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ABSTRACT
This paper consists of two parts. In the first part of the paper
a new and general formulation of the dynamical problems associated with
the powered flight of a flexible, variable-mass rocket with internal
flow is presented. The formulation comprises six ordinary differential
equations for the rigid-body motion and three partial differential equ-
ations for the elastic motion, with the appropriate boundary conditions.
The rigid-body motion consists of three translations and three rotations,
whereas the elastic motion is defined by one longitudinal and two flex-
ural displacements, the latter about two orthogonal transverse axes.
The differential egquations are nonlinear and, in addition, they possess
time-dependent coefficients due to the mass variation. The formulation
contains many of the rocket dynamics problems investigated heretofore
as special cases, and should prove superior when several effects must be
considered simultaneously. Solutions of the complete equations can be
obtained only numerically by means of a high-speed computer. For a crit-
ical examination of the dynamic characteristics of variable-mass bodies,
in the second part of the paper an analytical solution of the boundary-
value problems with time-dependent coefficients associated with the long-
itudinal and transverse vibrations of an axially symmetric, variable-
mass, spinning rocket, is obtained under certain assumptions. This
paper scrutinizes the concept of normal-mode vibration for a variable-
mass boost vehicle. Its results can be used to check the measure of
validity of the so-called "time-slice" procedure based on this concept,

particularly in the case of solid-fuel rockets for which the mass vari-

ation is quite rapid.




1. Introduction

The behavior of a rocket in flight has been studied extensively.
Research in the area of rocket dynamics has been concerned with mathe-
matical models ranging from a rigid, variable-mass rocket to a flexible,
constant-mass one, during the unpowered as well as the powered flight
of the wvehicle. Most of these mathematical models must be regarded as
treating special aspects of a more general problem.

The treatment of a missile as a rigid body of time dependent mass
has been adequately covered by many investigators, including Grubin,l*
Dryer,2 and Leitmann.3 The ballistic trajectories of spin-—-and fin-
stabilized rigid bodies are treated in a book by Davis, Follin, and
Blitzer.4

A considerable amount of effort has been devoted to the analysis
of an elastic body subjected to longitudinal acceleration. For example,
Seide5 has treated the effect of both a compressive and a tensile force
on the frequencies and mode shapes of transverse vibration of a con-
tinuous slender body. Others, such as Beal,6 have been concerned with
the problem of buckling instability of a uniform bar subjected to an end
thrust as well as with the change in the body natural fregquencies as a
result of that thrust. These investigations regard the mass of the body
as constant in time.

A series of reports by Miles, Young, and Fowler7 offers a compre-
hensive treatment of a wide range of subjects associated with the
dynamics of missiles, including fuel sloshing. Again the mass variation

is not accounted for.

* See references at the end of this paper.




Attempts have been made to consider simultaneously the mass var-

-

iation and missile flexural elasticity by investigators such as Birnbaum8
and Edelen.9 Both were concerned with solid-fuel rockets and neither
of them included the axial elasticity of the missile. On the other hand,

10 concerned himself with the internal flow in a solid-fuel rocket

Price
and ignored entirely the vehicle motion. More recently an attempt to
synthesize the problem of rocket dynamics has -been made by Meirovitch

and Wesley.ll This latiter work accounts for the mass variation, rigid-
body translation and rotation, and axial and transverse deformations but
it assumes the motion to be planar, which exludes spinning rockets.

This paper can be regarded as consisting of two parts: general
formulations (Sections 2 through 5), and solutions (Section 6). The first
part of this investigation represents an attempt to unify the various
aspects of missile dynamics problems into one formulation. Section 2, 3,
and 4 derive general equations of motion for a flexible variable-mass
rocket with internal gas flow. The motion is defined by three rigid-body
translations, three rigid-body rotations, and one axial and two transverse
elastic displacements. The internal gas flow effects are reduced to
eqguivalent forces identified as the Coriolis force, the force due to the
unsteadiness of the gas flow relative to the vehicle, and the reactive
force. In Section 5 the elastic motion is specified by regarding the
rocket as a bar undergoing one axial and two flexural displacements.

The complete formulation reduces to six ordinary differential egquations
for the rigid-body motion, and three partial differential equations
with the associated boundary conditions for the elastic motion. The
differential equations are nonlinear and, in addition, they possess

time—-dependent coefficients due to the mass variation. This general




formulation contains many of the previously mentioned investigations
as special cases. In fact, it represents an extension and generalizatign
of Reference 1l by considering the motion as three~dimensional rather
than planar, thus enabling the treatment of spinning rockets. This nec-
essitates a different approach to the problem formulation, as the rotation
is expressed in terms of guasi-coordinates rather than Euler's angles.
No closed-form solution of the complete egquations can be anticipated.

As an application of the general formulation, this paper examines
closely the nature of the vibrational motion of variable-mass systems
as opposed to constant-mass systems. Closed-form solutions are sought as
they allow for easier physical interpretation. Section 6 presents analyti-
cal solutions for the boundary wvalue problems with time-dependent coeffi-
cients assocociated with the longitudinal and transverse vibrations of an
axially symmetric, variable-mass, spinning rocket in vacuum. The conclu-
sion is that normal-mode vibration in the commonly accepted sense does not
exist for variable-mass systems. The analysis should provide a check of
the extent to which approximate methods based on the normal-mode concept,
such ag the "time-slice" method, can be used for variable-mass systems.
This question may prove esgpecially interesting when the mass variation

is rapid as in the case of solid-fuel rockets.

2. EBguations of Motion for a General Variable-Mass System

By a variable-mass system we understand a system of changing compo-

sition. To clarify this statement we envision a control volume in space
and, assume that the identity of the matter within the control volume may
change with time, although the shape of the control volume is fixed. When

the system composition changes, we cannot equate the time-derivative of

the sum of momenta associated with the particles to the sum of the time




derivatives, because the summation involves different sets of particles
at different times. 1In this case, the proper procedure for obtaining the
equations of motion is to write the force equation in the form F = E*,
where the rate of change of the momentum E is derived by a limiting process
consisting of calculating p at two different instants, a time interval
At apart, dividing the difference of the two values by aAt, and letting
At -+ 0. In so doing,kwe ensure that the same total mass is involved, al-
though at one time it is entirely inside the control volume and at the
other time part of the mass is outside.

Let us consider a system occupying a certain volume in space at
time t, namely the control volume enclosed by the control surface shown
in solid line in Figure 1. If the control volume is fixed in an iner-

tial space, then it is shown in Reference 12 (p. 96} that the force egqu-

ation has the form
F=F,  +F, = S v p dv + S vipy : da) (1)
S B ot v cs

are the resultants of the surface and body forces,

where F, and F

S B
respectively, acting upon the system.

Next we consider the case in which the control volume translates
and rotates relative to an inertial space. We shall assume that part
of the mass is solidly attached to the control volume, hence translating
and rotating in space with it, and define a system of body axes X,y,zZ

fixed with respect to the control volume, so that the force eguation can

be written

e

X r + w X (w x E{]dM

Fo + F_ = adM=5a+\;{+29_xv+
B SM” M[O - -
(2)

A wavy line under the symbcl denotes a vector quantity or operation.




in which a is the absclute acceleration of the mass elerent 4, 29 is

the acceleration of the origin 0 of the system x, y, 2z, o is the angular
velocity vector of axes x, y, %z, and ¥ is the position of dM relative to
these axes. Recognizing that if the body axes were fixed in the irertial
space only the term ng j dM would survive, where Mg is the mass

moving relative to the control volume, and considering Eg. (1), we can

write the force eguation in the form

= 9 .
Fs + Eg = 3% 5 Y pdv + S vipy - an)
cv cs

]

+ S [go + 2& XV + é x + ux{w x r)] aMm (3}
M T e TS )

where the partial derivative 3/3t is to be calculated by regarding axes

X, v, z as fixed. ©Next we introduce the following eguivalent forces

3 o . as

Ec—_2&§SM XdM'EU_"ﬁjMXdM' Fr = 5A¥(°deu)
£ £
(4)
where EC is recognized as the Coriolis force, EU is a force due toc the
unsteadiness of the relative motion, and ER is referred to as a reactive
force. With this notation, Eg. (3) becomes
= X N

Fg + Fg + Eg + Ey * g SM[§0+9§.£+35<3§£>]0“ (5)

The terms on the right side of Eqg. (5) may be regarded as pertaining to
a rigid body of instantaneous mass M.

In a similar manner, the torque equation about the origin 0 can be

written
Ng + Np + No + Ny + Ny = gM £ X [90 e xr+w ox(wx E)} am (6}




(7)

The significance of the various torques is self-~evident. Moreover, the

expression for N can be easily explained by recalling that 3/3t implies

U
a time rate of change with axes x,v,z regarded as fixed.

The above equations must be supplemented by the continuity equation

S pv-dA=—-§——S am (8)
cs v T cv

which expresses the fact that the net efflux rate of mass across the con-
trol surface must equal the rate of mass decrease inside the control vo-
lume.

Equations (5) and (6) can be given an interesting physical inter-
pretation by recalling that the system comprises one part solid and
another part of changing composition, and observing that the right sides
of these equations represent the motion of the system as if it were
rigid in its entirety. Hence, Egs. (5) and (6) may be regarded as the
equations of motion of a fictitious rigid body of instantaneous mass M,
provided that the actual surface and body forces acting upon the system
are supplemented by three equivalent forces, namely the Coriolis force,

the force due to the unsteadiness of the relative motion, and the re-

active force. This is the substance of a statement referred to as the




"principle of solidification for a system with changing composition

with a hard shell". (See’ Reference 13, p. 13).

3. The Rigid-Body Motion of a Rocket

The formulation of the preceding section is ideally suited for
treating the problems associated with the motion of a rocket. Although
a rocket is in general flexible, a first—approximation solution for its
dynamic behavior may be obtained by regarding it as rigid. The solution
can be refined by assuming that because of flexibility the rocket un-
dergoes certain elastic displacements. The mathematical model of the
rocket is assumed to comprise a long cylindrical shell open at the aft
end and closed at the fore end. The inner part of the rocket consists
of the propellant which surrounds a cylindrical cavity whose axis coin-
cides with the rocket's longitudinal axis, namely axis x in Figure 2.
The cavity plays the role of the combustion chamber as it contains the
burned gas which flows relative to the shell until expelled through a
nozzle at the aft end. This mathematical model is more representative
of a solid-~fuel rather than liguid-fuel rocket. We shall consider first
the case in which the rocket shell is rigid.

For most rockets the mass variation does not cause the wvehicle
center of mass to shift appreciably relative to the body (see, for ex-
ample, Reference 13, p. 15); when the fuel rate of burning is uniform
along the entire rocket it does not shift at all. Hence, we shall
assume that the vehicle mass center is fixed relative to the body axes
¥x,y,2 and choose the origin 0 of these axes to coincide with the mass

center so that, by the definition of the center of mass, we have

5 r dMd = 0 (9)
y =




In view of Eg. (9), Egs. (5) and (6) reduce to

Eqg + Eg + Fo + Ey + Egp = Ma, (10)
and
— hy _ T
§s+§B+§c+§u+HR-SM£§[.azzsf“reye&z)] dM = L' texl
(11)
where
L = (Ixx W, - Ixy wy - Ixz wz)i + ( - Ixy W, + Iyy wy - Iyz wz)l
+ ( - Ixz W, = Iyz my + Izz mz)k‘ (12)

is the angular momentum of the thicle about the origin 0 and g' is
the rate of change of L due to the change in the body angular velocity

relative to the body axes. It is obtained by replacing the components

of ¢ by the components of @ in Eg. (12). The quantities
3 2, 2 _ 2, 2 a 2.2
Ixx = SM (y*+27)am, Iyy = SM (x“+z°)amMm, Izz = gM {(x“+yT)dm
(13)
Ixy = gM xydM , Ixz = gM xzdM , Iyz = SM yzdM

are the instantaneous moments and products of inertia of the vehicle
about the body axes. Equations (10) and (11) indicate that the rigid-
body translational and rotational motions are uncoupled. We note that
in our case the moments of inertia are time-dependent because of the
mass variation. Of course, Eg. (11l) can be simplified considerably

by choosing x,y,z to coincide with the principal axes.




It remains to derive explicit expressionsg for the actual and
equivalent forces and torgues. The surface force consists of the
aerodynamic force on the vehicle wetted area and the pressure force
across the exit area. Denoting by gg the aerodynamic force per unit
of the wetted area Aw’ by Pe the pressure across the exit area_Ae, and
by P, the atmospheric pressure, the surface force takes the form

L= * _ :
s SA IR day, + (Pe ~ Pu)ALL (14)

W

Assuming that the gravitational field is uniform, the body force is

simply

-

Fp = S mg dx = Mg (15)
3 L e

where L is the length of the rocket, m the distributed mass, and g

the acceleration due to gravity. Since the flow everywhere is along

the x-axis, with the possible exception of the exit point, we have
X = = V(XIYIZIt)i = = V(X,t)‘é: (16)

where we assumed that the flow across the cross-sectional area is

uniform, so that the Coriolis force can be written

EC = - 2w X SL v dx = z(wzl - wa) SL Vi dx
b -
= - 2(wzj - w_k) ( S m dg)dx (17)
- ¥y I X%

where use has been made of the continuity equation, namely

b .
v = - m dg (18)
%

10




(8) by considering a control volume

-Equation (18) results from Eg.
from a point x to the closed end of the vehicle. In Eq. (18), me
denotes fluid mass per unit length at point %, b is the distance from
the vehicle mass center to the closed end, m is the mass rate of change
per unit length, and & is a dummy variable of integration. Similarly,

the force due to the flow unsteadiness assumes the form

b
F. == = vm, dx = - — ( m dg)dx | i (19)
U ot i £ 3t I, %

Finally, the reactive force can be written
- _ 3 _
F, = S;I[EE (vyme) + Alvymg) s(x)] dx = vymg ‘ (20)

X
e

where the symbol Xa indicates th%t the quantity vyme is to be evaluated
at the exit point. The integrand in Eg. (20) can be easily derived

by assuming one-dimensional flow along the x-axis. It will be noticed
that the expression makes allowance for possible abrupt changes in the
flow pattern, as would occur if the rocket engine were to be gimbaled
at a certain angle with respect to the x-direction. This is reflected
by the second term in the integrand, in which §(x)is a spatial Dirac's
delta function. Letting the flow direction at the exit be defined with
respect to axes x,v,z by the direction cosines £XR' zyR, ng’ respect-

ively, and using the continuity equation, Eqg. (18), the reactive force

becomes
Fp = = Mvixg,t) (R, + 2.p) + %, gK) (21)

where M represents the total mass rate of change which, of course,

is a negative gquantity.

11




and F, can be written in the form

The forces-g R

S

Fo. + Fo=§F, +F (22)

where F, denotes the aerodynamic force

*
E, = S £, dA (23)
A
W
and ET is the "engine thrust"”
En = (p, = PR L + lMlv(xe,t) (o gl * tyrd * 2, 5K (24)

In an analogous manner, we obtain the torques

*
Np = SA Ig ¥ £, da,
w
Np = - alMlv(xe,t)(zle - zyR§)
gB Y (25)
b -
N = - 2(‘”y1 + w, k) SL x | N m dg)dx
Ny =0

in which g is the radius vector to a point on the rocket surface and
a is the distance from the origin 0 to the exit point.

Eguations (10) and (11), in conjunction with the expressions for
the actual and equivalent forces and torques derived above, possess
time~dependent coefficients so that a closed-form solution of the

problem is not possible, except for some simple special cases.

4. The Eguations of Motion of a Flexible Rocket

When the rocket casing can undergo elastic deformations the problem

12




requires further attention. The case in which the rigid-body motion

-

is planar and the elastic motion consists of axial and transverse

vibrations has been treated by Meirovitch and Wesley (Reference 11).
The present investigation represents an extension and generalization
of that work.

Let us consider a rocket translating and rotating relative to
the inertial space X,Y¥,%Z, as shown in Figure 2. As the control volume,
we consider the volume occupied by a rocket element of unit length when
the vehicle is at rest relative to the body axes %,vy,z2. Figure 3 shows
the corresponding element. Because the rocket shell is elastic, the
entire mass associated with the control volume in question can move
relative to that volume. The rocket case and unburned fuel are assumed
to move together and their motion is different from the motion of the
burned fuel, so that it will prove convenient to denote the motions and
mass associated with the case element by the subscript c¢ and the ones
related to the burned fuel element by the subscript £. In analogy with
Eg. (2), and considering the rocket element shown in Figure 3, we can

write the force equation of motion in the form

fs * f5 = | [eotict2e xycrbxr vux @xry]em
C
+f Jegtbere x oyt bxretex (pxgg]m (26)

£ L
where gs and gB are distributed surface and body forces, respectively,
Ve is the elastic motion of a point inside the case element, and Ve is
the fluid velocity relative to the body axes. We shall assume that the

elastic motion is the same for the entire case element, and a similar

-

13




statement can be made concerning the velocity of the fluid element.

Introducing the notation
=4 ¥p =G+ Y (27)

where u represents the elastic displacement vector, and v is the vel-

ocity of the fluid relative to the case, we can rewrite Eq. (26) as

follows
§s + EB = gm [§o+§+29 Xxut o xr+wx (wx E)] dm
+ S (Q&ZQ x vidm = (§0+§+29 x é)m + 0 X 5 r dm
m - m
£
+9§(9x5 gdm)+(}2+29§y)mf (28)

where m = m, + mg is the mass of the rocket per unit length. Moreover,

the radius vector r has the expression
r=xi+y]+zk+u-= (x+ux)‘j‘1 + (y+uy)j + (z+uz)l£ (29)

in which Uy s uy, and u, are the elastic displacements of the case el-
ement in the x, y, and z directions, respectively. A slight simplifi-
cation can be achieved by assuming that the rocket possesses axial sym—

metry as defined by
S y dm = s z dm = 0 (30)
m m
so that introducing the "average" radius vector I whose definition is

r = (¢ + ux)£.+ uyl + uz& (31)

14




(28) assumes the form

fg * fp = [2ptit2e x ur b x Fr o x (e x D] m + (yr2w x Yimg (32)

0
The surface forces comprise the aerodynamic forces on the surface
of the rocket, as well as the forces due to stresses on the rocket
shell and fluid pressure. The latter twotypes of forces are acting
on the cross-—-sectional surfaces so that, although they are internal
to the rocket, they must be considered surface forces due to the nature
of the chosen control volume. Body forces, as in the preceding section,
are due to gravity alone.

Invoking the analogy with Eg. (5), we can rewrite Eg. (32) to

read

IS+IB+fC+fU+fR = [a +u+ 20 xu+ g)] m

TR
£
tH1
+
te
3
e
%

a - (33)

n
v
-
&
=)
i
[\
=

where a is the absolute acceleration consisting of the acceleration

a, of the origin 0 and the acceleration é-of the case element rela-

20
tive to the body axes. Moreover

Lo =~ 20 5 ¥mg
£oo= 2 (vm,) (34)
<U 3t £
= - &
-f~R = 5% (vsz) + A(vsz)a(x + a)

are the Coriolis force, the force due to the unsteadiness of the fluid

flow relative to the case, and the reactive force, respectively, all

per unit length of rocket.




If we express BO in terms of components along axes x,y,Z, then

the position of the case element at any time is given by
R=R, + = (R0x+x+ux)i + (R0y+uy)2 + (R02+uz)§ (35)

Recalling that the unit vectors i, j, and k rotate with angular vel-

an

ocity w, the absolute acceleration of the case element can be written

in the form

a = 2, + a. = a i + ayg» + azli (36)
where
ve e 2 . - ﬁ . 1+ . -
a, = Ry +i_+ [wy(ROZ+uZ)—- oy (Ro M|+ b (Ro_+u, ) = b, (Rg +u)
+ (R,_+u ) + w_ w (R, +u )—(w2 + mz)(R +x+u_ )
x “y oy Ty x Yz 70z "z v z 0x x
ay = R0y+uy+2 {wZ(R0x+ux)— mX(ROZ+uZ)}+ wz(R02+X+ux)" wX(ROZ+uZ)
(37)
+ u w (R, +u )Y+ w_w (R, _+xtu )--(m2 + w2)(R +u_ )
y z' 0z "z Xy T 0x X X Z Oy "y
a, = ROZ+uZ+2 [wx(Roy+uy)— wy(ROX+uX)] + wx(RO+uy)~ wy(R0X+x+uX)

2 2
+ w wz(Rox+x+ux) + +uy)—(wx + my)(Roz+uz)

w_(R
X z

Yy Oy

v ROZ'énd their time derivatives

are associated with the motion of the origin 0, whereas the remaining

We note that the terms involving Royr R,

terms are due to the motion of the case element relative to 0.

16




Similarly, using Eg. (28), the torque equation about point 0

for the rocket element in question takes the form

Do + ng = S r x [ 2g 4+ ﬁ + 29 XU+ ox7r+ wx (vx r)] dm
m a~ -k A R di ol L
+ S rx (v + 2w x v)idm = T x (30 + ﬁ + 20 x u)m
m.: . R A~ LY -~
EN
+1'+ex1+Ex (T+208xvin (38)
where _
L= (lxx x  Txy'y xzmz)i + (= Xy X + lyy N lyzwz)l
+ (- i e, - 1,29y + lzzwz)§ (39)

is the angular momentum of the mass element m about the body axes x,y,z

in which

I

s
I

wx Sm [(y+uy)2+(z+uz)2J dm , iyy 5m [(x+ux)2+(z+uz)2J dm

I

,—h
I

2, . 2 .
- Sm [(x+ux) +(!+uy) ] dm , i Sm (x+ux)(y+uy)dm (40)

xy

ixz = Sm (x+ux)(z+uz)dm , i

vz jm(y-i-uy) (z+uz) dm

are recognized as the associated moments and products of inertia.

Moreover, i' is obtained from Eg. (39) by replacing Wer © @, by

yl
éx, éy, éz, respectively. Eqguation (38) can be rewritten as
- = il hd It
Dg ¥ Bg + 0c * 0y *ng =L X (3p+u+20 x whm + 1'+ px 1 (41)

17




where the torques

De =~ 20 x (@ xVimg

n. = - F x o-(vm.) (42)
~U < ~ 3t ef

n, =-71 x Ei——(vvm )y - I:f x A (vvm )] § (x + a)

wR -~ w X L P «f

follow directly from Egs. (34).
Equations (33) and (41) must be supplemented by the continuity

equation, Eg. (18).

5. The Eguations for the Axial and Transverse Vibrations of a Rocket.

Let us consider the rocket of the preceding section in which u, is
the axial elastic displacement and uy and u, are the elastic transverse
displacements in the y and z directions, respectively. Assuming that the

elastic displacements U, uy, u_ and the angular velocity components

Z

w as well as their time derivatives, are small guantities, we

w
yr z !

can integrate Egs. (33) and (41) and obtain

EgtEptEc+EytER = SL [ao*l + 2ux 0+ & x £ + 0 x(u x £>] m dx
2M§0+S (U + 20 x 0)m dx (43)
L
. 3
N NN AN N = gL r x (a5+tut2e x Wm dx + SL(k + o x 1)dx

i
fr_‘.‘
+
te
4
H{m

I

SL X [(uz+2wxuy+ wxuy)l - (uy— ZwXuZ—wqu)E] m dx

(44) )

18




Comparing Egs. (10) and (43) on the one hand, and Egs. (11) and (44)
on the other hand, we conclude that the elastic motion is inertially un-
coupled from the rigid body motion 24 and w, provided the x-axis is

choseén so that the following relations are satisfied

S umdx = g Umdx =0
L L

]
o

S xu m dx = S xu m dx S xi_m dx (45)
L Y L Y L Y

I
o

= S xﬁzm dx
L

]
~——
g

]

e

3

Q

b

g xuzm dx
L

We shall assume that this is the case, and indeed Egs. (45) imply that
the elastic modes of deformation are orthogonal, with respect to mass,
to the rigid body modes of displacement, namely the translation and
rotation of the vehicle as a whole. In the event the forces and torques
on the vehicle do not depend on the elastic displacements the problem
can be solved in two stages. In the first stage we solve for the rigid

body motion a, and w from Egs. (10) and (11) and then, considering 2q

0

and w as known, turn to Egs. (33) through (37) for the elastic motion u.
Equations (33) and (34), representing the equations of motion for

the three components U, uy, u, of the elastic displacement u, are of

a general form and, before we can attempt their solution, we must specify

the nature of the surface force gs. This force depends not only on the

external aerodynamic forces but also on the internal stresses in the

shell and fluid pressure. Moreover, we must also know the fluid flow

characteristics, as can be concluded from Egs. (34).

-
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As far as the elastic moticon is concerned, the vehicle shell
is assumed to behave like a bar in axial and flexural vibrations.
Under these circumstances, the distributed surface force can be written

in the form

su 2 32u u

3 X 3 3

e (o a0 [ 2%, T @ T,

S X C 4y axz cz axz Ix Ix’ | =

2
2 37 u au
- 8 Z 3 4 _ 3
4-[ ax2 (EIcy 2) + IxX (P Bx>J 5 [Bx(p Afd =
+ fo i+ fAy j o+ fAz k (46)

where the first three terms represent the force components due to
internal stresses caused by the axial and flexural vibrations (see,

for example Reference 14, Sections 5-7 and 10-3), the fourth term is due
to internal fluid pressure differential, and the remaining terms are
due to aerodynamic effects. The term P denotes the axial force on

the vehicle due to internal stresses and has the expression

au

_ X
P = EA, —— : (47)

It should be pointed out that the longitudinal stiffness EAc, where

E is the modulus of elasticity and Ac the cross-sectional area of the

casing, and the flexural stiffnesses EI and EI _, where I and I
cy cz cy cz

are area moments of inertia of the case about axes y and z through the

cross~sectional center, take into account the casing material only.

This implies that the unburned propellant possesses inertia properties

but no structural stiffness.
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Recalling the assumption that u,, u

y* %zr %y

the differential equation for the axial vibration takes the form

and w, are small,

Ju

2 X 3 L. L 2 8,2 _
3% (BAL —53) 32 (PAg) + £, + mg 1 i+ gplvmg) 3e(vimg) =
m [ROX +ou, + 2(wyROz - szOy) + wyROZ - mzRoy + wx(myROy + wZROZ)I
(48)
which is subject to the boundary conditions
Buy
EAC 5% = le at Xx =D
(49)
Bux
EAC 5% = Px2 at X = - a

where the functions Po1 and sz are axial forces exerted by the gases
on the case at the ends x = - a,b.

In a similar manner, the differential equation for the flexural

vibration in the xy-plane is

2
82 3%u 3 Buy

T a2 Blez o2 tax (B foEay Mg Lo 2e,vmg
X ox

=n { Oy + uy + 2 [mZROX B wx(ROz * uz)] + mz(ROX + x)
. 2

- b Ry, + uy) + ogu (Ry + x) - el (Rg uy)} (50)

with the boundary conditions

-
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3 u -
—Y = = -
EIcz 5 0 at x a,b
X
3 Bzuy au
- ‘B—X_(EICZ 8X2)+ le —-—Xax = 0 at x = Db (51)
5 azuy auy
- §§(E1cz 822) +t Py 3% T Py2 at x = - a

The first of boundary conditions (51) indicates that there are no
bending moments at the ends x = - a,b, the second one expresses the
fact that the force in the y-direction at the end x = b is zero, and
the third one states that there may be a transverse force Py2 at x = -a
due to a change in the flow direction at that point.

Moreover, the differential equation for the flexural vibration

in the xz~plane is

82 azuz 5 auz
- —=(EI Yy + — (P —=) + £ +mg 2 k - 20 vm
ax2 cy ax2 ax IX Az 4 - y £
= m{ROZ + u, + 2 [wX(RO_y + uy) - wyRox]+ mX(ROY + uy)
. 2
= by (Roy + %)+ wpw, (R, + %) = wl(Ro, + u))] (52)
with the boundary conditions
Bzuz
EIC 5 = 0 at x = - a,b
Y ax
3 Bzuz ouy
- 3% (EICY axz—)'f' le Py = 0 at x = b (53)
5 azuz du, .
T oAx (EIcy axz) t Pyo 3x T Pa2 at x = - a
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We note that the aerodynamic forces are treated as distributed
forces. Concentrated aerodynamic forces, such as at the front end of
the vehicle, can be represented as distributed by means of a spatial
Dirac delta function. The aerodynamic distributed forces are assumed
to cause no torques on the case element. Such torgues, i1if they exist,
are assumed to affect only the rocket rigid body rotations. Although
the nozzle has finite length, it was assumed, for simplicity, to be of

negligible length. In fact the term P represents the axial force on

2
the nozzle wall from the gas flow between the two end points of the nozzle.
In a more refined treatment of the gas flow, the exact pressure distri-
bution along the finite-length nozzle may have to be considered (see
Appendix).

The flow has been treated as if it possessed no viscosity. As
a result, any reactions between the gases and the unburned fuel are
assumed to be normal to the flow. This is implied by the fact that

the velocity is uniform over the entire cross—-sectional area which

implies, in turn, perfect burning in the sense that no gas-dynamic

eccentricity is present. The lack of gas-dynamic eccentricity is en-

sured by any type of radially symmetric flow, of which the uniform flow
is a special case. Any torgues due to gas flow may result from en-—
gine thrust missalignment, if at all. Moreover, the velocity of the
flow relative to the body is assumed to have only one component, namely
along the x-axis. Although, due to the transverse elastic displacements
u_ and C, there are velocity components vauy/ax and vauz/ax in the

v- and z-directions, respectively, the terms involved are assumed to

be small and, therefore, ignored. Several special cases, requiring

further assumptions, are discussed in the next section.
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6. Axially Symmetric, Spinning Rocket in Vacuum. .

Our interest lies in demonstrating certain vibrational character-
istics of the rocket casing during the powered £flight, that is to say
when the mass varies with time. To study this problem, it will be
necessary to make certain assumptions which presexrve a fair degree of
approximation and yet simplify the problem considerably. Since for a
solid-fuel rocket the powered flight lasts only a few seconds, it is
reasonable to assume that during the initial moments of the flight the
aerodynamic forces are negligible. We shall further assume that the
engine thrust makes a zero angle with the longitudinal axis, so that
no torgues are acting on the vehicle. Moreover, the mass of the rocket
ig considered to be uniformly distributed and to remain so during burning.
Under these circumstances, the wvehicle mass center will lie at the half-
way point between the rocket ends, b = a = L/2, at all times.

We shall explore the case in which the unperturbed motion of the
rocket consists of vertical upright flight in the axial direction and
of spin about the longitudinal axis at the constant angular velocity w.
This motion is consistent with the assumption of no torgues on the ve-

hicle, in which case the rotational motion

w, =0 = constant wy = uw, = 0 (54)

satisfies the moment equations, Egs. (11), identically.

For unperturbed translational motion, two components of the force
equations of motion, Eg. (10), vanish identically and only the eguation
for the longitudinal direction remains. Moreover, it is customary to
assume that the internal gas flow is steady so that, in view of the fact
that in vacuum p, = 0, this component has the form

P A, + | ™| vy - Mg = MR (55)

0x
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where IM] is the rate of mass decrease of the entire rocket and Ve
the exhaust velocity of the hot gases. But IM| is assumed to be con-
stant in time, from which it follows that the solution of Eg. (55) has

the form i

ROX = ROX(O) +

p_A M
) +v) ln —2— - gt (56)
[m] M- ||t

where Mo_is the vehicle initial mass. The remaining two velocity compo-~
nents are zero, é0y'= éOz = 0. In the following we shall regard the
rigid body motion as known in time.

In view of the above assumptions and results, the differential

equation for the axial vibration, Eg. (48), becomes

) aux
3% (BAg )

3 a 2 . .. e
—%) ~ sePAg) - mg - 3o (vimg) = m (R, +U,) (57)

which is subject to the boundary conditions

u
X -
EAC _é_X_—PXl at x = L/2
(58)
aux
EAcﬁ_:PXZ atx=—L/2

At this point we postpone the discussion of the equations for the
tranzverse vibration and turn our attention to the internal gas flow,
which is the problem of a steady, adiabatic flow in a channel of uni-
form cross—-sectional area. The problem is unusual in the sense that
mass is continuously added to the flow at constant enthalpy and at
negligible kinetic enexrgy. An exact solution of the internal flow pro-
blem is extremely difficult and forms the subject of a separate inves-

tigation, (see Reference 10). The assumption of zero viscosity implies
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that there are no tangential forces acting between the unburned fuel
and the flowing gases so that the equation of motion for the gas alone

can be separated in the form

.

_3 _3 2 _ . .
§§(pAf) EE(V mf) = mf(ROx +u .+ g) (59)

which is subject to the continuity equation, Eq. (18). For uniform

burning, Eq. (18) yields the relation
v, = m, 8 (5 - x) (60)
£ 0 2

where mos = -m = constant is the uniform rate of mass burning per unit

length, in which m, = MO/L is the initial distributed mass of the rocket.

0
It turns ocut that, as far as the gas flow is concerned, the right side

of Eq. (59) is negligible with the result

9 9 2 ~
- a—;{'(pAf) - a.—}_{(v mf) = 0 (61)

which can be integrated to yield
_ G2
PAL (%) = pAg(L/2) vime (%) (62)

so that the pressure drops as the gases apprcocach the nozzle. Note that
at x = L/2 the velocity is zero, v{L/2) = 0, and the pressure p{L/2)
is the stagnation pressure (see Appendix).
Denoting the mass of the case and unburned fuel per unit length
by m, =m = Mg, regarding me as small compared to m., and introducing

Egs. (55%), (60), and (61) into Eg. (57), we obtain
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Bzux . 1 -
- EAq 532 t o, Uy = - PR, + v MgR) (63)

which at the end x = L/2 is subject to the boundary conditions

Jdu
p3d

Bhe % ‘x=L/2 = Py = PR (2/2) (64)

On the other hand, from Eg. (62), we conclude that the boundary con-

dition at the end x = -L/2 is
Buxj
BA, 53 | = P, = PA-(L/2) - p_A_-V M, 8 (65)
| x=~L/2

To obtain the exit pressure Par exit velocity Vear and the mass per
unit length peAe at the exit, one must analyze the compressible f£low
in the nozzle (see Appendix). L

Returning to the transverse vibration, we conclude that for axial
symmetry, Icy = Icz = Ic, the two flexural eguations of motion can be

combined into a single equation by introducing the complex vector

uyz = uy + i u, . i= /-1 (66)

Under the same assumptions as for the axial vibration, this definition
enables us to combine Egs. (50) and (52) into

34u

au
- — Y2 3 (p_YZy _ 1 : ¥ -
EIc ax4 + ax(P 5% ) m(uyz + 2iw uyz w uyz) (67)

whereas the boundary conditions become
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o u
EI ____%_z_ =0 at x = -L/2,L/2 '
X
83u z auyz
-EI -—~l—ax3 + Py e =0 at x = L/2 (68)
83u 7 au 2
-ET —-——l’—ax3 + P, ——Lax =0 at x=-L/2

Note that in Egs. (67) and (68) it was assumed that the flexural
stiffness is uniform.

Examining the differential equations (63) and (67), with the assoc~
iated boundary conditions, we conclude that the equation for the axial
elastic motion u, can be solved independently of the equation for the
transverse elastic motion U,pe On the other hand, Eg. (67) depends on
u, through the axial force P so that we must solve for the axial elastic

motion before attempting a solution for the transverse elastic motion.

a. The axial vibration of a rocket.

The mathematical formulation for the axial elastic motion of the
rocket comprises a nonhomogeneous differential eguation, Eg. (63), to
be satisfied over the entire length of the rocket, and the boundary
conditions, Egs. (64) and (65). The differential equation possesses
time~dependent coefficients as the distributed mass m, is a function
of time; the axial stiffness EA_ is attributed entirely to the casing
material, hence it is constant in time. In view of our assumptions
concerning the relative magnitudes of the various motion components,

it turns out that the axial vibration is independent not only of the
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transverse vibration but also .of the rotation w about the longitudinal
axis.

A solution of the boundary-value problem, Egs. {(63), (64), and
(65), is possible by means of the modal analysis, provided the mass
density m, is constant. This, of course, is not the case but let us
assume for the moment that it is. The modal analysis -amounts to solv-—
ing the eigenvalue problem associated with the constant-mass system,
obtain the so-called normal modes, and express the system response as
a superposition of the normal modes multiplied by corresponding gen-
eralized coordinates; such a solution is referred to as normal-mode
vibration. Because the actual boundary-value problem possesses time-
dependent coefficients, however, no normal-mode vibration is possible.
Nevertheless, by virtue of the uniform~burning assumption, it turns
out that a procedure based on the normal-mode approach can be used
here to obtain a solution. But, because the normal modes imply a phy-
sical behavior which the actual system does not possess, we shall re-
gard the solution as a superposition of eigenfunctions associated with
the constant-mass system, rather than a superposition of normal modes.

Instead of working with a boundary-value problem consisting of
a nonhomogeneous differential equation with nonhomogeneous boundary
conditions, it will prove more convenient to transform the problem
into another one defined by a nonhomogeneous differential equation with
homogeneous boundary conditions.* To this end we introduce the trans-
formation

ux(x,t) = w(x,t) + Plgl(x) + Pzgz(x) (69)

¥ For a discussion of this type of transformations, see the text by
L. Meirovitch (Reference 14), Section 7-14.
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where Pl = le and P2 = sz are the same functions as in boundary
conditions (64) and (65), and 9q and g, are so chosen as to render

the boundary conditions in terms of w(x,t) homogeneous. Introducing
Eg. (69) into Egs. (64) and (65), and insisting that the boundary con-

ditions in texrms of w have the form

En W = a2V =0 (70)

C eX | x=1/2 C X | ye1/2

we are led to the following relations

ma 91 1 ! 0
— = 7 ——— =
c dx x=1./2 ¢ dx x=—T,/2
(71)
22 0 292 1
— = ’ — =
c dx x=1,/2 c dx x=—1,/2
It is not diffic-t to verify that expressions
Yy
dg dg
1 _ _L 2 L
EAC —*—a-;(- = h(X '2‘) ’ EAC —d—sz = h(X‘i’é‘) (72)

where h(x—xo) is a unit step function applied at x = Xgr satisfy con-
ditions (71). Integrating Egs. (72), and substituting the result into
Eg. (69), we obtain
(08) = Wi, t) + b (eByh(x-D) + 2 (xed) [1-neesly]  (73)
Ug (X T = WAKy EA 2 2 EA_ 2 )
Introduction of Eq. (73) into (63) yields the differential equation

in terms of w

82w

ax2

. Ly L, _ 1
-EA_ + m_W = P8 (x-3) P, 8 (x+3) F (P Rg + V.M, 8) (74)
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provided Pl and P2 are constant, which turns out to be the cas:>» for
steady flow. Equation (74) is subject to the homogeneous boundary
conditions (70).

To solve the boundary-value problem defined by Egs. (74) and

(70) , we consider first the eigenvalue problem consisting of the diff-

erential equation

" 2 _
EA_¢" + @°myp = 0 (75)

over the domain -L/2 <x <L/2 and the boundary conditions
¢ ' (L/2) = ¢"(-L/2) =0 (76)

where primes denote differentiations with respect to x. The eigenvalue
problem, Egs. (75) and (76), corresponds to the axial vibration of a
uniform, constant mass bar with both ends unrestrained. The solution
of the problem can be shown to consist of the denumberably infinite

set of eigenfunctions (see, for example, Reference 14, pp. 151-154)

[2/mgL  (~1) (x+1)/2 oin rex/n , r = 1,3,5,—-
¢, (x) = (77)

,/2/m0L (--].)r/2 cos rwx/L. , ¢ 2,4,6,—-

and the eigenvalues

2
Qr = xrnw [ EAC/mOL ’ r =1,2,3,-—— (78)

The eigenfunctions are orthogonal to each other and, in addition, they

are normalized so as to satisfy the relation

L/2
m0¢r(x)¢s(x)dx = srs ’ r,s =1,2,3,-—- (79)
-L/2
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where Grs is the Kronecker delta. The eigenfunction corresponding

to r = 0 represents the rigid-body mode $g = / l/mOL and the asscci-
ated eigenvalue is zero, QO = 0, as is to be expected for a semi-defin-
ite system. It is easy to see also that ¢ is orthogonal to the elgen-
functions ¢S(S=l,2,3,———).

The solution of Eg. (74) is assumed in the form

wix,t) = § ¢r(X) qr(t) (80)
r=1

where q, are the generalized coordinates and the functions Yy satisfy
Eg. (75). Introducing Eg. (80) into (74), multiplying both side oZf
the result by ¢s(x), integrating over the entire domain, ard using E=qg.
(79), we obtain the set of uncoupled ordinary differential =squatiors

with time-dependent coefficients

(1 - st)g, + a2q. =0 , r=1,23--—- (81)

where B8 was defined previously and

L/2
L L 1 -
Qr = ' [Pls(x_f) - Pza(x+§) - f(peAe + veM08j¢r(x)ex
-L/2
= Pl¢r(L/2) - Pz‘i’r("l‘/z) ’ r=1,2,3,-—- (82)

play the role of generalized forces. Letting the initial conditiors

be

w(x,0) = wy(x) , wix,0) = 0 (83) .
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it is showun in Reference 3 that the solution of Eg. (81) is

1/2
Q 0 wa_ (1-8t)
qr(t) = [ ~§ * (Wr - ’% ) s 2 {.YO(Ar)Jl[Ar(l—ﬁt)l/z]
2y 2y
28
- _ 1/2 _ oy _
o 0¥y [ 2, (1-8t) ]ﬂ P = —= . or = 1,2,3,--—  (84)
where
L/2
W, = mowo(x) ¢r(x)dx ’ r =1,2,3,-—— (85}
~-L/2

and JO' Jl’ Yo, Yl are Bessel functions of zero and first order and
first and second kind, respectively. Solution (84) is obtained by
introducing the transformation 1- g8t = 02 which leads to a Bessel
equation in q,. with ¢ as the independent variable. This completes the

formal sclution for the axial vibration.

b. The transverse vibration of the spinning rocket.

Having calculated the axial displacement u, we are now in the
position to determine the axial force P=EAcaux/ax. This, in turn, should
enable us to solve the boundary-value problem, Egs. (67) and (68), Zor
the transverse vibration uyz of the spinning rocket. This, however,
is a formidable problem because of the complicated time dependence cf
the coefficients introduced into Eq. (67) by P. A solution may indeed
be attempted by using an eigenfunction expansion, as in tuae case of
the axial vibration, and converting the partial differential egquation

into an ordinary one, whose solution may be obtained by the method
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of Frobenius. Practical reasons, however, render such a solution in-
tractable. The situation is considerably improved if, through damping,
the solution for the axial displacement reaches a steady-state condition
in which the axial force P is no longer time dependent. We shall attempt
a solution for the transverse vibration under these circumstances.
Ignoring the term containing the axial elastic acceleration ﬁx in
Eg. (63), and considering the boundary conditions (64), the axial force

can be shown to have the expression

X
P = EAC —_— =P, - (5 - f)(Pl_PZ) (86)

Upon introducing Eg. (86) into Eg. (67) we obtain a homogeneous partial
differential equation with time~dependent coefficients entering through
the mass m which is a known function of time. Equation (67) 1s subject
to the homogeneous boundary conditions (68). A solution of the corr-
esponding boundary-value problem can, likewise, be attempted in terms
of the eigenfunctions of the associated uniform, constant-mass bar in
transverse vibration but, by contrast, this time no transformation is
necessary as the boundary conditions are already in homogeneous form.
Let us consider the eigenvalue problem comprising the differential

equation
(11} = A
EIC ¥ noY (87)
and the boundary conditions

" o= =0 at x = -L/2,L/2 (88)
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The solution of this problem is given in Reference 14, Sections 5-10
and 10-5. Using the results from there, we can write the solution of

Eg. (67), with P given by Eq. (86), in the form

uyz(x,t) = 5 b (%) n _(t) (89)
r=1
where wr(r = 1,2,3,--) are the solutions of the eigenvalue problem,

Egs. (87) and (88), and n, are associated generalized coordinates, which
in this case are complex. Introducing Eq. (89) into (67), multiplying

the result by Yor and integrating over the domain, we obtain

BIE“

. .. 2 §
(nS + 21 wng ~ w'm Y o+ krsnr =0 ’ s =1,2,3,-- (90)
0 s
r=1
where consideration has been given to Eq. (87) and the fact that the

eigenfunctions are orthogonal. The coefficients krs have the form

L/2
_2 ’l Id
k = A 6rs + Pyr ws x (91)

-L/2

by virtue of the fact that u = satisfies- boundary conditions (68), as

can be seen in Reference 14 (page 447). 1In fact from the same source

(see pages 450-451), we can write the coefficients for r = s
2 1. v 2 ' 2
kpy = 82+ 55 [GR 4R (/20 (21+38)) (v (-1/2)) 7 ]

+ 3] Py _(L/2)9_(L/2) ~ Py (-L/2)y_(-L/2)]

3eey | w2y - w22y | (92)
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whereas for r # s we obtain s

l 2 1 T
k__ = P.__?{Ar [2yy (L/2)y [ (@/2) - Py (-L/2)y . (-L/2)]

r s

2 ' ' |
- a2 [ev /2)e @) - ey /2 (/)] )

2 .2
4(Pl—P2) A A

h
T 2.
r .

+ o [0 (m/2)0 (@/2) - v (-L/2)0 (-L/2) | (93)

s
(n2-2%
Equations (90) constitute an infinite set of coupled ordinary
differential equations with time-dependent coefficients; the coupling
enters through the coefficients krs’ r # s. But for large values of
r and s the coefficients for which r #¥ s become increasingly small
compared to the ones for which r = s. This is equivalent to the un-

coupling of the egquations corresponding to high values of r from the

ones corresponding to low values of r so that we can limit the set (90)

to the first n equations and truncate the series in these equations
accordingly. The resulting n equations can be written in the matrix
form

momr o+ B 2iu(i) - B w?{n) + [x[{n} ={0) (94)

Mo Mo ™o

where {n} is an n x 1 column matrix and [k] is the n x n symmetric matrix
of the coefficients krs(r,s =1,2,~---,n). It turns out that the set of

n eguations, Eg. (94), can be uncoupled by means of a linear transformation.
To this end, we ccnsider the eigenvalue problem associated with the

symmetric matrix [k) in the form
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[x1lz1= [z 1[v]

(95)

where [% ] is the modal matrix associated with [k]and [v] is the cor-
responding diagonal matrix of the eigenvalues. It can be shown (see
Reference 14, Section 4-8) that the modal matrix possesses the ortho-

gonality property and, if also normalized, it satisfies the relation
T
[z17 [z1=1[z1] (96)

where [Z]T is the transpose of [2] and [I] is the identity matrix.

Next we introduce the linear transformation
{n} = [z]{c} (97)

into Eq. (94), premultiply throughout the resulting equation by [Z]T,

recall Eqg. (96), and obtain

IIE—O{'@'} + I’g_o 2iw{i} - I_;‘—(; w?{z} + [ylic}t = {0} (98)

where, from Egs. (95) and (96), we substituted [Z]T(k][Z] = [r].

Equation (98 ) represents a set of n uncoupled equations of the form

(1 - 8t) ('c's + 2im&s - w2;5> +v t_ =0 , s=1,2,-—,n (99

n

in which we substituted m/m0 1- Bt on the assumption that me is small
relative to m,-
Through a change of the independent variable, Egs. (99) can be

brough into a form which lends itself to a closed-form solution. To show

this, we introduce the transformation o2 = 1-Bt leading to
2
d ¢ . dg
s 1 , 4iwc s 4 _2 2 — _ _—
1.2 - GF S 7)’——60 + ——Bzws wieT) T 0, s 1,2, /0 (100)




It is not difficult to show that the general solution of Egs. (100) is .

.2 4y
_ iwc“/B 2 s
r, = ce [eq1plege) + ooy (ago)] /ol = = (101)
where the constants Cq1 and Cgo depend on the initial conditions.
Assuming the initial conditions.
dg (t) .
ES(O) = CSO r T8 _ =0 r 8 =1,2,-~-, n {102)
t=0
solution (101) becomes
1/2 -~iwt
: (1-8t) e Q
g (t) _ " s0 . e 1/2
't = . {[2iov (a) + a Yo ()] 0 ag(1-88)72]

~ [ Zinl(uS) + asJO(uS)j Yl[as(l—st)l/ZJ} ;, 8 =1,2,---,n
(103)
We note that the initial conditions (102) are related to the initial
transverse digplacement and velocity of the rocket. The second of Egs.
(102) implies that the initial transverse velocity is zero. On the other

hand, the guantities Ly are related to the initial transverse displacement

uyz(x,o) = uyzo(x) (104)
by

gt = [21%ngy) (105)

where the sth element of the matrix {no} has the form

K L/2
Ngg = nS(O) = m, uyzo(x) ws(x)dx, s =1,2,--~,n (106)
/I -L/2
This completes the formal solution of the transverse vibration problem. .
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7. Numerical Results

The solution for the rigid-body motion and the one for the axial
and transverse vibrations have been evaluated numerically on an IBM
7040 computer. The data used, taken to represent a typical solid-

fuel sounding rocket, is as follows

P = 0 ‘ Vo = 8,290 ft sec_l . L = 100 in
_ . -1 . . -1 -1
myg = 4.25 1b in ’ m.g = 0.5 , 1.57, 3.0 1b in sec
E = 30 x 10° 1b in”2, A_ = 7.53 in® , 1_ = 93.00 in®
B ) 3 . =2 _ -1
AfO = 36.4 in~ , pL/2 = 2,000 1b in ; w = 10, 20 rad sec

The initial conditions have the form

X{(0) = ux(x,O) = uz(x,O) = 0

2
T

- - X _
uy(x,O) = [ A(cos I T,

. 2T 6x .
) + B(sin - 2= )] Fe

where A and B are coefficients measured in feet. We note that, depend-

ing on these coefficients, uy(x,O) can be made to resemble approximately
the first or the second eigenfunction of the constant-mass system. Sev-
eral combinations of A and B have been explored.

Figure 4 shows the rigid-body motion in the longitudinal direction
for three different burning rates. Clearly, for larger burning rates
the rocket climbs faster.

Figures 5 through 8 show the axial and transverse elastic dis-—
placements for selected times. The plots are for various burning rates
and spin velocities. We note from Figures 5a and 6a that in the
initial stages of the flight the burning rate ﬁcg affects the axial dis-

placement u, to a much larger extent than it affects the transverse
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displacements u_ and u,. The explanation is that the mass rate of
change has an immediate effect on the axial force and, as soon as the
pressure has built up in the combustion chamber, the axial tension be-
gins to produce an elongdtion of the missile case. The rate of burning
affects also the transverse displacements, but this effect takes Trnger
to make itself felt, as can be seen from Figures 5b and 6b. Although

the displLacements u ., u ., and u, are oscillatory in nature, they do not

y
represent normal mode vibration (in the commonly accepted sense) by any
weans, as both the amplitude and period of oscillation depend on the
burning rate and on time.

The' rocket spin velocity w has no effect whatsoever on the axial
vibratioﬁ but it does have an effect on- the transverse vibrations.
-iwt

The term e represents a complex vector of unit magnitude, rotating

in the negative sense with angular velocity . With regard to the

components of Eqg. (103), the term e—lwt[>2iw Yl(as) + g

o ilut - @)

YO(“s)] can
.be interpreted as a rotating vector ry

[4 02 Yi(as)'+ ai Yg(as)J 1/2 and ¢; = tan~t [2w Yl(as)/as Yo(as)]-

where r, =

A similar interpretation can be given to the term e iut [2iw Iy (ag)
+ oy Jo(as)]. Hence, the effect of w is to rotate both components of
+he transverse vibration ;S(t) with the angular velocity @ with respect
to the body axes but with different phase angles. Of course, the two
components have different time-dependent amplitudes and periods. Figures
7a through 8b show plots of the transverse displacements for various
spin rates.

As expected, the rocket undergoes an axial displacement u regard-~

less whether it was subjected to an initijial displacement in the axial .

direction or not. By contrast, under the assumptions of zero external
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transverse forces and reactive transverse forces at the nozzle, the
displacements uy and u, are entirely dependent on the transverse initial
conditions. In fact, the response persists on alternating between the
first and second eigenfunction of the constant-mass system. This can
be easily explained by the fact that the initial transverse displace-
ment is a combination of two functions resembling the first two eigen-—
functions in question. Moreover, the assumption that the mass remains
uniformly distributed throughout burning tends to eliminate the other
eigenfunctions from the sclutions. No tendency of the amplitudes to
increase with time is detected. This is true for a relatively large
range of spin rates. Since the effect of the spin.rate was not found

to be significant, response curves for only two values of w are reported.

8. Summary and Conclusions

In the first part of this paper (Sections 2 through 5) a new and
general formulation of the dynamical problems associated with the powered
flight of a flexible, variable-mass rocket is presented. The formul-
ation is more complete than any of the existing ones, and it includes in
one unifying treatment many effects treated heretofore separately. Quite
often it is difficult to justify separating these effects on physical
grounds, and this seems to be the case especially with the vehicle flex-~
ibility and mass variation, at least in the case of rapid mass variation.
The mathematical formulation is reduced to six ordinary differential
equations, for three rigid-body translations and three rigid-bhody ro-
tations, as well as three partial differential equations with the
corresponding boundary conditions, for one laongitudinal and two trans-

-

verse elastic displacements. The eguations ar¥e nonlinear and possess
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time~dependent coefficients due to the mass variation. The state of thé
art does not permit a closed-form solution of the complete equations.

We have considerable interest in the vibrational characteristics
of the vehicle during the powered flight. To obtain an analytical
solution revealing these characteristics, certain simplifying assump-
tions reflecting reasonably well the physical picture are made. In
the second part of the paper, namely in Section 6, such solutions are
obtained. We first assume in that section that the forces and torgues
are not affected by the elastic displacements. Under this assumption,
the rigid-body motion can be solved independently of the elastic motion.
The equations for the rigid-body reduce to the familiar case of a six-
degree-of-freedom rigid body, possessing variable mass. The aercdynamic
forces are assumed to be sufficiently small during the first instants
of the flight that they can be ignored. If the mass distribution, as
well as the rate of decrease of mass, is assumed to be uniform, then
the mass center does not shift relative to the vehicle. As a result,
the equations for the rigid-body translationg and the ones for the rigid-
body rotation become uncoupled. The terms corresponding to the rigid-
body solution appear as inertia forces in the equations for the elastic
displacements.

If the rocket travels vertically upward with a given spin, and
zero angle between the engine axis and the vehicle axis, then the rigid-
body motion reduces to pure translation in the axial direction and pure
spin at a constant rate about the longitudinal axis. For zero viscosity,
the equation for the internal gas flow can be separated from the equa-
tion for the longitudinal elastic displacement. The gas flow problem -

is one of a steady adiabatic flow in a channel of uniform cross-sectional

»
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area to which mass is added continuously at constant enthalpy and neg-
ligible kinetic energy. The solution of this problem leads to the axial
forces at the boundaries, namely at the closed end and the nozzle

end. We note that these forces induce a tensile axial force in the
vehicle. It turns out that the equation for the longitudinal motion

can be solved independently of the transverse motion. The boundary-
value problem for this comprises a nonhomogeneous differential equation
with nonhomogenecus boundary conditions. Through a change of the de-
pendent variable, the problem is reduced to one defined by a nonhomogen-
eous differential equation with homogeneous boundary conditions. A
solution of this problem is obtained in the form of an infinite series
of eigenfunctions, associated with the constant-mass missile free at
both ends, multiplied by time-dependent generalized coordinates. A
procedure resembling the modal analysis leads to a set of uncoupled
differential equations whose solutions involve Bessel functions of
time-dependent argument multiplied by time-dependent coefficients. The
arguments are the counterpart of the natural frequencies for the constant-
mass system. It is clear from this analysis that this is by no means
normal-mode vibration, which is generally identified with constant coef-
ficients (indicating the degree of participation of each mode in the
response) and constant natural frequencies.

For axial symmetry the equations for the transverse vibrations can
be combined into cne equation by using a complex vector to represent the
two orthogonal components of displacement. This equation also can be
solved by a procedure similar to the modal analysis and analogous con-

- clusions concerning the normal-mode vibration concept can be drawn for

the transverse vibration as for the longitudinal vibration. By contrast,




however, the equations do not uncouple inmediately. Fortunately, trun-—

cating the series solution, and using a linear transformation, it is

possible to derive a set of uncoupled ordinary differential equations,
the solution of which is readily obtained.

In conclusion, the closed-form solutions for the axial and trans-
verse vibrations of the rocket show clearly that normal-mode vibration,
in the commonly accepted sense, does not exist for variable-mass systems.
A commonly used method of treating such systems is the so-called "time-
slice” method, according to which the mass can be regarded instantane-
ously as constant thus permitting a normal-mode solution. The closed-
form solution obtained here can be used to check the measure of validity
of the time-slice approach, especially in the case of systems with rapid
mass variation such as solid-fuel rockets. Moreover, we call attention
to the fact that, in the case of solid-fuel rockets, at least, the engine
thrust gives rise to a tensile axial force in the missile, as a result
of the internal pressure in the combustion chamber. This effect tends
to reduce the transverse deformation as opposed to the unstabilizing
effect of a compressive force, which would obtain if the engine thrust
was assumed to be concentrated at the vehicle aft end.

It must be stressed that the formulation is of a very general
nature and is applicable to a large number of problems in rocket dynamics.
The two problems solved, namely the longitudinal and transverse vi-
brations under pure axial rigid-body translation, should be regarded
as special cases in which closed-form solutions are possible. No
closed-form solution can be expected for the general case and a strictly

numerical solution by means of a high-speed computer cannot be avoided.
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APPENDIX - Calculation of the Engine Thrust.

The purpose of a nozzle is to convert the enthalpy of the flowing
gas into kinetic energy in an efficient manner while, at the same time,
restricting the escape of the gas to a rate suitable for the propellant
reaction inside the combustion chamber. We shall assume that the nozzls
under consideration is convergent-divergent, designed to allow an isen-
tropic expansion to an ambient pressure less than critical. In the
convergent portion of the nozzle, before the throat, the flow is sub-
sonic, reaching sonic level at the throat section, at which point the
flow properties are referred to as critical, and becoming supersonic
in the divergent portion after the throat. Although losses may occur
in the nozzle, they are assumed to be small so that the analysis is
based on the equations for one~dimensicnal isentropic steady flow of
a compressible perfect gas.

Let us consider the one-dimensional isentropic flow of Figure
Al and assume that the stagnation conditions, denoted by the subscript
0, are known. Under these circumstances, we may write the eguations
governing the flow as follows:

First the flow must satisfy the first law thermodynamics.

Considering the control wvolume shown in Figure Al, and denoting the

enthalpy per unit mass by h, this law can be stated

(Al)

i
=
"
+
N
<
(NN

Assunming that there is no friction or heat transfer present, the

second law of thermodynamics becomes simply

o = constant (A2)
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or the entropy s is constant, as implied by the name of the type of
flow under consideration.

The fiow must also satisfy the countinuity equation. Since there

is no mass addition within the nozzle, we must have

DlAlvl = 02A2v2 = constant (A3)

where the flow properties at stations 1 and 2 are denoted by the cor-

responding subscripts.

Similarly the flow must satisfy the momentum equation. Denoting
the force exerted by the nozzle wall on the gas by FT, this equation
"can be written
F., = pA; - PR, = p B,V2 — p,A Vo (a4)
m T P1f1 T PRy T epfpVay T eV )

Equations (Al) through (24) must be supplemented by the equation

of state which for a perfect gas has the form
p = pRT (A5}

in which R is the universal gas constant and T the temperature.
The above relations can be used to derive expressions for the
pressure, density, etc., at any point along the nozzle. For a perfect

gas the speed of sound is given by

(xrT) +/2 (A6)

o]
1

where

k = c¢c_/c

o/ (a7)

in which cp ana c,, are the specific heats. Then the following relations

47




can be shown to hold true.*

_ 1
1+ [(e-1)/2] o°

1
—'{1 + [(x—i)/z] M2}k/Tk“l)

{1+ [ae-1y/2] w? )t/ ) (a10)

where M v/c is the Mach number. Moreover, the cross-sectional area

A at any point is related to the cross-sectional area A, at the throat

1 (k+1)/ [ 2 (k~1)]

G = pv

is the mass flow per unit area at any point and

2.1/2

kpg 2 (k+1)/ | 2(x-1)
Gy =(ﬁ(‘)‘> (m) ): ]

is the mass flow per unit area at the throat.

Equations (A8) through (Al3) are sufficient to determine the isen-
tropic flow in the nozzle provided the stagnation conditions are known.
We are interested primarily in the flow conditions at the nozzle exit.

Por a given rocket design the cross-sectional areas A_ and A, may be
g g e * Y

* See Reference 12, Section 13-5.




»

regarded as known. Since k is also a known quantity, we can use Eq.
(A1l1l) and obtain the Mach number Me at the exit. Introducing this value
into Egq. (A9) we can determine the exit pressure Pgr which enables us

to write the expression for rocket thrust

_ 2 2
FT = peAe + peAeve = peAe(l + kMe) (Al4)

for flight in vacuum. If the rocket operates in the lower fringes of
the atmosphere, then the term paAe, where P, is the atmospheric pressure,
must be subtracted from the right side of Eq. (&l4).

In the above analysis, we have assumed that the stagnation con-
ditions are known. This assumption necessitates further scrutiny.
The stagnation conditions are determined by events occurring upstream
of the nozzle. The flow in the combustion chamber may be regarded as
a steady, adiabatic flow in a channel of uniform cross-—sectional area
with mass addition at constant enthalpy, and at negligible kinetic
energy. The flow is not isentropic and the stagnation conditions are
not constant but decreasing as the nozzle is approached. This problem
is discussed in detail in Refexence 10. The conclusion that can be
reached is that for a Mach nuwmber less than 0.4 in the combustion chamber
the drop in the stagnation pressure may not be significant. Hence,
we shall assume that the stagnation pressure as well as the remaining
stagnation conditions occurring at the fore end of the combustion chamber
are equally applicable to the nozzle. In a more refined analysis of

the gas flow this assumption may have to be revised.
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F’agure 3 - The Rocket Element of Unit Length
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