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We consider multipartite states of qubits and prove that their bipartite quantum entanglement, as quan-

tified by the concurrence, satisfies a monogamy inequality conjectured by Coffman, Kundu, and Wootters.

We relate this monogamy inequality to the concept of frustration of correlations in quantum spin systems.

PACS numbers: 03.65.Bz, 89.70.+c

Quantum mechanics, unlike classical mechanics, allows

the existence of pure states of composite systems for which

it is not possible to assign a definite state to two or more

subsystems. States with this property are known as entan-

gled states. Entangled states have a number of remarkable

features, a fact which has inspired an enormous literature

in the years since their discovery. These properties have led

to suggestions that the propensity of multipartite quantum

systems to enter nonlocal superposition-states might be the

defining characteristic of quantum mechanics [1, 2].

It is becoming clear that entanglement is a physical re-

source. The exploration of this idea is a central goal in

the burgeoning field of quantum information theory. As

a consequence, the study of the mathematics underlying

entanglement has been a very active area and has led to

many operational and information-theoretic insights. As

for now, only the pure-state case of entanglement shared

between two parties is thoroughly understood and quan-

tified; progress on the multipartite setting has been much

slower.

A key property, which maybe as fundamental as the no-

cloning theorem, has been discovered recently in the con-

text of multipartite entanglement: entanglement is monog-

amous [3, 4]. More precisely, there is an inevitable trade-

off between the amount of quantum entanglement that two

qubits A and B, in Alice’s and Bob’s possession, respec-

tively, can share and the quantum correlation that Alice’s

same qubit A can share with Charlie, a third party, C [3].

In the context of quantum cryptography, such a monogamy

property is of fundamental importance because it quantifies

how much information an eavesdropper could potentially

obtain about the secret key to be extracted. The constraints

on shareability of entanglement lie also at the heart of the

success of many information-theoretic protocols, such as

entanglement distillation.

In the context of condensed matter physics, the

monogamy property gives rise to the frustration effects ob-

served in, e.g., Heisenberg antiferromagnets. Indeed, the

perfect ground state for an antiferromagnet would consist

of singlets between all interacting spins. But, as a particle

can only share one unit of entanglement with all its neigh-

bours (this immediately follows from the dimension of its

local Hilbert space), it will try to spread its entanglement in

an optimal way with all its neighbours leading to a strongly

correlated ground state. The tools developed in this Letter

will allow us to turn such qualitative statements into quan-

titative ones.

The problem of fully quantifying the constraints on dis-

tributed entanglement should be seen as analogous to the

N-representability problem for fermions [5]. This is be-

cause, just as is the case for fermions, if the constraints on

distributed entanglement were known explicitly then this

would render trivial [6] the task of computing the ground-

state energy of condensed-matter systems. The results of

this Letter represent the first step towards the full quantifi-

cation of the constraints on distributed entanglement.

The main result of this Letter is a proof of the longstand-

ing conjecture of Coffman, Kundu, and Wootters [3] that

the distribution of bipartite quantum entanglement, as mea-

sured by the tangle τ , amongst n qubits satisfies a tight

inequality:

τ(ρA1A2
)+τ(ρA1A3

)+· · ·+τ(ρA1An
) ≤ τ(ρA1(A2A3···An)),

(1)

where τ(ρA1(A2A3···An)) denotes the bipartite quantum en-

tanglement measured by the tangle across the bipartition

A1 : A2A3 · · ·An. This inequality (which we shall hence-

forth refer to as the CKW inequality) has been established

in the case of three qubits. However, the case of n qubits

was still open [24]. In this Letter we establish Eq. (1) for

arbitrary numbers n of qubits.

The outline of this Letter is as follows. We begin by in-

troducing and defining the quantum correlation measures

we study throughout this Letter. Following this we reduce

the CKW inequality to a statement pertaining to quantum

correlation measures for a pure tripartite system consisting

of two qubits and a four-level quantum system. Such a sys-

tem is, up to local unitaries, completely determined by its

two-qubit reduced density operator. The proof will then be

completed by showing that the one-way correlation mea-

sure [7, 8] of a mixed state of two qubits is always larger

or equal than its tangle.

In our proof we have utilised a number of techniques.

We derive a computable formula for the linear Holevo χ
quantity for all qubit maps and also for the one-way corre-

lation measure [8] for all two-qubit states.

To quantify mixed-state bipartite quantum correlations

http://arxiv.org/abs/quant-ph/0502176v5
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we study two measures. We also study one channel ca-

pacity measure. The first measure we consider is the

tangle τ(ρAB) which is the square of the concurrence

[3, 9, 10, 11, 12], τ(ρAB) = C2(ρAB). The tangle mea-

sure pertains to bipartite quantum states ρAB of a qubit A
and a D-level quantum sytem B. To define the tangle we

introduce the following entropic measure, the linear en-

tropy S2, for single-qubit states ρ [23]:

S2(ρ) , 2(1− tr(ρ2))

= 4det(ρ).

The linear entropy S2 is concave and unitarily invariant.

The tangle τ is now defined for any state ρAB of the

2 × D system via the roof construction (for operational

motivations and further discussion of this construction see

[9] and [13])

τ(ρAB) , inf
{px,ψx}

∑

x

pxS2(trB(ψx)), (2)

where the infimum runs over all pure-state decompositions

{px, ψx} of ρAB , ρAB =
∑

x
pxψx.

The second correlation measure we need is closely re-

lated to a one-way correlation measure [7, 8]. For any

mixed state ρAB of a 2 ×D bipartite quantum system we

define

I←2 (ρAB) , max
{Mx}

(

S2(ρA)−
∑

x

pxS2(ρx)

)

, (3)

where the maximum runs over all POVMs {Mx} on Bob’s

system, px = tr(IB ⊗MxρAB) is the probability of out-

come x, and ρx = trB(IB ⊗MxρAB)/px is the posterior

state in Alice’s subsystem.

The third measure we will need, the linear Holevo χ ca-

pacity, is a capacity measure for qubit channels Λ. This

measure is related to the one-shot Holevo χ quantity and is

defined by

χ2(ρ; Λ) = max
{px,ψx}

(

S2(Λ(ρ))−
∑

x

pxS2(Λ(ψx))

)

,

(4)

where ρ is a qubit ensemble, Λ is an arbitrary qubit channel

(a trace-preserving completely-positive map), and the max-

imum runs over all pure state decompositions {px, ψx} of

ρ, ρ =
∑

x
pxψx.

We now turn to the CKW inequality. Our strategy for

proving Eq. (1) will be to prove it for states ρABC of two

qubitsAB, and a 2n−2-dimensional quditC . The next step

we use is to proceed via induction by successively parti-

tioning the last qudit C into two subsystems, a qubit C1,

and a 2n−3-dimensional qudit C2, and establishing Eq. (1)

for the (typically mixed) state ρAC1C2
. Thus, the formula

we will try to prove is the following

τ(ρA(BC)) ≥ τ(ρAB) + τ(ρAC), (5)

for arbitrary states ρ of a 2× 2× 2n−2 system ABC .

We begin by trying to prove Eq. (5) for pure states. In

this case we can use the local-unitary invariance of τ(ρAC)
to rotate the basis of subsystem C into the local Schmidt

basis |uj〉, j = 1, . . . , 4, given by the eigenvectors of ρC .

In this way we can regard the 2n−2-dimensional quditC as

an effective 4-dimensional qudit. Therefore, it is sufficient

to establish Eq. (5) for a 2× 2× 4 system ABC .

Supposing we have proved the inequality Eq. (5) for pure

states we can extend Eq. (5) to mixed states ρ. Consider the

minimising decomposition {px, |ψx〉} for τ(ρA(BC)), and

apply the inequality Eq. (5) to each term,

τ(ρA(BC)) =
∑

x

pxτ(ρ
x
A(BC)),

≥
∑

x

px(τ(ρ
x
AB) + τ(ρxAC)),

≥ τ(ρAB) + τ(ρAC),

(6)

where ρxA(BC) = |ψx〉〈ψx|, and we have used the convex-

ity of τ to arrive at the third line.

Now all that is required to establish the inequality Eq. (5)

for an arbitrary system of n qubits is to successively apply

Eq. (5) to partitions of C according to the inductive recipe

outlined above. We illustrate this procedure for pure states

ρ of four qubits ABC1C2. Let C = C1C2 be a combined

pair of qubits and apply Eq. (5),

τ(ρA(BC)) ≥ τ(ρAB) + τ(ρAC),

≥ τ(ρAB) + τ(ρAC1
) + τ(ρAC2

),
(7)

where we have applied the mixed-state version of the in-

equality Eq. (5) in the second line. It is straightforward to

generalise this procedure to n qubits.

We have now reduced the CKW inequality to an inequal-

ity for the tangle for pure states of a tripartite systemABC
of two qubits A and B and a four-level system C . In the

case of pure states, ρAB and ρAC contain the same informa-

tion (up to local unitaries); all possible POVM measurents

at Bob’s side induce all possible pure state decompositions

of ρAC , and therefore the following monogamy relation

holds (see also Koashi and Winter [7]):

S2(ρA) = τ(ρA(BC)) = I←2 (ρAB) + τ(ρAC). (8)

By comparing Eq. (5) and Eq. (8) we see that in order to

establish Eq. (5) it is sufficient to establish the inequality

τ(ρAB) ≤ I←2 (ρAB), (9)

for all two-qubit states ρAB . As a first step toward proving

this inequality, we will now derive a computable formula

for I←2 (ρAB).
Any bipartite quantum state ρAB may be written as

ρAB = Λρ ⊗ IB(|rB′B〉〈rB′B|), (10)

where |rB′B〉 is the symmetric two-qubit purification of

the reduced density operator ρB on an auxiliary qubit sys-

tem B′ and Λρ is a qubit channel from B′ to A. It can

now readily be seen that the one-way correlation measure
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I←2 (ρAB) is equal to the one-shot channel capacity mea-

sureχ2(ρB ; Λρ): all possible POVM measurements induce

all convex decompositions of ρB′ .

The action of a qubit channel Λ on a single qubit state

ρ = I+r·σ
2

, where σ is the vector of Pauli operators, may

be written as

Λ(ρ) =
I + (Lr+ l) · σ

2
, (11)

where L is a 3 × 3 real matrix and l is a three dimen-

sional vector. In this Pauli basis, the possible decomposi-

tions of ρB into pure states are represented by all possible

sets of probabilities {pj} and unit vectors {rj} for which
∑

j
pjrj = rB where I+rB ·σ

2
= ρB . The linear entropy

S2, written in terms of the Bloch vector r of a two-qubit

state, is given by S2(
I+r·σ

2
) = 1−|r|2. In this way we see

that

Q(r) = S2

(

Λ

(

I + r · σ
2

))

= 1−(Lr+ l)T (Lr+ l),

(12)

which is a quadratic form in the Bloch vector r.

Substituting rj = rB+xj , one can easily check that the

calculation of χ2(ρB; Λρ) reduces to determining {pj ,xj}
subject to the conditions

∑

j
pjxj = 0 and ‖rB+xj‖ = 1

maximizing

max
{pj ,xj}

∑

j

pjx
T
j L

T
Lxj . (13)

Let us, without loss of generality, assume that LTL is di-

agonal with diagonal elements λx ≥ λy ≥ λz. The con-

straints ‖rB + xj‖ = 1 lead to the identities

(

x
x
j

)2
= 1− ‖rB‖2 − 2rTBxj −

(

x
y
j

)2 −
(

x
z
j

)2
.

Substituting this into (13), we get

χ2(ρB ; Λρ) = λx(1− ‖rB‖2) +
max
{pj ,xj}

∑

j

pj

(

(λy − λx)
(

x
y
j

)2
+ (λz − λx)

(

x
z
j

)2
)

.

This expression is obviously maximised by choosing xzj =
x
y
j = 0 for all j; the xxj then have to correspond to the roots

of the equation ‖rB+xj‖ = 1. There are exactly two such

roots, showing that the the maximum λx(1 − ‖rB‖2) can

be reached by an ensemble of two states.

As S2(ρB) = 1−‖rB‖2, we therefore obtain the follow-

ing computable expression for the linear Holevo χ capacity

for qubit channels:

χ2(ρB ; Λ) = λmax(L
T
L)S2(ρB). (14)

From this expression we also obtain an expression for

I←2 (ρAB) via the correspondence Eq. (10).

Now that we have a formula for I←2 (ρAB), we want to

prove that it is always larger than or equal to τ(ρAB). First

of all, we note that a local filtering operation of the form

ρ′AB = (I⊗B)ρAB(I⊗B)†

tr((I⊗B†B)ρAB)
leaves L invariant and transforms

S2(ρ
′
B) =

det(B)2

tr((I⊗B†B)ρAB)2
S2(ρB).

It happens that I←2 transforms in exactly the same way as

the tangle does [14] (recalling that the tangle is the square

of the concurrence). As there always exists a filtering op-

eration for which ρ′B ∝ I2, we can assume, without loss of

generality, that S2(ρB) = 1.

So let’s consider ρAB with TrA(ρAB) = 1
2
I . As

λmax(L
T
L) = σ2

max(L) where σmax(L) is the largest

singular value of L, we want to prove that σmax(L) ≥
C(ρAB) where C(ρAB) denotes the concurrence of ρAB .

It has been proven in [15] that any mixed state of two qubits

with associated 3× 3 matrix Ljk = Tr(ρσj ⊗ σk) can be

written as a convex decomposition of rank-2 density opera-

tors all having the same Ljk . As the concurrence is convex,

the maximum concurrence for a given L will certainly be

achieved for a rank-2 density operator ρ2. Next notice that

any rank-2 matrix ρ2 can, up to local unitaries, be written

as

ρ2 = p|00〉〈00| + (1− p)|ψ〉〈ψ|.
Given the concurrence of C(|ψ〉〈ψ|) = C , then obviously

C(ρ2) ≤ (1− p)C . Let us now consider σmax(L); this is

the largest singular value of the sum of two matrices, one

having singular values [p, 0, 0] and the other one having

(1 − p)[C,C, 1] (corresponding to |00〉 and |ψ〉). Up to

left and right multiplication by unitaries, L is then given

by

L = (1− p)

(

C 0 0
0 C 0
0 0 1

)

+ p

(

cos(φ)
0

sin(φ)

)

u
T

where u is a unit vector. Obviously, the (2, 2) element of

this matrix is (1−p)C , which is certainly a lower bound for

σmax(L). This therefore implies that I←2 (ρAB) ≥ τ(ρAB)
for all two-qubit states ρAB , hence proving the CKW in-

equality Eq. (1).

The CKW inequality is likely to be useful in a number

of contexts, allowing simplified proofs of no-broadcasting

bounds and constraints for qubit multitap channel capac-

ities. Perhaps the most interesting open problem at this

stage is to generalise Eq. (1) to systems other than qubits

and to the case where A1 consists of more than one qubit.

In both these cases the available generalisations of the tan-

gle measure for quantum entanglement provably cannot

yield entanglement sharing inequalities. It is an interesting

open problem to work out an easily computable measure

of quantum entanglement which will yield concrete useful

bounds on the distribution of private correlations.

The CKW inequality may be immediately applied to

study the entanglement for a wide class of complex quan-

tum systems. Let us, for example, consider a translation-

invariant state of a quantum spin 1/2 system on a lattice
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with coordination number d. The CKW inequality im-

plies that the concurrence C(ρ) of the reduced density

operator ρ of two nearest neighbours satisfies C(ρ) ≤
(1 − 〈S

n
〉2)/

√
d, where 〈S

n
〉 is the magnetisation in the

direction n. Hence the CKW inequality provides a quanti-

tative tool of assessing how far the mean-field energy will

be from the exact one. Let’s e.g. consider the Heisenberg

Hamiltonian. As the overlap of a state ρ with a singlet is

bounded above by (1+C(ρ))/2 [15] and as the mean field

energy per bond is given by 1/2, the gap between mean

field theory and and the exact ground state density [16] is

bounded above by (1−〈S
n
〉2)/(2

√
d). The classical result

[17] that mean field theory becomes exact, i.e. ρ is separa-

ble, when d→ ∞ is a limiting case of this inequality.

In a similar context, several investigations of the con-

straints on distributed entanglement have been carried out

recently. We mention, for example, [18, 19]. The valid-

ity of some results of these papers were conditioned on the

truth of the CKW inequality. As a consequence of this Let-

ter it is now possible to regard these results as true.

In this Letter we have proved that the distribution of bi-

partite quantum entanglement is subject to certain share-

ability laws. It is tempting to think that such shareability

constraints might hold for other quantum correlation quan-

tities, such as the Bell violation of a bipartite Bell inequal-

ity. This is in fact the case; it has recently been discovered

[20] that bipartite Bell violations cannot be distributed ar-

bitrarily.

Finally, it is worth highlighting some classes of quantum

states which saturate the CKW inequality. The classic ex-

ample of a quantum state saturating the CKW inequality is

the W -state

|W 〉 = 1√
n
(|0 · · · 01〉 + |0 · · · 10〉+ · · ·+ |1 · · · 00〉) .

The W -state has the property that the entanglement of any

two spins is equal, but the entanglement of the spin A1 is

not maximal. One might ask if there are any states which

saturate the CKW inequality which have the property that

the spin A1 at the focus is maximally entangled with the

rest. In this way we could regard such a state as sharing

out a full unit of entanglement with its neighbours. Such a

state does indeed exist and is given by

|ψ〉 = 1√
2
|0〉|0 · · · 0〉+ 1√

2
|1〉|W 〉

In conclusion, we proved the Coffman-Kundu-Wootters

monogamy inequality which quantifies the frustration of

entanglement between different parties. The unique fea-

ture of this inequality is that it is valid for any multipar-

tite state of qubits, irrespective of the underlying symme-

tries, which makes it much more general than de Finetti

type bounds [21]. We also discussed the relevance of the

monogamous nature of entanglement in quantum cryptog-

raphy and in frustrated quantum spin systems.
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