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ABSTRACT 

The development of high-degree interpolation poly- 
nomials which use the values of the function and its sub- 
sequent derivatives is discussed. It is shown that i f  data 
of this type are available, high-accuracy interpolation is 
possible under the restrictive conditions of large step- 
s izes  and few data values. 
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GENERAL LAGRANGIAN INTERPOLATION FORMULAS 

by 
C. E. Velez 

GoddaTrd Sl,ace Flight Centev 

INTRODUCTION 

A computing system requiring an accurate numerical interpolation process may have, in addi- 
tion to the function. information concerning i ts  derivatives a t  some se t  of discrete points. For  
example, consider a multistep nunierical integration process designed to solve a n  equation of the 
form 

The data concerning the function y (  x )  available a t  some point during the computation could then 
be written as the a r ray  

Y ( X "  ' kh) Y '  (X" ' kh) y " ( x o  * kh) 

where h is the integration stepsize, and k the number of "back points" required by the process.  
If the interval h of integration is modified, so that values are required for y ,  y '  and y , at some 
points 
applying an interpolation polynomial of the form 

X ,  (x" , x,, + k h )  , then an approximation of these required values could be computed by 
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to each column of the a r r ay  independently (with appropriate coefficients), or  by differentiating the 
polynomial approximation of y to obtain values for y '  and y". However neither of these methods 
uses all the information available about the function near the point x;  for  example, the approxi- 
mation polynomial for Y would disregard the values y' (xo + i h )  and y " ( x 0  + i h ) .  Therefore, 
consider using an interpolating polynomial of the form 

P ( x )  = a i ( x )  f ( x o  + ih )  + b i ( x )  f ' ( x o  + i h )  + c i ( x )  f "  (xo  + ih )  
i = O  

to obtain an approximation for  y. Using such a polynomial would increase the accuracy con- 
comitant with the use of an increased amount of information about the function near the point x .  

Also an accurate interpolation may be possible even in a situation where the number of values of 
the function (k )  is insufficient, o r  the stepsize ( h )  is too large for an accurate interpolation 
using a polynomial of the form (a). In the following paragraphs, the development of polynomials 
of the form (b)  will be discussed for  the case in which an arbi t rary number of successive deriva- 
tives a r e  available at a set of discrete points. In addition, the applicability of such polynomials 
will be demonstrated numerically. 

THE GENERAL INTERPOLATING POLYNOMIAL 

Let f be an N -  t imes differentiable* function over the real  line and assume the following 
data over the interval [ x o ,  xk] a r e  given: 

0 ,  1, 2 ,  . . .  k {l I 0 ,  1, 2 ,  N '  ' 
f i n )  for 

where N '  6 ~ , f j " )  = f ( " ) ( x , ) ,  and X ,  c bo, xk]. The problem to be discussed then, is the formulation 
of polynomials of the form 

satisfying 

with remainder Rn ( x )  = f ( " )  ( x )  - P(.)(x) ,  where X F  [xo, xk] 

*It  is assumed that higher order derivatives remain bounded in the region of interest  
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Some well-known examples of polynomials of this type are:  

(1) N '  = 0 ,  the Lagrangian interpolation polynomial of degree k - n with i t s  coefficients 
given by 

h$;; ( x )  = .e,'")(,) = -{VI d" [(x - x i ) / ( x j  - xi)]} , dX" (3) 

where 

i = O  
i # j  

(2) N '  
- 1 , the Hermite interpolation polynomial of degree (2k + 1) - n with its coefficients 

given by 

d" 
dX" 

where ' I ( X) is the Lagrange coefficient given by Equation 3 for  n 0 and 

(3) k 0 and n 0 ,  the truncated Taylor expansion about the point x0. 

In the following paragraphs, a general scheme for obtaining the coefficients of polynomials of 
the type given in Equation 1 will  be discussed, and explicit formulas of the Equations 3 and 4 types 
will be given for u' n. I ,  2 and n =- 0 .  1, 2 .  

DETERMINATION OF THE COEFFICIENTS 

Since ( N '  l ) ( k  + 1)  data points a r e  given, i t  is seen that the coefficients of Equation 1 
could. be uniquely chosen so that 
%\e case n 

Pcl)( X )  is a polynomial of degree k ( N '  + 1)  + ( N '  - n). Consider 
0 and let  2 .- k( ;J '  L 1) + N ' .  In this case,  such a polynomial could be constructed 
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by solving the following determinantal equation for P ( X) (Reference 1, pp. 33-34): 

I P ( X )  1 X x =  . . . . .  x" 

I f o  
1 XO xo2 .  . . . . x; 

f 1 1 XI 

f k  1 xk X k 2 .  . . . . xk" 

0 1 

1 

0 

2x . . . . . v x ; - I  

2xk. . . . . . 

This technique, however, even for  N '  = I, involves formidable computations. An alternate method 
which simplifies this computation considerably is suggested by Householder (Reference 2, pp. 
194-195) for  N '  

Equations 1 and 2, 
1 .  This technique, extended to the case of arbi t rary N ' ,  is as follows: From 

This relation must hold, whatever the values of f ](I) ; in particular,  we may have f = 8 I ,p 

and f J(l) = 0 for i = 1 , 2 ,  . . . N '  and all j , so that Equation 6 reduces to 

f ,  1 h O , p  (xp) : 

but, since P is arbitrary,  

k ' l  
h o , j  (xi) = 1, j = 0 ,  1, . . .  

Also, if for  some m # p,  f m  = 1 ,  while f j  = 0 for j # m ,  and 
and all j ,  then 

f j ( i )  = 0 f o r  i = 1, 2, . . .  N '  

f p  = 0 = h o , & % )  ; 

' 0 , j  (xq) = ' j  .q ' 

i.e., 

Moreover, if  for some n, fm(n) = 1 , while all other f j ( i )  = o , then 
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i.e., 

h i , j  (xq) = 0 for  i = 1, 2, . . . N' 

Combining Equations 7 and 8 gives 

h i , j  (x.) ' 0 . i  ' i , q  ' 

Repeating the foregoing argument for  the polynomials p(n) (x) ,  n = 1, 2 ,  . . . N', we obtain 

h i , j ( n ) ( x q )  = 6 i , n 6 j , q  . (9) 

Now consider the equation 

h i , j  (x) G i , ,  (x) tJ ( " + l )  (x) 

where the t, (x) a r e  the Lagrange polynomials of degree k ,  and @ i , ,  (x) is a polynomial of de- 
g ree  N '; note that h i ,  (x) is then a polynomial of degree v and satisfies Equation 9 for q # j . 
Using the fact that a polynomial of degree I/ satisfying Equation 2 is unique, reduces the problem 
to determining G i ,  (x) so that Equation 9 is satisfied for  j . This can be done by determining 
the N' derivatives of oi, evaluated at the point x = x j  using Equations 9 and 10, and then form- 
ing the polynomial 

We will then have the required polynomial 

with the coefficients h i , j  given by Equation 10. Polynomials P (") ( x )  for n # 0 can then be found 
by differentiating Equation 12: 
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The e r r o r  t e rm for  P ( X )  can be derived using Equation 5 and the mean value theorem pre- 
cisely as indicated in Reference 1, pp. 22-24 for  the case n = 0 .  This technique yields 

(fi (. - xijN'+l f ( Y + ' )  (5) 
i = O  

R ( x )  = ( u  + l ) !  

where 6 E [xo I xk] . A s  before, e r r o r  t e rms  for  P(n) ( X )  can then be obtained by appropriate 
differentiation of Equation 13, noting that & is a function of X. Details concerning this differen- 
tiation can be found in Reference 3, pp. 66-67. 

S A M  P L E  D ERlVA TI ON 

As an illustration of the foregoing, a polynomial of the type 

P ( x >  2 2 h i , j ( x )  f j ( i )  

j = o  i = o  

will be determined. From Equation 9, we have the conditions 

0 h " o , j  (xq) = 0 h " , ,  (xq) = 

from which to determine polynomials of degree 3k + 2 of the form 

h i , j  (x) = b i , j  ( x )  t j 3 ( x )  , 

where + i , j  ( x )  are quadratic polynomials. Differentiating Equation 15, we have 

h ' i , j  ( x )  q 5 ' i , j  ( x )  t j 3 ( x )  + 3 b i , j  ( x )  x j 2 ( x )  8; ( x )  

h " i , j  ( x )  = @ " i , j  (x) X j 3  ( x )  + 6 + I i ,  ( x )  c j2  ( x )  ti (x) 
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From Equations 14, 15, and 16 we see that 

h0,j (xj) = 4 0 , j  (xi) = ’ 

a1 so 

that is, 

also 

that is, 

that is, 

Hence, using Equation 11, we have 
(x - X j ) 2  

( x )  = (x  - Xi) - 3(x - X j ) 2  4 ;  (Xj) , 

@ O , j  (x) = 1 - 3(X - X j )  4;  ( X j )  + - 2 [12c;2 ( X j )  - 34; (Xj ) ]  , 
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and the required polynomial is given by 

FORMULAS FOR N' = 0,1,  2; n = 0, 1, 2 

Case N' = 0 

For  N '  = 0 ,  

where 

and 

where 

and 

where 
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Case N’ = 1 

For N’ = 1, 

where 

and 
G O , ]  (x) = 1 - 2 ( x  - XI) 4;  ( X I )  , 

G I , ,  (x) = (x - XI) 9 

where ‘ ( is given in  Equation 18b with x x J .  By differentiating, we obtain 

where 

1 
’ 1 . J  (x) 1 + z ( x  - XI) 7 ’  F?) ; 

and 

k 

where 
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Case N’ = 2 

For N ‘  = 2 ,  

k 

where 

and 

h i , j  (x) = Q i , ,  (x) tJ3(x), 

$0.1 (x) 1 + 6 (x - x1)’ {[?; (xi)] - <; (xJ$- 3(x - x,) 4 ;  (x]) , 

where t ;  (x]) is given by Equation 18c with x = x J ’  - 

By differentiating, we obtain 

J = a  

where 

and 
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where @ i ,  (x) is given in Equation 19a, and 

(x) = 12(x - XI) b; 2 (Xi) - 7 4 ;  1 CXjd - 3 4 ;  xj 

and 

where 

and 

where the I_ I ,  ( X )  and ,t:, I ( X) are given in Equations 20a and 20b, and 

If the data values are equally spaced over the interval [xo, x~,] , letting h 

s 

x I  - x , - ~  and 
x - xQ / h ,  the coefficients in Equations 18a, 19a, and 20a assume the following forms: 

(-1)n-J 77' ( s  -Q , 
e ]  (x) j !  ( n -  j ) !  

I so,] (x) 1 - 2 ( s - j )  1'7 -i ' 

q 1 . j  (XI h ( s - j ) ,  

(18a') 

(19a') 
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N U M E R I C A L  E X A M P L E S  

In order  to illustrate the power of the interpolation formulas including derivatives, Equations 
18a', 19a', and 20' were applied to the following functions. 

(a) The solution of the initial value problem: 

where 
- 
Y = ( Y l .  Y 2 '  Y3) 

and 

I l V l l  ( Y I Z  + Y,' + Y y .  

(b) The function y = sin (x) 

In each case, the range of h was  taken to be 1/2"' where m = 0 ,  4(1) and k = 1 ,  lO(3). The 
calculations were performed on the UNIVAC 1107 computer using double-precision arithmetic. 
These results a r e  given in Table 1. 

CONCLUSION 

The development of interpolating polynomials utilizing any number of successive derivatives 
of the function has been discussed. It has been shown that for  any fixed N '  , such polynomials can 
be readily formulated. From the numerical results, we see that under the restrictive conditions 
of few data values and/or large stepsizes, accurate interpolation is possible by incorporating 
information concerning one o r  two derivatives. In general, i t  can be expected that for processes 
requiring accurate interpolation, i f  data concerning the derivatives a r e  available o r  readily 
attainable, the polynomials discussed herein offer a distinct advantage of increased accuracy. 
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Table 1 

Numerical  Resul ts .  

I Eq. 19a' 

.4 x 10-8 

.3 x 1 0 - 6  

.3 x 

.4 x 10- 

.I 1 0 . ~  

.I 

.3 x 

.2 

Eq. 20a' 

.2 x 1 0 - l 2  

.s 

.1 x 

.I 

.5 x 1 0 -  l3  

.4 x 10." 

.G 

.G x 

Eq. Ma' 

.2 x 10  - 4  

.2 x 10 - 3  

.5 x 1 0 - 2  

.5 x 10-1 

.3 

.3 10 - 7 

.I 

.7 x 

.1 x I O  I "  

. I  x 10 

.9 x 10 - 5  

.9 10- 

.1 x 10-  l 3  

. 2 x 1 0  l o  

.3 s 

. I  

.4 x 1 0 -  15* 

.5 x 1 0 -  l 3  

. I  

.I 

4 

1 

E r r o r s  for example 

Eq. 19a' 

.1 x 10- l3  

.2 x 10- lo 

.4 x 1 0 - 6  

.1 x 

.7 x 1 0 - l 5 *  

.3 x 10- l 4  

.4 x 

.4 x 

.5 x 

.1 x 1 0 - l 4  

.2 x 1 0 - l 2  

. I  x .10-5 

.1 s 10-  l 4  

.7 x 1 0 - l 5 *  

.1 x 10 15* 

.4 x 10 

.9 

.4 x 10-  15* 

.1 x 1 0 - l 5 *  

.1 x 

E1 

Eq. 18a' 
- 

.4 x 10 - l4*  

.9 x 10- 1.4 * 

.8 x 10- l 2  

.I 1 0 - 4  

.9 x 10- l5  * 

.3 x 10- l 4  

.1 s 10-'4 

.s 1 0 . ~  

.7 1 0 - l ~  

.I 1 0 - l ~  

.I 1 0 - l ~  

.G  x 

.3 10 - 4  

.z 

.1 x 10-2 

2 

.7 x 10- 

10 

7 

4 

1 .2 x 1 0 - 5  

3 

I 

1 

10 

.5 1 0 . ~  

.3 

.2 x 10- 

.3 x 10-6 

.2 s 10-5 
I 

.3 

.3 x 10-  * 

.I 1 0 - 9  

.3 s 10 

.2 s 10-5  

.7 

.2 x 10."  

.2 1 0 - 9  

.3 x 1 0 . ~  

.4 

.5 s 10- 

.1 x 1 0 - l 0  

.4 x 10 - 7  

.2 x 

.8 x 1 0  - 1 4 *  

.1 x 10 - l 3  

.5 x 10." 

.7 x 

. I  

.3 

.2 x 

.2 I O -  

.5 10-  1 4 *  

.1 x 10 - l 3  

.2 s 1 0  - l 1  

.4 x 10 - 7  

.1 x 1 0 - l 4 *  

.2 s 10-  14* 

.4 10- 14* 

.3 

.G x l o - " *  

.2 10- 15* 

.7 x 10- * 

.5 x 1 0 - l 0  

.4 10-  l5* 

.5 x 10-  l 1  

.I 10- l 4  

.G x 10-  15* 

-2  x 10-  15* 

.4 1 0 - 1 ~  

.2 1 0 - l ~  

.1 x 

T h e  crror tabula ted  i s  the norm of the error  vector .  

* I n d i c a t e s  the  error within the  a c c u r a c y  of t h e  a n a l y t i c  so lu t ion .  
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