedfor pruning thesearchresults
in Section4 sincebotharethresholdsonexpectedcounts.

6 Experimental Results

Our taskis retrieving theutterances(or shortaudioseg-
ments)that a givenqueryappears in. The experimental
setupis identical to that of SaraclarandSproat(2004).

Since,we take the systemdescribedthereas our base-
line, we give a brief review of the basicindexation al-
gorithm usedthere. The algorithm usesthe samepre-
processing step. For eachlabel in _ , an index file is
constructed. For eacharc � that appears in the prepro-
cessedweighted automaton Ð	� , the following informa-
tion is stored: �V���V��� �+�`�A��� �+�o�AÑ<� �B� �+�¢�`�A��� �/�H� . Sincethepre-
processingensuresthat Òu� �����v� for all � in Ð�� , it is pos-
sible to compute D>8:9+;���e�»/ÎJ� ËÌ¾(�H� asin Equation4 using
theinformationstoredin theindex.

6.1 Evaluation Metrics

For evaluating retrieval performancewe use precision
and recall with respectto manual transcriptions. Letæ 9/ç�ç�G7è�é��V��� be thenumber of timesthequery � is found
correctly, êOYFëAìÌGJç7����� be the number of answersto the
query � , and í5GPîHG7çAG7YFèPG/����� be the number of times � is
found in thereference.

ï ç�G7èJX¢ëAX:9+YZ�V���Í� æ 9/ç�çAG�è�éJ�����ê�YFëQìÌGJç��V���
í5G7è7ð�8¢8`������� æ 9/ç�ç�G7è�é��V���íOGPîHGJç�GJY�èPG/�����

Wecomputeprecisionandrecallratesfor eachquery and
report theaverageover all queries. Thesetof queries b
includes all thewordsseenin the referenceexcept for a
stoplistof 100mostcommon words.

ï ç�G7èJX¢ëAX:9+Y�� �� b��Fñ«�¬/ò
ï çAG�èPX¨ëQX¢9/Y
�����

í5G�èJð�8¢8<� �� b��Fñ«�¬/ò íOG7èJð/8:8o�V���
For lattice basedretrieval methods, different operating
pointscanbe obtainedby changing the threshold. The
precisionandrecallat theseoperating pointscanbeplot-
tedasa curve.

In addition to individual precision-recall values we
alsocomputetheF-measuredefined as

d²� ��4 ï ç�G7èPX¨ëAX:9+Y�4>í5G7è7ð�8¢8ï çAG�èPX¨ëQX¢9/Y30&íOG7èJð/8:8
andreport the maximum F-measure(maxF) to summa-
rize theinformationin aprecision-recallcurve.

6.2 Corpora

We usethreedifferentcorpora to assesstheeffectiveness
of differentretrieval techniques.

The first corpus is the DARPA Broadcast News cor-
pus consistingof excerpts from TV or radio programs
including various acousticconditions. The test set is
the 1998 Hub-4 Broadcast News (hub4e98)evaluation
testset(availablefrom LDC, Catalogno. LDC2000S86)



which is 3 hourslong andwasmanually segmented into
940segments.It contains 32411 word tokens and4885
wordtypes.For ASRweuseareal-timesystem(Saraclar
et al., 2002). Sincethe systemwasdesignedfor SDR,
the recognition vocabulary of thesystemhasover 200K
words.

Thesecondcorpus is theSwitchboard corpus consist-
ing of two party telephoneconversations. Thetestsetis
the RT02 evaluation test setwhich is 5 hourslong, has
120conversationsidesandwasmanually segmentedinto
6266segments. It contains65255 word tokensand3788
word types.For ASR we usethefirst passof theevalua-
tion system(Ljolje et al., 2002). Therecognition vocab-
ularyof thesystemhasover45K words.

Thethirdcorpusis namedTeleconferencessinceit con-
sistsof multi-party teleconferenceson various topics. A
testsetof six teleconferences(about 3.5hours) wastran-
scribed. It contains31106 word tokensand2779word
types. Calls areautomaticallysegmentedinto a total of
1157segmentsprior to ASR. We againusethefirst pass
of theSwitchboard evaluationsystemfor ASR.

WeusetheAT&T DCD Library (Allauzenetal.,2003)
asourASR decoderandour implementationof thealgo-
rithm is basedon theAT&T FSM Library (Mohri et al.,
2000), bothof whichareavailablefor download.

6.3 Results

We implemented someof the proposedtechniques and
madecomparisonswith the previous method usedby
SaraclarandSproat(2004). The full indexing method
consumedtoomuchtimewhile indexing BroadcastNews
latticesandusedtoomuchmemory while indexing phone
latticesfor Teleconferences. In theothercases,we con-
firmed that the new methodyields identical results. In
Table1 we comparetheindex sizesfor full indexing and
partialindexing with thepreviousmethod. In bothcases,
theinput latticesareprunedsothatthecost(negative log
probability) differencebetweentwo pathsis lessthansix.
Although thenew method resultsin muchsmallerindex
sizesfor thestringcase(i.e. nbest=1), it canresultin very
large index sizesfor full indexing of lattices (cost=6).
However, partialindexingby lengthrestrictionsolvesthis
problem. For theresultsreportedin Table1, thelengthof
the word stringsto be indexed wasrestrictedto be less
thanor equalto four, andthelengthof thephonestrings
to beindexed wasrestrictedto beexactly four.

In SaraclarandSproat(2004), it wasshown thatusing
word latticesyieldsa relativegainof 3-5%in maxFover
usingbestword hypotheses.Furthermore,it wasshown
thata “searchcascade”strategy for usingbothword and
phoneindicesincreasestherelativegainoverthebaseline
to 8-12%.In this strategy, we first searchtheword index
for the given query, if no matchesare found we search
the phone index. Using the partial indices,we obtained
a precisionrecallperformancethat is almostidenticalto

theoneobtainedwith thepreviousmethod. Comparison
of themaximum F-measure for bothmethods is givenin
Table2.

Task Previous Method Partial Index

BroadcastNews 86.0 86.1
Switchboard 60.5 60.8
Teleconferences 52.8 52.7

Table2: Comparison of maximumF-measurefor three
corpora.

As anexample, we useda filter thatindexes only con-
sonants(i.e. mapsthevowels to q ). Theresultingindex
was usedinsteadof the full phone index. The size of
theconsonantsonly index was370MB whereasthesize
of thefull index was431MB. In Figure5 we presentthe
precisionrecall performanceof this consonantonly in-
dex.
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Figure 5: Comparison of Precisionvs Recall Perfor-
mancefor Switchboard.

7 Conclusion

We described a general framework for indexing uncer-
tain input datarepresentedas weightedautomata. The
indexation algorithm utilizes weighted finite-statealgo-
rithmsto obtainanindex representedasaweightedfinite-
statetransducer. We showedthatmany of thetechniques
usedfor speechindexing canbeimplementedwithin this
framework. We gave comparative resultsto a previous
methodfor latticeindexing.

Thesameideaandframework canbeusedfor indexa-
tion in naturallanguage processingor otherareaswhere
uncertain input datais givenasweightedautomata. The
complexity of the index constructionalgorithm can be
improved in somegeneralcasesusingtechniquessimi-
lar to classicalstringmatchingones(Blumeretal., 1985;



Task Type Pruning Previous Method Full Index Partial Index

Broadcast News word nbest=1 29 2.7 –
Broadcast News word cost=6 91 – 25
Broadcast News phone cost=6 27 – 14

Switchboard word nbest=1 18 4.7 –
Switchboard word cost=6 90 99 88
Switchboard phone cost=6 97 431 41

Teleconferences word nbest=1 16 2.6 –
Teleconferences word cost=6 142 352 184
Teleconferences phone cost=6 146 – 69

Table1: Comparisonof Index Sizesin MegaBytes.

Crochemore, 1986; Blumer et al., 1987). Various prun-
ing techniques canbe appliedto reduce the sizeof the
index without significantlydegradingperformance. Fi-
nally, othertypesof filters that make useof the general
framework canbeinvestigated.

Acknowledgments

Wewishto thankourcolleagueRichardSproatfor useful
discussionsandthe useof the lattice indexing software
(lctools) usedin ourbaselineexperiments.

References

Cyril Allauzen, Mehryar Mohri, and Michael Ri-
ley. 2003. DCD Library - Decoder Library.
http://www.research.att.com/sw/tools/dcd.

Arnon Amir, Alon Efrat, andSavitha Srinivasan. 2001.
Advancesin phonetic word spotting. In Proceedings
of the TenthInternational Conference on Information
andKnowledgeManagement, pages580–582, Atlanta,
Georgia, USA.

Anselm Blumer, JanetBlumer, Andrzej Ehrenfeucht,
David Haussler, andJoelSeiferas.1985. Thesmallest
automaton recognizing the subwords of a text. Theo-
reticalComputerScience, 40(1):31–55.

AnselmBlumer, JanetBlumer, David Haussler, RossMc-
Connel,and Andrzej Ehrenfeucht. 1987. Complete
inverted files for efficient text retrieval and analysis.
Journal of theACM, 34(3):578–595.

Maxime Crochemore. 1986. Transducersand repeti-
tions. TheoreticalComputer Science, 45(1):63–86.

Werner Kuich and Arto Salomaa. 1986. Semirings,
Automata, Languages. Number 5 in EATCS Mono-
graphs on Theoretical ComputerScience.Springer-
Verlag,Berlin, Germany.

Andrej Ljolje, Murat Saraclar, Michiel Bacchiani,
MichaelCollins, andBrian Roark. 2002. TheAT&T

RT-02 STT system.In Proc.RT02Workshop, Vienna,
Virginia.

Beth Logan, PedroMoreno, andOm Deshmukh. 2002.
Word andsub-word indexing approachesfor reducing
theeffectsof OOV querieson spokenaudio. In Proc.
HLT.

MehryarMohri, Fernando C. N. Pereira,andMichaelRi-
ley. 1996. WeightedAutomatain Text and Speech
Processing.In Proceedingsof the12thbiennial Euro-
peanConferenceon Artificial Intelligence(ECAI-96),
WorkshoponExtendedfinitestatemodelsof language,
Budapest,Hungary.

Mehryar Mohri, Fernando C. N. Pereira,and Michael
Riley. 2000. The Design Principles of a
Weighted Finite-State Transducer Library. The-
oretical Computer Science, 231:17–32, January.
http://www.research.att.com/sw/tools/fsm.

Mehryar Mohri. 1997. Finite-StateTransducersin Lan-
guage and SpeechProcessing. Computational Lin-
guistics, 23:2.

Mehryar Mohri. 2002. SemiringFrameworks andAlgo-
rithmsfor Shortest-DistanceProblems. Journal of Au-
tomata,LanguagesandCombinatorics, 7(3):321–350.

Murat SaraclarandRichardSproat. 2004. Lattice-based
searchfor spoken utterance retrieval. In Proc. HLT-
NAACL.

Murat Saraclar, Michael Riley, Enrico Bocchieri, and
VincentGoffin. 2002. Towardsautomatic closedcap-
tioning: Low latency real-timebroadcastnews tran-
scription. In Proceedingsof theInternational Confer-
enceon Spoken Language Processing(ICSLP), Den-
ver, Colorado, USA.

MichaelWitbrockandAlexanderHauptmann. 1997. Us-
ing wordsandphonetic stringsfor efficient informa-
tion retrieval from imperfectly transcribedspokendoc-
uments. In 2ndACMInternationalConferenceonDig-
ital Libraries(DL’97), pages30–35, Philadelphia, PA,
July.


