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Abstract Local search with k-exchange neighborhoods, k-opt, is the most widely

used heuristic method for the traveling salesman problem (TSP). This paper presents

an effective implementation of k-opt in LKH-2, a variant of the Lin–Kernighan TSP

heuristic. The effectiveness of the implementation is demonstrated with experiments

on Euclidean instances ranging from 10,000 to 10,000,000 cities. The runtime of the

method increases almost linearly with the problem size. LKH-2 is free of charge for

academic and non-commercial use and can be downloaded in source code.
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1 Introduction

The traveling salesman problem (TSP) is one of the most widely studied problems in

combinatorial optimization. Given a collection of cities and the cost of travel between

each pair of them, the TSP is to find the cheapest way of visiting all of the cities and

returning to the starting point. The problem may be stated as follows:

Given a “cost matrix” C = (ci j ), where ci j represents the cost of going from city

i to city j (i, j = 1, . . . , n), find a permutation (i1, i2, i3, . . . , in) of the integers

from 1 through n that minimizes the quantity

ci1i2 + ci2i3 + · · · + cin i1 .
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120 K. Helsgaun

The TSP may also be stated as the problem of finding a Hamiltonian cycle (tour)

of minimum weight in an edge-weighted graph:

Let G = (N , E) be a weighted graph where N = {1, 2, . . . , n} is the set of nodes

and E = {(i, j) |i ∈ N , j ∈ N } is the set of edges. Each edge (i, j) has asso-

ciated a weight c(i, j). A cycle is a set of edges {(i1, i2), (i2, i3), . . . , (ik, i1)}
with i p �= iq for p �= q. A Hamiltonian cycle (or tour) is a cycle where k = n.

The weight (or cost) of a tour T is the sum
∑

(i, j)∈T c(i, j). An optimal tour is

a tour of minimum weight.

For surveys of the problem and its applications, the reader is referred to the excellent

volumes edited by Lawler et al. [24] and Gutin and Punnen [11].

Local search with k-exchange neighborhoods, k-opt, is the most widely used heu-

ristic method for the TSP. k-opt is a tour improvement algorithm, where in each step

k links of the current tour are replaced by k links in such a way that a shorter tour is

achieved.

It has been shown [7] that k-opt may take an exponential number of iterations and

that the ratio of the length of an optimal tour to the length of a tour constructed by k-opt

can be arbitrarily large when k ≤ n/2 − 5. Such undesirable cases, however, are very

rare when solving practical instances [31]. Usually, high-quality solutions are obtained

in polynomial time. This is, for example, the case for the Lin–Kernighan heuristic,

one of the most effective methods for generating optimal or near-optimal solutions

for the symmetric TSP. High-quality solutions are often obtained, even though only a

small part of the k-exchange neighborhood is searched.

In the original version of the Lin–Kernighan heuristic [25], the allowable

k-exchanges (or k-opt moves) are restricted to those that can be decomposed into a

2- or 3-exchange followed by a (possibly empty) sequence of 2-exchanges. This restric-

tion simplifies implementation, but it need not be the best design choice. This paper

explores the effect of widening the search.

This paper describes LKH-2, an implementation of the Lin–Kernighan heuristic,

which allows all those moves that can be decomposed into a sequence of k-exchanges

for any k where 2 ≤ k ≤ n. These k-exchanges may be sequential as well as non-

sequential. LKH-2 is an extension and generalization of a previous version, LKH-1

[16], which uses a sequential 5-exchange as its basic move component (submove).

The rest of the paper is organized as follows. Section 2 gives an overview of the

original Lin–Kernighan algorithm. Section 3 gives a short description of the first ver-

sion of LKH, LKH-1. Section 4 presents the facilities of its successor LKH-2. Section 5

describes how k-opt submoves are implemented in LKH-2. The effectiveness of the

implementation is reported in Sect. 6. Finally, the conclusions about the implementa-

tion are given in Sect. 7.

2 The original Lin–Kernighan algorithm (LK)

The Lin–Kernighan algorithm [25] belongs to the class of so-called local search

algorithms [17,18,20]. A local search algorithm starts at some location in the search

space and subsequently moves from the present location to a neighboring location.

123



General k-opt submoves for the Lin–Kernighan TSP heuristic 121

Fig. 1 A 3-opt move. x1, x2, x3 are replaced by y1, y2, y3

The algorithm is specified in exchanges (or moves) that can convert one candidate

solution into another. Given a feasible TSP tour, the algorithm repeatedly performs

exchanges that reduce the length of the current tour, until a tour is reached for which

no exchange yields an improvement. This process may be repeated many times from

initial tours generated in some randomized way.

The Lin–Kernighan algorithm (LK) performs so-called k-opt moves on tours.

A k-opt move changes a tour by replacing k edges from the tour by k edges in such

a way that a shorter tour is achieved. The algorithm is described in more detail in the

following.

Let T be the current tour. At each iteration step the algorithm attempts to find two

sets of edges, X = {x1, . . . , xk} and Y = {y1, . . . , yk}, such that, if the edges of X are

deleted from T and replaced by the edges of Y , the result is a better tour. The edges

of X are called out-edges. The edges of Y are called in-edges.

The two sets X and Y are constructed element by element. Initially X and Y are

empty. In step i a pair of edges, xi and yi , are added to X and Y , respectively. Figure 1

illustrates a 3-opt move.

In order to achieve a sufficiently efficient algorithm, only edges that fulfill the

following criteria may enter X or Y :

(1) The sequential exchange criterion xi and yi must share an endpoint, and so

must yi and xi+1. If t1 denotes one of the two endpoints of x1, we have in general:

xi = (t2i−1, t2i ), yi = (t2i , t2i+1) and xi+1 = (t2i+1, t2i+2) for i ≥ 1 (see Fig. 2).

As seen, the sequence (x1, y1, x2, y2, x3, . . . , xk, yk) constitutes a chain of adjoin-

ing edges. A necessary (but not sufficient) condition that the exchange of edges X

with edges Y results in a tour is that the chain is closed, i.e., yk = (t2k, t1). Such an

exchange is called sequential. For such an exchange the chain of edges forms a cycle

along which edges from X and Y appear alternately, a so-called alternating cycle (see

Fig. 3). Generally, an improvement of a tour may be achieved as a sequential exchange

by a suitable numbering of the affected edges. However, this is not always the case.

Figure 4 shows an example where a sequential exchange is not possible.
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122 K. Helsgaun

Fig. 2 Restricting the choice of

xi , yi , xi+1, and yi+1

Fig. 3 Alternating cycle

(x1, y1, x2, y2, x3, y3, x4, y4)

Fig. 4 Non-sequential exchange (k = 4)
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Fig. 5 Sequential 4-opt move performed by three 2-opt moves. Close-up edges are shown by dashed lines

Note that all 2- and 3-opt moves are sequential. The simplest non-sequential move

is the 4-opt move shown in Fig. 4, the so-called double-bridge move.

(2) The feasibility criterion It is required that xi = (t2i−1, t2i ) is chosen so that, if

t2i is joined to t1, the resulting configuration is a tour. This feasibility criterion is used

for i ≥ 3 and guarantees that it is possible to close up to a tour. This criterion was

included in the algorithm both to reduce running time and to simplify the coding. It

restricts the set of moves to be explored to those k-opt moves that can be performed by

a 2- or 3-opt move followed by a sequence of 2-opt moves. In each of the subsequent

2-opt moves the first edge to be deleted is the last added edge in the previous move

(the close-up edge). Figure 5 shows a sequential 4-opt move performed by a 2-opt

move followed by two 2-opt moves.

(3) The positive gain criterion It is required that yi is always chosen so that the cumu-

lative gain, Gi , from the proposed set of exchanges is positive. Suppose gi = c(xi ) −
c(yi ) is the gain from exchanging xi with yi . Then Gi is the sum g1 + g2 + · · · + gi .

This stop criterion plays a major role in the efficiency of the algorithm.

(4) The disjunctivity criterion It is required that the sets X and Y are disjoint. This

simplifies coding, reduces running time, and gives an effective stop criterion. To limit

the search even more, Lin and Kernighan introduced some additional criteria of which

the following one is the most important:

(5) The candidate set criterion The search for an edge to enter the tour, yi =
(t2i , t2i+1), is limited to the five nearest neighbors to t2i .

3 The modified Lin–Kernighan algorithm (LKH-1)

Use of Lin and Kernighan’s original criteria, as described in the previous section,

results in a reasonably effective algorithm. Typical implementations are able to find

solutions that are 1–2% above optimum. However, in [16] it was demonstrated that it

was possible to obtain a much more effective implementation by revising these criteria.

This implementation, in the following called LKH-1, made it possible to find optimum
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solutions with an impressive high frequency. The revised criteria are described briefly

below (for details, see [16]).

(1) The sequential exchange criterion This criterion has been relaxed a little. When

a tour can no longer be improved by sequential moves, attempts are made to improve

the tour by non-sequential 4- and 5-opt moves.

(2) The feasibility criterion A sequential 5-opt move is used as the basic submove.

For i ≥ 1 it is required that x5i = (t10i−1, t10i ), is chosen so that if t10i is joined to t1,

the resulting configuration is a tour. Thus, the moves considered by the algorithm are

sequences of one or more 5-opt moves. However, the construction of a move is stopped

immediately if it is discovered that a close up to a tour results in a tour improvement.

Using a 5-opt move as the basic submove instead of 2- or 3-opt moves broadens the

search and increases the algorithm’s ability to find good tours, at the expense of an

increase of running times.

(3) The positive gain criterion This criterion has not been changed.

(4) The disjunctivity criterion The sets X and Y need no longer be disjoint. In order

to prevent an infinite chain of submoves the following rule applies: The last edge to

be deleted in a 5-opt move must not previously have been added in the current chain

of 5-opt moves. Note that this relaxation of the criterion makes it possible to generate

certain non-sequential moves.

(5) The candidate set criterion The usual measure for nearness, the costs of the

edges, is replaced by a new measure called the α-measure. Given the cost of a mini-

mum 1-tree [14,15], the α-value of an edge is the increase of this cost when a minimum

1-tree is required to contain the edge. The α-values provide a good estimate of the

edges’ chances of belonging to an optimum tour. Using α-nearness it is often possible

to restrict the search to relative few of the α-nearest neighbors of a node, and still

obtain optimal tours.

4 LKH-2

Extensive computational experiments with LKH-1 have shown that the revised crite-

ria provide an excellent basis for an effective implementation. In general, the solution

quality is very impressive. However, these experiments have also shown that LKH-1

has its shortcomings. For example, solving instances with more than 100,000 nodes

is computationally too expensive.

The new implementation, called LKH-2, eliminates many of the limitations and

shortcomings of LKH-1. The new version extends the previous one with data structures

and algorithms for solving very large instances, and facilities for obtaining solutions

of even higher quality. A brief description of the main features of LKH-2 is given

below.
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4.1 General k-opt submoves

One of the most important means in LKH-2 for obtaining high-quality solutions is

its use of general k-opt submoves. In the original version of the Lin–Kernighan algo-

rithm moves are restricted to those that can be decomposed into a 2- or 3-opt move

followed by a (possibly empty) sequence of 2-opt moves. This restriction simplifies

implementation but is not necessarily the best design choice if high-quality solutions

are sought. This has been demonstrated with LKH-1, which uses a 5-opt sequential

move as the basic move component. LKH-2 takes this idea a step further. Now k-opt

moves can be used as submoves, where k is any chosen integer greater than or equal to

2 and less than the number of cities. Each submove is sequential. However, during the

search for such moves, non-sequential moves may also be examined. Thus, in contrast

to the original version of the Lin–Kernighan algorithm, non-sequential moves are not

just tried as a last resort but are integrated into the ordinary search.

4.2 Partitioning

In order to reduce the complexity of solving large-scale problem instances, LKH-2

makes it possible to partition a problem into smaller subproblems. Each subproblem

is solved separately, and its solution is used (if possible) to improve a given overall

tour, T . The set of nodes is partitioned into subsets of a prescribed maximum size.

Each subset, S, induces a subproblem consisting of all nodes of S, and with edges

fixed between nodes that are connected by segments of T whose interior nodes do not

belong S. Currently, LKH-2 implements the following six partitioning schemes: Tour

segment, Karp, Delaunay, Rohe, K -means, and Space-filling Curve partitioning.

4.3 Tour merging

LKH-2 provides a tour merging procedure that attempts to produce the best possible

tour from two or more given tours using local optimization on an instance that includes

all tour edges, and where edges common to the tours are fixed. Tours that are close to

optimum typically share many common edges. Thus, the input graph for this instance

is usually very sparse, which makes it practicable to use k-opt submoves for rather

large values of k.

4.4 Iterative partial transcription

Iterative partial transcription is a general procedure for improving the performance of a

local search based heuristic algorithm. It attempts to improve two individual solutions

by replacing certain parts of either solution by the related parts of the other solution.

The procedure may be applied to the TSP by searching for subchains of two tours,

which contain the same cities in a different order and have the same initial and final

cities. LKH-2 uses the procedure on each locally optimum tour and the current best

tour. The implemented algorithm is a simplified version of the algorithm described by

Möbius et al. [29].
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4.5 Backbone-guided search

The edges of the tours produced by a fixed number of initial trials may be used as

candidate edges in the succeeding trials. The algorithm is a simplified version of the

algorithm given by Zhang and Looks [34].

The rest of the paper describes and evaluates the implementation of general k-opt

submoves in LKH-2. The other features will not be described further in this paper.

5 Implementation of general k-opt submoves

This section describes the implementation of general k-opt submoves in LKH-2. The

description is divided into the following four parts:

(1) Search for sequential moves

(2) Search for non-sequential moves

(3) Determination of the feasibility of a move

(4) Execution of a feasible move.

The first two parts show how the search space of possible moves can be explored

systematically. The third part describes how it is possible to decide whether a given

move is feasible, that is, whether execution of the move on the current tour will result

in a tour. Finally, it is shown how it is possible to execute a feasible move efficiently.

5.1 Search for sequential moves

A sequential k-opt move on a tour T may be specified by a sequence of nodes,

(t1, t2, . . . , t2k−1, t2k), where

(t2i−1, t2i ) belongs to T (1 ≤ i ≤ k), and

(t2i , t2i+1) does not belong to T (1 ≤ i ≤ k and t2k+1 = t1).

The requirement that (t2i , t2i+1) does not belong to T is, in fact, not a part of the

definition of a sequential k-opt move. Note, however, that if any of these edges belong

to T , then the sequential k-opt move is also a sequential k′-opt move for some k′ < k.

Thus, when searching for k-opt moves, this requirement does not exclude any moves

to be found. The requirement simplifies coding without doing any harm.

We may therefore generate all possible sequential k-opt moves by generating all

t-sequences of length 2k that fulfill the two requirements. Generation of such

t-sequences may, for example, be performed iteratively in 2k nested loops, where

the loop at level i goes through all possible values for ti . Generation of 5-opt moves in

LKH-1 was implemented in this way. However, if we want to generate k-opt moves,

where k may be chosen freely, this approach is not appropriate. In this case, we would

like to use a variable number of nested loops. This is normally not possible in impera-

tive languages like C, but it is well known that it may be simulated by use of recursion.

In LKH-2 the search algorithm is implemented as a recursive function, which, in

contrast to LK, terminates as soon as a gainful, feasible move has been found.
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Table 1 Complexities for

operations involved in the search

for sequential submoves

Operation Complexity

PRED O(1)

SUC O(1)

Added O(1)

Deleted O(1)

Excludable O(1)

FeasibleKOptMove O(k log k)

The time complexity for the algorithm may be evaluated from the time complexities

for the sub-operations involved. These sub-operations and their time complexities are

given in Table 1.

PRED and SUC return for a given node respectively its predecessor and successor

on the tour. Added and Deleted are used to ensure that no edge is added or deleted

more than once in the submove under construction. Excludable is used to examine

whether the last edge to be deleted in a k-opt move has previously been added in the

current chain of k-opt submoves (Criterion 4 in Sect. 3). These five operations may be

executed in constant time by maintaining a few pointers for each node.

Finally, FeasibleKOptMove(k) determines whether a given t-sequence, (t1, t2, . . . ,

t2k−1, t2k), represents a feasible k-opt move. In Sect. 5.3 it is shown how this operation

may be implemented with a time complexity of O(k log k).

Let d denote the maximum node degree in the candidate graph. Then, when search-

ing for a move, there are at most d possible choices for each of its in-edges and at

most 2 possible choices for each of its out-edges. Thus, the worst-case time complex-

ity for the search algorithm grows exponentially with k if d ≥ 2. This stresses the

importance of choosing a sparse candidate graph if high values of k are wanted.

5.2 Search for non-sequential moves

In the original version of the Lin–Kernighan algorithm (LK) non-sequential moves

are only used in one special case, namely when the algorithm can no longer find any

sequential moves that improve the tour. In this case it tries to improve the tour by a

non-sequential 4-opt move, a so-called double bridge move (see Fig. 4).

In LKH-1 this kind of post optimization moves is extended to include non-sequential

5-opt moves. However, unlike LK, the search for non-sequential improvements is not

only seen as a post optimization maneuver. That is, if an improvement is found, further

attempts are made to improve the tour by ordinary sequential as well as non-sequential

exchanges.

LKH-2 takes this idea a step further. Now the search for non-sequential moves is

integrated with the search for sequential moves. Furthermore, it is possible to search

for non-sequential k-opt moves for any value of k ≥ 4.

The basic idea is the following. If, during the search for a sequential move, a non-

feasible move is found, this non-feasible move may be used as a starting point for
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construction of a feasible non-sequential move. Observe that the non-feasible move

would, if executed on the current tour, result in two or more disjoint cycles. Therefore,

we can obtain a feasible move if these cycles somehow can be patched together to

form one and only one cycle.

The solution to this cycle patching problem is straightforward. Given a set of dis-

joint cycles, we can always patch these cycles by one or more alternating cycles. The

method is best explained through an example. Suppose that execution of a non-feasible

k-opt move, k ≥ 4, would result in four disjoint cycles. As shown in Fig. 6 the four

cycles may be transformed into a tour by use of one alternating cycle, which is repre-

sented by the node sequence (s1, s2, s3, s4, s5, s6, s7, s8, s1). Note that the alternating

cycle alternately deletes an edge from one of the four cycles and adds an edge that

connects two of the four cycles.

Figure 7 shows how four disjoint cycles can be patched by two alternating cycles:

(s1, s2, s3,s4, s1) and (t1, t2, t3,t4, t5, t6, t1). Note that both alternating cycles are nec-

essary in order to achieve a tour.

Figure 8 illustrates that it is also possible to use three alternating cycles: (s1, s2, s3,

s4, s1), (t1, t2, t3,t4, t1), and (u1, u2, u3,u4, u1). In general, k disjoint cycles may be

transformed into a tour using up to k − 1 alternating cycles.

With the addition of non-sequential moves, the number of different types of k-opt

moves that the algorithm must be able to handle has increased considerably. In the

following this statement is quantified.

Let MT(k) denote the number of k-opt move types. Then MT(k) can be computed

as the product of the number of inversions of k − 1 segments and the number of

permutations of k − 1 segments [10]:

MT (k) = 2k−1 (k − 1)!.

Fig. 6 Four disjoint cycles

patched by one alternating cycle
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Fig. 7 Four disjoint cycles

patched by two alternating

cycles

Fig. 8 Four disjoint cycles

patched by three alternating

cycles

However, MT(k) includes the number of moves, which reinserts one or more of the

deleted edges. Since such moves may be generated by k′-opt moves where k′ < k, we

are more interested in computing PMT(k), the number of pure k-opt moves, that is,

moves for which the set of removed edges and the set of added edges are disjoint. An

explicit formula for PMT(k) may be derived from the formula for series A061714 in
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The On-Line Encyclopedia of Integer Sequences [33]:

PMT (k) = (−1)k +
k−1
∑

1=0

(−1)k−1+i

(

k

i + 1

)

i !2i for k ≥ 2.

The set of pure moves accounts for both sequential and non-sequential moves. To

examine how much the search space has been enlarged by the inclusion of non-sequen-

tial moves, we will compute SPMT(k), the number of sequential, pure k-opt moves,

and compare this number with the PMT(k). The explicit formula for SPMT(k) shown

below has been derived from a formula given by Hanlon, Stanley and Stembridge [12,

pp. 167–168]:

SPMT (k) =
23k−2k! (k − 1)!2

(2k!)

+
k−1
∑

a=1

min(a,k−a)
∑

b=1

ca,b (2)

[

2a−b−1 (2b)! (a − 1)! (k − a + b + 1)

(2b − 1) b!

]2

,

where

ca,b (2)=(−1)k (2)a−b+1 k (2a−2b+1) (a−1)!
(k+a−b+1) (k+a−b) (k−a+b−1) (k−a−b)! (2a−1)! (b−1)!

.

Table 2 depicts MT(k), PMT(k), SPMT(k), and the ratio SPMT(k)/MPT(k) for

selected values of k. As seen, the ratio SMPT(k)/PMT(k) decreases as k increases.

For k ≥ 10, there are fewer types of sequential moves than types of non-sequential

moves.

From the table it also appears that the number of types of non-sequential, pure

moves constitutes 20% or more of all types of pure moves for k ≥ 4. It is therefore

very important that an implementation of non-sequential move generation is runtime

efficient. Otherwise, its practical value will be limited.

Let there be a given set of disjoint cycles, C , corresponding to some non-feasible,

sequential move. Then LKH-2 searches for a set of alternating cycles, AC, which when

applied to C results in an improved tour. The set AC is constructed element by element.

The search process is restricted by the following rules:

Table 2 Growth of move types for k-opt moves

k 2 3 4 5 6 7 8 9 10 50 100

MT(k) 2 8 48 384 3,840 46,080 645,120 1.0E7 1.9E8 3.4E77 5.9E185

PMT(k) 1 4 25 208 2,121 25,828 365,457 5.9E6 1.1E8 2.1E77 3.6E185

SPMT(k) 1 4 20 148 1,348 15,104 198,144 3.0E6 5.1E7 4.3E76 5.9E184

SPMT(k)
PMT(k)

1 1 0.80 0.71 0.63 0.58 0.54 0.51 0.48 0.21 0.17

The same values of MT(k) and PMT(k) have been reported in [10]
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(1) No two alternating cycles have a common edge.

(2) All out-edges of an alternating cycle belong to the intersection of the current tour

and C .

(3) All in-edges of an alternating cycle must connect two cycles in C .

(4) The starting node for an alternating cycle must belong to the shortest cycle (the

cycle in C with the lowest number of edges).

(5) Construction of an alternating cycle is only started if the current gain is positive.

Rules 1–3 are visualized in Figs. 6, 7, and 8. An alternating cycle moves from cycle to

cycle, finally connecting the last visited node with the starting node. It is easy to see that

an alternating cycle with 2m edges (m ≥ 2) reduces the number of cycle components

by m−1. Suppose that an infeasible k-opt move results in m ≥ 2 disjoint cycles. Then

these cycles can be patched using at least one and at most m − 1 alternating cycles.

If only one alternating cycle is used, it must contain precisely 2m edges. If m − 1

alternating cycles are used, each of them must contain exactly 4 edges. Hence, the

constructed feasible move is a L-opt move, where k + 2m/2 ≤ L ≤ k + 4(m − 1)/2,

that is, k + m ≤ L ≤ k + 2m − 2. Since m at most can be k, we can conclude that

Rules 1–3 permit feasible, non-sequential L-opt moves, where k + 2 ≤ L ≤ 3k − 2.

For example, if a non-feasible 5-opt submove results in 5 cycles, it may be the starting

point for finding a feasible, non-sequential 7- to 13-opt submove.

Rule 4 minimizes the number of possible starting nodes. In this way the algorithm

attempts to minimize the number of possible alternating cycles to be explored.

Rule 5 is analogous with the positive gain criterion for sequential moves (see

Sect. 2). During the construction of a move, no alternating cycle will be closed unless

the cumulated gain plus the cost of the close-up edge is positive. In order to reduce

the search even more the following greedy rule is employed:

(6) The last three edges of an alternating cycle must be those that contribute most to

the total gain. In other words, given an alternating cycle (s1, s2, . . . , s2m−2, s2m−1,

s2m, s1), the quantity

−c(s2m−2, s2m−1) + c(s2m−1, s2m) − c(s2m, s1)

should be maximum.

Furthermore, the user of LKH-2 may restrict the search for non-sequential moves

by specifying an upper limit for the number of cycles that can be patched, and an upper

limit for the number of alternating cycles to be used for patching.

In the following it is described how cycle patching is implemented in LKH-2. To

make the description more comprehensible we will first show the implementation of

an algorithm that performs cycle patching by use of only one alternating cycle.

We need to be able to traverse those nodes that belong to the smallest cycle compo-

nent (Rule 4), and for a given node to determine quickly to which of the current cycles

it belongs to (Rule 3). For that purpose we first determine the permutation p corre-

sponding to the order in which the nodes t1, . . . t2k occur on the tour in a clockwise

direction, starting with t1. For example, p = (1 2 3 4 9 10 7 8 5 6) for the non-feasible

5-opt move shown in Fig. 9.
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Fig. 9 Non-feasible 5-opt move

(3 disjoint cycles)

Fig. 10 The three cycles produced by the 5-opt move

Next, the number of cycles is determined and each node t1, . . . t2k is labeled with

the number of the cycle it belongs to. Execution of the 5-opt move shown in Fig. 9

produces three disjoint cycles, one represented by the node sequence (t1, t10, t7, t6, t1),

one represented by the node sequence (t4, t9, t8, t5), and one represented by the node

sequence (t2, t3, t2). The nodes of the first sequence are labeled with 1, the nodes of

the second sequence with 2, and nodes of the third sequence with 3.

Figure 10 visualizes the three disjoint cycles that would arise if the 5-opt move

shown in Fig. 9 were executed.

Next, the size of each cycle is calculated and the one that contains the lowest number

of nodes is selected.
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Fig. 11 Patching of the three cycles

The tour segments of the shortest cycle may now be traversed by exploiting the

fact that tp[2i] and tp[2i+1] are the two end points for a tour segment of a cycle, for

1 ≤ i ≤ k and p[2k + 1] = p [1]. Which cycle a tour segment is part of may be

determined simply by retrieving the cycle number associated with one of its two end

points.

Assume the shortest cycle in Fig. 10 is the cycle labeled 3. For each edge (t11, t12) on

this cycle, except (t3, t2), an attempt is made to find an alternating cycle (t11, t12, t13,

t14, t15, t16, t11) that patches the three cycles and gives a positive total gain (see

Fig. 11). The search for node t13 is restricted to those candidate neighbors to t12

that does not belong to cycle 3. There are two choices for t14, the predecessor and

the successor to t13 on its cycle. However, the edge (t13, t14) must not be a previously

added edge: (t3, t2), (t5, t4), (t9, t8), (t1, t10), (t7, t6). Finally, the nodes t15 and t16 are

chosen in the same way as t13 and t14. Node t15 must not belong to the same cycle as t11

and t13.

A move is represented by the nodes in an array t , where the first 2k elements are

the nodes of the given non-feasible sequential k-opt move, and the subsequent ele-

ments are the nodes of the alternating cycle(s). In order to be able to determine quickly

whether an edge is an in- or out-edge of the current move we maintain an array, incl,

such that incl[i] = j and incl[ j] = i is true if and only if the edge (t[i], t[ j]) is an

in-edge. For example, in Fig. 9 incl = [10, 3, 2, 5, 4, 7, 6, 9, 8, 1]. It is easy to see

that there is no reason to maintain similar information about out-edges as they always

are those edges (t[i], t[i + 1]) for which i is odd.

The time complexity for cycle patching may be evaluated from the time complex-

ities for the sub-operations involved. The sub-operations may be implemented with

the time complexities given in Table 3.
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Table 3 Complexities for the

sub-operations of cycle patching
Operation Complexity

PRED O(1)

SUC O(1)

BETWEEN O(1)

Deleted O(1)

FindPermutation O(k log k)

Cycles O(k)

ShortestCycle O(k)

Cycle O(log k)

FindPermutation computes the permutation p by sorting the nodes of the first

2k elements of the t-sequence. The node comparisons are made by the operation

BETWEEN(a, b, c), which in constant time can determine whether a node b is placed

between two other nodes, a and c, on the tour. The constant time complexity of

BETWEEN is achieved by using the two-level tree data structure for tour represen-

tation [9]. In addition, the operation determines in O(k) time q[1..2k] as the inverse

permutation to p, that is, the permutation for which q[p[i]] = i for 1 ≤ i ≤ 2k.

The permutation p and its inverse is used by the operation Cycles to calculate the

number of cycles and to associate with each node in t[1..2k] the number of the cycle

it belongs to. As will be shown in Sect. 5.3, all t-nodes of a cycle can be traversed in

O(k) time.

The operation ShortestCycle determines the cycle that contains the lowest number

of nodes. The size of each cycle is found by adding the size of each tour segment

belonging to the cycle. By using an appropriate data structure for representing a tour,

the size of a tour segment may be computed (or estimated) in constant time. As there

are 2k such segments, the time complexity of ShortestCycle is O(k).

Finally, the operation Cycle determines the number of the cycle containing a given

node. Only nodes in the current t-sequence are labeled with cycle numbers, but we

can use binary search to find a t-node on the same cycle as the given node.

The algorithm as described above only allows cycle patching by means of one alter-

nating cycle. However, it is relatively simple to extend the algorithm such that more

than one alternating cycle can be used. Only a few lines of code need to be added.

The algorithm described in this section is somewhat simplified in relation to the

algorithm implemented in LKH-2. For example, when two cycles arise, LKH-2 will

attempt to patch them, not only by means of an alternating cycle consisting of 4 edges

(a 2-opt move), but also by means of an alternating cycle consisting of 6 edges (a 3-opt

move).

5.3 Determination of the feasibility of a move

Given a tour T and a k-opt move, how can it quickly be determined if the move is

feasible, that is, whether the result will be a tour if the move is applied to T ? Consider

Fig. 12.
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Fig. 12 a Feasible 4-opt move. b Non-feasible 4-opt move

Figure 12a depicts a feasible 4-opt move. Execution of the move will result in

precisely one cycle (a tour), namely (t2t3–t8t1–t6t7–t5t4–t2). On the other hand, the

4-opt move in Fig. 12b is not feasible, since the result will be two cycles, (t2t3–t2) and

(t4t5–t7t6–t1t8–t4).

Deciding whether a k-opt move is feasible is a frequent problem in the algorithm.

Each time a gainful move is found, the move is checked for feasibility. Non-gainful

moves are also checked to ensure that they can enter the current chain of sequential

moves. Hence, it is very important that such checks are fast.

A simple algorithm for checking feasibility is to start in an arbitrary node and then

walk from node to node in the graph that would arise if the move were executed, until

the starting node is reached again. The move is feasible if and only if the number of

visited nodes is equal to the number of nodes, n, in the original tour. However, the

complexity of this algorithm is O(n), which makes it unsuited for the job.

Can we construct a faster algorithm? Yes, because we do not need to visit every

node on a tour. We can restrict ourselves to only visiting the t-nodes that represent the

move. In other words, we can jump from t-node to t-node. A move is feasible if and

only if all t-nodes of the move are visited in this way. For example, if we start in node

t6 in Fig. 12a, and jump from t-node to t-node alternately following an in-edge and

leaping to the other end of an unbroken tour segment, then all t-nodes are visited in

the following sequence: t6, t7, t5, t4, t2, t3, t8, t1.

It is easy to jump from one t-node, ta , to another, tb, if the edge (ta, tb) is an

in-edge. We only need to maintain an array, incl, which represents the current in-

edges. If (ta, tb) is an in-edge for a k-opt move (1 ≤ a, b ≤ 2k), this fact is reg-

istered in the array by setting incl[a] = b and incl[b] = a. In Fig. 12a, b incl =
[8, 3, 2, 5, 4, 7, 6, 1]. By this means each such jump can be made in constant time (by

a table lookup).

On the other hand, it is not obvious how we can skip those nodes that are not

t-nodes. If we start in node t6 in Fig. 12a, then we must skip the nodes between t7
and t5, between t4 and t2, between t3 and t8,and between t1 and t6 before we return
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to t6. It turns out that a little preprocessing solves the problem. If we know the cyclic

order in which the t-nodes occur on the original tour, then it becomes easy to skip

all nodes that lie between two t-nodes on the tour. For a given t-node we just have to

select either its predecessor or its successor in this cyclic ordering. For example, for

t7 in Fig. 12a we must select t5, not t8. Which of the two cases we should choose can

be determined in constant time. This kind of jump may therefore be made in constant

time if the t-nodes have been sorted. In the following it is shown that this sorting can

be done in O(k log k) time.

First, we realize that is not necessary to sort all t-nodes. We can restrict ourselves

to sorting half of the nodes, namely for each out-edge the first end point met when

the tour is traversed in a given direction. If in Fig. 12a the chosen direction is “clock-

wise”, we may restrict the sorting to the four nodes t1, t4, t5, and t8. If the result of

a sorting is represented by a permutation, phalf , then phalf will be equal to (1 4 8 5).

This permutation may easily be extended to a full permutation containing all node

indices, p = (1 2 4 3 8 7 5 6). The missing node indices are inserted by using the

following rule: if phalf [i] is odd, then insert phalf [i]+ 1 after phalf [i], otherwise insert

phalf [i] − 1 after phalf [i].
Let a move be represented by the nodes t[1..2k]. First, the operation FindPermu-

tation is used to find the permutation p[1..2k] that corresponds to their visiting order

when the tour is traversed in the SUC-direction. In addition, the operation determines

q[1..2k] as the inverse permutation to p. After having determined p and q, we can

determine in O(k) time whether a k-opt move represented by the contents of the arrays

t and incl is feasible. In each iteration of a loop the two end nodes of an in-edge are

visited, namely t[p[i]] and t[incl[p[i]]]. The inverse permutation, q, makes it possible

to skip all nodes between t[incl[p[i]]] and the next t-node on the tour. If the position

of incl[p[i]] in p, that is q[incl[p[i]]], is even, then in the next iteration i should be

equal to this position plus one. Otherwise, it should be equal to this position minus

one. The loop may be expressed very compactly in C as

for (i = 2 * k, count = 1; (i = q[incl[p[i]]] ˆ 1) != 0); count++);

The move is feasible if and only if count becomes equal to k after execution of the

loop. The loop terminates when i becomes zero, which happens when node t[p[1]] has

been visited (since 1 ∧1 = 0, where ∧ is the exclusive OR operator). The loop always

terminates since t[p[1]] belong to the same cycle as the starting node, t[p[2k]], and

no node is visited more than once.

Since the sorting made by FindPermutation on average takes O(k log k) time, we

can conclude that the average-time complexity for the FeasibleKOptMove operation

is O(k log k). Normally, k is very small compared to the total number of nodes, n.

Thus, we have obtained an algorithm that is efficient in practice.

5.4 Execution of a feasible move

In order to simplify execution of a feasible k-opt move, the following fact may be used:

Any k-opt move (k ≥ 2) is equivalent to a finite sequence of 2-opt moves [8,26].

In the case of 5-opt moves it can be shown that any 5-opt move is equivalent to a
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Fig. 13 Feasible 4-opt move

Fig. 14 Execution of the 4-opt move by means of 3 flips

sequence of at most five 2-opt moves. Any 3-opt move as well as any 4-opt move is

equivalent to a sequence of at most three 2-opt moves. In general, any feasible k-opt

move may be executed by at most k 2-opt moves. For a proof, see [28].

Let FLIP(a, b, c, d) denote the operation of replacing the two edges (a, b) and

(c, d) of the tour by the two edges (b, c) and (d, a). Then the 4-opt move depicted in

Fig. 13 may be executed by the following sequence of FLIP-operations:

FLIP(t2, t1, t8, t7)

FLIP(t4, t3, t2, t7)

FLIP(t7, t4, t5, t6)

The execution of the flips is illustrated in Fig. 14. The 4-opt move of Fig. 13 may

be executed by many other flip sequences, for example (see Fig. 15):

FLIP(t2, t1, t5, t6)

FLIP(t5, t1, t3, t4)

FLIP(t3, t1, t8, t7)

FLIP(t3, t7, t6, t2)

However, this sequence contains one more FLIP-operation than the previous

sequence. Therefore, the first one of these two is preferred.

A central question is, for any feasible k-opt move, how to find a FLIP-sequence that

corresponds to the move. In addition, we want the sequence to be as short as possible.
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Fig. 15 Execution of the 4-opt move by means of 4 flips

In the following it is shown that an answer to this question can be found by trans-

forming the problem into an equivalent problem, which has a known solution. Consider

Fig. 16, which shows the resulting tour after a 4-opt move has been applied. Note that

any 4-opt move may effect the reversal of up to 4 segments of the tour. In the figure

each of these segments has been labeled with an integer whose numerical value is

the order in which the segment occurs in the resulting tour. The sign of the integer

specifies whether the segment in the resulting tour has the same (+) or the opposite

orientation (−) as in the original tour. Starting in the node t2, the segments in the new

tour occur in the order 1–4. A negative sign associated with the segments 2 and 4

specifies that they have been reversed in relation to their direction in the original tour

(clockwise).

If we write the segment labels in the order the segments occur in the original tour,

we get the following sequence, a so-called signed permutation.

(+1 − 4 − 2 + 3)
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Fig. 16 Segments labeled with

orientation and rank

We want this sequence to be transformed into the sequence (the identity permutation):

(+1 + 2 + 3 + 4)

Notice now that a FLIP-operation corresponds to a reversal of a segment of the

signed permutation, where both the order and the sign of the elements of this segment

are changed. In Fig. 15 an execution of the flip sequence

FLIP(t2, t1, t8, t7)

FLIP(t4, t3, t2, t7)

FLIP(t7, t4, t5, t6)

corresponds to the following sequence of signed reversals:

(+1 −4 −2 + 3)

(+1 −4 −3 +2)

(+1 −2 +3 +4)

(+1 + 2 + 3 + 4)

Reversed segments are underlined.

Suppose now that, given a signed permutation of {1, 2, . . . , k}, we are able to deter-

mine the shortest possible sequence of signed reversals that transforms the permutation

into the identity permutation (+1,+2, . . . ,+k). Then, given a feasible k-opt move,

we will also be able to find a shortest possible sequence of FLIP-operations that can

be used to execute the move.

However, this problem, called Sorting signed permutations by reversals, is a well-

studied problem in computational molecular biology. The problem arises, for example,

when one wants to determine the genetic distance between two species, that is, the

minimum number of mutations needed to transform the genome of one species into

the genome of the other. The most important mutations are those that rearrange the

123



140 K. Helsgaun

genomes by reversals, and since the order of genes in a genome may be described by

a permutation, the problem is to find the shortest number of reversals that transform

one permutation into another.

The problem can more formally be defined as follows. Let π = (π1 . . . πn) be

a permutation of {1, . . . , n}. A reversal ρ(i, j) of π is an inversion of a segment

(πi . . . π j ) of π , that is, it transforms the permutation (π1 . . . π i . . .π j . . . πn) into

(π1 . . . π j . . . πi . . . πn). The problem of Sorting by reversals (SBR) is the prob-

lem of finding the shortest possible sequence of reversals (ρ1 . . . ρd(n)) such that

πρ1 . . . ρd(n) = (12 . . . n − 1 n), where d(n) is called the reversal distance for π .

A special version of the problem is defined for signed permutations. A signed per-

mutation σ = (σ1 . . . σm) is obtained from an ordinary permutation π = (π1 . . . πm)

by replacing each of its elements πi by either +πi or −πi . A reversal ρ(i, j) of a signed

permutation σ reverses both the order and the signs of the elements (σi . . . σ j ). The

problem of Sorting signed permutations by reversals (SSBR) is the problem of find-

ing the shortest possible sequence of reversals (ρ1 . . . ρd(n)) such that σρ1 . . . ρd(n) =
(+1 + 2 · · · + (m − 1)m).

It is easy to see that determination of a shortest possible FLIP-sequence for a

k-opt move is a SSBR problem. We are therefore interested in finding an efficient

algorithm for solving SSBR. It is known that the unsigned version, SBR, is NP-hard

[6], but, fortunately, the signed version, SSBR, has been shown to be polynomial by

Hannenhalli and Pevzner in 1995, and they gave an algorithm for solving the problem

in O(n4) time [13]. Since then faster algorithms have been discovered, among others

an O(n2) algorithm by Kaplan et al. [23]. The fastest algorithm for SSBR today has

complexityO
(

n
√

n log n
)

[32].

Several of these fast algorithms are difficult to implement. We have chosen to

implement a very simple algorithm described by Bergeron [5]. The algorithm has a

worst-time complexity of O(n3). However, as it on average runs in O(n2) time, and

hence in O(k2) for a k-opt move, the algorithm is sufficiently efficient for our purpose.

If we assume k << n, where n is the number of cities, the time for determining the

minimal flip sequence is dominated by the time to make the flips, which is O
(√

n
)

,

since the tour is represented by the two-level tree data structure [9].

The operation MakeKOptMove exploits Bergeron’s algorithm for executing a k-opt

move using a minimum number of flips. Its worst-time complexity is O
(

k3 + k
√

n
)

,

since the worst time complexity of Bergeron’s algorithm is O(k3), and there are at

most k FLIP-operations, each of which has complexity O
(√

n
)

.

The operation minimizes the number of flips. However, this need not be the best

way to minimize running time. The lengths of the tour segments to be flipped should

not be ignored. Currently, however, no algorithm is known that solves this sorting

problem optimally. It is an interesting area of future research.

6 Experimental evaluation

This section presents the results of a series of computational experiments, the purpose

of which is to examine LKH-2’s performance when general k-opt moves are used as

submoves. The results include its qualitative performance and its runtime efficiency.
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Runtimes are measured in seconds on an Intel Xeon 2.66 GHz processor. The runtimes

do not include the time used for preprocessing.

The performance has been evaluated on the following symmetric problems taken

from the 8th DIMACS Implementation Challenge [21]:

E-instances: Instances consisting of uniformly distributed points in a square.

C-instances: Instances consisting of clustered points in a square.

6.1 Performance for E-instances

The E-instances consist of cities uniformly distributed in the 1,000,000 by 1,000,000

square under the Euclidean metric. For testing purposes, we have selected those

instances that have 10,000 or more cities. Optima for these instances are currently

unknown. We follow Johnson and McGeoch [22] in measuring tour quality in terms

of percentage over the Held–Karp lower bound [14,15] on optimal tours. The Held–

Karp bound appears to provide a consistently good approximation to the optimal tour

length [20].

Table 4 covers the lengths of the current best tours for the E-instances. These tours

have all been found by LKH. The first two columns give the names of the instances

and their number of nodes. The column labeled CBT contains the lengths of the cur-

rent best tours. The column labeled HK bound contains the Held–Karp lower bounds.

The table entries for the two largest instances (E3M.0 and E10M.0), however, contain

approximations to the Held–Karp lower bounds (lower bounds on the lower bounds).

The column labeled HK gap (%) gives for each instance the percentage excess of

the current best tour over the Held–Karp bound:

HK gap(%) =
CBT − HK bound

HK bound
× 100%

Table 4 Tour quality for E-instances

Instance n CBT HK bound HK gap (%) CBT√
n

10−6

E10k.0 10,000 71,865,826 71,362,276 0.706 0.7187

E10k.1 10,000 72,031,630 71,565,485 0.651 0.7203

E10k.2 10,000 71,822,483 71,351,795 0.660 0.7182

E31k.0 31,623 127,282,138 126,474,847 0.638 0.7158

E31k.1 31,623 127,452,384 126,647,285 0.636 0.7167

E100k.0 100,000 225,787,421 224,330,692 0.649 0.7140

E100k.1 100,000 225,659,006 224,241,789 0.632 0.7136

E316k.0 316,228 401,307,462 398,760,105 0.639 0.7136

E1M.0 1,000,000 713,189,988 708,703,513 0.633 0.7132

E3M.0 3,162,278 1,267,369,147 1,260,000,000 0.585 0.7127

E10M.0 10,000,000 2,253,175,807 2,240,000,000 0.588 0.7125
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Fig. 17 Best tour for E10k.0

It is well known that for random Euclidean instances with n cities distributed uniformly

randomly over a rectangular area of A units, the ratio of the optimal tour length to√
n
√

A approaches a limiting constant COPT as n → ∞. Johnson, McGeoch, and

Rothenberg [19] have estimated COPT to 0.7124 ±0.0002. The last column of Table 4

contains these ratios. The results are consistent with this estimate for large n.

Using cutting-plane methods Concorde [1,3] has found a lower bound of 713,056,

616 for the 1,000,000-city instance E1M.0 (William Cook, private communication,

2008). The bound shows that LKH’s current best tour for this instance has a length at

most 0.019% greater than the length of an optimal tour.

6.1.1 Results for E10k.0

The first test instance is E10k.0. Figure 17 depicts the current best tour for this instance.

First we will examine, for increasing values of k, how tour quality and CPU times

are affected if we use sequential k-opt moves as submoves. The 5 α-nearest edges

incident to each node are used as candidate set (see Fig. 18). As many as 99.5% of the

edges of the best tour belong to this set.

For each value k between 2 and 8 ten local optima were found, each time starting

from a new initial tour. Initial tours are constructed using self-avoiding random walks

on the candidate edges [16].
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Fig. 18 The 5 α-nearest candidate set for E10k.0

The results from these experiments are shown in Table 5. The table covers the

Held–Karp gap in percent and the CPU time in seconds used for each run. The pro-

gram parameter PATCHING_C specifies the maximum number of cycles that may be

patched during the search for moves. In this experiment, the value is zero, indicating

that only non-sequential moves are to be considered. Note, however, that the post opti-

mization procedure of LKH for finding improving non-sequential 4- or 5-opt moves

is used in this as well as all the following experiments.

The results show, not surprisingly, that tour quality increases as k grows, at the cost

of increasing CPU time. These facts are best illustrated by curves (Figs. 19, 20).

Table 5 Results for E10k.0 (no

patching, 1 trial, 10 runs)
k HK gap (%) Time (s)

Min Avg Max Min Avg Max

2 1.745 1.838 1.986 0 0 0

3 1.071 1.151 1.258 0 0 0

4 0.885 0.937 1.024 0 1 1

5 0.799 0.851 0.920 1 1 2

6 0.788 0.824 0.864 7 11 16

7 0.772 0.787 0.799 19 48 87

8 0.764 0.779 0.811 82 123 187
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Fig. 19 E10k.0: percentage excess over HK bound (no patching, 1 trial, 10 runs)

Fig. 20 E10k.0: CPU time (no patching, 1 trial, 10 runs)

As expected, CPU time grows exponentially with k. The average time per run grows

as 0.03 × 2.87k . What is the best choice of k for this instance? Unfortunately, there is

no simple answer to this question. It is a tradeoff between quality and time. A possible
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Fig. 21 E10k.0: quality-time tradeoff (no patching, 1 trial, 10 runs)

quality-time assessment of k could be defined as the product of time and excess over

optimum (OPT):

Time(k) ×
Length(k) − OPT

OPT

The smaller this value is for k the better. The measure gives an equal weight to time

and quality. Figure 21 depicts the measure for this experiment, where OPT has been

replaced by the length of the current best tour. As can be seen, 3, 4 and 5 are the best

choices for k if this measure is used. Note, however, that if one wants the shortest

possible tour, k should be as large as possible while respecting given time constraints.

We will now examine the effect of integrating non-sequential and sequential moves.

To control the magnitude of the search for non-sequential moves LKH-2 provides the

following two program parameters:

PATCHING_C: Maximum number of cycles that can be patched to form a tour

PATCHING_A: Maximum number of alternating cycles that can be used for patching

Suppose k-opt moves are used as basis for constructing non-sequential moves. Then

PATCHING_C can be at most k. PATCHING_A must be less than or equal to PATCH-

ING_C - 1. A search for non-sequential moves will be made only if PATCHING_C ≥
2 and PATCHING_A ≥ 1.

Thus, for a given value of k a full exploration of all possible non-sequential move

types would require
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k
∑

i=2

(i − 1) =
k(k − 1)

2
experiments.

In order to limit the number of experiments, we have chosen for each k only to

evaluate the effect of adding non-sequential moves to the search for the following

two parameter combinations:

PATCHING_C = k, PATCHING_A = 1

PATCHING_C = k, PATCHING_A = k − 1

With the first combination, called simple patching, as many cycles as possible are

patched using only one alternating cycle. With the second combination, called full

patching, as many cycles as possible are patched with as many alternating cycles as

possible.

Tables 6 and 7 report the results from the experiments with simple patching and full

patching. Not surprisingly, these experiments show that better tour quality is achieved

if non-sequential moves are allowed. However, it is a nice surprise that this increase

in quality is obtained with very little time penalty. In fact, for k ≥ 6 the algorithm

uses less CPU time when non-sequential moves are allowed.

Table 6 Results for E10k.0

(simple patching, 1 trial, 10

runs)

k HK gap (%) Time (s)

Min Avg Max Min Avg Max

2 1.587 1.668 1.787 0 0 1

3 1.011 1.060 1.148 0 1 1

4 0.860 0.896 0.963 1 1 1

5 0.799 0.835 0.893 2 3 3

6 0.755 0.794 0.874 7 8 9

7 0.764 0.787 0.827 20 31 50

8 0.736 0.762 0.796 67 105 132

Table 7 Results for E10k.0 (full

patching, 1 trial, 10 runs)
k HK gap (%) Time (s)

Min Avg Max Min Avg Max

3 1.027 1.070 1.122 0 1 1

4 0.849 0.884 0.928 1 1 2

5 0.800 0.833 0.898 2 3 4

6 0.774 0.799 0.844 7 9 13

7 0.767 0.786 0.808 19 35 61

8 0.748 0.761 0.788 54 96 142
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6.1.2 Results for E100k.0

Are these conclusions also valid for larger E-instances? In order to answer this ques-

tion, the same experiments as described in the previous section were made with the

100,000-city instance E100k.0. The results from these experiments are reported in

Tables 8, 9, and 10. As can be seen from these tables, the same conclusions may be

drawn: It pays off to use non-sequential moves.

Table 8 Results for E100k.0

(no patching, 1 trial, 10 runs)
k HK gap (%) Time (s)

Min Avg Max Min Avg Max

2 1.747 1.779 1.901 5 6 9

3 1.099 1.109 1.154 5 7 10

4 0.904 0.915 0.924 9 10 12

5 0.818 0.820 0.824 21 26 37

6 0.769 0.773 0.776 129 165 213

7 0.739 0.745 0.759 405 569 826

8 0.707 0.711 0.740 1,980 2,355 3,513

Table 9 Results for E100k.0

(simple patching, 1 trial, 10

runs)

k HK gap (%) Time (s)

Min Avg Max Min Avg Max

2 1.581 1.640 1.788 5 6 9

3 1.008 1.012 1.017 6 8 12

4 0.844 0.849 0.874 12 15 21

5 0.777 0.790 0.807 36 41 53

6 0.743 0.746 0.750 121 145 174

7 0.713 0.719 0.736 347 518 898

8 0.710 0.715 0.723 1,593 2,195 3,150

Table 10 Results for E100k.0

(full patching, 1 trial, 10 runs)
k HK gap (%) Time (s)

Min Avg Max Min Avg Max

3 1.005 1.012 1.023 7 8 11

4 0.842 0.853 0.873 13 15 20

5 0.784 0.786 0.800 37 40 44

6 0.747 0.751 0.762 117 134 171

7 0.723 0.727 0.735 395 572 765

8 0.704 0.708 0.717 1,353 2,397 4,439

123



148 K. Helsgaun

Table 11 Results for

E-instances (no patching, 1 trial,

1 run)

k HK gap (%)

E10k.0 E31k.0 E100k.0 E316k.0 E1M.0 E3M.0 E10M.0

4 0.924 0.888 0.924 0.929 0.923 0.883 0.892

5 0.832 0.827 0.824 0.834 0.833 0.786 0.789

6 0.848 0.775 0.776 0.784 0.776 0.725 0.733

7 0.788 0.757 0.759 0.739 0.740 0.691 0.696

k Time (s)

E10k.0 E31k.0 E100k.0 E316k.0 E1M.0 E3M.0 E10M.0

4 1 2 10 56 305 1,364 6,144

5 2 8 32 123 816 2,470 11,967

6 9 63 165 795 3,478 13,465 50,559

7 36 175 553 3,015 12,769 51,635 175,317

Table 12 Results for

E-instances (simple patching, 1

trial, 1 run)

k HK gap (%)

E10k.0 E31k.0 E100k.0 E316k.0 E1M.0 E3M.0 E10M.0

4 0.926 0.878 0.874 0.851 0.857 0.806 0.811

5 0.893 0.792 0.796 0.786 0.779 0.727 0.736

6 0.815 0.738 0.750 0.733 0.736 0.689 0.693

7 0.803 0.738 0.714 0.718 0.711 0.663 0.667

k Time (s)

E10k.0 E31k.0 E100k.0 E316k.0 E1M.0 E3M.0 E10M.0

4 1 6 21 79 375 1,492 6,213

5 3 11 61 237 901 3,151 11,321

6 9 39 151 673 2,576 11,032 35,097

7 32 178 352 1,751 8,458 37,352 108,041

6.1.3 Comparative results for E-instances

In order to examine the performance of the implementation as n grows, we used the

following E-instances: E10k.0, E31k.0, E100k.0, E316k.0, E1M.0, E3M.0, E10M.0.

The instance sizes are increasing half-powers of 10: 104, 104.5, 105, 105.5, 106, 106.5,

and 107. For each of these instances a local optimum was found using values of

k between 4 and 7, and using either no patching, simple patching or full patching.

Due to long computation times for the largest instances only one run was made for

each instance. The results of the experiments are reported in Tables 11, 12, and 13.

Figures 22, 23, 24, 25, 26, and 27 provide a graphical visualization of the results. As

can be seen, the algorithm is very robust for this problem type. The runtime increases

almost linearly with the problem size.
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Table 13 Results for

E-instances (full patching, 1

trial, 1 run)

k Average HK gap (%)

E10k.0 E31k.0 E100k.0 E316k.0 E1M.0 E3M.0 E10M.0

4 0.901 0.835 0.853 0.846 0.845 0.796 0.803

5 0.823 0.783 0.786 0.768 0.775 0.721 0.728

6 0.826 0.729 0.751 0.729 0.730 0.683 0.689

7 0.786 0.696 0.730 0.714 0.709 0.659 0.664

k Time (s)

E10k.0 E31k.0 E100k.0 E316k.0 E1M.0 E3M.0 E10M.0

4 2 5 22 89 431 1,453 6,572

5 3 12 48 172 806 3,132 12,228

6 9 32 148 486 2,206 8,253 30,606

7 27 92 416 2,026 8,131 24,977 111,078

Fig. 22 E-instances: percentage excess over HK bound (no patching, 1 trial, 1 run)

6.1.4 Solving E10k.0 and E100k.0 by multi-trial LKH

In the experiments described until now only one trial per run was used. As each run

takes a new initial tour as its starting point, the trials have been independent. Repeat-

edly starting from new tours, however, is an inefficient way to sample locally optimal

tours. Valuable information is thrown away. A better strategy is to kick a locally optimal

tour (that is, to perturb it slightly), and reapply the algorithm on this tour. If this effort
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Fig. 23 E-instances: time per node (no patching, 1 trial, 1 run)

Fig. 24 E-instances: percentage excess over HK bound (simple patching, 1 trial, 1 run)

produces a better tour, we discard the old tour and work with the new one. Otherwise,

we kick the old tour again. To kick the tour the double-bridge move (see Fig. 4) is

often used [2,4,27].
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Fig. 25 E-instances: time per node (simple patching, 1 trial, 1 run)

Fig. 26 E-instances: percentage excess over HK bound (full patching, 1 trial, 1 run)

An alternative strategy is used by LKH. The strategy differs from the standard

approach in that it uses a random initial tour and restricts its search process by the

following rule:
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Fig. 27 E-instances: time per node (full patching, 1 trial, 1 run)

Moves in which the first edge (t1, t2) to be broken belongs to the current best

solution tour are not investigated.

It has been observed that this dependence of the trials almost always results in

significantly better tours than would be obtained by the same number of independent

trials. In addition, the search restriction above makes it fast.

We made a series of experiments with the instances E10k.0 and E100k.0 to study

how multi-trial LKH is affected when k is increased and cycle patching is added to the

basic k-opt move. Tables 14, 15, and 16 report the results for 1,000 trials on E10k.0.

As can be seen, tour quality increases as k increases, and as in the previous 1-trial

experiments with this instance it is advantageous to use cycle patching.

Tables 17 report the experimental results for multi-trial LKH on the E100k.0 ins-

tance. These results follow the same pattern as the results for E10k.0. Note that for

this instance it is even more advantageous to use cycle patching.

Table 14 Results for E10k.0

(no patching, 1,000 trials, 10

runs)

k HK gap (%) Time (s)

Min Avg Max Min Avg Max

4 0.713 0.725 0.743 227 263 310

5 0.711 0.721 0.731 310 354 395

6 0.709 0.717 0.732 1,261 1,679 2,327
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Table 15 Results for E10k.0

(simple patching, 1,000 trials, 10

runs)

k HK gap (%) Time (s)

Min Avg Max Min Avg Max

4 0.717 0.728 0.760 181 210 249

5 0.711 0.715 0.726 195 236 285

6 0.709 0.714 0.730 362 453 578

Table 16 Results for E10k.0

(full patching, 1,000 trials, 10

runs)

k HK gap (%) Time (s)

Min Avg Max Min Avg Max

4 0.715 0.729 0.758 186 220 239

5 0.709 0.715 0.725 214 253 307

6 0.709 0.714 0.724 393 467 523

Table 17 Results for E100k.0

(1,000 trials, 1 run)
k HK gap (%) Time (s)

No Simple Full No Simple Full

4 0.783 0.681 0.686 7,023 4,352 4,763

5 0.716 0.671 0.673 13,761 6,144 6,652

6 0.699 0.661 0.660 102,322 11,909 13,702

6.2 Performance for C-instances

It is well known that geometric instances with clustered points are difficult for the

Lin–Kernighan heuristic. When it tries to remove an edge bridging two clusters, it

is tricked into long and often fruitless searches. Each time a long edge is removed,

the cumulative gain rises enormously, and the heuristic is encouraged to perform very

deep searches. The cumulative gain criterion is too optimistic and does not effectively

prune the search space for this type of instances [30].

To examine LKH’s performance for clustered problems we performed experiments

on the eight largest C-instances of the 8th DIMACS TSP Challenge. Table 18 covers

the lengths of the current best tours for these instances. These tours have all been found

by LKH. The experiments with the C-instances are very similar to those performed

with the E-instances.

6.2.1 Results for C10k.0

Figure 28 depicts the current best tour for the 10,000-city instance C10k.0. Its clus-

tered nature is clear. The cities are grouped so that distances between cities in distinct

groups are large in comparison to distances between cities within a group.

As in the experiments with E-instances a candidate set based on the α-measure

could be used. Figure 29 depicts the 5 α-nearest candidate set for C10k.0. Since the
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Table 18 Tour quality for

C-instances
Instance n CBT HK bound HK gap (%)

C10k.0 10,000 33,001,034 32,782,155 0.668

C10k.1 10,000 33,186,248 32,958,946 0.690

C10k.2 10,000 33,155,424 32,926,889 0.694

C31k.0 31,623 59,545,390 59,169,193 0.636

C31k.1 31,623 59,293,266 58,840,096 0.770

C100k.0 100,000 104,633,819 103,916,254 0.691

C100k.1 100,000 105,390,777 104,663,040 0.695

C316k.0 316,228 186,909,997 185,576,667 0.733

Fig. 28 Best tour for C10k.0

set contains as many as 99.3% of the edges of the current best tour, it seems to be well

qualified as a candidate set. But, unfortunately, some of the long edges of the best tour

are missing, which means that we cannot expect high-quality tours to be found.

For geometric instances, Johnson [18] has suggested using quadrant-based neigh-

bors, that is, the least costly edges in each of the four geometric quadrants (for

2-dimensional instances) around the city. For example, for each city its neighbors

could be chosen so as to include, if possible, the closest city in each of its four sur-

rounding quadrants.
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Fig. 29 The 5 α-nearest candidate set for C10k.0

For clustered instances we have chosen to use candidate sets defined by the union

of the 4 α-nearest neighbors and the 4 quadrant-nearest neighbors (the closest city

in each of the four quadrants). Figure 30 depicts this candidate set for C10k.0. Even

though this candidate subgraph is very sparse (average number of neighbors is 5.1), it

has proven to be sufficiently rich to produce excellent tours. It contains 98.3% of the

edges of the current best tour, which is less than for the candidate subgraph defined

by 5 α-nearest neighbors. In spite of this, it leads to better tours.

However, even if this sparse candidate set is used, our experiments with cycle patch-

ing on clustered instances have revealed that the search space is large. To prune the

search space we decided to restrict cycle patching for this type of instances by adding

the following rule:

All in-edges of an alternating cycle must belong to the candidate set.

Note that the algorithm for generating alternating cycles described in Sects. 5.1 and

5.2 already guarantees that all in-edges, except the last one, are candidate edges. The

rule is put into force by a program parameter.

The results from experiments with 1-trial solution of C10k.0 are shown in Tables 19,

20, and 21. As can be seen, tour quality and CPU time are acceptable. But note that

increasing k from 5 to 6 incurs a considerable runtime penalty.
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Fig. 30 The 4 α-nearest +4 quadrant-nearest candidate set for C10k.0

Table 19 Results for C10k.0

(no patching, 1 trial, 10 runs)
k HK gap (%) Time (s)

Min Avg Max Min Avg Max

3 1.771 1.991 2.226 0 1 1

4 0.811 1.024 1.387 1 1 1

5 0.841 1.184 2.026 5 7 9

6 0.836 1.061 1.710 64 93 150

Table 20 Results for C10k.0

(simple patching, 1 trial,

10 runs)

k HK gap (%) Time (s)

Min Avg Max Min Avg Max

3 1.157 2.185 3.159 1 1 1

4 1.883 2.091 2.764 2 3 3

5 1.308 1.607 2.273 9 13 19

6 0.910 1.233 2.629 62 79 104
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Table 21 Results for C10k.0

(full patching, 1 trial, 10 runs)
k HK gap (%) Time (s)

Min Avg Max Min Avg Max

3 1.707 1.873 2.483 1 1 1

4 0.756 1.108 2.470 2 2 3

5 0.801 1.013 1.995 11 14 20

6 0.810 1.083 1.863 61 80 97

Table 22 Results for C100k.0

(no patching, 1 trial, 10 runs)
k HK gap (%) Time (s)

Min Avg Max Min Avg Max

3 2.838 2.991 3.275 6 8 10

4 1.969 2.102 2.491 15 17 22

5 1.515 1.635 1.891 64 73 85

6 1.248 1.293 1.413 628 808 957

Table 23 Results for C100k.0

(simple patching, 1 trial,

10 runs)

k HK gap (%) Time (s)

Min Avg Max Min Avg Max

3 2.910 3.061 3.405 10 12 14

4 2.011 2.175 2.698 34 38 45

5 1.495 1.613 1.815 151 184 269

6 1.143 1.283 1.437 853 1,009 1,134

Table 24 Results for C100k.0

(full patching, 1 trial, 10 runs)
k HK gap (%) Time (s)

Min Avg Max Min Avg Max

3 2.705 3.050 4.529 10 12 15

4 1.934 2.034 2.269 35 38 45

5 1.392 1.480 1.840 156 193 237

6 1.051 1.174 1.400 780 964 1,263

6.2.2 Results for C100k.0

Looking at the results for 1-trial solution of C10k.0 (Tables 19, 20, 21), there seems

to be only little advantage in using cycle patching. To see whether this also applies

to larger instances we made the same experiments with the 100,000-city instance

C100k.0. The results of these experiments are covered in Tables 22, 23, and 24. As

can be seen, it is also questionable whether patching is useful for this instance. In
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Table 25 Results for C-instances (no patching, 1 trial, 1 run)

k HK gap (%) Time (s)

C10k.0 C31k.0 C100k.0 C316k.0 C10k.0 C31k.0 C100k.0 C316k.0

3 2.226 3.935 3.275 4.691 1 2 7 40

4 1.387 2.709 2.491 2.466 1 4 22 86

5 2.011 2.375 1.891 1.874 6 27 83 359

Table 26 Results for C-instances (simple patching, 1 trial, 1 run)

k HK gap (%) Time (s)

C10k.0 C31k.0 C100k.0 C316k.0 C10k.0 C31k.0 C100k.0 C316k.0

3 3.159 4.348 3.405 4.233 1 3 14 68

4 2.764 3.063 2.698 2.849 3 11 45 172

5 2.273 2.908 1.815 2.060 19 72 268 1,021

Table 27 Results for C-instances (full patching, 1 trial, 1 run)

k HK gap (%) Time (s)

C10k.0 C31k.0 C100k.0 C316k.0 C10k.0 C31k.0 C100k.0 C316k.0

3 2.483 3.743 4.529 5.128 1 21 13 64

4 1.424 2.950 2.269 2.726 2 21 44 192

5 1.995 2.160 1.840 1.739 16 90 236 835

addition, the runtime penalty for increasing k from 5 to 6 is even more conspicuous

for this instance.

6.2.3 Comparative results for C-instances

In order to evaluate the scalability of the implementation we also performed experi-

ments with the instances C31k.0 and C316k.0. Tables 25, 26, and 27 contain compar-

ative results for the four chosen C-instances. As can be seen from Figs. 31, 32, and

33, the runtime increases almost linearly with problem size.

6.2.4 Solving C10k.0 and C100k.0 by multi-trial LKH

The performance for 1-trial solution of the C-instances is not impressive. However, as

shown by the following results from 1,000-trial experiments with C10k.0 and C100k.0,
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Fig. 31 C-instances: time per node (no patching, 1 trial, 1 run)

Fig. 32 C-instances: time per node (simple patching, 1 trial, 1 run)

high-quality solutions may be achieved using few trials. It is interesting that for this

instance type it does not pay off to set k to other values than 4, and that little is gained

by using non-sequential moves (Tables 28, 29).
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Fig. 33 C-instances: time per node (full patching, 1 trial, 1 run)

Table 28 Results for C10k.0

(1,000 trials, best of 10 runs)
k HK gap (%) Time (s)

No Simple Full No Simple Full

3 0.668 0.668 0.668 324 329 341

4 0.668 0.688 0.668 320 408 642

5 0.668 0.668 0.668 663 938 957

Table 29 Results for C100k.0

(1,000 trials, 1 run)
k HK gap (%) Time (s)

No Simple Full No Simple Full

3 0.989 1.083 0.876 4,117 4,981 4,765

4 0.814 0.778 0.832 3,793 5,947 6,151

5 0.861 0.743 0.833 7,130 15,276 14,877

7 Conclusions

This paper has described the implementation of a general k-opt submove for the Lin–

Kernighan heuristic. The computational experiments have shown that the implemen-

tation is both effective and scalable. It should be noted, however, that the usefulness of

general k-opt submoves depends on the candidate graph. Unless the candidate graph

is sparse (for example defined by the five α-nearest neighbors), it will often be too

time consuming to choose k larger than 4. Furthermore, the instance should not be

heavily clustered.
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The implementation allows the search for non-sequential moves to be integrated

with the search for sequential moves. It is interesting to note that in many cases the use

of non-sequential moves not only results in better tours but also, what is surprising,

reduce running time.

In the current implementation the user may choose the value of k as well the extent

of non-sequential moves. These choices are constant during program execution. A pos-

sible future path for research would be to explore strategies for varying k dynamically

during a run.

LKH-2 is free of charge for academic and non-commercial use and can be down-

loaded in source code from http://www.ruc.dk/~keld/research/LKH.

Appendix: Parameter settings

This appendix provides representative examples of the parameter settings used in

producing the reported results in this paper.

Parameters common to all E-instances:

CANDIDATE_SET_TYPE = DELAUNAY

MAX_CANDIDATES = 5

INITIAL_PERIOD = 100

Example of additional parameters for E10k.0:

PROBLEM_FILE = E10k.0.tsp

MAX_TRIALS = 1

RUNS = 10

MOVE_TYPE = 8

PATCHING_C = 8

PATCHING_A = 7

Parameters common to all C-instances:

CANDIDATE_SET_TYPE = DELAUNAY

MAX_CANDIDATES = 4

EXTRA_CANDIDATE_SET_TYPE = QUADRANT

EXTRA_CANDIDATES = 4

INITIAL_PERIOD = 100

Example of additional parameters for C10k.0:

PROBLEM_FILE = C10k.0.tsp

MAX_TRIALS = 1000

RUNS = 10

MOVE_TYPE = 3

PATCHING_C = 3 RESTRICTED

PATCHING_A = 2 RESTRICTED
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