
A General Methodology for Simultaneous Representation

and Discrimination of Multiple Object Classes

Ashit Talukder and David Casasent

Department of Electrical and Computer Engineering, Laboratory for Optical Data Processing

Carnegie Mellon University, Pittsburgh, PA 15213

Abstract

In this paper we address a new general method for linear and nonlinear feature extrac-

tion for simultaneous representation and classi�cation. We call this approach the maximum

representation and discrimination feature (MRDF) method. We develop a novel nonlinear

eigenfeature extraction (NLEF) technique to represent data with closed-form solutions and

use it to derive a nonlinear MRDF algorithm. Results of the MRDF on synthetic databases

are shown and compared with results from standard Fukunaga-Koontz transform and Fisher

discriminant function methods. The method is also applied to an automated product in-

spection problem (discrimination) and for classi�cation and pose estimation of two similar

objects under 3-D aspect angle variations (representation and discrimination).

Keywords: Classi�cation, discrimination (nonlinear), feature extraction (nonlinear),

pattern recognition, pose estimation, principal component analysis (nonlinear and closed-

form), product inspection.

1 Introduction

Feature extraction for signal/image representation is an important issue in data processing. 1-

D and 2-D signals typically have a very large number of data points. Typical speech signals

contain around 102 � 103 samples, and images have around N � N pixels where N varies from

32 to 1024. Processing of such high-dimensional data is time-consuming. Typically, features are
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extracted from the data using syntactic 1, statistical 2, stochastic 3 or correlation 4 methods.

Syntatic pattern recognition methods use a set of structural elements or primitives within a

scene or object and their interrelationships to interpret the data 5. Statistical and stochastic

methods use probability distribution measures 2 or stochastic models 3 to estimate, detect and

classify data. Such methods are good for modeling of textures and regions with pseudorandom

gray-scale variations. Correlation �lters have been proven to be useful for distortion-invariant

detection of objects 4. Often, however, the data within an image needs to be reduced to a lower-

dimensional space for purposes of analysis, while preserving information in the lower-dimensional

transformed space. Such an application is known as data representation. Principal component

analysis (PCA) or the Karhunen-Loeve (KL) transform 6 is useful for such applications. Neural

network (NN) solutions to PCA learning have also been suggested7,8. PCA however can optimally

represent only a single class at a time. It does not ensure discriminatory information. Others 9

have noted that standard PCA methods fail to discriminate between signi�cantly di�erent types

of objects (such as cars, chairs, human faces, and human bodies) and have suggested a most

discriminating feature (MDF) measure to allow for separation of features between classes in the

transformed space. In discrimination cases, the Fukunaga Koontz (FK) transform 10 is useful,

since it computes orthonormal basis functions that can represent a single class best while least

representing all the other classes. However, the FK transform is not well suited for applications

where several classes of objects need to be both represented well and separated. The Fisher

linear discriminant 11 is also well suited for separating image/signal data for di�erent objects or

classes by a linear transformation. Distance Classi�er Correlation Filters (DCCFs)12 also reduce

intra-class variations and increases inter-class separation as the Fisher measure does; but they

do so by operating in the frequency plane.

In this paper, we develop a new feature extraction method called the maximum representation

and discrimination feature (MRDF) that allows for simultaneous representation of each class and

separation between the di�erent classes. The measure used in the MRDF allows each class to

have multiple clusters in the image/signal data, while the MDF, PCA, Fisher and DCCF methods

assume only one cluster per class.
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Linear transforms have been widely used in many signal processing applications for several

reasons. It has been proved that the linear matched spatial �lter is the best detection �lter

for a single object when it is corrupted by white noise 13. Linear techniques for detection

and classi�cation are attractive since they are easy to design and typically have closed form

solutions. Linear distortion-invariant �lters 4 exist that can achieve recognition in the face of

distortions such as aspect variations, in-plane rotation, etc. Linear methods such as the Fisher

discriminant, FK transform, MDF, and linear PCA are only optimal when the data is Gaussian

and symmetrically distributed about the mean. Such methods extract information from the

second-order correlations in the data (covariance matrix). Therefore, such techniques implicitly

assume probability density functions (PDF) that are unimodal, and are symmetrically distributed

about the mean. While such linear methods are optimal when Gaussian or wide sense stationarity

is assumed, they are not necessarily the best for complex data that are asymmetrically distributed

or not described by Gaussian PDFs. It has been shown that many signals in the real world are

inherently non-symmetric 14,15 and that linear PCA is incapable of representing such data 14.

For such cases, nonlinear transforms are necessary.

Several techniques have been suggested to capture higher-order statistics from data 14,16-19,

but all methods are iterative (this requires ad hoc parameter selection, large training set sizes can

be needed, and generalization and convergence problems can arise). Thus, our nonlinear non-

iterative solution is of importance. Nonlinear PCA17,20-24 is an extension of linear PCA. A linear

combination of the input data can be passed through a nonlinearity (sigmoid, tanh, etc.)17 and a

set of linear weights can be computed iteratively 7 using information from the higher-order input

correlations (this handles asymmetric data 21). The disadvantage of this approach is its slow

convergence to the optimal weights when the Hebbian learning rule is used20. The error measure

used is also of concern. When the error measure is quadratic (mean square error criterion) it has

been shown17,20 that the weight update rule is similar to a Hebbian rule, and hence a linear PCA

is obtained. It has been shown that when the error function increases less than quadratically, the

resultant system is less susceptible to noise 17. Thus, non-quadratic error measures and iterative

stochastic gradient algorithms have been used 17,20. An iterative nonlinear neural network (NN)
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method 18, independent component analysis (ICA), has been used for blind separation of source

signals from their linear or nonlinear mixtures. A cost function is created using the moments of

the PDFs of the signal mixtures, and this is minimized using a backpropagation type of neural

network to obtain the desired nonlinear transformation. All iterative techniques to determine

weights can have convergence problems to the globally optimal solution 20 and have limitations

on the rank of the decision surfaces compared to our method (as we will show).

We discuss the concepts behind linear PCA and then present our linear MRDF technique in

Sect. 2 and test results using it on several databases (Sect. 3). Our nonlinear eigenfeature ex-

traction (NLEF) technique for representation is presented in Sect. 4, and theoretically compared

to nonlinear PCA methods. These NLEF ideas are then used to develop the nonlinear MRDF

in Sect. 5; initial test results using it are presented in Sect. 6.

2 Linear MRDF (MaximumRepresentation And Discrim-

ination Feature)

We follow the following notation. Vectors and matrices are represented by lower and uppercase

letters with underlines (x and X). Random vectors are lowercase and bold (x), and random

variables and scalars are simply lowercase. When we consider a single random vector, x, its

linear transformation by � yields the random variable y = �Tx, and we use the expectation

operator E(x) to denote the expected value of the random vector x. Terms En with di�erent

subscripts n are not the expectation operator. When considering a set of sample data vectors

fxg, we describe them by the sample data matrix X = [x1 x2 ::: xN ].

2.1 Linear PCA and Its Limitations

Principal component analysis (PCA) is a transformation primarily used for representing high-

dimensional data in fewer dimensions such that the maximum information about the data is

present in the transformed space. The linear PCA is now summarized to de�ne our notation.
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Given a N dimensional random vector, x, whose mean, � = E[x], and covariance matrix

C = E[xxT ] � ��T are known, the objective is to �nd the transformation �M such that the

M-dimensional random vector yM = �T
Mx contains maximal information about x. We �nd

�M = [�
1
�
2
:::�

M
] such that some error criterion is minimized, where �M is an N �M matrix

composed of M orthonormal vectors, �
1
�
2
:::�

M
, each of size N. Each element ym of yM is

the projection of the input random vector x onto the basis vector �
m
. To �nd �M , it is

customary to minimize the mean square error between x and the approximation bx = �MyM ,

i.e., we select �M such that E[(x � bx)2] = E[(x � �MyM)2] is minimized. This solution for

�M satis�es C�M = �M�, where � is a diagonal matrix whose elements are the eigenvalues of

the covariance matrix C. The columns of the �M solution are the M eigenvectors of C with

the largest eigenvalues. This solution minimizes the mean squared representation error. It can

also be shown that this solution also maximizes the variance of the output random vector in the

yM = �T
Mx transformed space, i.e. it maximizes E[yTMyM ] =

PM
m=1 �

T

m
C�

m
. This is useful for

insight into the basis vectors chosen in several synthetic 2-D examples. An attractive property

of PCA is that it compresses the maximum average energy in the full data set in only M � N

samples; and, in image transmission problems, PCA provides the minimumdistortion rate among

all unitary transforms when the transmitted signal is Gaussian.

For a given problem where a number of samples fxpg; p = 1; :::P from the random vector x

are available, the covariance matrix is computed in the following manner. Each data sample is

arranged as a column of a data matrix X = [x1 x2 :: xP ], the sample mean is b� = 1=P
PP

p=1 xp,

and the sample covariance matrix is bC = 1=P (XXT )� b�b�T .
The KL transform or PCA is optimal only for representation of data. The FK transform is

well suited for discrimination only since it merely represents one class best and the other class

worst; when a class has multiple clusters it does not perform well, and it is not well-suited for

simultaneous representation and discrimination in the same feature space. The Fisher linear

discriminant also has associated problems when classes contain multiple clusters. The MDF

(most discriminating feature) method 9 is similar to the Fisher discriminant, since it estimates

a transform that best separates one class from the rest of the classes. The disadvantages of this
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are that: only one linear transform per class can be computed and thus the maximum number

of MDFs equals the number of classes; it does not consider representation of classes; it is ill-

suited for cases when a class has multiple clusters; and separating one class from all other classes

(all other classes are thus considered as a macro-class) is not necessarily the best approach. Our

approach computes a basis set that best represents each class and at the same time best separates

the classes in the new feature space. We �rst de�ne two measures, one for representation (Sect.

2.2) and one for discrimination (Sect. 2.3), and combine the two measures to derive the MRDF

(Sect. 2.4). This initial development considers only linear transforms and features; we later

(Sect. 4) extend this to nonlinear cases.

2.2 Measure for Best Representation

We wish to determine an M-dimensional transform, i.e. M orthogonal basis function vectors �
m
.

For simplicity of explanation, we consider two classes, where x1 and x2 are two random vectors

corresponding to classes 1 and 2. From PCA concepts, the transform that best represents class 1

maximizes �T
MC1�M =

PM
m=1 �

T

m
C1�m, where C1 = E[x1xT1 ]� �

1
�T
1
is the covariance matrix of

class 1 and �
1
= E[x1] is the mean of class 1. Similarly, the transform that best represents class

2 maximizes the measure �T
MC2�M =

PM
m=1 �

T

m
C2�m. When P samples fx1pg; p = 1; :::P , from

class 1 are available, the covariance matrix is computed as bC1 = 1=P (X1X
T
1 ) � b�1b�1T , where

the P samples are the columns of the data matrix X1 = [x11 x12 :: x1P ] and the sample mean is

b�
1
= 1=P

PP
p=1 x1p. The sample covariance matrix for class 2 is computed in a similar manner.

For a transform to represent both classes equally well, we will require it to maximize the new

measure

ER =
MX
m=1

�T
m
C1�m +

MX
m=1

�T
m
C2�m: (1)

When there are L classes the desired transform maximizes ER =
PL

l=1

PM
m=1 �

T

m
C l�m.
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2.3 Measure for Best Discrimination

For discrimination, we want the projections (transformed values) for each class to be separated.

Measures such as the square of the di�erence in projections of the class means (used in the Fisher

measure) are not robust enough to handle a variety of class distributions. If one class has several

clusters, use of the mean does not provide a good measure of separation. We use the squared

di�erence of the projected values for each sample in one class versus the projected values for

all of the other class projections. In other words, the separation measure we use is the average

squared di�erence for all such projection values for two classes. We expect this to be a better

measure of separation, since it does not use the means of the class projections.

We denote the projection of class 1 on basis vector m by ym1 = �T
m
x1; similarly, the projection

of class 2 on basis vector m is ym2 = �T
m
x2. For the projections of the two classes to be best

separated for each of the M basis vectors, we desire that EDm = E[(ym1 � ym2)2]=E[(ym1 �

�ym1
)2+(ym2��ym2

)2], where 1 � m �M , be large (or maximized) while minimizing the spread

of each class projection, i.e. we maximize the mean squared separation between the projections

of classes 1 and 2 on each basis vector �
m
while minimizing the sum of the projections of the class

covariances. The numerator in the discrimination measure can be further simpli�ed by writing it

in terms of the input random vectors as �T
m
E[(x1 � x2)(x1 � x2)T ]�m = �T

m
R12�m, where R12 =

E[(x1 � x2)(x1 � x2)T ]. For cases where several data samples from each class are available, the

average of the squared distance from each sample in class 1 to each sample in class 2 is used. If P

samples from class 1, fx1pg with p = 1; :::; P , and Q samples from class 2, fx2qg with q = 1; :::; Q,

are available, then the estimate of R12 used is bR12 = 1=(PQ)
PP

p=1

PQ
q=1(x1p � x2q)(x1p � x2q)

T .

The steps involved in obtaining the numerator in EDm follow. Form the class projections

ym1 = xT
1
�
m
and ym2 = xT

2
�
m
. Calculate (ym1 � ym2)T = �T

m
(x1 � x2), from which we have

(ym1 � ym2) = (xT1 � xT2 )�m = (x1 � x2)T�m. The numerator in the separation measure is then

obtained E[ (ym1 � ym2)2 ] = E[ (ym1 � ym2)T (ym1 � ym2)] = �T
m
E[(x1 � x2)(x1 � x2)T ]�m, as

noted above. Therefore, to determine the best �
m
set for discrimination of classes 1 and 2, we
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maximize

ED =
MX
m=1

EDm =
MX
m=1

�T
m
R12�m

�T
m
(C1 + C2)�m

: (2)

For the multi-class case (L classes), the separation measure to be maximized is

ED =
PM

m=1[�
T

m
(
PL�1

i=1

PL
j=i+1Rij)�m]=[�

T

m
(
PL

k=1 Ck)�m].

2.4 Derivation of the MRDF

To design a set of orthonormal basis functions �
m
that can provide both representation and clas-

si�cation, we combine the two measures in Eq. (1) and Eq. (2). We introduce a factor k to

denote the degree to which representation and discrimination is desired. When only discrimi-

nation between classes is desired we assign k = 0, and when only representation of the classes

is required we use k = 1; in general, intermediate k values are preferable. We combine the two

measures to maximize

ERD =
MX
m=1

�T
m
[k(C1 + C2) + (1� k)R12]�m

�T
m
[kI+ (1� k)(C1 + C2)]�m

(3)

where 0 � k � 1 and I is the identity matrix. Note that when k = 1 in Eq. (3), we obtain

ERD =
PM

m=1 �
T

m
[(C1+C2)]�m=�

T

m
�
m
which is the condition for best representation of two classes

(Eq. (1)); when k = 1 in Eq. (3), we obtain ERD =
PM

m=1 �
T

m
[R12]�m=�

T

m
(C1 + C2)�m which

is the discrimination measure of the MRDF (Eq. (2)). Setting the derivative of Eq. (3) with

respect to one basis function �
m
to zero, we obtain

[kI+ (1 � k)(C1 + C2)]
�1[k(C1 + C2) + (1� k)R12]�m = �m�m for all m = 1; 2:::;M: (4)

The �
m
solutions to Eq. (4) are the solutions to an eigenvalue-eigenvector equation. The MRDF

basis functions �
m
are the M eigenvectors corresponding to the M largest eigenvalues of [kI +

(1� k)(C1 + C2)]
�1[k(C1 + C2) + (1 � k)R12].

The MRDF has several properties that are of theoretical and practical interest. We prove in

an associated publication 25 that when the class distributions are Gaussian with equal covariance

matrices, the discriminatory MRDF (k=0) is the same as the Bayes classi�er, and when one

class is present and representation is desired (k=1), the MRDF reduces to the linear PCA
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solution. The MRDF technique can produce as many as N basis functions (as many as the

dimensionality of the sample vectors). All classes are considered simultaneously (pairwise), as

compared to the macro-class approach (MDF, FK and Fisher linear discriminant). This MRDF

approach allows multiple clusters in a single class, due to its separation measure in Eq. (2)

that computes the average squared di�erence between the projections of the two classes. The

MRDF achieves simultaneous representation and classi�cation, and therefore is very well-suited

for applications where both inter-class performance (discrimination and classi�cation) and intra-

class performance (representation, or recognition of the di�erent versions of the members in

each class) are required. Both properties are useful in general pattern recognition problems

such as digital library searches, pose estimation of objects in robotics and automatic target

recognition, automatic reconaissance, part and material handling and inspection, active vision,

face recognition, etc.

3 Initial Linear MRDF Results

To present data and decision surfaces visually, we consider two synthetic problems using two

features with two classes of data (there are 2000 samples in each class; we used 1000 samples

from each class as the training set and 1000 samples from each class as the test set). The

objective of these tests is to illustrate the performance of the MRDF for representation and

discrimination of a higher-dimensional feature set (N features) in a lower-dimensional feature

space (M features) whereM < N . For insight into the performance of the MRDF, we transform

these 2-D features (N=2) into a 1-D feature space (M=1). The advantage of such a transform

is evident when N �M . The data in each class are 2-D random variables described by a single

Gaussian or by a mixture of two Gaussian PDFs; the latter case results in two clusters of data

for one class in feature space. For each case, we show the input data samples from the test set

for class 1 (o) and class 2 (+); only every tenth sample is shown to allow better presentation.

We also show the 1-D linear MRDF, FK and Fisher discriminant functions in the input feature

space that were determined using samples from the training set. To classify the test data, it
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is projected onto one of the discriminant functions and then classi�ed using a nearest neighbor

rule (based on the class of the closest training set sample). As a measure of the discriminating

ability of each of the linear discriminant functions, we calculate the mean squared di�erence in

the projection values for the two classes (this is the separation measure used in the MRDF).

We also compare the representation error for each method. This is computed as follows. The

projection of a 2-D sample x1 onto a basis vector �1 is y1 = �T
1
x1. By the orthonormal property

of the transforms, the reconstructed sample is cx1 = �
1
y1. The representation error is the mean

squared error between the original and reconstructed samples.

For all three discriminant functions, we used only one basis function. In calculating the

MRDF discriminant (basis) function, we used k = 0:5 in Eq. (4) to assign equal weights for

representation and discrimination. To calculate the FK discriminant (basis) function, we used

the eigenvector that best represented one class (the FK eigenvector with the largest eigenvalue).

Fig. 1a shows the Case 1 data (o and +). Class 1 has a PDF that is a single Gaussian with

unequal variances oriented at 90o. Class 2 is a mixture of two Gaussians with unequal variances

oriented at 0o (horizontal) and 75o; it thus results in two clusters in Fig. 1a. The three linear

discriminant functions are also shown in Fig. 1a. The input data are projected normally onto

the di�erent linear discriminant functions (LDFs). The projections of many samples onto the

Fisher LDF overlap (the Fisher measure fails when a class has more than one cluster, since it

uses the mean of each class as a separation measure). The FK vector selected was the one that

represents class 2 best and class 1 least (the spread of the class 2 projections on the FK vector

in Fig. 1a is seen to be larger than the spread of the class 1 projections). Recall from Sect. 2

that the variance of the projection will be larger for the class that is best represented. For the

projections onto the FK vector, the bottom cluster in class 2 is separated well and there is some

degree of overlap in the projections of the class 1 cluster and the top cluster in class 2. Our linear

MRDF discriminant separates all three clusters well; although the variance of the projection of

the lower class 2 cluster onto the MRDF is large, this does not degrade discrimination. The

dominant eigenvector for the MRDF measure is such that the projections of class 1 and 2 do not

have signi�cant overlap (discrimination), and the spread (representation) of class 1 and class 2
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is large. To compare the results of the MRDF, FK and Fisher, we carried out a nearest neighbor

classi�cation of the test set projections on the three basis vectors. The results are shown in

Table 1. The MRDF has the best classi�cation rate PC (the precentage of test set data correctly

classi�ed). The mean squared representation error and the mean squared separation in the test

set projections for each of the three LDFs are listed in Table 1 for completeness. As seen, the

MRDF has a larger separation and a smaller representation error than the other LDFs.

Fig. 1b shows Case 2 data; now, each class is a mixture of two Gaussians with di�erent

means and oriented at various angles. With two clusters per class, this is a di�cult classi�cation

problem for a single linear discriminant function. The Fisher linear discriminant fails in this case

since the means of classes 1 and 2 nearly coincide. The FK basis vector chosen was the one that

best represented class 1 (it thus chooses a vector such that the spread of the projections of class

1 is larger than the spread of the class 2 projections). As seen, the sample projections from the

top clusters in classes 1 and 2 overlap; this results in its low PC (Table 1). The MRDF basis

vector (the dominant eigenvector in Eq. (4)) separates the class projections well, and represents

class 2 well. The mean squared representation error, the mean squared separation in the class

projections and PC are again best for the MRDF as seen in Table 1.

We also tested the MRDF on a database of real objects (two cars with 72 aspect views of each

taken from a 25o depression angle). These are objects 19 and 6 in the COIL-20 database 26. Fig

2 shows several aspect views of each object. Each image is stretched in x and y until it �lls one

dimension of a 128�128 pixel frame (this is often used in robotic vision) and the gray values in

each image are stretched to cover the full 0-255 range. For each object, the 72 di�erent aspect

views at 5o intervals covering a 360o aspect range are divided into 36 even aspect angles (0o, 10o,

...) as the training set and the 36 odd aspect views (5o, 15o, ...) as the test set. We designed

MRDF basis vectors for discrimination (k = 0 in Eq. (4)) using the 36 training images. We

chose the two best (dominant) MRDF basis vectors. A nearest neighbor classi�er gave perfect

PC = 100% on the test set (see Table 2).

We now consider the use of this database and the MRDF features when we wish to determine

both the pose and the class of the input test objects. This is a case where both representation
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of each object class in feature space (for pose estimation) and discrimination between di�erent

object classes in feature space (to determine object class) is desired. This is useful in active

vision applications where objects or tools on a factory production line need to be classi�ed and

their pose estimated for use by robotic manipulators in grasping, inspection, and assembly. In

this case, we used a new feature space trajectory (FST) representation 27 for di�erent distorted

versions of an object in the MRDF feature space. In the FST representation, di�erent object

aspect views are points in feature space. Points associated with adjacent aspect views are joined

by straight lines to produce a distinct FST (a piecewise linear curve) in feature space for all

distorted aspect views of an object; di�erent FSTs are produced for di�erent objects. To classify

an input test object, it is mapped to a point in feature space. The closest FST determines its

class estimate and the closest line segment on that FST provides an estimate of its pose (we

interpolate between the aspect angle values at the vertex end points of this line segment). We

used the MRDF basis functions for the two car objects with k = 0:5 as the feature space and

constructed the FST for each car using 36 training images per class (36 vertices on each FST).

We then estimated the class and pose of the test set of 72 input object aspect views. For the

pose estimation problem, we must �rst determine the number of MRDF basis vectors to use.

We included the dominant basis function MRDF vectors until these contained about 40% of the

energy in the transformed training set samples. We are developing other methods to select the

best number of features using nearest neighbor leave-one-out tests 28 and separation of di�erent

parts of an FST 29.

For our initial results, we present classi�cation scores PC and the average pose b�avg estimation

error of the test set for di�erent numbers of MRDF features (Table 2). For each feature space

choice, new FSTs are produced and the class and pose of the test set are estimated. To test the

discrimination capabilities of the MRDF using an FST, we �rst set k = 0, and then analyzed

the classi�cation results using two or more dominant MRDFs. Perfect classi�cation (PC= 100%)

was obtained using 2, 3 and 4 MRDFs with k = 0 (only discrimination), and the corresponding

average pose estimation errors b�avg were 37:7�, 29:04� and 16:21� respectively. We noted earlier

however, that we expect intermediate values of k to provide both joint discrimination and rep-
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resentation. We therefore used k = 0:5 and tested the performance of the MRDF. The results

are summarized in Table 2. Using 2, 3 and 4 MRDFs, we obtained PC= 93.06%, 100%, and

100%, with corresponding pose estimate errors of 34:2�, 2:68�, and 2:65�. Use of 4 discriminat-

ing MRDFs (k = 0) gave PC=100% and b�avg = 16:21� proving that intermediate values of k

are necessary for joint discrimination and representation. Use of 4 KL features (2 per class) in

contrast gave PC=100% and b�avg = 37:2�. When we used four FK features calculated from ten

KL features (�ve per class), we obtained PC=98.6% and b�avg = 6:2� (Table 2). Therefore, our

MRDFs are observed to provide better performance than standard techniques such as the KL

and the FK using fewer numbers of features.

4 Nonlinear Eigenfeature Extraction (NLEF) Algorithm

All prior nonlinear PCA methods are iterative and thus do not have closed-form solutions. Here,

we discuss a new algorithm (NLEF) to produce a nonlinear transformation with a closed-form

solution. We discuss this algorithm for the case of best representation; we will later (Sect. 5)

extend it to the case of both representation and discrimination. This method uses higher-order

correlation information in the input data and thus is useful for representation of asymmetrically

distributed data. This method is then shown to provide advantages compared to prior nonlinear

PCA methods.

To formulate the problem and solution, we consider a random vector x = [x1 x2 x3 ::::xN]T

that models the distorted versions of an object or variations in the features of one object. For

representation, our objective is to �nd a nonlinear transformation (or a set of nonlinear trans-

forms), y = f(x), on x that optimally represents the random vector x in a reduced dimension-

ality space. We consider nonlinear transforms that are polynomial mappings of the input. In

this initial work, we only consider a second-order polynomial mapping (quadratic transform).

The quadratic transform can be written as y =
P

n anxn +
P

n

P
m amnxmxn or in matrix form

as y = xTAx + bTx where A is a matrix and b is a vector. We can also write a quadratic

mapping as a linear transform y = �TxH on the higher-order and higher-dimensional vector

13



xH = [x1 x2 xN x1x1 x1x2 :::: x1xN x2x2 x2x3 :::: xNxN ]T that contains higher-order terms in the

original input data x. This vector is of dimensionH = N+N(N+1)=2 with N linear terms, and

N(N + 1)=2 unique non-linear cross-product terms. We use this last formulation of a quadratic

mapping to derive our NLEF, since it allows for a closed-form solution in the xH space that is

quadratic in the original x space. Note that this can be generalized easily to yield polynomial

mappings of any arbitrary order.

We now address determining the M quadratic transforms on the input such that the random

vector is well represented. The coe�cients of this transform, f�
m
g;m = 1; :::;M , are arranged

in a H �M matrix �M = [�
1
�
2
::: �

M
]. The M quadratic transforms on x yield a new random

vector yHM = �T
MxH. Note that so far we have formulated the quadratic transform in terms of

a linear transform. In PCA (Sect. 2.1), the linear transform that best represents x maximizes

the variance of the output random vector. Similarly, for the quadratic mapping, we choose the

set of orthonormal vectors �
m
that maximize the variance of the output random vector, i.e. we

maximize

�M
m=1�

T

m
CH�m + �M

m=1�m(�
T

m
�
m
� 1); (5)

where the �m are the Lagrange multiplier coe�cients to be chosen and the summation is over

the basis function vectors �m that are used (M < H). The second term in Eq. (5) ensures

that the �m are orthonormal (they are orthogonal by de�nition). In Eq. (5) we now use the

higher-order covariance matrix CH of the random vector xH ; this matrix contains higher-order

correlation terms (we consider only terms up to the fourth order in this quadratic transform

case), i.e. CH = E(xHxTH) � �
H
�T
H
where �

H
= E(xH). The transformation matrix �M must

satisfy

CH�M = �M�: (6)

This corresponds to an eigenvalue-eigenvector equation where � is a diagonal matrix whose

diagonal elements are the eigenvalues of CH and the columns of �M are the eigenvectors of CH.

Therefore, theM quadratic transforms �M = [�
1
�
2
::: �

M
] that best represent the random vector

x are theM dominant eigenvectors associated with theM largest eigenvalues of the higher-order

covariance matrix CH.
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When several samples fxpg; p = 1; :::; P , of the random vector x are available, the sample

higher-order covariance matrix bCH is used. To calculate bCH, the higher-order vectors fxpHg and

the estimate b�
H
= 1=P (

PP
p=1 xpH) of �H are used and the sample higher-order covariance matrix

is found to be bCH = 1=P (
PP

p=1 xpHx
T
pH)� b�H b�TH .

This section has provided a solid foundation for the choice of the nonlinear quadratic (higher-

order) transforms that optimally represent a class of data. We refer to this algorithm as the

nonlinear eigenfeature (NLEF) extraction algorithm. The NLEF has a closed form solution; thus

iterative solutions and their problems are avoided. It extracts and uses higher-order correlation

information present in the input data. This new method automatically �nds the best nonlinear

transforms, produces orthogonal features, and orders them in terms of their order of importance

for representation. By omitting data with smaller eigenvalues, outliers in the training data

can be automatically omitted. Conversely, the linear PCA method considers only second-order

correlations in the input data. Note that if a linear transformation provides a better spread

(variance) in the data than a nonlinear transformation, the NLEF automatically sets the higher-

order coe�cients to zero and the NLEF then becomes the linear PCA. Therefore, the linear PCA

is a special case of the NLEF.

The NLEF overcomes the various problems that are associated with nonlinear PCA (NLPCA)

iterative solutions. However, the NLEF also has other advantages as we now discuss. NLPCA

techniques typically compute a linear weighted combination of the input data and then pass this

through a nonlinearity. This form of nonlinear transformation has some limitations compared

with the nonlinear polynomial transformation we use, as we now discuss. The NLPCA computes

a transformation y = g(wTx), where x is the input vector, w is the vector of NLPCA weights and

g() is a nonlinear function. The Taylor's series expansion of the NLPCA is y = c0 + c1(wTx) +

c2(wTx)2+ :::, where the number of terms in the expansion depends on the \smoothness" of the

function g(x). If we neglect the third and higher-order terms (i.e. we consider the quadratic case),

the expansion is y = c0 + c1(wTx) + c2(xTwwTx), where the quadratic term in the expansion is

xTwwTx = xTA0x where A0 = wwT . A general quadratic transformation is z = xTAx, where

the matrix A determines the shape of the quadratic mapping (hyperellipsoid, etc.) and the rank
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of A (or equivalently its positive de�niteness) determines the number of dimensions in which

the decision surface or mapping can depart from a plane. When A is rank de�cient, it implies

that the mapping is a plane and is not curved in some dimensions. The matrix A0 = wwT is

analogous to A in a general quadratic transformation; as seen, the rank of A0 is one, since it

is the outer-product of two vectors, each of which has rank one. In other words, the quadratic

mapping produced by the NLPCA can produce curved surfaces in only one dimension. Thus

the NLPCA provides very limited higher-order transformations due to the rank-de�ciency of its

quadratic mapping. For one quadratic mapping �, our quadratic NLEF ouput yH = �TxH is

yH =
P

i

P
j aijxixj +

P
i bixi = xTA�x + bTx, where A� is a symmetric matrix. The vectors x

are N-dimensional and in the original space. The matrix A� is N � N and is symmetric. Its

maximum rank is thus N , the dimension of the input vector x. If the data requires it, the rank of

A� will be N (full rank) and thus the representation basis function will curve in all N dimensions

of the input space. Thus, our NLEF quadratic transformation algorithm produces a quadratic

transformation matrix of higher rank than the nonlinear PCA can. Hence, it is expected to

provide more general quadratic transforms.

However, the number of parameters to be estimated in our quadratic NLEF is O(N)2, while

in other NLPCA methods the number of unknown parameters is the same as the dimensionality

N of the data (O(N)). The on-line computation time for the NLEF transform thus increases

quadratically with the size of the input. When the input data are images (N is large), we thus

use a nonlinear transform with no cross terms and a resultant computation time of (O(N)). In

this paper, we discuss quadratic transforms for feature input data only (with low N), in which

the on-line computation time for a quadratic transform is not high.

5 Nonlinear MRDF

The linear MRDF can only provide linear transformations. Using the NLEF algorithm, we now

develop a nonlinear MRDF that provides nonlinear transformations for both representation and

discrimination.
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We consider a second-order nonlinear MRDF for two classes of data described by the random

vectors x1 and x2. We create the augmented data vectors, x1H and x2H for each class; these

contain �rst and second-order terms as before. We desire to determine the M best transforms

�M = [�
1
�
2
:::�

M
] such that the transformed data y1H = �T

Mx1H and y2H = �T
Mx2H are both

separated and still representative of the input data. The �
m
are constrained to be orthogonal.

For representation, we maximize

ER =
MX
m=1

�T
m
C1H�m +

MX
m=1

�T
m
C2H�m; (7)

where C1H = E[x1Hx
T
1H] � �

1H
�T
1H

is the higher-order covariance matrix of class 1 and �
1H

=

E[x1H] is the mean of the augmented vector x1H; similarly, C2H is the higher-order covariance

matrix of class 2. The separation measure to be maximized is

ES =
MX
m=1

ESm =
MX
m=1

�T
m
R12H�m

�T
m
(C1H + C2H)�m

(8)

where R12H = E[(x1H � x2H)(x1H � x2H)T ].

For the MRDF, we want to compute the best features that can jointly represent and discrimi-

nate between the input classes. The weight assigned for representation is k and for discrimination

is (1� k). The measure to be maximized for the nonlinear MRDF is thus

ERS =
MX
m=1

�T
m
[k(C1H + C2H) + (1 � k)(R12H)]�m
�T
m
[kI+ (1 � k)(C1H + C2H)]�m

: (9)

Di�erentiating Eq. (9) with respect to the nonlinear functions �M , the solution must satisfy

[kI+ (1� k)(C1H + C2H)]
�1[k(C1H + C2H) + (1 � k)(R12H)]�M = �M�: (10)

This corresponds to an eigenvalue-eigenvector equation as before. Therefore, the M best non-

linear MRDF transformation coe�cients �
m
are the M dominant eigenvectors corresponding to

the M largest eigenvalues of [kI+ (1 � k)(C1H + C2H)]
�1[k(C1H +C2H) + (1� k)(R12H)]. If we

wish to only discriminate between the classes we assign k = 0, if only representation is needed

we select k = 1; to simultaneously represent and discriminate data we use intermediate values of

k.
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6 Nonlinear MRDF Results

We expect our nonlinear MRDFs to provide improved PC for the data in Fig. 1, but this has not

been veri�ed since our linear MRDFs gave PC ' 99% (Table 1). To test the nonlinear MRDF,

we �rst consider two 2-D (two features) synthetic data cases, in which the decision surfaces can

be visualized. In these cases, higher-order decision surfaces will be necessary to separate the

two classes, speci�cally quadratic decision surfaces using our quadratic (second-order nonlinear)

MRDF. We consider the best single MRDF solution for each of these two cases.

A single linear discriminant function (LDF) cannot separate many con�gurations of data.

One example is the case when one class is completely surrounded by another class. In such

cases quadratic or higher-order decision surfaces are needed. A number of LDFs can be used to

approximate a quadratic decision surface, however the use of many LDFs increases computation

and design costs. Conversely, our quadratic nonlinear MRDF inherently produces quadratic

decision surfaces using fewer discriminant functions (�
m
), because these discriminant functions

are nonlinear functions of the input feature data. In each case considered, each class has 2000

samples (1000 samples in the training set and 1000 in the test set) denoted by + and o with

every �fth sample from the test set shown for better presentation. In Case 1 (Fig. 3a), class

1 samples have an uniform distribution within a certain radius from the origin and they are

surrounded by class 2 samples. To separate these clusters, a circular quadratic decision surface

is necessary. The best single quadratic MRDF transform was determined using the samples from

the training set; the resultant decision surface (the MRDF function) is shown as a solid line in

Fig. 3a. The decision surface produced by our nonlinear MRDF is seen to provide good class

separation. Samples on either side of the decision surface are assigned to di�erent classes. A PC

of 99.9% was obtained on the test set with this nonlinear MRDF.

In Case 2 (Fig. 3b), class 1 is Gaussian distributed and centered about the origin; class 2 is a

mixture of two Gaussians such that it forms two clusters, one on each side of the class 1 cluster.

The decision surface produced by the single best (dominant) quadratic MRDF is elliptical (solid

line in Fig. 3b). Data inside the elliptical decision surface is assigned to class 1 and data outside

it is assigned to class 2. In this case, the classi�cation accuracy of 97.5% was obtained on the
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test set with the nonlinear (quadratic) MRDF.

We next tested the nonlinear MRDF on a product inspection problem. The problem involves

classi�cation of pistachio nuts as clean or infested based on features extracted from real-time

X-Ray images of the pistachios. Infestations include worm or insect feeding damage, mold,

rancidity, decay, etc. External images of the pistachios provide insu�cient information about

the quality of a nut (Fig. 4, top), while real-time X-ray images provide internal details from

which classi�cation is possible (Fig. 4, bottom).

We preprocessed arbitrarily oriented touching nuts to extract individual nuts; we then mor-

phologically removed the shell edge and airgap (between the nutmeat and the shell) from the

image as detailed elsewhere 30. The resultant nutmeat-only images were then used for classi�ca-

tion. We extracted four histogram features 31 from the histogram of the nutmeat-only image and

four features from the histogram of an edge-enhanced version of this image. Infested nuts tend

to be darker, and rougher than clean ones (Fig. 4, bottom left). The histogram features from the

non-edge enhanced image capture information about the gray-level distribution in the nutmeat

(dark or light gray values), and the features from the edge image capture texture information

(roughness or smoothness). These eight features were input to our nonlinear MRDF algorithm.

In this case, our nonlinear MRDF algorithm is applied to input features rather than images.

We used 605 clean and 686 infested pistachio nut images; the clean nuts were divided into

a training set of 303 nuts and a test set of 302 nuts and the infested nuts were divided into a

training set of 344 nuts and a test set of 342 nuts. The eight histogram features were computed

for the training and test set images, and nonlinear quadratic MRDF features were calculated from

these using only training set data. Since only discrimination is necessary (not representation),

we used k=0 in Eq. (9). A piecewise-quadratic neural network (PQNN) classi�er 32 was then

trained using these nonlinear MRDF features calculated from the training set, and then tested

on the test set. The steps involved in classifying each pistachio nut are shown in Fig. 5. The

best prior results 31 on this database using eight histogram features (rather than our nonlinear

MRDF features calculated from the same histogram features) gave 88% correct classi�cation on

the test set (Table 3). The nonlinear MRDF was found to (Table 3) improve this to 90.4% using
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only one quadratic MRDF, and to 91.3% using the twelve dominant discriminating quadratic

MRDFs. This improvement is signi�cant. The purpose of these tests is to show that higher-

order correlation information exists in real data and that our nonlinear MRDF can locate such

information.

7 SUMMARY

We have presented a new linear feature extraction technique for representation and discrimina-

tion (MRDF) and a new nonlinear extension of it (NLEF) that has a closed-form solution. A

theoretical comparison of the NLEF and the NLPCA shows that the NLEF has more general de-

cision surfaces of higher rank compared to the NLPCA. Tests of our new techniques on synthetic

and real data showed good results, demonstrated the need for higher-order decision surfaces,

that higher-order correlation information exists in real data, and that such information is useful

for classi�cation. These ideas have a wide variety of applications in digital library searches and

indexing, automated surveillance, active vision, material handling and inspection, and associated

areas in computer vision.
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(a) (b)

Figure 1: Test set data for Case 1 (a) and Case 2 (b) of 2-D random variables from two classes

and the basis functions generated by the MRDF, FK, and Fisher linear discriminants.
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0o 90o

Figure 2: Aspect views of two similar cars (top object 19, bottom object 6)
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(a) (b)

Figure 3: Test set data for Case 1 (a) and Case 2 (b) of 2-D classes and the quadratic MRDF

functions produced.
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Figure 4: Visible (top) and X-ray (bottom) nut images; infested (left) and clean (right).
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Figure 5: Block diagram of the quadratic MRDF classi�er for pistachio nut inspection.
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Basis Function Inter-Class Separation MS Representation error PC Results

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

MRDF 0.71 0.95 0.19 0.47 98.8% 99.2%

FK 0.48 0.485 0.74 0.53 82.1% 54.0%

Fisher 0.42 0.81 0.8 0.55 42.4% 58.3%

Table 1: Inter-class separation, mean-square representation error and classi�cation accuracy

using MRDF, FK and Fisher discriminant functions.
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Features Used PC Avg Pose

Est. Error (b�avg)
2 MRDFs (k=0.5) 93.06% 34.2�

3 MRDFs (k=0.5) 100% 2.68�

4 MRDFs (k=0.5) 100% 2.65�

2 MRDFs (k=0) 100% 37.7o

4 KL (2 KL/Class) 100% 37.2�

4 FK of 10 KLs (5 KL/Class) 98.6% 6.2�

Table 2: Classi�cation and pose estimation of two cars using MRDFs.
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Features Used PC (Train) PC (Test)

1 Quadratic MRDF 92.9% 90.4%

12 Quadratic MRDFs 91.7% 91.3%

8 Histogram Features 89.3% 88.0%

Table 3: Pistachio nut classi�cation results using nonlinear MRDF and histogram features.
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