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ABSTRACT

The development of high-degree interpolation poly-
nomials which use the values of the function and its sub-
sequent derivatives is discussed. It is shown that if data
of this type are available, high-accuracy interpolation is
possible under the restrictive conditions of large step-

sizes and few data values.
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GENERAL LAGRANGIAN INTERPOLATION FORMULAS

by
C. E. Velez
Goddard Space Flight Center

INTRODUCTION

A computing system requiring an accurate numerical interpolation process may have, in addi-
tion to the function. information concerning its derivatives at some set of discrete points. For
example, consider a multistep numerical integration process designed to solve an equation of the
form

y F(x,.y.y") .

The data concerning the function y(x) available at some point during the computation could then
be written as the array

V(xo h) vy’ (xo ! h) y (xo 4 h)
y(xo . Qh) y' (Xo + 2}1) v ("o i 2},) .
y (x0 ' kh) y' (xo i kh) v (xo + kh)

where h is the integration stepsize, and k the number of ""back points" required by the process.
If the interval h of integration is modified, so that values are required for y, y’ and y ', at some
points x. (xo, xq kh) , then an approximation of these required values could be computed by
applying an interpolation polynomial of the form

(2) P(x) Z a (x) f(xo + ih) n <k
i-0



to each column of the array independently (with appropriate coefficients), or by differentiating the
polynomial approximation of y to obtain values for y’ and y”. However neither of these methods
uses all the information available about the function near the point x; for example, the approxi-
mation polynomial for vy would disregard the values y’(x, + ih) and y“(x, + ih). Therefore,
consider using an interpolating polynomial of the form

(b) P(x) = Z a,(x) £ (%o + ih) + b,(x) £'(x, + ih) + ¢, (x) £* (x, + ih)
i=0

to obtain an approximation for y. Using such a polynomial would increase the accuracy con-
comitant with the use of an increased amount of information about the function near the point x,
Also an accurate interpolation may be possible even in a situation where the number of values of
the function (k) is insufficient, or the stepsize (h) is too large for an accurate interpolation
using a polynomial of the form (a). In the following paragraphs, the development of polynomials
of the form (b) will be discussed for the case in which an arbitrary number of successive deriva-
tives are available at a set of discrete points. In addition, the applicability of such polynomials

will be demonstrated numerically.

THE GENERAL INTERPOLATING POLYNOMIAL

Let f be an N- times differentiable* function over the real line and assume the following

data over the interval [x,. x,] are given:
i = 0,1,2, ---k
fg“) for
n 0,1,2 -<- N’

where N' < N,f(™ = f(™M(x,), and x, « [%o- x]. The problem to be discussed then, is the formulation

of polynomials of the form

Kk N’
j=0 i=0

satisfying

P(n)(xi) - fi(n)‘ i = 0,1, 2, ++- k., (2)

with remainder R, (x) = £ (x) - P®@(x), where x¢[xy, x,]

*It is assumed that higher order derivatives remain bounded in the region of interest.
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Some well-known examples of polynomials of this type are:

(1) N = 0, the Lagrangian interpolation polynomial of degree k - n with its coefficients
given by

dn ,
hg‘jj) (x) = 'ﬂj(") (x) = e {Tr [(x - xi)/(xj - xi)]} R (3)
where
k
i=0
i#j
(2) N - 1, the Hermite interpolation polynomial of degree (2k + 1) - n with its coefficients
given by

n _ dn - 1 B
h<(),n) (x) axn li{l - 2(x - xj) Tk, xi} L2 (x)} and

b1 oo [l )t ]

(4)

where - (x) is the Lagrange coefficient given by Equation 3for n 0 and

10
17

(3) k - 0 and n 0, the truncated Taylor expansion about the point x,.

In the following paragraphs, a general scheme for obtaining the coefficients of polynomials of

the type given in Equation 1 will be discussed, and explicit formulas of the Equations 3 and 4 types
will be given for ~' - n,1, 2 and n * 0, 1, 2.

DETERMINATION OF THE COEFFICIENTS

Since (N’ * 1)(k + 1) data points are given, it is seen that the coefficients of Equation 1

could be uniquely chosen so that P®(x) is a polynomial of degree k(N' + 1) + (N’ - n). Consider

thecase n O andlet » - kN’ + 1) + N'. In this case, such a polynomial could be constructed



by solving the following determinantal equation for P (x) (Reference 1, pp. 33-34):

P (%) 1 X x? xY
£, 1 X xo2 . xy
£y 1 X1 x12
f 1 X xk2 x” =0 (5)
fE) 0 1 2X0 kav—l
f;( 1 2xk. .
Q .
£,00) 0 0. . . p(v=1)(v=N)HxZ (N'+D
This technique, however, even for N’ = 1, involves formidable computations. An alternate method

which simplifies this computation considerably is suggested by Householder (Reference 2, pp.
194-195) for N’ = 1. This technique, extended to the case of arbitrary N’, is as follows: From

Equations 1 and 2,

Kk N’
SEDIP TR
= T (6)

This relation must hold, whatever the values of f (" ; in particular, we may have f. = 5, 4
and fj<i> = o for i =1, 2,...N"and all j, so that Equation 6 reduces to
fp -1 - hO,p (xp)

but, since p is arbitrary,

hol(xj>’l i = 0,1 k .
Also, if for some m # p, f =1, while f, =0 for j #m,and f® = o for i =1, 2,... N
and all j, then
f, = 0 = hO,m(xp)
i.e.,
hoj (xa) = %4 (7)

Moreover, if for some n, f ® = 1 , while all other f® =0, then
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i.e.

hy (xq) = 0 for i = 1, 2, . . .N'. (8)

h1 j (x‘]) 80 i 81 qQ
Repeating the foregoing argument for the polynomials P® (x), n =1, 2, ... N’, we obtain
by, ® (xa) = 8,34 - (9)

Now consider the equation

By (0 5 @, () 4, D ()
(10)

where the {j (x) are the Lagrange polynomials of degree k, and ¢; , (x) is a polynomial of de-
gree N'; note that h, ; (x) is then a polynomial of degree » and satisfies Equation 9 for q 7 j.
Using the fact that a polynomial of degree v satisfying Equation 2 is unique, reduces the problem
to determining ¢, ; (x) so that Equation 9 is satisfied for @ = j. This can be done by determining
the N' derivatives of ¢, ; evaluated at the point x = x; using Equations 9 and 10, and then form-
ing the polynomial

N' X"‘X.n ¢§n) x
Cbi‘j(x) _ Z ( 1) i ( J) ) (11)

n!
n=0

We will then have the required polynomial

K N’ )
P(x) ~ Zi: hy ; (9 £ (12)

70 i=0

with the coefficients h, ; given by Equation 10. Polynomials P (x) for n70 can then be found
by differentiating Equation 12:

]

k N

dn
) = = n i
P ™ (%) T P (x) E E h{m) (x) £00

=0 i-0




The error term for P (x) can be derived using Equation 5 and the mean value theorem pre-
cisely as indicated in Reference 1, pp. 22-24 for the case n = ¢. This technique yields

[ e

i=0
R(x) = (v+ 1! :

where ¢ ¢ [xo, xk] . As before, error terms for P® (x) can then be obtained by appropriate
differentiation of Equation 13, noting that ¢ is a function of x. Details concerning this differen-
tiation can be found in Reference 3, pp. 66-67.

SAMPLE DERIVATION

As an illustration of the foregoing, a polynomial of the type

k 2

P(x) = Z Z h, ;) £,9

hy (xq) = 3 g hyj (XQ) =0 hy (XC‘) =0
hIOJ (xq) =0 h’y i (Xq) R h'y J(Xq) =0
(14)
h%. ;5 (Xq) =0 hy i(xq) =0 b, (xq) ® P
from which to determine polynomials of degree 3k + 2 of the form
hi,,’ (x) = ¢i,j (x) '{33 (%), (15)
where ¢, , (x) are quadratic polynomials. Differentiating Equation 15, we have
h' () B ¢ ) 23 + 36 00 470 4 (%)
By (0 = @ 0 A7) 6 e (0 470 4 (0 (16)

f o Golet G0t G+ 3t (0 47 ()]



From Equations 14, 15, and 16 we see that

also

that is,

also

that is,

that is,

hO.j(xj) = o, (xi) B

hyy (%) = @5 (k)
hy i (x’) = ¢2'J (xx) B
h(')vl (x]) = ¢y i (xj) + 3&’ (xj) = 0,

Hence, using Equation 11, we have

By () = 1= 3(x - x)E(x) + T

¢1,j (x)

Py, (%)

(x - xj) - 3(x - xj)z /ﬂ;(

(x - X,-)z
e el



and the required polynomial is given by

k 2
Py = ) [Z by (0 }a o

FORMULASFORN’'=0,1,2; n=0,1, 2

Case N' = 0

For N’ = 0,
k
P(x) = Z hy , (%) f, (Lagrange) ,
i=o
where
R, (0 = 40 = o [leom )/ - x,)]‘
and
k
Pi(x) = Z g (x) £,
i=0
where
1
hg (%) = {)f (x) = {j(x) 3! (x Z Xi)
and
k
P" (x) = Zhg".(x) f,,
i=o0
where

17

(18a)

(18b)

(18¢)



Case N' = 1

For N' =1,

where

and

where

where

and

where

}0.] (x)

Y1, ()

P(x)

i=0

%o (x)

hy , (x) £, + by (%) £

n

¢ () 7

P'(x) -

P*(x)

1

- (x]) is given in Equation 18b with x

-0

(Hetmite) ,

x;. By differentiating, we obtain

h(').j(x) £, hy (0 £,

(19a)

(19b)

(19¢)



Yo, (X) = 2{[2 (z' ! xi>2 -y -1xi);J [1 - 20k - x) Al (xj)]- as (x_lxi) 2 (xj)} ,

Y (x) = 43 (x 1 xi) + 2(x - xj) {2 l:Z'*(X ———i Xi){r -3 (x -1- xi)z} .

Case N' = 2

For N' = 2,

P(x) = Z hoj (x) £+ hy () £ +hy (x) £, (202)
=0
where
hy (0 = e (x) 220
and

¢0'J(X) =

1
—
.
[@)]
—
®
I
bl
L
L]
f_&_ﬂ
—
[S=)
—
»
Bl
[t
|
FNF
N
—
%
\_%’_/
i
w
phagy
X
I
»
)
So
—
b3
Rl

dz ) (x> N 2
By differentiating, we obtain
k
P' (x) - Zhé‘j (x) £, # hi (2 £i0 by (%) £ (20b)
1J=0
where
hi (%) vi, 0 A2 ()
and
- A < 1 I
Y1, (0 3 ()2 (x - ) gl (x),

10



where ¢; ; (x) is given in Equation 19a, and

Po,; (0 = 12{x - x)) [{}2 () -7 1 ("j)]_"’/af X

by (x) = 1 - ﬁ(x - xj) 1] (x))
ZFECONEEN CIE ¥
and
k
P"(x) = Z hg , (x) f; + hi (x) £} + hy (x) f] (20c)
j=0
where
hi (x) = o, (0 470
and
, s . TR o 3 : ., L
T A O BRI bl N G | IR M
where the /| (x) and ¢, (x) are given in Equations 20a and 20b, and
o - pr2 _Ly,,
Fo,5 (%) 12 L% (x) —7 47 (x)
tr, 09 “640(x,).
f‘g,J (x) 1.
If the data values are equally spaced over the interval [xo, xn] , letting h - x; - x,_, and
s x - x, /h, the coefficients in Equations 18a, 19a, and 20a assume the following forms:
. S DH™ w (s -i) 182
L0 Pt(n- i)t ' (18a")
Lo, (x) = 1 -2(s-j) 5_'717 (19a")
F1,;(x) = h(s-j),

11



3 , 1\ , 1 1
$o; () T L+ (s =)’ [3(2 i ~i) v (j_.l);l—us—j)z(j e (20a")

1
1 (0 = h[(s—n—s(s-j)2 5 (j_i)]'

2

$,;(X) 7 T3 (s - H2.

NUMERICAL EXAMPLES

In order to illustrate the power of the interpolation formulas including derivatives, Equations
18a', 19a’', and 20' were applied to the following functions.

(a) The solution of the initial value problem:

|
<
!

y(0) = ¥4, vy = v,

<l
I
|
<
e

where

and

1/2

I3 = (vy2 +v,2 +v72)

(b) The function y = gin (x).

In each case, the range of h was taken to be 1/2" where m = 0, 4(1) and k=1, 10(3). The
calculations were performed on the UNIVAC 1107 computer using double~precision arithmetic.

These results are given in Table 1.

CONCLUSION

The development of interpolating polynomials utilizing any number of successive derivatives
of the function has been discussed. It has been shown that for any fixed N’ , such polynomials can
be readily formulated. From the numerical results, we see that under the restrictive conditions
of few data values and/or large stepsizes, accurate interpolation is possible by incorporating
information concerning one or two derivatives. In general, it can be expected that for processes
requiring accurate interpolation, if data concerning the derivatives are available or readily
attainable, the polynomials discussed herein offer a distinct advantage of increased accuracy.

12
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" The crror tabulated is the norm of the error vector.

10

10

10

10

10

Eq
3 X

2 X

4 x

Errorst for example (a)

. 18a"
10°*
1073
1072

10!

10°°

1077

x10°%

<1073

10-11

:10°°

1077

1073

Eq.

o
4

19a'

1078

10°

10°

< 10°

< 10°

< 10°

< 107

10°

< 10~

< 107

10°

< 107

< 107

10°

10°

107

107

11

14 4

14

13

Table 1

Numerical Results.

Eq. 20a’
2x10° 12
8x10°°
.1x10°°8

1x10°3

B x 10713
Ax10 Y

G6x10°°

6x10°°

5ox 10 14
dAx10° 8
2 x 107

4 x 10°

4 x 10

7 x10 15

B5x 101

*Indicates the crror within the accuracy of the analytic solution.

to
i

10~

10°

10°

10°

x 10°

10°

10 °

10°

10°

10 -

X 10°

10°

10°

< 10°

107

10

10

Errors for example (b)

Eq. 19a’
d1x10 13
2 x10°10
4x 1078

d1x10°2

7 x 10715
B x 10
A x 10
A x 10
5ox 10t

dx10 M

2x10 12

.1 x.10°

1x10°
7 x 10
1 x 10 15*

4 x 10

9 x10 1
4 x 10 B
S15,

.1 x 10

1x10°°®

Eq. 20a'
4 x 10‘”*7
.9 x 10- 8%
.8 x 1012

dx10°f

9 x 107 15

3 x 104

10°

o
A

6 x 107 P
2 x 107 5%

4x 10

13
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