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In this paper, we derive a general mixed (bright-dark) multi-soliton solution to a one-dimensional multicomponent
Yajima—Oikawa (YO) system, i.e., the (M + 1)-component YO system comprised of M-component short waves (SWs)
and one-component long wave (LW) for all possible combinations of nonlinearity coefficients including positive,
negative and mixed types. With the help of the KP-hierarchy reduction method, we firstly construct two types of general
mixed N-soliton solution (two-bright—one-dark soliton and one-bright-two-dark one for SW components) to the (3+1)-
component YO system in detail. Then by extending the corresponding analysis to the (M + 1)-component YO system, a
general mixed N-soliton solution in Gram determinant form is obtained. The expression of the mixed soliton solution
also contains the general all bright and all dark N-soliton solution as special cases. Besides, the dynamical analysis
shows that the inelastic collision can only take place among SW components when at least two SW components have
bright solitons in mixed type soliton solution. Whereas, the dark solitons in SW components and the bright soliton in

LW component always undergo usual elastic collision.

1. Introduction

The investigation of multicomponent nonlinear systems
has received much attention in recent years.!~ Of particular
concern is the multicomponent generalization of the non-
linear Schrodinger (NLS) equation, namely, the vector NLS
equation.’™ Particularly, it has been shown that multi-
component bright solitons undergo shape changing collisions
with intensity redistribution.5'" This interesting collision
feature has been widely studied in real physical systems such
as nonlinear optics and Bose—FEinstein condensates.'>"'®

The long-wave-short-wave resonance interaction (LSRI) is a
fascinating physical process, in which a resonant interaction
takes place between a weakly dispersive long-wave (LW) and a
short-wave (SW) packet when the phase velocity of the former
exactly or almost matches the group velocity of the latter. The
theoretical investigation of this LSRI was first done by
Zakharov'” on Langmuir waves in plasma. In the case of long
wave propagating in one direction, the general Zakharov
system was reduced to the one-dimensional (1D) Yajima—
Oikawa (YO) equation.'® This model equation also appears in
diverse areas that include hydrodynamics,!® nonlinear op-
tics,2%2D biophysics®? etc. The 1D YO system is integrable by
the inverse scattering transform method'® and admits both
bright and dark soliton solutions.?**# The rogue wave solutions
to the 1D YO system have recently been derived by using the
Hirota’s bilinear method® and Darboux transformation.?%->”)

In the present paper, we consider a general multi-

component 1D YO system?®
iS9-8sO4+ 1S9 =0, ¢£=12,....M,
M
Li=2) o/AS”1, or=xl, (1)
¢=1

which describes the dynamics of nonlinear resonant inter-
action between a LW (L) and multiple (say M) SWs (S) in
one-dimensional case. Hereafter, we refer to the above
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multicomponent system as the (M + 1)-component YO
system. It was pointed out that the (2+1)-component YO
system can be deduced from a set of three coupled NLS
equations governing the propagation of three optical fields
in a triple mode optical fiber by applying the asymptotic
reduction procedure.”” Equation (1) has been derived to
describe the interaction between a quasi-resonance circularly
polarized optical pulse and a long-wave electromagnetic
spike.’” In the context of the many-component magnon—
phonon system, such multicomponent YO-type system has
also been proposed and its corresponding Hamiltonian
formalism was studied.’? Also, the authors in Ref. 29 have
carried out Painlevé analysis for Eq. (1) and obtained the
general bright N-soliton solution in the Gram determinant
form. Later on, they constructed an extensive set of exact
periodic solutions in terms of Lamé polynomials of order one
and two.>? The rogue waves of the (2+1)-component YO
system with 61 = 6, = 1 have been reported in Ref. 33.

It is worth mentioning that the KP-hierarchy reduction
method to derive soliton equations as well as their solutions
was developed by the Kyoto school.*¥ A number of soliton
equations such as the NLS equation, the modified KdV
equation, and the Davey—Stewartson equation can be
reduced from the KP-hierarchy. Indeed, the multicomponent
YO system (1) with same nonlinearity coefficients o, (all
oy =1, or o6y = —1) was derived from the KP-hierarchy in
Refs. 35-37. In particular, general (pseudo-) reductions of the
two-dimensional Toda lattice hierarchy to constrained KP
systems with dark soliton solutions were introduced in Ref. 38
and reductions to constrained KP systems with bright soliton
solutions from the multi-component KP hierarchy were
introduced in Ref. 39. For the (14+1)-component YO system
[when M = 1 in Eq. (1)], the detailed interpretation of how to
obtain the Wronski-type bright and dark soliton solutions by
using the reduction technique was presented in Ref. 40. By
applying this method, general dark—dark soliton solution was
derived in a coupled focusing—defocusing NLS equation.*"
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Recently, one of the authors*? has constructed general bright-
dark N-soliton solution to the vector NLS equation of all
possible combinations of nonlinearities including all focusing,
all-defocusing and mixed types. In a previous study,?®
we have obtained both the Gram-type and Wronski-type
determinant solutions of N dark-soliton for Eq. (1).

The goal of this paper is to construct general bright-dark
multi-soliton solution to the multicomponent YO system (1).
The rest of the paper is arranged as follows. In Sect. 2, we
deduce two types of general mixed soliton solution, which
include two-bright—one-dark and one-bright—two-dark soliton
for SW components, to the (3+1)-component YO system by
using the KP-hierarchy reduction technique. In Sect. 3,
general bright-dark soliton solution consisting of m bright
solitons and M — m dark solitons to the multicomponent YO
system (1) is obtained by generalizing our analysis. We
summarize the paper in Sect. 4.

2. General Mixed-Type Soliton Solution to the One-
Dimensional (3+1)-Component YO System

Prior to presenting the general mixed-type soliton solution
for Eq. (1), we first consider the 1D (3+1)-component YO
system

itV — s+ LSV =0,
is? — s+ Ls? =0,
is® — 8P+ Ls® =0,
Ly =2(61|SVP + o21S? + 651SV P, 2)

where o, ==+1 for £ =1,2,3. For three short-wave
components, there exist two kinds of mixed-type vector
solitons (two-bright-one-dark and one-bright—two-dark).
Hence, in the subsequent two subsections, we will construct
these two types of soliton solutions, respectively.

2.1 Two-bright—one-dark soliton for the SW components
In this case, we assume that the SW components SM and

S@ are of bright type and the SW component S® is of dark

type. By introducing the dependent variable transformations:

@)

1
ynzél s» =8
f f
3) hD i(ox+a3t)
S© = p1——¢€ ! , L= _2(10gf)xx’ (3)

f

A set of equations (2) is converted into the following bilinear
equations:

[iD, - D?1g® - f= 0,
[i(D, — 2a;D,) — D*1hV - f= 0,

k=1,2,

2
DDy = 203p))f f= =2 0x8®g®* = 263p7n V",
k=1

4)
where g(l), g(2), and AV are complex-valued functions, fis a
real-valued function, a; and p; (p; > 0) are arbitrary real
constants and * denotes the complex conjugation hereafter.
The Hirota’s bilinear differential operator is defined by*®
DD} (a - b)

In what follow, we will show how the (3+1)-component
YO system and its mixed type multisoltion solution can be
obtained from three-component KP hierarchy by suitable
reductions. To this end, we firstly present tau functions of the
Gram determinant form in three-component KP hierarchy

A I
70,0(k1) = ) 5
-1 B
A 1 o
nok)=|-1 B 0" |,
0 -¥¢ o
A 1 0
_ok)=| -I B ¥ | (6)
-® 0 O
A 1 o
to1k))=|~-1 B 0" |,
0 -Y o
A 1 0
o-1tk)=| -1 B Y'| (7
-® 0 0

where / is an N X N identity matrix, A and B are N X N
matrices whose entries are

ki
1 - .
a;i(ky) = _ (D) e
pitpi\ pita

_ e)(:+)?j,
ri+ 1

bij =——¢"t ¢
qi+q;

and 0 is a N-component zero-row vector, @, ¥, Y, @, P, and

Y are N-component row vectors given by

@ = (e, e®,...,e), W=(e"em,... M),
Y = (e?, e, ..., eM),
= (eh,en,...,e), W=, eM),
Y = (e”,e”,. .., e,
with
1 1 2
&= P— x4 pixy + pPas + Eios
1
_ 1 _
O, = )
i=———X_; +px; —pix2+ So,
9 P e $j

1 -, =
ni= CIiy(l "+ o nj = 6];)’(1 '+ njo,
2 N
xi=ry? + 0. 1 =0+ Zo.
Here pi, p;, qi, G;, i, Tj, &0, Sjo, Mios jos Xios Xjo, and ¢y are
complex parameters. Based on the KP theory by Sato,*® one

can find that the following bilinear equations are satisfied by
the above tau functions

(Dy, = D)r10(ky) - T0,0(k1) = 0,
(Dy, = D?)ro.1 (k1) - 70,0(k1) = 0,

5 aN"/a o " (D, = D} = 2¢1Dy, )7o0(ki + 1) - 700(k1) = 0,
— o o A
B (ax ax’> <()t at’> a(x, Db, 1) et Dy Dynzoo(k) - 70.0(ki) = =271 o(k1)z-1,0(k1),
074001-2 ©2015 The Physical Society of Japan
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Dy, Dyooo(k) - 70,0(ki) = =270,1(k1)70,-1 (K1),
(D, D0y = 2)0,0(k1) - 70,0(k1)
= —279,0(k1 + D7o (ks — 1). (®
Here we omit the proof of the above bilinear equations,
which was given by using the Grammian technique.***¥
Instead we carry out the reduction process to obtain bilinear

form (4) of the (34+1)-component YO system. By setting xi,

x(_lf , y(ll) , y(lz) are real, x, ¢ are pure imaginary and by letting
%

pi =P q; =q;=r; =T & = Ejo, 1y = Hjo and xj = Xjo,
one can check that
aij(ky) = a;(ky),

Furthermore, we can define
f=10000), gV =1100), g% =10,(0),
gV =~ 10000, g = —w1(0), A" =z0(=1),
and thus the bilinear equations (8) become

(D., — D)™ - f=0,

(Dy, = D3 = 2¢1D, )RV - f= 0,

DyDyof-f=2¢9¢"", k=12,

b,‘j = b;

RV = 700(1),

(Dy D) = 2)f - f= =2hVh D" ©)
~1
Next, we conduct the dimension reduction by rewriting f as
AT
= ; (10)
-1 B

via performing row and column operations, where A" and B’
are N X N matrices defined as

1
!
a;(ky) = ,
! pi+p;
;j: - et +&+¢; + . e*’+)(i+§"+5’,
qi t q; ritr;

with

1

1 1 2

ni+ & =g\’ + ——xU) + pixi — pPaa + E + mios
P; +Cl

L

1
¢ — (D (1 2
n+&=q;y +pj—c|x_' + pixi + pjxa + Ejo + 13,

1
« 2 1 2 ]
i+ & =P+ ——— x4 pix) — pP0 + E5 + xi0s
pi tci
. ) NG

— 2 «
)(j* + §j = rjyl +m)€_l +ij1 +ij2 + éjo +)(;0.

dubj; = (=i010,0) — 102000 + i63p10, )b, (15)

and thus one can get

fo = =61 f0 —ioafy +iospifi. (16)
and its derivative with respect to xi,
. . . 2
Sox = —lalfxly(]n - ldzf;ly(lb +i03p 1 frix - 17)

On the other hand, the last three bilinear equations in (9)
expanded as

1 1
Fosnf = Fafyn = gVg",

foyof = fufyo = 828", (18)
and
Fostf = Fofo _ 12 = _pOps, (19)
give
= fenf+ifufs = 03pif
— _Glg(l)g(l)* _ ng(2)g(2)* _ 63/)%/’2(1)]’1(1)*, (20)
by referring to Eqs. (16) and (17).
Applying the variable transformations
X| =X, Xxp= —it, 21
i.e.,
0y = 0y, 0y = —i0,,,

and taking c¢; = iay, the first three equations in (9) become
the first three bilinear equation in (4) and Eq. (20) is nothing
but the last bilinear equation in (4).

Lastly, let e’ = ¢{V*, o = ¢, ex0 = 9%, ek = P
(i=1,2,...,N) and define C; = —(c\",c",...,c\) and

Cy = —(c(lz), c(zz), R cﬁ)), one can arrive at the general
mixed solition (two-bright—one-dark soliton for SW compo-
nents) solution to the 1D (3+1)-component YO system,

p A T e AL g ’
-1 B -1 B
A I ¢t

d¥=|-1 B 0" (22)
0 C 0

where A, A, and B are N x N matrices whose entries
are

1 e
Therefore, under the reduction conditions ajj = — e 0
*2 . i03p% 2 : * + i()'3p% (1 1) b p]
p;- =1014i — , P; = —loig; s .
’ Copiral U Lo N S (el 1R P
2 . Yooopi+pi\ pl+ia ’
. ic ) ic J J
p:fz =lioyr; — — 3P1 p]? = —10’2}’;k + 3i , (12)
; ¢ ‘ Topi—a 2
! : Ky (k)
. k=1
1 101 by = " R
= . . (13) io3p}
a+q . io3p] (Pf+p)|P} —pj+
(p; +pp|p; —pj+( e — 1) (pj +ia)(p; —iay)
1 i Pi VAP] : and ¢ and C; are N-component row vectors given by
2
= , 14
ri+ r;f . . io3p% (14 ¢ = (eal,eez, .. ,eHN), C, = —(c(lk),c(zk), . ,c}(,‘) ,
(pi +pj) pi —pjit B . ) &)+
(pf +c1)(pj—c1) with §; = pix —ip;t+ 0y and p;, Op and ¢;” (i = 1,2,...,N;
the following relation holds k = 1,2) are arbitrary complex parameters.
074001-3 ©2015 The Physical Society of Japan
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2.2 One-soliton solution

To obtain the single soliton solution, we take N = 1 in the
formula (22). The Gram determinants read
(1)

Fe a1 OB T
-1 by -1 by
ai 1 691
g¥=1-1 by 0| (23)
(k)
0 -q 0
where
— 91+H*
ap = € !,
p1+pi
a(1]1) _ 1 <_P1 —%m)eaﬁef’
pi+pi \ pi+ia
and
2
i3 o
bll = =l io p2
3F1
(p*+p1)[p*—p1+ : . }
! ! (p} +ia)(p1 —iay)

for k = 1,2. Then one can write the above tau functions as

f= 1+ €:191+9*]‘+2R(1,1*)’ (24)
g(l) — C(ll)e‘gl, g(Z) — C(12)691’ (25)
h(l) =1+ 691+0T+2R(l,l*)+2i¢1’ (26)

with
2

i3 o

* k=1
Q2RI _

. 2 2
10307
(p*+p1)2[p*—p1+ : . }
! ! (pi +ia))(p) —iay)
Q2 — _phi- iy
PT +ia1 ’

It is necessary to note that this mixed soliton solution is
nonsingular only when e*?(:19) > .

The above tau functions lead to the one-soliton solution as
follows

Fig. 1. (Color online) Mixed one-soliton solution (two-bright-one-dark
soliton for SW components) in (34+1)-component YO system.

pr=2+1010=0,c"=1and @ ¢’ =3+i; (b) ¢ =
1 +1i. One can observe that when the parameters cﬁk) take
different values, the intensities of bright solitons for SW
components S and S® change, but the depths of dark
soliton for SW component S® and of the soliton for LW
component L remain the same.

2.3 Two-soliton solution
By taking N =2 in (22), we have the following Gram
determinants

© an ap 1 0
¢ o
s® = 5 e Rl sech[@ + R(1, 19)], PR 0 1
k=12, (@27 -1 0 by by
S(3) — plei(a1x+a%t){] + e2i(/)1 0 -1 by by
- aV o4l 1 0
- (1 =) tanh[01z + R, 191}, (28) e
a) a) 0 1
L = =2p2,sech’[01x + R(1,19)], (29) R : (30)
-1 0 by b
where 6, = 01 +10y;, the suffixes R and [/ denote the 0 -1 b b
r(?%l and imaginary parts, respectively. The quantities Ao
%e—R(U*), k= 1,2 represent the amplitude of the bright ap;  ap 1 0 e
soliton in the SW. component.s S(k). and the real quantity 2p?, ay  an 0 1 02
denotes the amplitude of soliton in the LW component —L. ®
For the dark soliton in the SW component S®, |S@) g'=|-1 0 bu b 0| 3D
approaches |p1| as x - +o0, and the intensity is |p;|cos ¢;. 0 =1 by by
As an example, we illustrate the mixed one-soliton at time 0 0 ® ® g
t = 0 in Fig. 1 for the nonlinearity coefficients (o1, 02, 03) = ¢ )

(1,—1,1). The parameters are chosen as p; =1, a; =2, where

074001-4
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1 g
et

pi+p;
4D = 1 _bi— i 0t
“i pi+p; \ pj+in ’

aij =

and
2
i Z akcgk)* cj(.k)
k=1
b ij =

(p; +Pj)[ Fopit

io3p] :|
(pf +ia)(pj —iar)
for k = 1, 2. Then the explicit form of the above tau functions
can be expressed as
f=14EQ1,1%e"% + E1,2%)e

+ E@2, 1% + E(2,2%)e%*0

+ E(1,1%,2,2%)el0:401+0; (32)
g0 = Wl 4 (Wl 4 (1,2, 1) 40240
+ FO(1,2,2)eh 040, (33)
K =14 G(1, 19" + G(1,27)e"
+ G(2,19)e% % + G(2,2%)e?*":
+ G(l, 1*, 2’ 2*)69|+92+9T+9§’ (34)
where
2
DT
i) = k=1
E(l’J )_ ( N *)2|: . N i63p% ]’
pi+p))|\pi —pj — ,
! " (pr +ia)(py - iar)
R P ia .o
GGi.j) = - P R,
pj + 10

E(1,1%,2,2%) = |p _p2|2|: Ed, 11)15(2,2*)*

(p1+p3)(p2 +p7))
E(1,2%)E(2,1%)

(p1 +p)(p2 +p§)}

(p1 —ia))(ps —

(p} +ia)(ps +iay)

PEQ,i 9

p2 +pjf

ial)

G(1,1%,2,2%) = E(1,1%,2,27),

MEQ, i)
P1 +Pi ’

FO1,2,i%) = (p2 —pl)[

and 0; = pix — ip?t + 0, for i = 1,2.

The above solution contains both singular and nonsingular
solutions. To assure the nonsingular solution, the denomi-
nator f needs to be real and nonzero. The expression for f can
be rewritten as

1+ Q -Q
f=2ewt0x [e 5% cosh (91R S e —— 5 2)

+ CH]R cos(6y; — 61+ Hyp)

Fig. 2. (Color online) Mixed two-soliton solution (two-bright—one-dark
soliton for SW components) including inelastic collisions for the SW
components S!) and S® in the (3+1)-component YO system.

Combining the requirement for the existence of one-soliton
solution, we can conclude that the COIldlthIl E(l i) >0,
i = 1,2 is a necessary condition and e B2 L eT > eflinisa
sufficient condition to guarantee a nonsingular two-soliton
solution. For the interaction properties of these solitons, one
can carry out the asymptotic analysis as in Refs. 29, 45, and
46, and deduce that the bright solitons appearing in SW
components S® (i = 1,2) only undertake elastic collisions
under some special parameters, while the dark solitons in
the SW component S® and the bright soliton in the LW
component —L always exhibit elastic collisions. More
precisely, bright solitons in SW components S® (i = 1,2)

undergo elastic collisions if the parameters satisfy the
o, (,'(1) (,'(2)

condition ? = Ciz).

collisions (shape changing). For illustrative purpose, the

interactions of two solitons are displayed in Figs. 2 and 3 for

the (3+1)-component YO system with the nonlinearity

Otherwise, they undertake inelastic

coefficients (o1,0,,03) = (1,—1,1). The pararneters in

. i .
Fig. 2 arle. c(lllg)sen as (pll) =1, (czr)l = 1. 1()21) -3l
p2=1+5i, ¢;’ =1+1i, =2, ¢ 51, —1+21

and 6,9 = 6,9 = 0, which result in inelastic colhs1ons for the
bright solitons in the SW components S@ (i = 1,2). Mean-
while, we show an example of elastic collision between
bright solitons in two SW components in Fig. 3 with the
parameters p; =1, a; =1, P = 231, pa=1+5i,
(1) 2 (1) = 1, (2) %, 6(22) 4, and 910 = 920 =0. In
Flgs. 2 and 3, the SW components S and S@ display two
bright solitons collisions in (a) and (b), the SW component

S® shows two dark solitons collision in (c), and (d)

+ e 7 cosh (91 R— O+ %)}, (35)  represents two bright solitons collision of the LW component

—L. The difference between Figs. 2 and 3 are elastic and

where inelastic collisions, which only appear for the SW compo-
e = E(1,1%), % = E(2,2%), nents SO and @ in (a) and (b), respectively.

Q _ . . HigviHy . In addition, soliton bound states are one class of special

e” =E(1,17,2,27), e = E(1,27). multisoliton solutions, in which multiple solitons move with

074001-5 ©2015 The Physical Society of Japan
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Fig. 3. (Color online) Mixed two-soliton solution (two-bright—one-dark
soliton for SW components) including elastic collisions for the SW
components S and S® in the (3+1)-component YO system.

Fig. 4. (Color online) Mixed two-soliton bound state (two-bright—one-
dark soliton for SW components) in the (3+1)-component YO system.

the same velocity. By assuming p; = pig + ip;;, one can
obtain the mixed two-soliton bound state from (32)—(34) with
the restriction pj; = py;. To demonstrate such a bound state,
we choose the parameters as p; =1, a; =1, p; = _%+ _%i,
pr=1+1i, eV =2+1i ' =2+4i, (P =1+1i =
%+ 2i, and @)p = 6,0 =0 under the same nonlinearity
coefficients as in Fig. 2 and show the contour plots of all
components in Fig. 4. Here, Figs. 4(a) and 4(b) exhibit two-
bright-soliton bound states for the SW components S and
S® with the different amplitudes, Fig. 4(c) displays two-
dark-soliton bound state for the SW component S® and two-
bright-soliton bound state of the LW component —L is shown
in Fig. 4(d).

074001-6

2.4 One-bright-two-dark soliton for the SW components

In this subsection, we assume the SW component SW is of
bright type and the SW components S@ and S® are of dark
type. The dependent variable transformations

(1) (1)
S(l) — g?’ S(2) = hTei(alxﬂzfr)’

h@
SO = p, Te““zm%”, L=-2(logf)y:  (36)

convert the (34+1)-component YO Eq. (2) into the following
bilinear equations:

[iD, - D71 - f=0,

[i(D; — 2a,D,) — DF]A" - f= 0,
2

(Der -2 Zoz+1p12>f'f= —20,gMgM*

=1

[=1,2,

-2
1
where g, KV, and h® are complex-valued functions, fis a
real-valued function, a; and p; (p; > 0; [ = 1,2) are arbitrary
real constants.

Here the bilinear form of the (341)-component YO system
(37) is viewed as a reduction of two-component KP
hierarchy. To this end, we start with the tau functions
expressed in Gram determinants as follows

01+1[112h(l)h(1)*,
1

(37

2

A I
to(ki, ko) = , (38)
-1 B
A I o
titkik)=| - B 0" |,
0 -¢ o0
A I 0F
t_kik))=| -1 B ¥T|, (39)
-® 0 0

where ®, ¥, ®, ¥ are N-component row vectors defined
previously, A and B are N X N matrices whose entries are

ki ka
1 i —C j— ¢ E
ajj(ky, k) = - _DiZR) e,
pl+pj pj+Cl pj+C2
bij = ! - emﬁh,
gi + g;
with
e @ >
&= P X2+ P x5+ pixy + pixo + o,
1 l
2 1 ! 2, - ) 2
& = s x(—1) + 5t x(-1) + px1 — pix2 + &jo,
j j

1 -, =
ni = qiy(] "+ nio, Nj = ijy(1 e njo-

Here pi, pj» qi» G;» Eios Ejos Mio» Mo, €1, and ¢, are complex
parameters. Based on the Sato theory for the KP hierarchy,>®
the above tau functions satisfy the bilinear equations

(D, — D})ri(ky, k) - 7o(ky ko) = 0,
(Dy, — D} = 2c1Dy)rolky + 1,k2) - 7o(ky, ko) = 0,
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(D, = D} = 263D, )ro(ky ko + 1) - zo(ky, ko) = 0, ¢V = o 0,0, KV = 1(=1,0), KD = 70(0, 1),
DX]Dy(Il)TO(kl’kz) ~to(ki, ko) = =271 (ky, ka)T_1(k1, ka),

Dy, Do) = to(ky, ka) - To(ky, ka)

= =270(k1 + 1, ko)ro(k1 — 1, k2),
(D Dy = 2)zo(ky, ka) - 7ok, k2)

= —27o(ky, ko + Dzo(ky, ko — 1). (40)

the bilinear equations (40) become
Dy, — D7)V - f=0,
(D, = D} = 2c:D )K" - f= 0,
Dx,DyU)f'f: 2g(1)g(1)*’
1

. . . (D Do = 2)f - f==2n"n"", 1=1,2.  (41)
Next we perform the reduction process to obtain the bilinear -l

equations (37). We first consider the complex conjugate Similar to the two-bright—one-dark soliton case, we can

reduction by setting xi, x(_ll), x(_zl), y(ll) to be real, x», ¢, ¢c; to  show that if ¢; satisfies

be pure imaginary an.d py letting p;' = p;, ;' = q;, & = &jo, 2y icop? oy p3 “2)
and 77, = 7jjo. Then, it is easy to see that pi = 1014i Pt pite
. = a (k1. — — . .
al](kl’k2) a]l( kl, k2)’ bl] b./l. sz — —161q]* + 162/)% 163/]% , (43)
Thus, it then follows pi—¢1 pi—C
f=7(0,0), g" =1(0,0), e
WY = 70(1,0),  h? =700, 1),
1 i
qi+q; - ic Z; io3p3 ’ @4
i J ( * . * _ o 2P 3F2
p; +p)[p» pi+ ]
UL T+ edpi= ) pF + ea)pj = e2)
one can get the following relation
fo = _ialfyﬁ” + ldzp%f;{(_ll) + iGg,p%f;(_zl), (45)
and its derivative with respect to xj,
fow = =i01f, 0 +i0201f, 0 +i0303f, 0. (46)
On the other hand, the last three bilinear equations in (41) expanded as
fhy(ll)f_fxlfy(ll) = g(l)g(l)*, (47)
and
fonf = fafuy —f* = =hOn",
oo f=Fafo = f > = —h@n®*, (48)
give
—ifunf+ifuf = (@p] + o3p)f* = —0180gV" — a2pth VhV" — 63 p KPR, (49)

by referring to Eqs. (45) and (46). Equation (49) is exactly the last bilinear equation in (37) through the variable transformation
(21)and ¢| = iaj, ¢; = ia,. Under the same transformation, the first three bilinear equations in (41) become the first three in (37).

In summary, we complete the reductions from the bilinear equations in (40) to the ones in (37). Thus, we are able to construct
general mixed soliton (one-bright—two-dark soliton for SW components) solution to the the 1D (341)-component YO system,

T
A I O] AU) 1 () ! ! d)T
= , hY = , g’=|-I B 0 |, (50)
-1 B -1 B
0 C; O
where A, A?, and B are N x N matrices whose entries are
1 O
a; = . RELS
Pitp;
o_ 1 pi—ia\ g4o
aij . P (.- : € )
pitp; pj tio
y = . 2 . 2 s
io2p7 io3p3
(pf“+p‘)[pf‘—p‘+ - —+ - . }
UL T (o Hian(p —ian)  (pf + ia)(py — iag)

and ¢ and C; are N-component row vectors given by

074001-7 ©2015 The Physical Society of Japan
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nHoa 1 18
p=c"e" .., C =-(" W), (a) s
- - |32|2
with 0; = p;x — ipft + 00 and p;, 0;p and cgl) =em (= e S92

1,2,...,N; [ =1,2) are arbitrary complex parameters.

Remark 3.1. In Sect. 2.4, we have constructed the soliton
solution in which the SW components S and §® are of
bright type and the SW component S is of dark type in the
(3+1)-component YO system. It is noted that we start from
the (2+1)-component KP hierarchy with one copy of shifted
singular point (¢). In contrast, for the soliton solution (the SW
components S is of bright type and the SW component S?
and S® are of dark type) obtained in this subsection, we
begin with the (1+1)-component KP hierarchy with two
copies of shifted singular points (c; and c;). Thus the number
of the components in KP hierarchy matches the numbers
of the components possessing the bright soliton while the
number of the copies of shifted singular points coincides with
the numbers of the components possessing the dark soliton.
This fact can be refered to the construction in Ref. 34.

2.5 One-soliton solution
By taking N =1 in the formula (50), we get the Gram
determinants

0]
f= an 0 — ajp 1
-1 bll -1 bll
ag 1 69]
¢gV=]-1 b 0 (51)
11 )
0o " o
where
an = L -1,
p1+p}
a(lll) _ 1 . (_p? - %al)egl_;_g’]f
p1+pi \ pi+iq
and
(P +pDAN
2 o197
Ay =|pl—-pi+ L
! ; (p] +ia)(p1 — i)
for [ = 1,2. These tau functions can be rewritten as
f= 14 HFRAL) o) c(ll)eg‘, (52)
h(l) =1+ eel+6T+2R(1,m+2i¢,’ I=1,2, (53)
with
. D« (1 .
G2RALI) ioyc{*elh i P i
(P} +p1)*Aq pl+ i
where

2 : 2
10141p;
Ay =|pi—-p1+ — — |-
[ : ,;(p’; +ia)(py — iay)
Note that this mixed soliton solution is nonsingular only
when e2R0:19 >

In this case, the one-soliton solution has the following
form

074001-8

Fig. 5. (Color online) Mixed one-soliton solution (one-bright—two-dark
soliton for SW components) in (34+1)-component YO system.

(1) -
s — %e—R(l,l*)elel, sech[0x + R(1. 1)),

(54)

D plei(a,x+a,2t) {1+ Q2ih
— (1 =¢)tanh[0 + R(1,1%)]}, [1=1,2, (55)
L= —2pi.sech?[0;r + R(1,17)], (56)

where 6; = 0 + 160, the suffixes R and I denote the real and
imaginary parts, respectively. The quantity l"lz—le—R(lJ*)
represents the amplitude of the bright soliton in the SW
components SV and the real quantity 2p7, denotes the
amplitude of the soliton in the LW component —L. For the
dark soliton in the SW components S? and S, |S¢+D|
approaches |p;| as x — +o0, and the intensity is |p;| cos ¢,
for [ = 1,2. When a; and a, take different values, there are
two cases: (i) a; = ay. In this case, ¢; = ¢ means dark
solitons in SW components S@ and S® are proportional to
each other. Thus this situation is viewed as degenerate case for
dark solitons. (ii) a; # a;. The condition ¢; # ¢, implies that
dark solitons in SW components S® and S® have different
degrees of darkness at the center. In this situation, the SW
components S® and S@ are not proportional to each other.
We illustrate such degenerate and non-degenerate cases for
the choice of the nonlinearity coefficients (o, 07,03)
(1,1,—1) in Fig. 5. The parameters are chosen as p; =
D1 I%—i, 01():0, C(II)I 1 and (a) aq :agz—l,pzz
b) a; = —%,azz —%,pzz 1 at time ¢ = 0.

TR

2.6  Two-soliton solution
When N =2 in (50), the Gram determinants are of the
form

©2015 The Physical Society of Japan
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ayp ap 1 0

ay ap O 1

-1 0 by bp
0 =1 by bn
) 0]

ay; ay 1 0
1} l
h(l) — a(Zi 0(2% 0 1 , (57)

0 =1 by bxn

a ap 1 0 e’
a an 0 1 e
g(]) =|-1 0 b1y by 0 | (58)

0 =1 by by
0 0 =P =

where
1 y
a; = . 0t0;
pi+p;
a0 = 1 _pi—i 00
“ Cpit+p \ P+
and
iy el
i (p} +P;)AU

2 . 2
101410
Ai=|pi—pi+ E - -
v |: Y S (pr +ia)(p — i)
for [ = 1,2. Then we can express the tau functions for two-
soliton solution as

f=1+E(l, 1*)691#}’{ +E(1,2*)ee‘+9; +EQ, 1*)692+QT

+ EQ2,29e®% + E(1,1%,2,2)e1+0:+01+0,  (59)
g(l) — c(ll)e‘gl + C(l) (2 +F(1,2, 1*)601+62+6T
+ F(1,2,2%)eh 040 (60)
A =1+ GO(1, 1Me" % + GO(1,2%)e"+%
+ G(l)(2, 1*)602+6’T + G(Z)(2, 2*)eﬂz+9§
+ G(I)(l, 1*’2’ 2*)eel+92+9T+9;’ (61)
where
. (D (1)
101C:; C:
EG,j") = St M ,
2 i o197
(pi+p))|pi —pji+ - -
Y T (pr + i) (py — )
GO, = = P g g,
P + 10

J
E(1,1%,2,2%)

= |pi —lez[

G"(1,1%,2,2% =

E(1,1MEQ.2")
(p1+p3)(p2 +p7))
(p1 —ia)(p2 — i)
(p} +ia)(p5 +iay)

E(1,29)E(2, 1%) ]

E(1,1%,2,2%),

(1) s (1) P
" oy E(1,i*) ¢ ’EQ2,T%)
F(1,2,i%) = (p2 — p1)| 2 e : - |
P2+ p; pP1+p;
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(pr+p))p2+p3) ]

Fig. 6. (Color online) Mixed two-soliton solution (one-bright—two-dark
soliton for SW components) in the (341)-component YO system.

Same as the previous subsection, nonsingular solution
requires the denominator f to be real and nonzero. For this
purpose, we rewrite f as

1+ Q—-Q
f=2elttx |:e . cosh(@m — O+ 12 5 2)

+ effr cos(Oy; — O+ Hyp)

+ ¢ cosh (91R — O + %)] (62)
where e = E(1,1%), e® = E(2,2%), e = E(1,1%,2,2%),
efwtifin — F(1,2%). Thus, one can conclude that E(i,i*) >
0, i=121is a ohecessary condition to obtain a regular
solution and e g +e7 > efl® is a sufficient one.

The asymptotic analysis can be performed as in Refs. 29,
45, and 46, whose details are omitted here. However, it
should be remarked here that two-soliton solution for all
components in this case always undertakes elastic collision
without shape changing. This feature is the same as the one
of the mixed soliton solution including one-bright—two-dark
soliton for SW components in 2D (341)-component YO
system.*® In Fig. 6, we exhibit this mixed-type soliton
solution under the same nonlinearity coefficients with Fig. 5
and the parameters are given as py =pr =a; =1, a, =2,
p1= % 1, p2—2+1 c(ll)—1+1 c(l)—2+i,andc910=
6,90 = 0. Figure 6(a) shows two bright solitons collision for
the SW components SV, Figs. 6(b) and 6(c) display two dark
solitons collisions for the SW components S and S with
the different amplitudes, and Fig. 6(d) represents two bright
solitons collision for the LW component —L.

For the construction of the bound states from the mixed
soliton solution (59)—(61), one can derive the same restrict
condition pj; = po; as the previous subsection. By taking the
same nonlinearity coefficients in Fig. 5, such bound states
with the parameters p1 =pr =a; =1, ay = % pL=- % -

I, pa= ——%1 V=1, = 1, and 619 = 6y =0 are
deplcted in Fig. 7. Figure 7(a) exhlbits two-bright-soliton

©2015 The Physical Society of Japan
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Fig. 7. (Color online) Mixed two-soliton bound state (one-bright—two-
dark soliton for SW components) in the (34+1)-component YO system.

bound state for the SW components SV, Figs. 7(b) and 7(c)
display two-dark-soliton bound states for the SW component
S§® and S® with the different amplitudes and two-bright-
soliton bound state of the LW component —L is shown in
Fig. 7(d).

Here we need to point out that N-soliton bound state can be
formed in both above mixed soliton solution for arbitrary
combination of the nonlinearity coefficient 6, (£ = 1,2, 3).
More concretely, if the wave number for the i-th soliton
among an N-soliton solution is p; = p;r + ip;;, then Oz =
pir(x + 2pit) + Oior, which suggests that the velocity for the
i-th soliton is —2p;;. Thus a multiple bound state in which
solitons move with the same velocity only requires all
imaginary parts of the wave numbers p; to be the same.
However, higher-order soliton bound state cannot exist in the
soliton solution comprised of all dark soliton for the SW
components. As reported in Ref. 28, due to the existence of
the parameter constraint in general multi-dark soliton solu-
tion, only two-dark-soliton bound state is possible under the
condition that the nonlinearity coefficients o, take different
signs.

3. General Mixed Soliton Solution to the 1D
Multicomponent YO System

In the same spirit as the (3+1)-component YO system, the
general mixed type soliton solution to the 1D (M + 1)-
component YO system can be derived by the KP hierarchy
reduction method. It is known that the multi-bright soliton
solutions can be derived from the reduction of the multi-
component KP hierarchy, whereas, the multi-dark soliton
solutions are obtained from the reduction of the single KP
hierarchy but with multiple copies of shifted singular points.
Therefore, if we consider a general mixed soliton solution
consisting of m bright solitons and M — m dark solitons to the
SW components in the 1D (M + 1)-component YO system
(1), we need to start from an (m + 1)-component KP
hierarchy with M — m copies of shifted singular points in

074001-10

the first component. Furthermore, by performing the complex
conjugation and dimension reductions, these bilinear equa-
tions become ones of multicomponent YO system. Mean-
while, the general bright soliton solution can be reduced from
the tau functions of the KP hierarchy. The details are omitted
and we only provide the final result here.

To seek for mixed multi-soliton solution consisting of m
bright solitons and M — m dark ones for SW components, the
ID multicomponent YO system is first converted to the
following bilinear form

[iD, — D1g® - f=0,
li(D, — 2a,D,) — D*IK" - f=0, 1=1,2,...

M-m m
<DfDx -2 Gl+mp]2> fr==23" g
=1

k

k=1,2,...

M-m
=2 ormph 0", (63)
I=1
through the dependent variable transformations:
k 1
S(k) — g , S(l) — pl@ei(m)&a,zz)’
f f
L= -2(10gf) (64)

where @, f#;, and p; (p; > 0) are arbitrary constants.
Similar to the procedure discussed in Sect. 2, one can
obtain mixed multi-soliton solution as follows:

A I AV

f= ;W =
-1 B -1 B
A I T

®=|-1 B 0" (65)
0 C, O
where A, A® and B are N X N matrices whose entries are
1 "
aij = — egi_Hg.f s
pitp;

pi —ia +07
i A\ 0407
pj + 1q;

m
- (ks (k)
12 oKC; ¢

k=1
M-—m . 2 ’
Z 101+mpP]
‘= (p; +ia)(p; —ia)
and ¢ and Cy are N-component row vectors given by

¢ =" ...e"), Ci=-( ..,

with 6, = px—ip?t+ 6, and p;, 6 and P (i=
1,2,...,N) are arbitrary complex parameters.

In the above solution, one necessary condition similar to
the (3+1)-component YO system for the existence of an
N-soliton solution is found as follows

m
k)2 01+mP/
orle;” |7 )| 2pi + >0,
(kZI: l ) ( l Z Ipi — 1a/|2

i=1,2,....,N. (66)
As reported in Ref. 47, the arbitrariness of nonlinearity
coefficients o, increases the freedom resulting in rich mixed

01 3
T piv;

by =

(p?+Pj)[ F-pi+
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soliton dynamics. Here the expression of the present solution
admits mixed N-soliton in the 1D multicomponent YO
system for all types of nonlinearity coefficients, including
positive, negative and mixed types.

The formula for general mixed soliton solution can be
generalized to include all bright and all dark soliton solutions,
which is the same as the vector NLS equation.*” More
specifically, the general bright soliton solution can be viewed
directly as a special case of the bright-dark soliton one. When
m = M, the N-bright soliton solution takes the same
determinant form as the general bright-dark one. The general
dark soliton solution was also derived from the single KP
hierarchy but the corresponding dimension reduction results
in the distinct parameters constraint. The final expression of
the N dark-soliton solution is different from the one of the
bright-dark soliton solution. However, when m =0, as
discussed in Ref. 38, an alternative form of all dark soliton
solution takes the same form as the solution (65) by
redefining the matrix B as an identity matrix (B;; = J;;) and
imposing the parameters constraint as follows

X o}
PR ST

— =0, i=12,...,N.
=1 lpi —iayl

(67)
Due to a simple determinant identity shown in Ref. 42, this
form of dark soliton solution coincides with the one in
Ref. 28.

4. Summary and Conclusion

We have constructed the general bright-dark N-soliton
solution to one-dimensional multicomponent YO system
describing the nonlinear resonant interaction of M-compo-
nents short waves with a long wave, i.e., one-dimensional
(M + 1)-component YO system. This solution exists in the
original system for all possible combinations of nonlinearity
coefficients including positive, negative and mixed types.
Taking the (3+1)-component YO system as an example, we
have deduced two kinds of the general mixed N-soliton
solution (two-bright—one-dark soliton and one-bright—two-
dark one for SW components) in the form of Gram
determinant by using the KP hierarchy reduction method.
Then, the same analysis was extended to obtain the general
mixed solution consisting of m bright solitons and M — m
dark ones for SW components in the (M + 1)-component YO
system. The expression of the mixed solution also contains
the general bright and dark N-soliton solution.

For the dynamics of the mixed solitons, in parallel with the
2D multicomponent YO system,*® the energy exchanging
collision of mixed solitons can be realized only in the bright
parts of the mixed solitons and is possible only if the bright
parts of the mixed solitons appear at least in two SW
components. Such an interesting phenomenon can also be
found in 1D (3+1)-component YO system as discussed in
previous section, as well as in the 1D multi-component YO
system. In addition, the related analysis regarding mixed-
soliton bound state in 1D (34+1)-component YO system
implies that arbitrary higher-order mixed-soliton bound state
in 1D multi-component YO system can also be formed.
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