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Blocking the inhomogeneous units of experiments into groups is an efficient way to reduce the influence of systematic sources on
the estimations of treatment effects. In practice, there are two types of blocking problems. One considers only a single block
variable and the other considers multi-block variables..e present paper considers the blocking problem of multi-block variables.
.eoretical results and systematical construction methods of optimal blocked 2n− m designs with (N/4) + 1≤ n≤ 5N/16 are
developed under the prevalent general minimum lower-order confounding (GMC) criterion, where N � 2n− m.

1. Introduction

.e regular 2n− m factorial experiment has played an im-
portant role in engineering, manufacturing industry, agri-
culture and medicine, and so on. It allows efficient and
economic experimentation to estimate treatment effects.
When the size of the experimental units is large, the in-
homogeneity will cause unwanted variance to the estima-
tions of treatment effects. To reduce such bad influence, a
crucial way is to partition the experimental units into blocks.

.ere are two kinds of blocking problems as pointed out
in [1]. One is called the single block variable problem which
considers only a single block variable, and the other is called
the multi-block variable problem which considers two or
more block variables. In the last decades, choosing optimal
blocked 2n− m designs with a single block variable has been
well investigated; for example, the authors in [2–9] studied
the blocked 2n− m designs under different minimum aber-
ration criteria; Chen et al. and Zhao et al. [10, 11] explored
the blocked 2n− m designs under the clear effects criterion;
Zhang and Mukerjee, Zhao et al., and Zhao and Zhao
[12–14] explored the constructions of the blocked 2n− m

designs under the general minimum lower-order con-
founding (GMC) criterion proposed in [15]; and Zhao et al.

[16–18] gave construction methods of the blocked 2n− m

designs under another GMC criterion proposed in [19].
Compared to the large body of work on the blocking

problem of single block variable, the studies on choosing
optimal blocked 2n− m designs with multi-block variables are
relatively rare. However, it has been recognized that the
blocking problem of multi-block variables can arise quite
naturally in many practical situations. For example, in the
agricultural context, Bisgaard [1] pointed that when designs
are laid out in rectangular schemes, both row and column
inhomogeneity effects probably exist in the soil. Another
example of multi-block variables is from [20]. Considering
the comparison of two gasoline additives by testing them on
two cars with two drivers over two days, the “cars,” “drivers,”
and “days” are three block variables which should be taken
into account when performing experiments.

Under the clear effects criterion, Zhao and Zhao [21]
proposed an algorithm for finding optimal blocked 2n− m

designs with multi-block variables. Under the minimum
aberration criterion, Zhao and Zhao [22] developed some
rules for constructing optimal blocked 2n− m designs with
multi-block variables. Zhang et al. [23] extended the idea
of GMC criterion to the case of multi-block variable
problem and developed the blocked GMC criterion, called
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the B2-GMC criterion. Inheriting the advantage of the
GMC criterion, the B2-GMC designs are particularly
preferable when some prior information on the impor-
tance ordering of treatment effects is present. By com-
puter search, Zhang et al. [23] tabulated some B2-GMC
deigns with small n andN, whereN � 2n− m. When n orN
is large, computer search becomes computationally ex-
pensive. Zhao et al. [24] and Zhao and Zhao [25] com-
pleted the constructions of B2-GMC designs with
5N/16 + 1≤ n≤N − 1. .is paper aims at providing the-
ories and systematical construction methods of the
B2-GMC designs with N/4 + 1≤ n≤ 5N/16.

.e rest of the paper is organized as follows. Section 2
reviews doubling theory and B2-GMC criterion. Section 3
provides theoretical results and construction methods of
B2-GMC designs. Section 4 gives concluding remarks. Some
useful lemmas are deferred to Appendix.

2. Preliminaries

2.1. Doubling %eory. Let X � (x1, . . . , xt) be a matrix with
entries 1 or − 1. Denote J0 � (1, 1)′ and J1 � (1, − 1)′, where ′
denotes transpose. Define

D(X) � J0, J1( )⊗ x1, . . . , J0, J1( )⊗ xt( ), (1)

as a double of X, where ⊗ is the Kronecker product. Let
Dq(X) denote the design obtained by repeatedly doubling
Xq times, i.e., Dq(X) � D(Dq− 1(X)). When X � 1, we write
Dq(1) � (I2q , 12q , 22q , 12q22q , . . . , 12q22q32q , . . . , q2q), where
the subscript 2q means the dimension of a column, I2q is a
column of 1’s,

12q′ �(1, . . . , 1, − 1, . . . , − 1)
22q′ �(1, . . . , 1, − 1, . . . , − 1, . . . , 1, . . . , 1, − 1, . . . , − 1)
⋮

q2q
′ �(1, − 1, 1, − 1, . . . , 1, − 1, 1, − 1),

(2)

are q independent columns, and the other columns are the
component-wise products of some of these q independent
columns. For example, 12q22q is the component-wise
product of the columns 12q and 22q . Write Dq(1) �
(I2q , D

q(·)); then, Dq(·) is just the regular two-level satu-
rated design with columns arranged in Yates order. As some
subdesigns in Dq(·), denote H

q
0 � ∅, H

q
1 � 12q ,H

q
r �

(H
q
r− 1, r2q , r2qH

q
r− 1) for r � 2, 3, . . . , q, where ∅ denotes the

empty set, the superscript q of Hq
r refers to that Hq

r is a
subdesign of Dq(·), and r2qH

q
r− 1 � (r2qd2q : d2q ∈ H

q
r− 1), i.e.,

Hq
r consists of the first 2r − 1 columns of Dq(·). Especially,

Hq
q � D

q(·).

2.2. B2-GMC Criterion. Before introducing the B2-GMC
criterion, we first review some principles in the multi-block
variable problem. Let b1, b2, . . . , bs denote the s block var-
iables which cause the inhomogeneity of the experimental
units. Suppose that the block variable bj partitions the N(�
2n− m) experimental units into 2lj blocks; then, lj indepen-
dent columns are needed to carry out this blocking plan.

Denote Sj as the set of the lj independent columns related to
the block variable bj. .e block columns should follow the
following rules:

(i) .e lj block columns in Sj(j � 1, 2, . . . , s) are in-
dependent of each other.

(ii) A block column from Sj is not necessarily inde-
pendent of the block columns from Si with j≠ i.

In this paper, we focus on the case where each block
variable is at two levels, i.e., lj � 1.

.e effect hierarchy principle for blocked designs with
multi-block variables is as follows (see [23]):

(i) .e lower-order treatment factorial effects are more
likely to be important than the higher-order ones,
and the treatment factorial effects of the same order
are equally likely to be important.

(ii) .e lower-order block factorial effects are more
likely to be important than the higher-order ones,
and the block factorial effects of the same order are
equally likely to be important.

(iii) All the interactions between treatment factors and
block factors are negligible.

Since each variable or factor is assigned to one column of
the design matrix when an experiment is carried out, we do
not differentiate the variable, factor, and column. Based on
the effect hierarchy principle and weak assumption that the
effects involving three or more factors are usually not im-
portant and negligible, Zhang et al. [23] proposed the
B2-GMC criterion which pays attention to only the con-
founding among main treatment effects and the two-factor
interactions of treatment factors (2fi’s for short). For the
same reason, a common assumption in blocking problem is
that only the main effects of block variables and the in-
teractions of any two block factors are potentially significant,
and if a treatment effect is confounded with a potentially
significant block effect, the treatment effect cannot be es-
timated. .us, the confounding between the main effects of
treatment factors and any potentially significant block effect
is not allowed.

Denote D � (Dt: Db) as a 2n− m: 2s design, where Dt

consists of n treatment factors corresponding to a regular
2n− m design and Db consists of s block factors each of which
can partition the 2n− m runs into 2 blocks. Denote #1C

(p)

2 (D)
as the number of main treatment effects which are aliased
with p2fi’s but not with any potentially significant block
effects, where p � 0, 1, 2, . . . , P and P � n(n − 1)/2. Simi-

larly, #2C
(p)

2 (D) denotes the number of 2fi’s which are aliased
with the other p2fi’s but not with any potentially significant
block effects, where p � 0, 1, . . . , P. Denote

#
1C2(D) �

#
1C

(0)

2 (D), #1C
(1)

2 (D), . . . , #1C
(p)

2 (D)( ),
#
2C2(D) �

#
2C

(0)

2 (D), #2C
(1)

2 (D), . . . , #2C
(p)

2 (D)( ),
(3)

#C(D) � #
1C2(D),

#
2C2(D)( ). (4)
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A 2n− m: 2s blocked design D � (Dt: Db) is called a
B2-GMC design if it sequentially maximizes (4). Let
#
1C

(p)

2 (Dt) be the number of main effects which are aliased
with p 2fi’s ofDt and

#
2C

(p)

2 (Dt) be the number of 2fi’s which
are aliased with the other p 2fi’s of Dt. Let

#
1C2 Dt( ) � #

1C
(0)

2 Dt( ), #1C(1)2 Dt( ), . . . , #1C(p)2 Dt( )( ),
#
2C2 Dt( ) � #

2C
(0)

2 Dt( ), #2C(1)2 Dt( ), . . . , #2C(p)2 Dt( )( ),
#C Dt( ) � #

1C2 Dt( ), #2C2 Dt( )( ).
(5)

A 2n− m design Dt is called a GMC design if Dt se-
quentially maximizes (5).

Let q � n − m. Constructing a B2-GMC design is to
choose Dt and Db from Dq(·) such that (4) is sequentially
maximized. In the following, without causing confusions, we
omit the subscript of a column and the superscript of a
design when they are taken fromDq(·). For example, we use
a,Hr, andHq instead of a2q ,H

q
r , andHq

q, respectively. Denote

U Db( ) � γ ∈ Hq: γ ∈ Db or γ � abwith a, b ∈ Db{ }, (6)

and then U(Db) consists of all the potentially significant
block effects. As previously stated, the confounding between
main treatment effects and potentially significant block ef-
fects is not allowed. .is requires Dt ∩U(Db) � ∅, and thus
#
1C

(p)

2 (D) � #
1C

(p)

2 (Dt) for p � 0, 1, 2, . . . , P.
For Dt ⊂ Hq and γ ∈ Hq, define

B2 Dt, γ( ) � # d1,d2( ): d1, d2 ∈ Dt, d1d2 � γ{ }, (7)

where # denotes the cardinality of a set and d1d2 stands
for the two-factor interaction of d1 and d2. .us, B2(Dt, γ) is
the number of 2fi’s of Dt appearing in the alias set that
contains γ.

Isomorphism introduced by Tang and Wu [26] is a
useful concept which helps narrow down the search of the
optimal blocked designs here. An isomorphism ϕ is a one-to-
one mapping fromHq toHq such that ϕ(xy) � ϕ(x)ϕ(y) for
every x ≠ y ∈ Hq. .e 2n− m designs Dt and D∗t are iso-
morphic if there exists an isomorphism ϕ that mapsDt onto
D∗t . .e 2n− m: 2s designs D � (Dt: Db) and D∗ � (D∗t : D

∗
b )

are isomorphic if there exists an isomorphism ϕ that maps
Dt onto D∗t and Db onto D∗b .

3. Constructions of B2-GMC Designs

3.1. B2-GMC 2n− m: 2s Designs with n � (N/4) + 1. A design
is of MaxC2 (see [27]) if it has resolution IV and maximum
number of clear 2fi’s, where a resolution R design has no
c-factor interaction confounded with any other interaction
involving less than R − c factors (see [28]), and a 2fi is called
clear if it is not aliased with any main treatment effect and
other 2fi’s. Cheng and Zhang [29] showed that a 2n− m design
with n � N/4 + 1 is a MaxC2 design if and only if it is a GMC
design. .ey also pointed out that, up to isomorphism, the
GMC 2n− m design with n � N/4 + 1 can be uniquely
expressed as SN/4+1 � (q − 1, q, q(q − 1)Hq− 2). It is easy to
obtain that

B2 SN/4+1, γ( ) �

1, for γ ∈ (q − 1)Hq− 2, qHq− 2, q(q − 1){ },
N

8
− 1, for γ ∈ Hq− 2,

0, otherwise.


(8)

.erefore,

#
1C

(p)

2 SN/4+1( ) �
N

4
+ 1, forp � 0,

0, otherwise,


(9)

#
2C

(p)

2 SN/4+1( ) �
2
N

4
− 1( ) + 1, forp � 0,

N

4
− 1( ) N

8
− 1( ), forp �

N

8
− 2,

0, otherwise.


(10)

Lemma 1 is a straightforward extension of Lemma A.1,
in Appendix, introduced from [24, 25].

Lemma 1. Suppose Db is any s-projection of Hr, γ, γHr{ }
with 2k ≤ s≤ 2k+1 − 1 for some k(0≤ k≤ r − 1), where γ is
independent of the columns of Hr. We have

(i) If Db ∩ γ, γHr{ } � ∅, then # U(Db)∩Hr{ }≥ 2k+1 − 1
and the equality holds when Db has k + 1 indepen-
dent columns.

(ii) If Db ∩ γ, γHr{ }≠∅, then # U(Db)∩Hr{ }≥ 2k − 1
and the equality holds when Db has k + 1 indepen-
dent columns.

(iii) If Db ∩ γ, γHr{ }≠∅, then # U(Db)∩ γ, γHr{ }{ }≥ 2k
and the equality holds when Db has k + 1 indepen-
dent columns.

(iv) If Db ⊂ Hk+1, then U(Db) � Hk+1.

(v) If Db ⊂ Hk, γ, γHk{ }, then U(Db) � Hk, γ, γHk{ }.
Lemma 2 provides a necessary condition for a 2n− m: 2s

design D � (Dt: Db) with n � N/4 + 1 to be a B2-GMC
design.

Lemma 2. Suppose D � (Dt: Db) is a 2n− m: 2s design with
n � N/4 + 1 and 2k ≤ s≤ 2k+1 − 1 for some k(0≤ k≤ q − 3);
then, D � (Dt: Db) is a B2-GMC design only if Dt � SN/4+1.

Proof. Let D̃ � (SN/4+1: D̃b) be a 2n− m: 2s design and
D̃b ∈ Hq− 2. From (8)–(10), we can obtain

#
1C2(D̃) �

N

4
+ 1, 0, . . . , 0( ), (11)

which is sequentially maximized by D̃, and #
2C

(0)

2 (D̃) �
2(N/4 − 1) + 1 � N/2 − 1. Suppose that any D � (SN/4+1:

Db) is not a B
2-GMC 2n− m: 2s design for n � N/4 + 1. .en,
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by the definition of B2-GMC criterion, there should be a
2n− m: 2s design D∗ � (D∗t : D

∗
b ) outperforming

D̃ � (SN/4+1: D̃b) in terms of (4). .is leads to

#
1C2 D

∗( ) � N

4
+ 1, 0, . . . , 0( ), (12)

and #
2C

(0)

2 (D∗)≥ (N/2) − 1. Clearly,

#
1C2 D

∗
t( ) � #

1C2 D
∗( ) � N

4
+ 1, 0, . . . , 0( ), (13)

and #
2C

(0)

2 (D∗t )≥ #2C
(0)

2 (D∗)≥N/2 − 1 noting that D∗t is the
unblocked part of D∗ and D∗t has n � N/4 + 1 columns.

In fact, the inequality in the formula #
2C

(0)

2 (D∗t )≥N/2 −
1 is not valid. Recall that the MaxC2 design SN/4+1 has the
largest number, N/2 − 1, of clear 2fi’s among all the 2n− m

designs with n � N/4 + 1. .erefore,D∗t has at mostN/2 − 1

clear 2fi’s, i.e., #
2C

(0)

2 (D∗t ) � N/2 − 1. Wu and Wu [30]
showed that a 2n− m design with n � N/4 + 1 is a MaxC2
design if and only if this design has N/2 − 1 clear 2fi’s. .is
obtains that D∗t � SN/4+1 up to isomorphism. □

With Lemma 2,.eorem 1 provides the constructions of
B2-GMC designs with n � N/4 + 1.

Theorem 1. Suppose D � (Dt: Db) is a 2n− m: 2s design with
n � N/4 + 1 and 2k ≤ s≤ 2k+1 − 1 for some k(0≤ k≤ q − 3);
then, D � (Dt: Db) is a B2-GMC design if Dt � SN/4+1 and
Db is any s-projection of Hk+1.

Proof. By Lemma 2, if D � (Dt: Db) is a B
2-GMC 2n− m: 2s

design with n � N/4 + 1, then Dt � SN/4+1 up to isomor-

phism. .us, #
1C2(D) � (N/4 + 1, 0, . . . , 0) which is se-

quentially maximized by D � (SN/4+1: Db). Let u1 �

# U(Db)∩ (q − 1)Hq− 2, qHq− 2, q(q − 1){ }{ } and u2 � #

U(Db)∩Hq− 2{ }; then, from (10), we have

#
2C

(p)

2 (D) �

2
N

4
− 1( ) + 1 − u1, forp � 0,

N

4
− 1 − u2( ) N

8
− 1( ), forp �

N

8
− 2,

0, otherwise.


(14)

If D is a B2-GMC design, then D must sequentially
minimize (u1, u2). .ere are two different ways to chooseDb

from Hq\SN/4+1:

(i) Db ∩ (q − 1)Hq− 2, qHq− 2, q(q − 1){ } � ∅.
(ii) Db ∩ (q − 1)Hq− 2, qHq− 2, q(q − 1){ }≠∅.
It is not hard to verify thatDb in case (ii) results in u1 > 0

while Db in case (i) gives u1 � 0. .erefore, if
D � (SN/4+1: Db) is a B

2-GMC design, then Db must be of
case (i). Recall thatDb ∩ SN/4+1 � ∅, and we haveDb ⊂ Hq− 2.
By Lemma 1 (i), if Db ⊂ Hq− 2, then u2 � #
U(Db)∩Hq− 2{ }≥ 2k+1 − 1 and the equality holds when

Db ⊂ Hk+1 up to isomorphism. .is completes the
proof. □

.e following example illustrates the construction
method in .eorem 1.

Example 1. Consider the construction of theB2-GMC29− 4
: 25

design. Here, n � 9, m � 4, q � 5, N � 32, and s � 5 which
leads to k � 2. According to .eorem 1, let Dt � (4, 5, 45H3)

and Db be any 5-projection of H3, say Db � (1, 2, 12, 3, 13).
.en, D � (Dt: Db) is a B

2-GMC 29− 4
: 25 design.

3.2. B2-GMC Designs with N/4 + 1< n≤ 5N/16. To se-
quentially maximize (4), the first part #1C2(D) of (4) should
be first maximized. Recall that #1C2(D) �

#
1C2(Dt). If Dt has

resolution IV, then #
1C2(D) must be maximized. According

to [31], whenN/4 + 1< n≤ 5N/16, theDt with resolution IV
must be an n-projection of some second-order saturated
(SOS) designs. In the following, we first review the concept
of SOS design.

A 2n− m design is called an SOS design if all of its degrees of
freedom can be used to estimate only themain treatment effects
and 2fi’s. In terms of coding theory and projective geometry,
Davydov and Tombak [32] showed that, givenN, only the SOS
designs of N/4 + 1, N(2w− 2 + 1)/2w with w≥ 4 and N/2
factors exist. Block and Mee [31] further showed that an SOS
design ofN(2w− 2 + 1)/2w factors can be obtained by doubling
some smaller SOS 2(2

w− 2+1)− (2w− 2+1− w) designs q − w times.
Zhang and Cheng [33] showed that the SOS design of N/2
factors can be uniquely represented by SN/2 � (q, qHq− 1) up to
isomorphism. Let

L(w) � Dq− w
(Y): Y is an SOS 2 2w− 2+1( )− 2w− 2+1− w( ) design{ },

(15)
denote the collection of all the SOS designs obtained by
doubling some SOS 2(2

w− 2+1)− (2w− 2+1− w) designs q − w times.
Especially, in L(w), we denote the SOS design obtained by
doubling the MaxC2 2(2

w− 2+1)− (2w− 2+1− w) design
Φ(w) � ((w − 1)2w ,w2w ,w2w(w − 1)2wH

w
w− 2) as SN(2w− 2+1)/2w .

With a little algebra, it is easy to verify that

Dq− w
I2w( ) � I2q ,H

q
q− w( ) � I,Hq− w( )

Dq− w
12w( ) �(q − w + 1)2q I2q ,H

q
q− w( )

�(q − w + 1) I,Hq− w( )
Dq− w

22w( ) �(q − w + 2)2q I2q ,H
q
q− w( )

�(q − w + 2) I,Hq− w( )
⋮

Dq− w
(w − 1)2w( ) �(q − 1)2q I2q ,H

q
q− w( ) �(q − 1) I,Hq− w( )

Dq− w
w2w( ) � q2q I2q ,H

q
q− w( ) � q I,Hq− w( ),

(16)

where I2q− w ⊗ 12w � (q − w + 1)2q , I2q− w ⊗ 22w � (q − w+ 2)2q ,
. . . , I2q− w ⊗ (w − 1)2w � (q − 1)2q , and I2q− w ⊗w2w � q2q .
.en,
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Dq− w
(w − 1)2ww2wH

w
w− 2( ) � q(q − 1) Hq− 2\Hq− w( ).

(17)
.erefore, SN(2w− 2+1)/2w can be expressed as

SN 2w− 2+1( )/2w � D
q− w

(Φ(w))
� (q − 1), (q − 1)Hq− w, q, qHq− w, q(q − 1)(

Hq− 2\Hq− w( )).
(18)

.e following lemma provides a necessary condition for
a 2n− m: 2s design D � (Dt: Db) withN/4 + 1< n≤ 5N/16 to
be a B2-GMC design.

Lemma 3. Suppose D � (Dt: Db) is a 2n− m: 2s design with
N(2w− 1 + 1)/2w+1 < n≤N(2w− 2 + 1)/2w for w≥ 4 and
2k ≤ s≤ 2k+1 − 1 for some k(0≤ k≤ q − 3); then,
D � (Dt: Db) is a B2-GMC design only if Dt ⊂ SN(2w− 2+1)/2w .

Proof. As discussed in the first paragraph of this section, if
D � (Dt: Db) is a B2-GMC 2n− m: 2s design with
N(2w− 1 + 1)/2w+1 < n≤N(2w− 2 + 1)/2w, then Dt must be an
n-projection of some SOS designs in L(v) with 4≤ v≤w or
SN/2.

Let P1 be an n-projection of SN/2. According to.eorem
3 in [33], we obtain

#
2C

(p)

2 P1( ) �

0, forp< n − N
4
− 1,

N

4
n −

N

4
( ), forp � n −

N

4
− 1,

0, for n −
N

4
− 1<p<N

8
− 1.


(19)

Let Xv � (a1, a2, . . . , a2v− 2+1) be any SOS
2(2

v− 2+1)− (2v− 2+1− v) design but not a MaxC2 design; then,
Dq− v(Xv) ∈L(v). Denote pi as the number of clear 2fi’s of
Xv involving ai for i � 1, 2, . . . , 2v− 2 + 1 and c as the total
number of clear 2fi’s of Xv. Let Pv be an n-projection of
Dq− v(Xv) and Pv � D

q− v(Xv)\Pv. .en, #Pv � N
(2v− 2 + 1)/2v − n≤N/2v. Applying equations (23) and (24)
in the proof of .eorem 3.1 of [29], among all the n-pro-
jections of Dq− v(Xv), Pv sequentially maximizes #2C2 in (5),
only if Pv ⊂ Dq− v(aj), where aj is the column such that
pj � max p1, p2, . . . , p2v− 2+1{ }. For a Pv with Pv ⊂ Dq− v(aj),
according to equation (24) in the proof of .eorem 3.1 of
[29], it is obtained that

#
2C

(p)

2 Pv( ) �

0, for 0≤p< n − N
4
− 1,

pjN

2v
(n − N/4), forp � n −

N

4
− 1,

0, for n −
N

4
− 1<p<N

2v
− 1,

c − pj( ) N
2v
( )2, forp �

N

2v
− 1.


(20)

For a MaxC22(2
v− 2+1)− (2v− 2+1− v) design, it has 2v− 1 − 1

clear 2fi’s and pj � 2v− 2. Since Xv is not a MaxC2 design, we
have

pj � 2v− 2,

c − pj < 2v− 1
− 2v− 2

− 1,
(21)

or

pj < 2v− 2,

c< 2v− 1
− 1.

(22)

Let Qv be an n-projection of SN(2v− 2+1)/2v obtained by
doubling Φ(v), the MaxC22(2

v− 2+1)− (2v− 2+1− v) design as
mentioned above. With a column permutation, rewrite
Dq(·) as

D
q
RC(·) � Hq− v,Hq− 2\Hq− v, (q − 1) Hq− 2\Hq− v( ),(

q Hq− 2\Hq− v( ), q(q − 1) I,Hq− v( ), SN 2v− 2+1( )/2v),
(23)

in a re-changed Yates order. Write Φ(v) as
Φ(v) � (s1, s2, . . . , s2v− 2+1), where s1 � (v − 1)2v , s2 � v2v and
(s3, . . . , s2v− 2+1) � v2v(v − 1)2vH

v
v− 2. Applying equations (23)

and (24) in the proof of .eorem 3.1 of [29], among all the

n-projections of SN(2v− 2+1)/2v , Qv sequentially maximizes #2C2

in (3), only ifQv ⊂ Dq− v(si) with i � 1 or 2. In the following,

we investigate #
2C

(p)

2 (Qv) with Qv ⊂ Dq− v(s1) for which the
following analysis and final conclusion are the same as that

for #
2C

(p)

2 (Qv) with Qv ⊂ Dq− v(s2). For Qv with

Qv ⊂ Dq− v(s1), from equations (18) and (23), it is obtained
that
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B2 Qv, γ( ) �

0, for γ ∈ SN 2v− 2+1( )/2v ,

n −
N

4
, for γ ∈ q Hq− 2\Hq− v( ), q(q − 1) I,Hq− v( ){ },

N

2v
, for γ ∈ (q − 1) Hq− 2\Hq− v( ),

N

8
−
N

2v
, for γ ∈ Hq− 2\Hq− v,

B2 Qv, γ( ) +N
8
, for γ ∈ Hq− v,



(24)

where the second equality can be easily verified by noting
that

q Hq− 2\Hq− v( ), q(q − 1) I,Hq− v( ){ }
� Dq− v

s1s2( ), Dq− v
s1s3( ), . . . , Dq− v

s1s2v− 2+1( ){ }. (25)

.erefore,

#
2C

(p)

2 Qv( ) �

0, for 0≤p< n − N
4
− 1,

N

4
(n − N/4), forp � n −

N

4
− 1,

0, for n −
N

4
− 1<p<N

2v
− 1,

N

2v
N/4 − N/2v( ), forp �

N

2v
− 1,

0, for
N

2v
− 1<p<N

8
−
N

2v
− 1,

N

4
−
N

2v
( ) N

8
−
N

2v
( ), forp �

N

8
−
N

2v
− 1.



(26)

Denote D∗ � (D∗t : D
∗
b ), where D∗t ⊂ SN(2w− 2+1)/2w ,

SN(2w− 2+1)/2w\D
∗
t ⊂ Dq− w(s1) and D∗b ⊂ Hk+1. Since k≤ q − 3,

we have U(D∗b ) ⊂ Hq− 2. .erefore, from (24) and (26), we
obtain

#
2C

(p)

2 D
∗( ) �

0, for 0≤p< n − N
4
− 1,

N

4
(n − N/4), forp � n −

N

4
− 1,

0, for n −
N

4
− 1<p< N

2w
− 1,

N

2w
N/4 − N/2w( ), forp �

N

2w
− 1.



(27)
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Comparing (27) with (19), (20) for 4≤ v≤w, and (26) for
4≤ v≤w − 1, it is obtained that ifD � (Dt: Db) is a B

2-GMC
design, D should not be worse than D∗ in terms of (3).
.erefore, if D � (Dt: Db) is a B

2-GMC design, Dt should
be an n-projection of SN(2w− 2+1)/2w . .is completes the
proof. □

.e lemma below is an extension of Lemma A.2, in
Appendix, introduced from [34].

Lemma 4. Suppose Dt consists of the last n,
N(2w− 1 + 1)/2w+1 < n≤N(2w− 2 + 1)/2w, columns of
SN(2w− 2+1)/2w ; then, B2(Dt, γ1)≥B2(Dt, γ2) if γ1 is ahead of γ2
in Hq− w.

Proof. Suppose O consists of the last n − N/4 columns of
Dq− w((w − 1)2w). .en, Dt � O, SN(2w− 2+1)/2w\D

q− w{
(w − 1)}. From (16) and (18), for any γ ∈ Hq− w,
B2(Dt, γ) � B2(O, γ) +N/8. Straightforwardly, from
Lemma A.2, it is obtained that B2(O, γ1)≥B2(O, γ2) if γ1 is
ahead of γ2 in Hq− w. .is completes the proof. □

With Lemmas 3 and 4, .eorem 2 provides the con-
struction methods of B2-GMC 2n− m: 2s designs with
N/4 + 1< n≤ 5N/16.

Theorem 2. Let D � (Dt: Db) be a 2n− m: 2s design with
N(2w− 1 + 1)/2w+1 < n≤N(2w− 2 + 1)/2w for w≥ 4 and
2k ≤ s≤ 2k+1 − 1 for some 0≤ k≤ q − 3. Suppose 2r ≤N
(2w− 2 + 1)/2w − n≤ 2r+1 − 1 for some 0≤ r≤ q − w − 1; then,
D is a B2-GMC design if Dt consists of the last n columns of
SN(2w− 2+1)/2w and

(a) Db is any s-projection of Hk, q − 1, (q − 1)Hk{ } when
k≤ r≤ q − w − 1.

(b) Db is any s-projection of Hk+1 when
r + 1≤ k≤ q − w − 1.

(c) Db is any s-projection of Hq− 2 when
q − w − 1< k≤ q − 3.

Proof. By Lemma 3 and its proof, if D∗ � (D∗t : D
∗
b ) is a

B2-GMC 2n− m: 2s design, there should be D∗t ⊂ SN(2w− 2+1)2w
and D

∗
t � SN(2w− 2+1)2w\D

∗
t ⊂ Dq− w((w − 1)2w). Substituting

v with w in (24), we obtain

B2 D
∗
t , γ( ) �

0, for γ ∈ S N 2w− 2+1( )/2w( ),

n −
N

4
, for γ ∈ q Hq− 2\Hq− w( ), q(q − 1) I,Hq− w( ){ },

N

2w
, for γ ∈ (q − 1) Hq− 2\Hq− w( ),

N

8
−
N

2w
, for γ ∈ Hq− 2\Hq− w,

B2 D
∗
t , γ) +

N

8
, for γ ∈ Hq− w.(



(28)

Let

u1 � # U D
∗
b( )∩ q Hq− 2\Hq− w( ), q(q − 1) I,Hq− w( ){ }{ },

u2 � # U D
∗
b( )∩ (q − 1) Hq− 2\Hq− w( ){ },

u3 � # U D
∗
b( )∩ Hq− 2\Hq− w( ){ },

(29)

and then
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#
2C

(p)

2 D
∗( ) �

n −
N

4
( ) N

4
− u1( ), forp � n −

N

4
− 1,

N

2w
N

4
−
N

2w
− u2( ), forp �

N

2w
− 1,

N

8
−
N

2w
( ) N

4
−
N

2w
− u3( ), forp �

N

8
−
N

2w
− 1,

f D
∗
t , p( ), forp≥N

8
− 1,

0, otherwise,



(30)

where f(D∗t , p) �
#
2C

(p)

2 (D∗t ) − (p + 1)# γ: γ ∈ Hq−{
w∩U(D∗b ), B2(D

∗
t , γ) � p + 1}. .erefore, D∗ sequentially

maximizes #2C2 among all the possible 2n− m: 2s designs, only
if D∗ sequentially minimizes

u1, u2, u3( ). (31)

For ease of presenting, let A � q(Hq− 2\Hq− w),{
q(q − 1)(I,Hq− w)}, B � (q − 1)(Hq− 2\Hq− w), and C �

Hq− 2\Hq− w.

For (a), when k≤ q − w − 1, there are two different ways
to choose D∗b from Hq: (i) D∗b ∩ A,B,C{ } � ∅ and (ii)
D∗b ∩ A,B,C{ }≠∅. Recall that if D∗ � (D∗t : D

∗
b ) is a

B2-GMC design, then D∗t ⊂ SN(2w− 2+1)2w with D
∗
t �

SN(2w− 2+1)2w\D
∗
t ⊂ Dq− w((w − 1)2w). Case (i) implies that

D∗b ⊂ Hq− w, D
∗
t{ }, and thus D∗b ⊂ Hq− w, q − 1, (q − 1){

Hq− w}. .erefore, choosing D∗b according to case (i) results
in u1 � u2 � u3 � 0. If D∗b is chosen according to case (ii),
thenU(D∗b )∩ A,B,C{ }≠∅ which results in u1 > 0, u2 > 0, or
u3 > 0. Clearly, if D∗ is a B2-GMC design, D∗b should be

chosen as (i). In the following, we consider only
D∗b ∩ A,B,C{ } � ∅, i.e., D∗b ⊂ Hq− w, (q − 1), (q − 1)Hq− w{ }.

For D � (Dt: Db) in (a), according to (v) in Lemma 1, if
Db ⊂ Hk, (q − 1), (q − 1)Hk{ } with k≤ q − w − 1, then
U(Db) � Hk, (q − 1), (q − 1)Hk{ }. Denote b as the last
column of Hk in Yates order, and B2(Dt, b) � b; then,
b≥N/8. According to Lemma 4, for γ ∈ Hq− w, if γ is ahead of
b in Hq− w, then B2(Dt, γ)≥ b by (18). For any
γ ∈ (q − 1), (q − 1)Hk{ }, we have B2(Dt, γ) � 0. For any γ
such that B2(Dt, γ)< b, we have γ ∈ Hq\Hk. .erefore, for
p≤ b − 2,

#
2C

(p)

2 (D) �(p + 1)# γ ∈ Hq: γ ∉ U Db( ), B2 Dt, γ( ) � p + 1{ }
�(p + 1)# γ ∈ Hq: B2 Dt, γ( ) � p + 1{ }
�
#
2C

(p)

2 Dt( ),
(32)

and for p≥ b,

#
2C

(p)

2 (D) �(p + 1)# γ ∈ Hq: γ ∉ U Db( ), B2 Dt, γ( ) � p + 1{ }
�(p + 1)# γ ∈ Hq: B2 Dt, γ( ) � p + 1{ } − (p + 1)# γ ∈ Hk: B2 Dt, γ( ) � p + 1{ }
� 0.

(33)

From (33), it is obtained that

#
2C

(0)

2 (D), . . . , #2C
(N/8− 1)

2 (D), #2C
(N/8)

2 (D), . . . , #2C
(b− 2)

2 (D)( )
�

#
2C

(0)

2 Dt( ), . . . , #2C(N/8− 1)

2 Dt( ), #2C(N/8)

2 Dt( ), . . . , #2C(b− 2)2 Dt( )( ).
(34)

Note that Dt is a GMC design [29]; then, D maximizes

#
2C

(0)

2 (·), . . . , #2C
(N/8− 1)

2 (·), #2C
(N/8)

2 (·), . . . , #2C
(b− 2)

2 (·)( ),
(35)

among all the possible 2n− m: 2s designs.
SupposeD is not aB2-GMC design; then, there should be

aD∗ � (D∗t : D
∗
b ) which outperformsD � (Dt: Db) in terms

of (3)..is implies that there exists some p1 ≥ b − 1 such that
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#
2C

(0)

2 D
∗( ), . . . , #2C(N/8− 1)

2 D
∗( ), #2C(N/8)

2 D
∗( ), . . . , #2C(b− 2)2 D

∗( )( )
�

#
2C

(0)

2 (D), . . . , #2C
(N/8− 1)

2 (D), #2C
(N/8)

2 (D), . . . , #2C
(b− 2)

2 (D)( ),
(36)

#
2C

p1− 1( )
2 D

∗( )> #2C p1− 1( )
2 (D). (37)

Recalling the definitions of #2C
(p)

2 (D) and B2(Dt, γ), we
have

∑P
p�0

#
2C

(p)

2 (D)

(p + 1)
� ∑P
p�0

# γ ∈ Hq: γ ∉ U Db( ), B2 Dt, γ( ) � p + 1{ }

� ∑P
p�0

# γ ∈ Hq\SN 2w− 2+1( )/2w( ): B2 Dt, γ( ) � p + 1{ }

− ∑P
p�0

# γ ∈ U Db( ): B2 Dt, γ( ) � p + 1{ }

� # Hq\SN 2w− 2+1( )/2w( ) − #Hk

� 2q −
N 2w− 2

+ 1( )
2w

− 2k,

(38)

where the second and third equalities are due to B2(Dt, γ) �
0 for any γ ∈ SN(2w− 2+1)/2w . Similarly,

∑P
p�0

#
2C

(p)

2 D
∗( )

(p + 1)
� ∑P
p�0

# γ ∈ Hq: γ ∉ U D
∗
b( ), B2 D

∗
t , γ( ) � p + 1{ }

� ∑P
p�0

# γ ∈ Hq\SN 2w− 2+1( )/2w( ): B2 D
∗
t , γ( ) � p + 1{ }

− ∑P
p�0

# γ ∈ U D
∗
b( ): B2 D

∗
t , γ( ) � p + 1{ },

� # Hq\SN 2w− 2+1( )/2w( ) − #U D
∗
b( ),

� 2q −
N 2w− 2

+ 1( )
2w

− #U D
∗
b( ).

(39)

From (33) and (38), we have ∑P
p�0

#
2C

(p)

2 (D)

(p + 1)
� ∑b− 2
p�0

#
2C

(p)

2 (D)

(p + 1)
+

#
2C

(b− 1)

2 (D)

b

� 2q −
N 2w− 2

+ 1( )
2w

− 2k.

(40)

By (36) and (37), it is obtained that
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∑P
p�0

#
2C

(p)

2 D
∗( )

(p + 1)
≥ ∑b− 2
p�0

#
2C

(p)

2 D
∗( )

(p + 1)
+

#
2C

(b− 1)

2 D
∗( )

b

> ∑b− 2
p�0

#
2C

(p)

2 (D)

(p + 1)
+

#
2C

(b− 1)

2 (D)

b
.

(41)

.en, according to (39)–(41), we obtain #U(D∗b )< 2k − 1
which contradicts Lemma 1 (i) and (ii).

For (b), similar to (a), when k≤ q − w − 1, there are two
different ways to choose D∗b from Hq: (i) D

∗
b ∩ A,B,C{ } � ∅

and (ii) D∗b ∩ A,B,C{ }≠∅. With a similar argument to (a),
case (i) results in u1 � u2 � u3 � 0 while case (ii) results in
u1 > 0, u2 > 0 or u3 > 0. .erefore, if D∗ is a B2-GMC design,
D∗b should be chosen according to case (i), i.e.,
D∗b ⊂ Hq− w, (q − 1), (q − 1)Hq− w{ }. When choosing D∗b
according to (i), there should be D∗b ∩ q − 1,{
(q − 1)Hq− w} � ∅, i.e., D∗b ⊂ Hq− w; otherwise, D∗t ∩U
(D∗b )≠∅ noting that # U(D∗b )∩ (q − 1, (q − 1)Hq− w){ }
≥ 2k > 2r+1 − 1 as shown in Lemma 1 (iii). .e remainder of
the proof is similar to that of (a).

For (c), when k> q − w − 1, there are two different ways
to choose D∗b from Hq: (i) D∗b ∩ B,C{ } � ∅ and (ii)
D∗b ∩ B,C{ }≠∅. With a similar argument to (a), it is not
hard to verify that case (ii) results in u1 > 0 or u2 > 0 while
case (i) results in u1 � u2 � 0. .erefore, if D∗ is a B2-GMC
design, D∗b should be an s-projection of Hq− 2 � B,C{ }. .e
remainder of the proof is similar to that of (a). □

Remark 1. .eorem 2 shows that when constructing the
B2-GMC designs with N/4 + 1< n≤ 5N/16, we can first
partition the range (N/4 + 1, 5N/16) into q − 4 sequential
subranges as (N(2w− 1 + 1)/2w+1, N(2w− 2 + 1)/2w) with w �
4, 5, . . . , q − 1 and then obtain the B2-GMC designs
according to .eorem 2.

In the following, an example is provided to illustrate the
construction method in .eorem 2 and Remark 1.

Example 2. Consider the constructions of B2-GMC
219− 13

: 2s designs for s � 1, 3, 4. Here, n � 19, m � 13, q � 6,
and N � 64. .e values of the parameters N and n satisfy
N/4 + 1< n≤ 5N/16, i.e., n ∈ (17, 20]. From Remark 1, we
partition the range (17, 20] into two subranges (17, 18]
because w � 5 and (18, 20] because w � 4. Since
19 ∈ (18, 20], according to .eorem 2, Dt should be the last
19 columns of S5N/16, where
S5N/16 � D

q− 4(Φ(4)) � (5, 5H2, 6, 6H2, 56(H4\H2)) from
(18). .erefore, Dt � (5H2, 6, 6H2, 56(H4\H2)). Note that
5N/16 − n � 20 − 19 � 1; then, r � 0. Next, we chooseDb for
s � 1, 3, 4.

For s � 1, we have k � 0. According to .eorem 2 (a),
Db � 5 as H0 � ∅.

For s � 3, we have k � 1. According to.eorem 2 (b),Db

should be a 3-projection of H2, i.e., Db � H2 � (1, 2, 12).
For s � 4, we have k � 2. According to.eorem 2 (c),Db

should be a 4-projection of H4. Without loss of generality,
we choose Db � (1, 2, 12, 3).

4. Concluding Remarks

.e regular 2n− m designs have wide applications in engi-
neering, manufacturing industry, agriculture and medicine,
and so on. When the size of experimental units is large, the
inhomogeneity of experimental units results in unwanted
variances of estimations of treatment effects. An essential
way to solve this problem is to partition the experimental
units into blocks.

.ere are two kinds of blocking problems as pointed out
in [1]. One is called the single block variable problem which
considers only a single block variable, and the other is called
multi-block variable problem which considers two or more
block variables. As stated in Section 1, experiments which
involve multi-block variables are more widely concerned in
practice than those which involve only a single block var-
iable. However, due to the complexity of multi-block var-
iable problem, the studies on constructing optimal designs
with multi-block variables are relatively rare.

In this paper, we aim at exploring the theories and
constructions of optimal blocked 2n− m designs with multi-
block variables. .e prevalent B2-GMC criterion is adopted.
.is criterion is preferable when there is some prior
knowledge on the importance ordering of the treatment
effects. .e systematical construction methods of the
B2-GMC 2n− m: 2s designs with N/4 + 1≤ n≤ 5N/16 are
developed..e constructionmethods are concise and easy to
implement as indicated by the examples provided.

Appendix

Lemma A.1 is some result from Lemmas A.2, A.4, and A.5 in
[21] and Lemma 1 in [25].

Lemma A.1. Suppose O is any s-projection of Hq with
2k ≤ s≤ 2k+1 − 1 and k≤ q − 2.

(i) If O∩ q, qHq− 1{ } � ∅, then # U(O)∩Hq− 1{ }
≥ 2k+1 − 1, and when O has k + 1 independent col-
umns, the equality holds.

(ii) If O∩ q, qHq− 1{ }≠∅, then # U(O)∩Hq− 1{ }
≥ 2k − 1, and when O has k + 1 independent col-
umns, the equality holds.

(iii) If O∩ q, qHq− 1{ }≠∅, then # U(O)∩ q, qHq− 1{ }{ }
≥ 2k, and when O has k + 1 independent columns,
the equality holds.

(iv) If O ⊂ Hk+1, then U(O) � Hk+1.

(v) If O ⊂ Hk, q, qHk{ }, then U(O) � Hk, q, qHk{ }.
Lemma A.2 is some result of Lemma 1 in [34].

Lemma A.2. Suppose O consists of the last n columns of
q, qHq− 1{ }; then, B2(O, γ1)≥B2(O, γ2) if γ1 is ahead of γ2 in
Hq− 1.
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