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Abstract

Background: Individual differences in human cognitive abilities show consistently positive correlations across diverse
domains, providing the basis for the trait of ‘‘general intelligence’’ (g). At present, little is known about the evolution of g, in
part because most comparative studies focus on rodents or on differences across higher-level taxa. What is needed,
therefore, are experiments targeting nonhuman primates, focusing on individual differences within a single species, using a
broad battery of tasks. To this end, we administered a large battery of tasks, representing a broad range of cognitive
domains, to a population of captive cotton-top tamarin monkeys (Saguinus oedipus).

Methodology and Results: Using a Bayesian latent variable model, we show that the pattern of correlations among tasks is
consistent with the existence of a general factor accounting for a small but significant proportion of the variance in each
task (the lower bounds of 95% Bayesian credibility intervals for correlations between g and task performance all exceed
0.12).

Conclusion: Individual differences in cognitive abilities within at least one other primate species can be characterized by a
general intelligence factor, supporting the hypothesis that important aspects of human cognitive function most likely
evolved from ancient neural substrates.
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Introduction

Whenever humans are presented with cognitive tasks where a

correct response can be objectively determined, their performanc-

es are almost always positively correlated [1,2]. This consistent

finding implies a ‘‘general intelligence’’ (g) factor, a capacity that

unifies or underpins all human cognitive abilities [3,4]. Scores on

g-loaded ability tests show substantial genetic influence [5] and a

diverse array of physiological correlates that include overall brain

volume [6,7]. This is intriguing because brain size is known to

have increased substantially over the evolution of the primate

lineage leading to Homo sapiens sapiens [8].

If there are indeed evolutionary homologues of the mechanisms

subserving the g factor in humans, then sufficient extant genetic

variation should lead to similar factors underlying performance on

cognitive tasks in other primates. A recent meta-analysis of several

primate genera provides support for this prediction [9]. Further

evidence is required, however, before the general factor among

genera can be attributed to causal sources similar to those

underlying human g. In particular, it is presently unclear whether

the positive correlations found across primate species arise because

of an intrinsic dependence on a set of common mechanisms—as in

humans [10,11]—or because of spurious sources of association.

What is necessary, therefore, is a detailed study of within-species

variation. To date, the most substantial evidence for a general

factor in animals comes from laboratory studies of mice and rats

[12–18]. Studies of primates are either limited because of the

narrow range of tasks within the test battery or because of

contrasts between taxa. The primary goal of our study was to

explore the possibility of a homologue to general intelligence in a

nonhuman primate species using a broad task battery. To this end,

we tested a sample of 22 cotton-top tamarin monkeys (Saguinus

oedipus) on 11 tasks covering a wide range of cognitive domains.

Our battery included the following tasks: occluded reach, targeted

reach, A-not-B, reversal learning, exploration, numerical discrim-

ination, acoustic discrimination, object tracking, social tracking,

hidden reward retrieval, and a food extraction puzzle. Using a

Bayesian latent variable analysis, we provide evidence of a general
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factor underlying individual differences in cognitive abilities within

this primate species.

Results

Because it was not possible to quantitatively asses the cognitive

performance of non-human primates across a broad range of tasks

using fine-grained numerical scales, we represented the data

collected during our experiment in the form of ranks.. Given our

use of ranked observations, standard repeated measures analyses

were not appropriate. We therefore analyzed our data using a

Bayesian latent variable model that was previously used for inter-

species analysis of non-human primate cognitive data and has

been vetted in the mainstream statistical literature [9,19]. Using

this model framework, we first estimated the loading of each task

on a group factor (reflecting a particular cognitive domain or

function) and on a top-level general factor analogous to the human

g factor. The posterior expectations of the task-specific variances

ranged from 1.00 to 1.35, while the posterior expectations of the

group factors’ variances ranged from 0.012 to 0.045. It is clear that

a much greater proportion of the variance in the posited latent

variable underlying any given task is attributable to task-specific

sources such as experimental error rather than to a group factor.

This implies that the correlational structure of the tasks can be

accounted for by a general factor alone. For this reason we re-

estimated the model without the group factors. Checks of model

adequacy indicated sufficient fit (Supplemental Figures S1 and S2).

We next computed the marginal posterior distribution of the

proportion of latent variance underlying each task attributable to

the general factor. The square root of this proportion gives the ‘‘g-

loading’’ of the task, which can be interpreted as the correlation

between performance on the task and the general factor. Several

features are evident from the posterior histograms of the

proportions of the task variances attributable to the general factor

(Figure 1). Critically, the modal estimate of every task’s loading on

the general factor is always positive (Table 1). This finding is of

course consistent with the presence of a genuine general factor.

However, although the 95% credibility intervals always exclude

zero, the loadings are typically quite small, especially relative to

what is usually observed in human cognitive test batteries [2,6].

Interestingly, three of the four tasks with the lowest loadings

(targeted reach, social tracking, exploration) are the ones with

arguably the weakest claims to membership in the domain of

cognitive abilities. This domain can be defined as those items or

tests that tax a mental ability and to which responses can be

unambiguously scored from very wrong to very right [1,4]. This

domain description can in turn be clarified by defining a ‘‘right’’

response as a decision made ‘‘on some grounds of truth:

correspondence to reality or soundness of inference’’ [20] (p.

61). While the three aforementioned tasks were included in the

battery based on prior research suggesting that they were

correlated with cognitive ability, high performance scores on

these tasks do not entail evidence of computations modeling

reality. For example, it cannot be either right or wrong for an

animal to spend any particular amount of time in the various parts

of the box in the exploration task. In this light it is also notable that

the tasks with the highest g loadings, including A-not-B and

numerical discrimination, clearly fall within the cognitive domain,

tapping capacities such as inhibitory control and number

representation.

For each task we computed the posterior probabilities that it has

a higher g loading than any other task, and the separation of the

most and least g-loaded tasks is fairly clear (Supplemental Table

S1). However, it may be that the pattern of loadings is partly

attributable to differences across tasks in reliability. An examina-

tion of those tasks with replications suggests potentially significant

differences in reliability (Supplemental Table S2).

64.5% of the pairwise comparisons in the observed data that did

not result in ties were correctly predicted by the posterior

expectations of the hi. The significance of this result can be tested

under a frequentist approach. For each entry of the raw data

matrix that is not missing, we drew a random sample from a

standard normal distribution. The estimate of each subject’s ability

from this pseudo-data was taken to be the mean of its random

draws. The random draws within each task were then adjusted to

reflect the structure of ties in the real data. For instance, if a task

yielded a four-way tie for first, the scores of the subjects ranked two

through four on this task in the pseudo-data were set equal to the

score of the top-ranked subject. We counted the proportion of

pairwise comparisons in the pseudo-data not resulting in ties that

were correctly predicted by the pseudo-estimates of ability.

In 10,000 replicates of this simulation, the proportion of

replicates yielding a prediction rate exceeding that obtained in the

actual data using the posterior expectations of the hi was only

0.0236. Note that we have not shown that ordering the subjects by

their pseudo-data means is optimal for purposes of retaining the

null hypothesis that the prediction rate reflects mere capitalization

on chance. Nevertheless we take the low empirical p-value from

our simulations as converging evidence that the posterior

distributions of the hi reflect the genuine structure in the data

that is captured by our model of a general factor.

Discussion

In this study we applied a Bayesian latent variable model of rank

data to the results of a battery of 11 cognitive tasks administered to

22 cotton-top tamarins. These tasks are posited to measure a

diversity of cognitive processes and content domains, including

executive control, memory, attention, and problem solving, in

social and non-social situations, with food and non-food

motivators. The results provide evidence of individual differences

in a general factor (g) of cognitive ability in cotton-top tamarins.

The magnitude of the g factor’s influence appears to increase as

the task engages more systematic cognitive control, although the

limitations of our data preclude certainty on this point.

One significant contrast with patterns typical of human data is

an absence of compelling evidence for any group factors. A similar

result emerged in the meta-analysis of primate genera conducted

by Deaner et al. [9]. At present, we cannot offer a clear

explanation for this disparity. One possibility is that experimental

noise and task-specific sources of variance in measurements of

nonhuman primates are substantially increased relative to their

typical levels in human testing. The few tasks with replications do

suggest that some tasks have rather low reliabilities (Supplemental

Table S2). As a result, the contribution of group factors may be

more difficult to discern in animal data. Note that this possibility

also complicates any attempts to draw inferences from the fact that

the estimated loadings of our tasks on their general factor are

much smaller than typical g-loadings of ability tests taken by

humans [4]. In future studies of this kind, we recommend the use

of larger samples with more complete data sets per subject, thus

leading to narrower credibility intervals. Further development of

the Bayesian latent variable model used in this study may also

allow replications of tasks to separate measurement error and task-

specific variance. Such measures may shed light on the reasons for

the relatively low loadings on the general factor observed in this

study. If the smaller loadings turn out not to be solely attributable

to measurement error, it may be that one trend in the evolutionary
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lineage leading to our species has been an increasing reliance on

interfaces among distinct cognitive processors, some domain-

general (e.g., memory, attention, executive control), and others

domain-specific (e.g., object knowledge, mental state attribution).

It is sometimes argued that the presence of a general cognitive

factor is inconsistent with the hypothesis that the human mind

consists of highly specialized, domain-specific modules [23]. We

reject this argument, appealing to a distinction between the

qualitative architecture of cognition and the structure of

quantitative differences [6,24]. The explanations for the phenom-

ena arising within these two spheres may reside in different levels

of the reductionist hierarchy. For example, variation in low-level

global properties of the neural substrate may induce a general

factor underlying quantitative differences in high-level modules

with distinct functions and operating principles. Indeed, discrim-

inations making explicit use of number in the numerical

discrimination task depend on a system for precise counts of

distinct objects that is distinguishable from another system for the

approximate representation of large magnitudes [25]. Further,

systems that are specialized for solving one problem can be either

constrained or enhanced by interfaces with other systems, either

domain-specific or domain-general. For example, though the

recursive operations that underpin language are virtually limitless

(generating discrete infinity with respect to the number of

meaningful expressions), they are constrained in comprehension

and production by our domain-general working memory system.

In sum, we argue that both architectural features and quantitative

differences are worthy topics of investigation for evolutionarily-

Figure 1. Posterior histograms of Var(h)/[(1/cj) + Var(h)]. The proportion of variance in the latent variable underlying the jth task attributable to
the general factor. Each panel displays the marginal posterior histogram of this proportion. The square root of the proportion is called the ‘‘loading’’
of the task on the general factor—the correlation between the task and the general factor.
doi:10.1371/journal.pone.0005883.g001
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oriented scientists interested in phylogenetic patterns and adaptive

functions, as well as cognitive scientists interested in the

mechanisms that support these capacities.

One goal of our study was to secure evidence supporting the

intrinsic nature of the general factor found in comparisons of

different primate genera. As the presence of a general factor within

a primate species indicated by a similar number and diversity of

tasks indeed strengthens this supposition, our study has been

successful in this regard. However, our pairwise prediction rate of

64.5%, although significantly greater than expected by chance, is

smaller than the 85% found in the meta-analysis of primate genera

[19]. Many of our tasks were similar to those considered in this

meta-analysis. If we assume some similarity between the general

factors found in the two studies and comparability of such relevant

features as the degree of experimental noise, then the lower

prediction rate in the tamarin comparisons suggests that variation

among taxa in the general factor is large relative to variation

within this species. Substantial variation among taxa is consistent

with an important role for differentiation along this dimension in

the evolution of the primate order.

Further research is necessary regarding the relationships among

the respective general factors within different primate species

(including Homo sapiens) and the general factor across primate taxa.

In particular, we need a much more detailed analysis of the causal

or correlational nature of the different neural and psychological

processes that facilitate or constrain task performance. There is a

significant positive correlation between the primate general factor

and brain volume [26], a pattern observed within humans as well

[27]. Future studies might seek to establish similar relationships

between the replicated physiological correlates of the human g

factor (brain size, white matter connectivity, levels of the neural

metabolite N-acetylaspartate; for a review see [6]) and primate

general factors at varying taxonomic levels. Of additional interest

will be the connectivity between different domain-specific systems

(e.g., capacity to understand others’ mental states and abilities for

numerical quantification in the context of cooperative games) and

their links to more domain-general processes (e.g., memory for

prior interactions and participants).

We acknowledge the great practical difficulties posed by a

research program seeking to find such relationships within

different primate species. There are, however, indications in the

literature that it can be accomplished [28]. A promising place to

begin is with species that are abundantly available in captivity, be

they in research sites or zoos. For example, zoos and research labs

throughout the United States have access to chimpanzees, rhesus

monkeys and squirrel monkeys, three species representing each of

the primary taxonomic groups (i.e., apes, old world monkeys, and

new world monkeys). Such a research program is worthwhile

because of the great theoretical interest that would attach to any

positive results. In particular, we think of intelligence as a hallmark

of the human species. But the mechanisms and representations

that enter into human intelligence are unclear, as are the paths

leading to its evolution. By specifying these ingredients, including

the relevance of both domain-specific (e.g., language, number,

theory of mind) as well as domain-general (e.g., inhibitory control,

recursive computation, and attention) processes, we will be in a

stronger position to guide future research into the cognitive

evolution of our species.

Materials and Methods

Ethics Statement
All tasks conformed to the animal subject regulatory standards

enforced by the Institutional Animal Care and Use Committee

(IACUC) at Harvard University. The IACUC protocol number is

92-16, approved on 6/30/08. The welfare of the animals

conformed to the requirements of the National Institute of Mental

Health (NIMH). All animals were housed in cages exceeding the

sizes stipulated in said requirements, together with conspecifics in

their natural group compositions. All animals were given access to

a rich diet of foods and engagement with a variety of

psychologically enriching tasks. No animal was physically harmed

or deliberately exposed to potential infection.

General Procedure
We tested 22 adult cotton-top tamarin monkeys (10 females and

12 males) of mixed experimental history. Subjects ranged in age

from 3 to 17 years. All subjects were housed in the same colony

room in the Cognitive Evolution Laboratory at Harvard

University. In addition to food given in experiments, all subjects

were fed a nightly meal and maintained at approximately 10% less

than their free-feeding weights in captivity; thus, we maintained

subjects at a weight that more closely approximated those

observed among wild subjects (400–465 g).

The battery consisted of 11 tasks that were administered

between March 2007 and December 2007. Tasks were always

administered between the hours of 8 am and 5 pm. Data were not

collected on days where we anticipated any exceptional cause for

excitement in the tamarin colony, such as a veterinary check or lab

construction.

All experimenters were required to practice the task procedures

together until attaining a high degree of uniformity in adminis-

tration. Prior to each task, subjects voluntarily moved from their

home cage into a transport cage and were then transferred to the

appropriate testing room. By restricting testing to animals that

voluntarily left their home cage, we provided more consistency

with respect to motivational state.

Although we attempted to test all 22 subjects on each task, this

was not possible due to several uncontrollable factors, including

routine medical care, pregnancy, and occasional unwillingness to

voluntarily enter the transport cage on the day of testing.

Task Descriptions
The following provides a synopsis of each task within our

battery; more details are given in Supplemental Protocol S1.

Descriptive statistics are provided in Supplemental Table S3.

Table 1. Estimated Loadings of Cognitive Tasks on General
Factor (Bayesian 95% credibility intervals in parentheses).

task loading on general factor

A-not-B .542 (.287, .775)

occluded reach .449 (.268, .623)

reversal learning .421 (.206, .595)

food extraction puzzle .397 (.206, .595)

object tracking .346 (.163, .589)

numerical discrimination .346 (.167, .561)

acoustic discrimination .302 (.152, .483)

exploration .286 (.133, .473)

hidden reward retrieval .285 (.128, .473)

social tracking .253 (.121, .404)

targeted reach .249 (.127, .392)

doi:10.1371/journal.pone.0005883.t001
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Occluded reach. The subject watched as the experimenter

placed a food item (a quarter of a piece of Froot Loop cereal) in

one of three positions behind a transparent Plexiglas barrier

positioned in front of the subject’s cage. In the right and left

conditions, the experimenter placed the food at the edge of either

side of the Plexiglas barrier; half of the food was positioned behind

the barrier, and the other half was exposed to the subject. In the

center condition, the food was located directly behind the center of

the transparent barrier. The subject participated in five sessions of

this task consisting of twelve trials each over five consecutive days.

Each food position condition was presented four times within a

session, and condition order was counterbalanced across all twelve

trials. The percentage of center trials in which the subject

successfully reached around the barrier (i.e., inhibited reaching

straight for and into the barrier) to access the food was recorded

for each session.

Targeted reach. A cable-tie glued to the top of the subject’s

transport cage was loaded with half of a raisin. The cable-tie and

raisin were raised to a 60-degree angle by the side of the subject’s

cage, released, and allowed to oscillate in front of the subject’s cage

door. The subject was free to reach its hands or mouth through a

small square hole in the transport cage door in order to grasp the

swinging raisin. This procedure was repeated for five trials in a

single session. The time required for the subject to successfully

grasp the raisin was measured for each trial. Similar studies of

rhesus macaques indicate that this type of task co-activates visual

motion processing and motor command responses in the cerebral

cortex [29].

A-not-B. Two opaque barriers were positioned in front of the

subject’s transport cage. Froot Loop quarters were placed behind

barrier A on five consecutive trials. On the sixth trial, the subject

watched the experimenter place the food behind barrier B. We

recorded whether, on this sixth trial, subject reached behind the

incorrect barrier A or the correct barrier B.

Reversal learning. The experimenter wore a red glove on

one hand and a green glove on the other. Subjects were taught to

associate a food reward (a quarter of a Froot Loop) with either the

red glove or the green glove. In the test phase, the food reward was

presented to the subject as in the training phase, except that the

reward was concealed in the hand bearing the opposite-colored

glove. In order to pass the test phase, the subject was required to

choose correctly on ten out of the twelve trials in one session. The

number of sessions required to pass the test phase were recorded.

Exploration. On consecutive days, subjects were taken to a

large, open-field box to participate in seven different task

conditions. Each subject was allowed to move about freely inside

the box for five minutes. In five of the seven conditions, a different

stimulus was located in the center of the box. In the two baseline

conditions, no stimulus was present inside the box. Several

dependent measures were examined as indicators of the subject’s

overall exploratory behavior and novelty preference. These

dependent measures included time spent moving (versus

stationary), time spent in physical contact with the stimulus, and

time spent in each quadrant of the box. This task is similar to one

that has been found to be correlated with a general cognitive factor

in studies of mice [15,30]. In humans, preference for novel objects

in infancy has been found to predict IQ at later ages [31].

Numerical discrimination. Subjects watched as the

experimenter loaded two clear petri dishes with different

quantities of food items (quarters of Froot Loops). The following

contrasts were used: 1 v. 2, 1 v. 3, 1 v. 4, 1 v. 5, 2 v. 3, 2 v. 4, 3 v. 4,

and 4 v. 5. The subject was then allowed to choose one of the petri

dishes by reaching a hand or mouth through one of two small

holes in the transport cage. The subject was run in three sessions of

this task consisting of ten trials each over three consecutive days.

The proportion of trials in which the subject chose the larger

number of food items was recorded. Variants of this task have

been administered in previous studies assessing the cue (volume,

density, or number) by which tamarins, marmosets, and rhesus

macaques discriminate between two quantities of food [32,33].

Acoustic discrimination. Subjects’ rates of habituation to

four biologically meaningful acoustic stimuli were measured. The

four stimuli consisted of a tamarin alarm call, a goshawk alarm

call, and the contact calls of two members of the lab colony known

to the subjects. Stimuli were played when the subject was looking

away from the speaker in order to allow for a maximal orientation

response. A response was defined as orienting up and toward the

speaker located behind the transport cage during the stimulus

exposure or within two seconds of its termination. The subject was

scored as habituated to the stimulus when it failed to orient toward

the speaker for three consecutive stimulus exposures. The number

of exposures required to habituate to each of the four stimulus

conditions was measured; fewer needed exposures indicated better

performance. A nearly identical protocol was used in a previous

study of tamarins’ patterns of habituation to the contact calls of

familiar conspecifics [34]. Rapidity of habituation by human

infants to previously presented stimuli is surprisingly predictive of

their IQs measured at much later ages [35].

Object tracking. We measured the time that a subject spent

tracking each of two different stimuli: a raisin (food object) and a

metal screw (non-food object). The subject was exposed to both

stimulus conditions once within a single session. The experimenter

presented each stimulus for two seconds at a distance of 5 cm from

the subject’s cage door and then moved the stimulus in a fixed

pattern comprised of straight lines, diagonal lines, and figure-8s. The

percentage of the presentation time that the subject spent looking at

the moving stimulus was measured for each condition. General

attentional processes have been shown to be an important factor in

tamarins’ rate of learning in operant conditioning tasks [36].

Social tracking. Subjects were positioned inside a transport

cage that was adjacent to a second transport cage containing a

‘‘stooge’’ ’animal. The transport cages were divided by an opaque

barrier preventing the two animals from viewing each other except

through four peepholes located in each corner of the barrier. The

subject was allowed to watch the stooge through the peepholes

while the stooge was foraging for pieces of Froot Loop cereal in a

woodchip-filled trough attached to the side of the stooge’s cage.

Though the subject could easily view the stooge, the positioning of

the adjacent cages largely prevented the subject from viewing the

trough. As a result the majority of the subject’s time spent looking

through the peepholes involved tracking the stooge rather than the

food stimulus. The subject was allowed to look through the

peepholes during a single 60-second trial. The total time that the

subject spent tracking the stooge through any of the four peepholes

was measured.

Hidden reward retrieval. Subjects watched an experi-

menter bury a quarter of a Froot Loop in one of two food wells

filled with woodchips. In each condition a different delay length

was imposed before the food wells were pushed against the

subject’s transport cage. The subject was exposed to seven delay

conditions on consecutive days in the following order: no delay, 5-

second delay, 10-second delay, 15-second delay, 20-second delay,

25-second delay, and 30-second delay. Each condition consisted of

10 trials. If the subject chose the incorrect well on a given trial, the

experimenter immediately pulled both wells away from the

subject’s transport cage and revealed the food reward hidden in

the unselected well. The total number of trials where the subject

chose the correct well was recorded for each delay condition.

General Intelligence Primate
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Food extraction puzzle. A small piece of clear plastic tubing

containing half of a grape at its midpoint was placed inside the

front of the subject’s transport cage. The subject was allowed to

manipulate the tube in an attempt to extract the grape for a

maximum of ten minutes. The subject had to solve the puzzle by

extracting the grape using its tongue rather than its hands, which

were too large to fit inside the tube. The time required by the

subject to extract the food reward was measured for each trial.

The subject was run in two consecutive ten-minute trials within

one session of this task.

Model Specification and Estimation
Although batteries of cognitive tests administered to humans

show a clear dominant dimension, this dimension is not enough to

capture the full correlational structure of the tests. The necessary

additional dimensions are often called group factors, meant to

capture the possible clustering effect of different cognitive abilities,

perhaps linked to a single neuroanatomical region or circuit in the

brain. In specifying a multiple-factor structure for our data, we

grouped the tasks according to what we consider, together with

other researchers, to be core cognitive processes. In particular,

occluded reach, A-not-B, and reversal learning were all taken as

indicators of executive inhibition of reflexive lower-level responses.

Numerical discrimination and the food extraction puzzle were

specified as indicators of a problem-solving factor. Object tracking

and social tracking were specified as indicators of an ‘‘inspection’’

factor.

All replications of a given task were collapsed. Attempts to fit a

confirmatory factor model to the resulting data with standard

structural equation modeling software resulted in convergence

failures from a wide range of starting values. This is perhaps

unsurprising as our data departed in several ways from the ideal

conditions for the fitting of standard factor models with maximum

likelihood. These departures include small sample size (exacerbat-

ed by a high rate of missingness) and diversity across tasks of data

form and distribution (non-normal continuous measurements,

counts, binary outcomes).

To accommodate the distinctive features of our data, we

employed a Bayesian latent variable model that has been

successfully implemented in previous studies of primate cognitive

performance [9,19]; see Supplemental Protocol S1 for relevant

notation and further details. This approach mitigates the

limitations of small sample size and missing data by allowing

estimates of a parameter such as a task’s non-g variance to borrow

strength from estimates of related parameters (e.g., the corre-

sponding variances of other tasks). Further, it handles the disparate

data forms and distributions across tasks by converting them to the

common format of ranks. Lastly, because our study, and the

comparative analysis of the general factor across taxa make use of

the same statistics, we can more directly compare our results.

In brief, a latent variable was invoked to underlie each task to

account for the varying forms of the data, much as in the standard

generalized linear model. For example, if a task produced

dichotomous outcomes, then the model stipulated that a standing

on the latent variable less than a certain threshold resulted in the

lower rank for that animal; a standing on the latent variable higher

than the threshold resulted in the higher rank. This notion

generalizes in an obvious way to tasks producing more than two

ranks. Three sources of variance were modeled for each task’s

underlying latent variable: (1) a general factor affecting perfor-

mance on all tasks, (2) a group factor affecting only a subset of the

tasks, and (3) influences such as experimental error affecting that

task alone. Our main interest is in estimating the proportion of

each task’s latent variance attributable to the general factor. Recall

that the likelihood is the probability that a certain configuration of

model parameters will produce the observed data. In Bayesian

statistical inference, the product of the likelihood and the prior

probability of the configuration of model parameters is propor-

tional to the desired posterior probability of the configuration. (The

prior can be chosen in such a way that the marginal posterior

probability distributions of important parameters are not sensitive

to the prior’s precise specification.) Because the mathematical form

of the posterior probability is not analytically tractable, values of

the model parameters were sampled in proportion to their

posterior probability according to a hybrid Gibbs-Metropolis

algorithm that has been described elsewhere [25].
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