NASA CONTRACTOR

NASA CR-1528

LOAN COPY: RETURN Te AFWL (HLOL)
KIRTIAND AFB, N MEX

THE GENERAL MOTION OF A

 VARIABLE-MASS FLEXIBLE ROCKET WITH INTERNAL FLOWby Leonard Meirovitch

Prepared by
UNIVERSITY OF CINCINNATI
Cincinnati, Ohio
for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - WASHINGTON. D. C. - FEBRUARYIGTO

THIE-GENERAL MOTION OF A VARIABLE-MASS
 FLEXIBLE ROCKET WITH INTERNAL FLOW

By Leonard Meirovitch

$\checkmark 7$ es 70

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

$$
\begin{aligned}
& \text { Prepared-under Grant No. NGR 36-004-030 by- Ade oney } \\
& \text { corp, au: -UNIVRSITY OF CINCINNATI, Uuir, } \\
& \text { Gincinnati,-Ohio } \\
& \text { for Langley Research Center } \\
& \frac{\text { NATIONAL AERONAUTICS AND SPACE ADMINISTRATION }}{\text { For sale by the Clearinghouse for Federal Scientific and Technical Information }} \begin{array}{c}
\text { Springfield, Virginia 22151 - Price } \$ 3.00
\end{array}
\end{aligned}
$$

LIST OF CONTENTS

ABSTRACT 1

1. Introduction 2
2. Equations of Motion for a GeneraI Variable-Mass System 4
3. The Rigid-Body Motion of a Rocket 8
4. The Equations of Motion of a Flexible Rocket 12
5. The Equations for the Axial and Transverse Vibrations of a Rocket 18
6. Axially Symmetric, Spinning Rocket in Vacuum 24
a. The axial vibration of a rocket 28
b. The transverse vibration of the spinning rocket 33
7. Numerical Results 39
8. Summary and Conclusions 41
9. Acknowledgment 45
APPENDIX 46
References 50
IIlustrations 52

ABSTRACT

This paper consists of two parts. In the first part of the paper a new and general formulation of the dynamical problems associated with the powered flight of a flexible, variable-mass rocket with internal flow is presented. The formulation comprises six ordinary differential equations for the rigid-body motion and three partial differential equations for the elastic motion, with the appropriate boundary conditions. The rigid-body motion consists of three translations and three rotations, whereas the elastic motion is defined by one longitudinal and two flexural displacements, the latter about two orthogonal transverse axes. The differential equations are nonlinear and, in addition, they possess time-dependent coefficients due to the mass variation. The formulation contains many of the rocket dynamics problems investigated heretofore as special cases, and should prove superior when several effects must be considered simultaneously. Solutions of the complete equations can be obtained only numerically by means of a high-speed computer. For a critical examination of the dynamic characteristics of variable-mass bodies, in the second part of the paper an analytical solution of the boundaryvalue problems with time-dependent coefficients associated with the longitudinal and transverse vibrations of an axially symmetric, variablemass, spinning rocket, is obtained under certain assumptions. This paper scrutinizes the concept of normal-mode vibration for a variablemass boost vehicle. Its results can be used to check the measure of validity of the so-called "time-slice" procedure based on this concept, particularly in the case of solid-fuel rockets for which the mass varia\&ion is quite rapid.

1. Introduction

The behavior of a rocket in flight has been studied extensively. Research in the area of rocket dynamics has been concerned with mathematical models ranging from a rigid, variable-mass rocket to a flexible, constant-mass one, during the unpowered as well as the powered flight of the vehicle. Most of these mathematical models must be regarded as treating special aspects of a more general problem.

The treatment of a missile as a rigid body of time dependent mass has been adequately covered by many investigators, including Grubin, ${ }^{\text {* }}$ Dryer, ${ }^{2}$ and Leitmann. ${ }^{3}$ The ballistic trajectories of spin-and finstabilized rigid bodies are treated in a book by Davis, Follin, and Blitzer. ${ }^{4}$

A considerable amount of effort has been devoted to the analysis of an elastic body subjected to longitudinal acceleration. For example, Seide ${ }^{5}$ has treated the effect of both a compressive and a tensile force on the frequencies and mode shapes of transverse vibration of a continuous slender body. Others, such as Beal, 6 have been concerned with the problem of buckling instability of a uniform bar subjected to an end thrust as well as with the change in the body natural frequencies as a result of that thrust. These investigations regard the mass of the body as constant in time.

A series of reports by Miles, Young, and Fowler ${ }^{7}$ offers a comprehensive treatment of a wide range of subjects associated with the dynamics of missiles, including fuel sloshing. Again the mass variation is not accounted for.

[^0]Attempts have been made to consider simultaneously the mass variation and missile flexural elasticity by investigators such as Birnbaum ${ }^{8}$ and Edelen. ${ }^{9}$ Both were concerned with solid-fuel rockets and neither of them included the axial elasticity of the missile. On the other hand, Price ${ }^{10}$ concerned himself with the internal flow in a solid-fuel rocket and ignored entirely the vehicle motion. More recently an attempt to synthesize the problem of rocket dynamics has been made by Meirovitch and Wesley. ${ }^{l l}$ This latter work accounts for the mass variation, rigidbody translation and rotation, and axial and transverse deformations but it assumes the motion to be planar, which exludes spinning rockets.

This paper can be regarded as consisting of two parts: general formulations (Sections 2 through 5), and solutions (Section 6). The first part of this investigation represents an attempt to unify the various aspects of missile dynamics problems into one formulation. Section 2,3 , and 4 derive general equations of motion for a flexible variable-mass rocket with internal gas flow. The motion is defined by three rigid-body translations, three rigid-body rotations, and one axial and two transverse elastic displacements. The internal gas flow effects are reduced to equivalent forces identified as the Coriolis force, the force due to the unsteadiness of the gas flow relative to the vehicle, and the reactive force. In Section 5 the elastic motion is specified by regarding the rocket as a bar undergoing one axial and two flexural displacements. The complete formulation reduces to six ordinary differential equations for the rigid-body motion, and three partial differential equations with the associated boundary conditions for the elastic motion. The differential equations are nonlinear and, in addition, they possess time-dependent coefficients due to the mass variation. This general
formulation contains many of the previously mentioned investigations as special cases. In fact, it represents an extension and generalization of Reference 11 by considering the motion as three-dimensional rather than planar, thus enabling the treatment of spinning rockets. This necessitates a different approach to the problem formulation, as the rotation is expressed in terms of quasi-coordinates rather than Euler's angles. No closed-form solution of the complete equations can be anticipated.

As an application of the general formulation, this paper examines closely the nature of the vibrational motion of variable-mass systems as opposed to constant-mass systems. Closed-form solutions are sought as they allow for easier physical interpretation. Section 6 presents analytical solutions for the boundary value problems with time-dependent coeffi-cients associated with the longitudinal and transverse vibrations of an axially symmetric, variable-mass, spinning rocket in vacuum. The conclusion is that normal-mode vibration in the commonly accepted sense does not exist for variable-mass systems. The analysis should provide a check of the extent to which approximate methods based on the normal-mode concept, such as the "time-slice" method, can be used for variable-mass systems. This question may prove especially interesting when the mass variation is rapid as in the case of solid-fuel rockets.
2. Equations of Motion for a General Variable-Mass System

By a variable-mass system we understand a system of changing composition. To clarify this statement we envision a control volume in space and, assume that the identity of the matter within the control volume may change with time, although the shape of the control volume is fixed. When the system composition changes, we cannot equate the time-derivative of the sum of momenta associated with the particles to the sum of the time
derivatives, because the summation involves different sets of particles at different times. In this case, the proper procedure for obtaining the equations of motion is to write the force equation in the form $\underset{\sim}{F}=\dot{p}^{*}$, where the rate of change of the momentum $\dot{\underline{p}}$ is derived by a limiting process consisting of calculating p at two different instants, a time interval Δt apart, dividing the difference of the two values by Δt, and letting $\Delta t \rightarrow 0$. In so doing, we ensure that the same total mass is involved, although at one time it is entirely inside the control volume and at the other time part of the mass is outside.

Let us consider a system occupying a certain volume in space at time t, namely the control volume enclosed by the control surface shown in solid line in Figure 1 . If the control volume is fixed in an inertial space, then it is shown in Reference 12 (p. 96) that the force equation has the form

$$
\begin{equation*}
E=F_{S}+F_{B}=\frac{\partial}{\partial t} \int_{C V} v \rho d v+\int_{C S} v(\rho V \underset{m}{ } \underset{m}{ }) \tag{I}
\end{equation*}
$$

where E_{S} and E_{B} are the resultants of the surface and body forces, respectively, acting upon the system.

Next we consider the case in which the control volume translates and rotates relative to an inertial space. We shall assume that part of the mass is solidly attached to the control volume, hence translating and rotating in space with it, and define a system of body axes x, y, z fixed with respect to the control volume, so that the force equation can be written

* A wavy line under the symbol denotes a vector quantity or operation.
in which $\underset{m}{ }$ is the absclute acceleration of the mass element $d M$, a_{0} is the acceleration of the origin 0 of the system x, y, z, j is the angular velocity vector of axes x, y, z, and $\frac{r}{m}$ is the position of $d M$ relative to these axes. Recognizing that if the body axes were fixed in the irertial space only the term $\int_{M_{f}} \dot{V_{m}} d M$ would survive, where M_{f} is the mass moving relative to the control volume, and considering Eg. (1), we can write the force equation in the form

where the partial derivative $\partial / \partial t$ is to be calculated by regarding axes x, y, z as fixed. Next we introduce the following equivalent forces

where ${\underset{\sim}{m}}^{F}$ is recognized as the Coriolis force, $\underset{\sim}{F}$ is a force due to the unsteadiness of the relative motion, and ${\underset{\sim}{R}}$ is referred to as a reactive force. With this notation, Eq. (3) becomes

The terms on the right side of Eq . (5) may be regarded as pertaining to a rigid body of instantaneous mass M.

In a similar manner, the torque equation about the origin 0 can be written

where

$$
\begin{align*}
& \mathbb{N}_{C}=-2 \int_{M_{f}} \underset{\sim}{x} \underset{\sim}{x}(\omega) d M \\
& \mathbb{N}_{U}=-\frac{\partial}{\partial t} \int_{M_{f}} \underset{\sim}{r} \underset{\sim}{v} d M \tag{7}\\
& N_{R}=-\int_{A}(\underset{\sim}{x} \underset{\sim}{v})(p \underset{\sim}{V} d A)
\end{align*}
$$

The significance of the various torques is self-evident. Moreover, the expression for \mathbb{N}_{U} can be easily explained by recalling that $\partial / \partial t$ implies a time rate of change with axes x, y, z regarded as fixed.

The above equations must be supplemented by the continuity equation

$$
\begin{equation*}
\int_{C S} \rho V=d A=-\frac{\partial}{\partial t} \int_{C V} d M \tag{8}
\end{equation*}
$$

which expresses the fact that the net efflux rate of mass across the control surface must equal the rate of mass decrease inside the control volume.

Equations (5) and (6) can be given an interesting physical interpretation by recalling that the system comprises one part solid and another part of changing composition, and observing that the right sides of these equations represent the motion of the system as if it were rigid in its entirety. Hence, Eqs. (5) and (6) may be regarded as the equations of motion of a fictitious rigid body of instantaneous mass M, provided that the actual surface and body forces acting upon the system are supplemented by three equivalent forces, namely the Coriolis force, the force due to the unsteadiness of the relative motion, and the reactive force. This is the substance of a statement referred to as the
"principle of solidification for a system with changing composition with a hard shell". (See Reference 13, p. 13).

3. The Rigid-Body Motion of a Rocket

The formulation of the preceding section is ideally suited for treating the problems associated with the motion of a rocket. Although a rocket is in general flexible, a first-approximation solution for its dynamic behavior may be obtained by regarding it as rigid. The solution can be refined by assuming that because of flexibility the rocket undergoes certain elastic displacements. The mathematical model of the rocket is assumed to comprise a long cylindrical shell open at the aft end and closed at the fore end. The inner part of the rocket consists of the propellant which surrounds a cylindrical cavity whose axis coincides with the rocket's longitudinal axis, namely axis x in figure 2. The cavity plays the role of the combustion chamber as it contains the burned gas which flows relative to the shell until expelled through a nozzle at the aft end. This mathematical model is more representative of a solid-fuel rather than liquid-fuel rocket. We shall consider first the case in which the rocket shell is rigid.

For most rockets the mass variation does not cause the vehicle center of mass to shift appreciably relative to the body (see, for example, Reference 13, p. 15); when the fuel rate of burning is uniform along the entire rocket it does not shift at all. Hence, we shall assume that the vehicle mass center is fixed relative to the body axes x, y, z and choose the origin 0 of these axes to coincide with the mass center so that, by the definition of the center of mass, we have

$$
\begin{equation*}
\int_{M} \underset{\sim}{r} d M=0 \tag{9}
\end{equation*}
$$

In view of Eq. (9), Eqs. (5) and (6) reduce to

$$
\begin{equation*}
{\underset{m}{S}}+\underline{E}_{B}+{\underset{\sim}{C}}_{C}+E_{U}+F_{R}=M a_{0} \tag{10}
\end{equation*}
$$

and

where
$I_{\sim}=\left(I_{x x} \omega_{x}-I_{x y} \omega_{y}-I_{x z} \omega_{z}\right) \underset{\sim}{i}+\left(-I_{x y} \omega_{x}+I_{y y} \omega_{y}-I_{y z} \omega_{z}\right){\underset{m}{m}}_{j}$

$$
\begin{equation*}
+\left(-I_{x z} \omega_{x}-I_{y z} \omega_{y}+I_{z z} \omega_{z}\right) \underline{k} \tag{12}
\end{equation*}
$$

is the angular momentum of the vehicle about the origin 0 and \dot{L}^{\prime} is the rate of change of $\underset{m}{\mathrm{I}}$ due to the change in the body angular velocity relative to the body axes. It is obtained by replacing the components of $\underset{\sim}{\omega}$ by the components of $\dot{\omega}$ in Eq. (12). The quantities
$I_{x X}=\int_{M}\left(y^{2}+z^{2}\right) d M, I_{y y}=\int_{M}\left(x^{2}+z^{2}\right) d M, I_{z z}=\int_{M}\left(x^{2}+y^{2}\right) d M$
$I_{x y}=\int_{M} x y d M, \quad I_{x z}=\int_{M} x z d M, \quad I_{y z}=\int_{M} y z d M$
are the instantaneous moments and products of inertia of the vehicle about the body axes. Equations (10) and (11) indicate that the rigidbody translational and rotational motions are uncoupled. We note that in our case the moments of inertia are time-dependent because of the mass variation. Of course, Eq. (11) can be simplified considerably .by choosing x, y, z to coincide with the principal axes.

It remains to derive explicit expressions for the actual and equivalent forces and torques. The surface force consists of the aerodynamic force on the vehicle wetted area and the pressure force across the exit area. Denoting by f_{A}^{*} the aerodynamic force per unit of the wetted area A_{w}, by p_{e} the pressure across the exit area. A_{e}, and by p_{a} the atmospheric pressure, the surface force takes the form

$$
\begin{equation*}
{\underset{\sim}{m}}_{S}=\int_{A_{W}}{\underset{\sim}{f}}_{A}^{*} d A_{W}+\left(p_{e}-p_{a}\right) A_{e^{i}} \tag{14}
\end{equation*}
$$

Assuming that the gravitational field is uniform, the body force is simply

$$
\begin{equation*}
{\underset{E}{B}}=\int_{L} \mathrm{mg} d x=M g \tag{15}
\end{equation*}
$$

where L is the length of the rocket, m the distributed mass, and g the acceleration due to gravity. Since the flow everywhere is along the x-axis, with the possible exception of the exit point, we have

$$
\begin{equation*}
v=-v(x, y, z, t) \frac{i}{m}=-v(x, t) \frac{i}{m} \tag{16}
\end{equation*}
$$

where we assumed that the flow across the cross-sectional area is uniform, so that the Coriolis force can be written

$$
\begin{align*}
{\underset{\sim}{F}}_{C} & =-2 \omega_{\sim}^{x} \int_{I}{\underset{m}{m}}_{f} d x=2\left(\omega_{z} j-\omega_{Y} \underset{M}{k}\right) \int_{I} v_{f} d x \\
& =-2\left(\omega_{z} j-\omega_{Y} \underset{Y}{k}\right) \int_{I}\left(\int_{x}^{b} \dot{m} d \xi\right) d x \tag{17}
\end{align*}
$$

where use has been made of the continuity equation, namely

$$
\begin{equation*}
\mathrm{vm}_{\mathrm{f}}=-\int_{\mathrm{X}}^{\mathrm{b}} \quad \dot{\mathrm{~m}} d \xi \tag{18}
\end{equation*}
$$

-Equation (18) results from Eq. (8) by considering a control volume from a point x to the closed end of the vehicle. In Eq. (I8), m_{f} denotes fluid mass per unit length at point x, b is the distance from the vehicle mass center to the closed end, m is the mass rate of change per unit length, and ξ is a dummy variable of integration. Similarly, the force due to the flow unsteadiness assumes the form

$$
\begin{equation*}
{\underset{F}{U}}^{F_{U}}=-\frac{\partial}{\partial t} \int_{L} \operatorname{vm}_{f} d x=-\left[\frac{\partial}{\partial t} \int_{I}\left(\int_{x}^{b} \dot{m} d \xi\right) d x\right] \underset{\underset{i}{i}}{ } \tag{19}
\end{equation*}
$$

Finally, the reactive force can be written
${\underset{\sim}{R}}=-\int_{I}\left[\frac{\partial}{\partial x}\left(V \operatorname{VM}_{f}\right)+\Delta\left(V \operatorname{VM}_{f}\right) \delta(x)\right] d x=\left.V \operatorname{VI}_{f}\right|_{x_{e}}$
where the symbol x_{e} indicates that the quantity vym ${ }_{f}$ is to be evaluated at the exit point. The integrand in Eq. (20) can be easily derived by assuming one-dimensional flow along the x-axis. It will be noticed that the expression makes allowance for possible abrupt changes in the flow pattern, as would occur if the rocket engine were to be gimbaled at a certain angle with respect to the x-direction. This is reflected by the second term in the integrand, in which $\delta(x)$ is a spatial Dirac's delta function. Ietting the flow direction at the exit be defined with respect to axes x, y, z by the direction cosines ${ }^{\ell} x R^{\prime} \ell^{\ell} y R^{\prime}{ }^{\ell} z R^{\prime}$ respectively, and using the continuity equation, Eq. (I8), the reactive force becomes

$$
\begin{equation*}
{\underset{m}{F}}=-\dot{M} v\left(x_{e}, t\right) \quad\left(\varepsilon_{x R^{m}}^{i}+\varepsilon_{y R}{ }_{m}^{j}+\varepsilon_{z R}{ }_{m}^{k}\right) \tag{21}
\end{equation*}
$$

where \dot{M} represents the total mass rate of change which, of course, is a negative quantity.

The forces ${\underset{\sim}{F}}$ and ${\underset{F}{R}}$ can be written in the form
where ${\underset{m}{A}}$ denotes the aerodynamic force

$$
\begin{equation*}
{\underset{M}{A}}^{A}=\int_{A}{\underset{W}{A}}_{A}^{A} d A \tag{23}
\end{equation*}
$$

and ${\underset{T}{T}}$ is the "engine thrust"

In an analogous manner, we obtain the torques

$$
\begin{align*}
& N_{A}=\int_{A_{W}}{\underset{\sim}{r}}_{S} \underset{\sim}{x}{\underset{A}{f}}_{\underset{A}{*}}^{d A_{W}} \\
& { }_{m}^{N}=-a|\dot{M}| v\left(x_{e}, t\right)\left(\ell_{z R}{ }^{j}-\ell_{Y R}{ }_{m}^{k}\right) \\
& { }_{-\mathrm{B}}^{\mathrm{B}}=0 \tag{25}\\
& N_{C}=-2\left(\omega_{Y} j+\omega_{z} k\right) \int_{L} x\left(\int_{x}^{b} \dot{m} d \xi\right) d x \\
& { }_{M U}=0
\end{align*}
$$

in which ${\underset{S}{S}}$ is the radius vector to a point on the rocket surface and a is the distance from the origin 0 to the exit point.

Equations (10) and (11), in conjunction with the expressions for the actual and equivalent forces and torques derived above, possess time-dependent coefficients so that a closed-form solution of the problem is not possible, except for some simple special cases.
4. The Equations of Motion of a Flexible Rocket

When the rocket casing can undergo elastic deformations the problom
requires further attention. The case in which the rigid-body motion is planar and the elastic motion consists of axial and transverse vibrations has been treated by Meirovitch and Wesley (Reference ll). The present investigation represents an extension and generalization of that work.

Let us consider a rocket translating and rotating relative to the inertial space X, Y, Z, as shown in Figure 2. As the control volume, we consider the volume occupied by a rocket element of unit length when the vehicle is at rest relative to the body axes x, y, z. Figure 3 shows the corresponding element. Because the rocket shell is elastic, the entire mass associated with the control volume in question can move relative to that volume. The rocket case and unburned fuel are assumed to move together and their motion is different from the motion of the burned fuel, so that it will prove convenient to denote the motions and mass associated with the case element by the subscript c and the ones related to the burned fuel element by the subscript f. In analogy with Eq. (2), and considering the rocket element shown in Figure 3 , we can write the force equation of motion in the form

$$
\begin{align*}
& +\int_{M_{f}}\left[a_{0}+\dot{v}_{f}+2 \underset{\sim}{\omega} \underset{\sim}{x}{\underset{\sim}{f}}+\dot{\omega} \underset{\sim}{x}{\underset{\sim}{f}}+\underset{\sim}{\omega} \underset{\sim}{x}\left(\underset{\sim}{x} \underset{f}{r_{f}}\right)\right] d m \tag{26}
\end{align*}
$$

where f_{S} and f_{B} are distributed surface and body forces, respectively, V_{C} is the elastic motion of a point inside the case element, and V_{f} is the fluid velocity relative to the body axes. We shall assume that the elastic motion is the same for the entire case element, and a similar
statement can be made concerning the velocity of the fluid element. Introducing the notation

$$
\begin{equation*}
\underline{V}_{C}=\dot{\underset{u}{u}} \quad, \quad{\underset{w}{E}}=\dot{u}_{w}+\underset{w}{V} \tag{27}
\end{equation*}
$$

where $\underset{\sim}{u}$ represents the elastic displacement vector, and v is the velocity of the fluid relative to the case, we can rewrite Eq. (26) as follows

$$
\begin{align*}
& +\int_{m_{f}}(\dot{v}+2 \omega \underset{m}{x} \underset{m}{v}) d m=({\underset{m}{0}}+\underset{\sim}{\ddot{u}}+2 \omega \underset{\sim}{x} \underset{\sim}{\dot{u}}) m+\underset{\sim}{\dot{w}} \underset{m}{x} \int_{m} \underset{\sim}{x} d m \\
& +\underset{\sim}{x}\left(\underset{\sim}{\omega} \underset{\sim}{x} \int_{m}^{r} d m\right)+(\underset{\sim}{r}+2 \underset{\sim}{\omega} \underset{\sim}{x}) m_{f} \tag{28}
\end{align*}
$$

where $m=m_{c}+m_{f}$ is the mass of the rocket per unit length. Moreover, the radius vector $\underset{\sim}{r}$ has the expression

$$
\begin{equation*}
\underset{w}{r}=x \underset{w}{i}+y \underset{\sim}{j}+z \underset{m}{k}+\underset{m}{u}=\left(x+u_{x}\right) \underset{m}{i}+\left(y+u_{y}\right) \underset{w}{j}+\left(z+u_{z}\right) \underset{m}{k} \tag{29}
\end{equation*}
$$

in which u_{x}, u_{y}, and u_{z} are the elastic displacements of the case element in the x, y, and z directions, respectively. A slight simplification can be achieved by assuming that the rocket possesses axial symmetry as defined by

$$
\begin{equation*}
\int_{m} y d m=\int_{m} z d m=0 \tag{30}
\end{equation*}
$$

so that introducing the "average" radius vector $\underset{\sim}{r}$ whose definition is

$$
\begin{equation*}
\overline{\underline{r}}=\left(x+u_{x}\right) \underset{m}{j}+u_{y}{ }_{m}^{j}+u_{z} k \tag{31}
\end{equation*}
$$

Eq. (28) assumes the form

The surface forces comprise the aerodynamic forces on the surface of the rocket, as well as the forces due to stresses on the rocket shell and fluid pressure. The latter twotypes of forces are acting on the cross-sectional surfaces so that, although they are internal to the rocket, they must be considered surface forces due to the nature of the chosen control volume. Body forces, as in the preceding section, are due to gravity alone.

Invoking the analogy with Eq. (5), we can rewrite Eq. (32) to read

$$
\begin{align*}
& =\left(\underline{a}_{0}+\bar{a}\right) m=a m \tag{33}
\end{align*}
$$

where a is the absolute acceleration consisting of the acceleration a_{0} of the origin 0 and the acceleration \bar{a} of the case element relative to the body axes. Moreover

$$
\begin{align*}
& {\underset{\mathrm{f}}{\mathrm{C}}}=-2 \underset{\sim}{\underset{\sim}{x}} \mathrm{Vm}_{\mathrm{f}} \\
& {\underset{\mathrm{f}}{\mathrm{U}}}=\frac{\partial}{\partial \mathrm{E}}({\underset{\mathrm{Vm}}{f}}) \tag{34}\\
& {\underset{\mathrm{f}}{\mathrm{R}}}=-\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{VVm}_{f}\right)+\Delta\left(\mathrm{VVm}_{\mathrm{f}}\right) \delta(\mathrm{x}+\mathrm{a})
\end{align*}
$$

are the Coriolis force, the force due to the unsteadiness of the fluid flow relative to the case, and the reactive force, respectively, all per unit length of rocket.

If we express R_{0} in terms of components along axes x, y, z, then the position of the case element at any time is given by

$$
\begin{equation*}
\underset{m}{R}={\underset{m}{m}}_{0}+\bar{r}=\left(R_{0 x}+x+u_{x}\right) \underset{m}{i}+\left(R_{0 y}+u_{y}\right) \underset{m}{j}+\left(R_{0 z}+u_{z}\right) k_{m} \tag{35}
\end{equation*}
$$

Recalling that the unit vectors $\underset{m}{ }, j_{m}$, and k rotate with angular vel.ocity $\underset{m}{w}$, the absolute acceleration of the case element can be written in the form

$$
\begin{equation*}
a_{m}=a_{m 0}+\bar{a}=a_{x} i_{m}^{i}+a_{y} j_{m}+a_{z m}^{k} \tag{36}
\end{equation*}
$$

where

$$
\begin{align*}
a_{x} & =\ddot{R}_{0 x}+\ddot{v}_{x}+2\left[\omega_{y}\left(\dot{R}_{0 z}+\dot{u}_{z}\right)-\omega_{z}\left(\dot{R}_{0 y}+\dot{u}_{y}\right)\right]+\dot{\omega}_{y}\left(R_{0 z}+u_{z}\right)-\dot{\omega}_{z}\left(R_{0 y}+u_{y}\right) \\
& +\omega_{x} \omega_{y}\left(R_{0 y}+u_{y}\right)+\omega_{x} \omega_{z}\left(R_{0 z}+\dot{u}_{z}\right)-\left(\omega_{y}^{2}+\omega_{z}^{2}\right)\left(R_{0 x}+x+u_{x}\right) \\
a_{y} & =\ddot{R}_{0 y}+\ddot{u}_{y}+2\left[\omega_{z}\left(\dot{R}_{0 x}+\dot{u}_{x}\right)-\omega_{x}\left(\dot{R}_{0 z}+\dot{u}_{z}\right)\right]+\dot{\omega}_{z}\left(R_{0 x}+x+u_{x}\right)-\dot{\omega}_{x}\left(R_{0 z}+u_{z}\right) \tag{37}
\end{align*}
$$

$$
\begin{aligned}
&+\omega_{y} \omega_{z}\left(R_{0 z}+u_{z}\right)+\omega_{x} \omega_{y}\left(R_{0 x}+x+u_{x}\right)-\left(\omega_{x}^{2}+\omega_{z}^{2}\right)\left(R_{0 y}+u_{y}\right) \\
& a_{z}=\ddot{R}_{0 z}+\ddot{u}_{z}+2\left[\omega_{x}\left(\dot{R}_{0 y}+\dot{u}_{y}\right)-\omega_{y}\left(\dot{R}_{0 x}+\dot{u}_{x}\right)\right]+\dot{\omega}_{x}\left(R_{0}+u_{y}\right)-\dot{\omega}_{y}\left(R_{0 x}+x+u_{x}\right) \\
&+\omega_{x} \omega_{z}\left(R_{0 x}+x+u_{x}\right)+\omega_{y} \omega_{z}\left(R_{0 y}+u_{y}\right)-\left(\omega_{x}^{2}+\omega_{y}^{2}\right)\left(R_{0 z}+u_{z}\right)
\end{aligned}
$$

We note that the terms involving $R_{0 x}, R_{0 y}, R_{0 z}$ and their time derivatives are associated with the motion of the origin 0 , whereas the remaining terms are due to the motion of the case element relative to 0 .

Similarly, using Eq. (28), the torque equation about point 0 for the rocket element in question takes the form

$$
\begin{align*}
& +\int_{m_{f}} \underline{\underline{x}} \underset{\sim}{x}(\dot{v}+2 \omega x \underline{y}) d m=\underline{\underline{r}} \underset{\sim}{x}\left(a_{0}+\ddot{i}+2 \omega \underset{\sim}{x} \underset{\sim}{u}\right) m \\
& +\underline{\sim}^{1}+\underset{\sim}{\omega} \times \underline{\sim}+\underset{\sim}{\underline{r}} \underset{\sim}{x}(\underset{\sim}{\dot{v}}+2 \underset{\sim}{\underline{x}} \underset{\sim}{v}) m_{f} \tag{38}
\end{align*}
$$

where

$$
\begin{align*}
\frac{1}{m} & =\left(i_{x x} \omega_{x}-i_{x y}{ }^{\omega} y-i_{x z} \omega_{z}\right) i_{m}+\left(-i_{x y}{ }^{\omega} x+i_{y y} \omega_{y}-i_{y z} \omega_{z}\right) \dot{m} \\
& +\left(-i_{x z} \omega_{x}-i_{y z}{ }_{y}+i_{z z} \omega_{z}\right) k \tag{39}
\end{align*}
$$

is the angular momentum of the mass element m about the body axes x, y, z in which

$$
\begin{aligned}
& i_{x x}=\int_{m}\left[\left(y+u_{y}\right)^{2}+\left(z+u_{z}\right)^{2}\right] d m, \quad i_{y y}=\int_{m}\left[\left(x+u_{x}\right)^{2}+\left(z+u_{z}\right)^{2}\right] d m \\
& i_{z z}=\int_{m}\left[\left(x+u_{x}\right)^{2}+\left(y+u_{y}\right)^{2}\right] d m, \quad i_{x y}=\int_{m}\left(x+u_{x}\right)\left(y+u_{y}\right) d m \quad(40) \\
& i_{x z}=\int_{m}\left(x+u_{x}\right)\left(z+u_{z}\right) d m, \quad i_{y z}=\int_{m}\left(y+u_{y}\right)\left(z+u_{z}\right) d m
\end{aligned}
$$

are recognized as the associated moments and products of inertia. Moreover, i^{\prime} is obtained from Eq. (39) by replacing $\omega_{x}, \omega_{y}{ }^{\prime} \omega_{z}$ by $\dot{\omega}_{\mathrm{X}}, \dot{\omega}_{\mathrm{Y}}, \dot{\omega}_{\mathrm{Z}}$, respectively. Equation (38) can be rewritten as

where the torques

$$
\begin{align*}
& \mathrm{n}_{\mathrm{C}}=-2 \overline{\mathrm{~F}} \underset{\sim}{x}(\underset{\sim}{x} \underset{\sim}{\mathrm{x}}) \mathrm{m}_{\mathrm{f}} \\
& n_{u}=-\bar{s} \underset{w}{x} \frac{\partial}{\partial t}\left(\underline{v} m_{f}\right) \tag{42}
\end{align*}
$$

follow directly from Eqs. (34).
Equations (33) and (41) must be supplemented by the continuity equation, Eq. (18).
5. The Equations for the Axial and Transverse Vibrations of a Rocket.

Let us consider the rocket of the preceding section in which u_{x} is the axial elastic displacement and u_{y} and u_{z} are the elastic transverse displacements in the y and z directions, respectively. Assuming that the elastic displacements u_{x}, u_{y}, u_{z} and the angular velocity components ω_{y}, ω_{z}, as well as their time derivatives, are small quantities, we can integrate Eqs. (33) and (41) and obtain

$$
\begin{align*}
& \cong M{\underset{w}{0}}+\int_{L}\left(\ddot{u}_{\sim}^{u}+2 \underset{\sim}{w} \underset{\sim}{x} \underset{\sim}{\dot{u}}\right) m d x \tag{43}
\end{align*}
$$

$=\dot{L}^{\prime}+\underset{\sim}{\omega} \underset{\sim}{x} \underset{\sim}{\underline{w}}-\int_{L} x\left[\left(\ddot{u}_{z}+2 \omega_{x} \dot{u}_{y}+\omega_{x} \dot{u}_{y}\right) \underset{\sim}{j}-\left(\ddot{u}_{y}-2 \omega_{x} \dot{u}_{z}-\omega_{x} \dot{u}_{z}\right) \underset{\sim}{k}\right] m d x$

Comparing Eqs. (10) and (43) on the one hand, and Eqs. (11) and (44) on the other hand, we conclude that the elastic motion is inertially uncoupled from the rigid body motion ${\underset{m}{0}}^{0}$ and ${\underset{w}{m}}^{\omega}$ provided the x-axis is chosen so that the following relations are satisfied

$$
\begin{align*}
& \int_{I} \dot{\underline{u}} m d x=\int_{I} \ddot{u} m d x=0 \\
& \int_{I} x u_{y} m d x=\int_{I} x \dot{u}_{y^{m}} m d x=\int_{I} x \ddot{u}_{y} m d x=0 \tag{45}\\
& \int_{I} x u_{z} m d x=\int_{I} x \dot{u}_{z} m d x=\int_{I} x \ddot{u}_{z} m d x=0
\end{align*}
$$

We shall assume that this is the case, and indeed Eqs. (45) imply that the elastic modes of deformation are orthogonal, with respect to mass, to the rigid body modes of displacement, namely the translation and rotation of the vehicle as a whole. In the event the forces and torques on the vehicle do not depend on the elastic displacements the problem can be solved in two stages. In the first stage we solve for the rigid body motion a_{0} and $\underset{m}{\omega}$ from Eqs. (10) and (11) and then, considering a and $\underset{\sim}{\omega}$ as known, turn to Eqs. (33) through (37) for the elastic motion u_{m}.

Equations (33) and (34), representing the equations of motion for the three components u_{x}, u^{\prime}, u_{z} of the elastic displacement u_{m} are of a general form and, before we can attempt their solution, we must specify the nature of the surface force f_{S}. This force depends not only on the external aexodynamic forces but also on the internal stresses in the shell and fluid pressure. Moreover, we must also know the fluid flow characteristics, as can be concluded from Eqs. (34).

As far as the elastic motion is concerned, the vehicle shell is assumed to behave like a bar in axial and flexural vibrations. Under these circumstances, the distributed surface force can be written in the form

$$
\begin{align*}
& {\underset{S}{S}}^{f}=\left[\frac{\partial}{\partial x}\left(\operatorname{EA}_{C} \frac{\partial u_{x}}{\partial x}\right)\right] \underset{m}{i}+\left[-\frac{\partial^{2}}{\partial x^{2}}\left(\operatorname{EI}_{C Z} \frac{\partial^{2} u_{y}}{\partial x^{2}}\right)+\frac{\partial}{\partial x}\left(P \frac{\partial u}{\partial x}\right)\right] \underset{\sim}{j} \\
& +\left[-\frac{\partial^{2}}{\partial x^{2}}\left(E I_{c y} \frac{\partial^{2} u_{z}}{\partial x^{2}}\right)+\frac{\partial}{\partial x}\left(P \frac{\partial u_{z}}{\partial x}\right)\right] \underset{m}{k}-\left[\frac{\partial}{\partial x}\left(p A_{f}\right)\right] \quad \frac{i}{m} \\
& +f_{A X} \underset{m}{i}+f_{A Y} \underset{\sim}{j}+f_{A Z} \underset{w}{k} \tag{46}
\end{align*}
$$

where the first three terms represent the force components due to internal stresses caused by the axial and flexural vibrations (see, for example Reference 14, Sections 5-7 and 10-3), the fourth term is due to internal fluid pressure differential, and the remaining terms are due to aerodynamic effects. The term P denotes the axial force on the vehicle due to internal stresses and has the expression

$$
\begin{equation*}
P=E A_{C} \frac{\partial u_{x}}{\partial x} \tag{47}
\end{equation*}
$$

It should be pointed out that the longitudinal stiffness $E A_{c}$, where E is the modulus of elasticity and A_{C} the cross-sectional area of the casing, and the flexural stiffnesses $E I_{c y}$ and $E I_{c z}$, where $I_{c y}$ and $I_{C z}$ are area moments of inertia of the case about axes y and z through the cross-sectional center, take into account the casing material only. This implies that the unburned propellant possesses inertia properties but no structural stiffness.

Recalling the assumption that $u_{x}, u_{y}, u_{z}, \omega_{y}$ and ω_{z} are small, the differential equation for the axial vibration takes the form

$$
\begin{align*}
& \frac{\partial}{\partial x}\left(E A_{c} \frac{\partial u_{x}}{\partial x}\right)-\frac{\partial}{\partial x}\left(p A_{f}\right)+f_{A x}+m g \dot{i}+\frac{\partial}{\partial t}\left(v_{f}\right)-\frac{\partial}{\partial x}\left(v^{2} m_{f}\right)= \\
& \quad m\left[\ddot{R}_{0 x}+\ddot{u}_{x}+2\left(\omega_{y} \dot{R}_{0 z}-\omega_{z} \dot{R}_{0 y}\right)+\dot{\omega}_{y} R_{0 z}-\dot{\omega}_{z} R_{0 y}+\omega_{x}\left(\omega_{Y} R_{0 y}+\omega_{z} R_{0 z}\right)\right] \tag{48}
\end{align*}
$$

which is subject to the boundary conditions

$$
\begin{array}{ll}
E A_{C} \frac{\partial u_{x}}{\partial x}=P_{x I} & \text { at } \\
E_{C} \frac{\partial u_{x}}{\partial x}=P_{x 2} & \text { at } \tag{49}\\
{ }^{2} \quad x=-a
\end{array}
$$

where the functions $P_{x l}$ and $P_{x 2}$ are axial forces exerted by the gases on the case at the ends $x=-a, b$.

In a similar manner, the differential equation for the flexural
vibration in the $x y$-plane is

$$
\begin{align*}
& -\frac{\partial^{2}}{\partial x^{2}}\left(E_{C z} \frac{\partial^{2} u_{y}}{\partial x^{2}}\right)+\frac{\partial}{\partial x}\left(P \frac{\partial u_{y}}{\partial x}\right)+f_{A y}+m_{g} \dot{m}_{w}+2 \omega_{z} \nabla m_{f} \\
& =m\left\{\ddot{R}_{0 y}+\ddot{u}_{y}+2\left[\omega_{z} \dot{R}_{0 x}-\omega_{x}\left(\dot{R}_{0 z}+\dot{u}_{z}\right)\right]+\dot{\omega}_{z}\left(R_{0 x}+x\right)\right. \\
& \left.-\dot{\omega}_{x}\left(R_{0 z}+u_{z}\right)+\omega_{x} \omega_{y}\left(R_{0 x}+x\right)-\omega_{x}^{2}\left(R_{0 y}+u_{y}\right)\right\} \tag{50}
\end{align*}
$$

with the boundary conditions

$$
\begin{array}{ll}
E_{C Z} \frac{\partial^{2} u y^{\prime}}{\partial x^{2}}=0 & \text { at } x=-a_{r} b \\
-\frac{\partial}{\partial x}\left(E I_{C Z} \frac{\partial^{2} u_{y}}{\partial x^{2}}\right)+P_{x I} \frac{\partial u_{y}}{\partial x}=0 \quad \text { at } x=b \tag{51}\\
-\frac{\partial}{\partial x}\left(E I_{C Z} \frac{\partial^{2} u_{y}}{\partial x^{2}}\right)+P_{x 2} \frac{\partial u y}{\partial x}=P_{y 2} \quad \text { at } x=-a
\end{array}
$$

The first of boundary conditions (51) indicates that there are no bending moments at the ends $x=-a, b$, the second one expresses the fact that the force in the y-direction at the end $x=b$ is zero, and the third one states that there may be a transverse force $P_{y 2}$ at $x=-a$ due to a change in the flow direction at that point.

Moreover, the differential equation for the flexural vibration in the $x z-p l a n e$ is

$$
\begin{align*}
& -\frac{\partial^{2}}{\partial x^{2}}\left(E I_{C y} \frac{\partial^{2} u_{z}}{\partial x^{2}}\right)+\frac{\partial}{\partial x}\left(P \frac{\partial u_{z}}{\partial x}\right)+f_{A z}+m g \dot{u}_{x}-2 \omega_{y}{ }^{v m_{f}} \\
& =m\left\{\ddot{R}_{0 z}+\ddot{u}_{z}+2\left[\omega_{x}\left(\dot{R}_{0 y}+\dot{u}_{y}\right)-\omega_{y} \dot{R}_{0 x}\right]+\dot{\omega}_{x}\left(R_{0 y}+u_{y}\right)\right. \\
& \left.-\dot{\omega}_{y}\left(R_{0 x}+x\right)+\omega_{x} \omega_{z}\left(R_{0 x}+x\right)-\omega_{x}^{2}\left(R_{0 z}+u_{z}\right)\right\} \tag{52}
\end{align*}
$$

with the boundary conditions

$$
\begin{align*}
& \mathrm{EI}_{C Y} \frac{\partial^{2} u_{z}=0 \quad \text { at } x=-a, b}{\partial x^{2}=0} \\
& -\frac{\partial}{\partial x}\left(E I_{C Y} \frac{\partial^{2} u_{z}}{\partial x^{2}}\right)+P_{x I} \frac{\partial u_{z}}{\partial x}=0 \quad \text { at } x=b \tag{53}\\
& -\frac{\partial}{\partial x}\left(E I_{C Y} \frac{\partial^{2} u_{z}}{\partial x^{2}}\right)+P_{x 2} \frac{\partial u_{z}}{\partial x}=P_{z 2} \quad \text { at } x=-a
\end{align*}
$$

We note that the aerodynamic forces are treated as distributed forces. Concentrated aerodynamic forces, such as at the front end of the vehicle, can be represented as distributed by means of a spatial Dirac delta function. The aerodynamic distributed forces are assumed to cause no torques on the case element. Such torques, if they exist, are assumed to affect only the rocket rigid body rotations. Although the nozzle has finite length, it was assumed, for simplicityr to be of negligible length. In fact the term $P_{x 2}$ represents the axial force on the nozzle wall from the gas flow between the two end points of the nozzle. In a more refined treatment of the gas flow, the exact pressure distribution along the finite-length nozzle may have to be considered (see Appendix).

The flow has been treated as if it possessed no viscosity. As a result, any reactions between the gases and the unburned fuel are assumed to be normal to the flow. This is implied by the fact that the velocity is uniform over the entire cross-sectional area which implies, in turn, perfect burning in the sense that no gas-dynamic eccentricity is present. The lack of gas-dynamic eccentricity is ensured by any type of radially symmetric flow, of which the uniform flow is a special case. Any torques due to gas flow may result from engine thrust missalignment, if at all. Moreover, the velocity of the flow relative to the body is assumed to have only one component, namely along the x-axis. Although, due to the transverse elastic displacements u_{y} and v_{z}, there are velocity components $v \partial u_{y} / \partial x$ and vau $/ \partial x$ in the y - and z-directions, respectively, the terms involved are assumed to be small and, therefore, ignored. Several special cases, requiring further assumptions, are discussed in the next section.

6. Axially Symmetric, Spinning Rocket in Vacuum.

Our interest lies in demonstrating certain vibrational characteristics of the rocket casing during the powered flight, that is to say when the mass varies with time. To study this problem, it will be necessary to make certain assumptions which preserve a faix degree of approximation and yet simplify the problem considerably. Since for a solid-fuel rocket the powered flight lasts only a few seconds, it is reasonable to assume that during the initial moments of the flight the aerodynamic forces are negligible. We shall further assume that the engine thrust makes a zero angle with the longitudinal axis, so that no torques are acting on the vehicle. Moreover, the mass of the rocket is considered to be uniformly distributed and to remain so during burning. Under these circumstances, the vehicle mass center will lie at the halfway point between the rocket ends, $b=a=L / 2$, $a t$ all times.

We shall explore the case in which the unperturbed motion of the rocket consists of vertical upright flight in the axial direction and of spin about the longitudinal axis at the constant angular velocity ω. This motion is consistent with the assumption of no torques on the vehicle, in which case the rotational motion

$$
\begin{equation*}
\omega_{\mathrm{x}}=\omega=\text { constant }, \quad \omega_{\mathrm{y}}=\omega_{\mathrm{z}}=0 \tag{54}
\end{equation*}
$$

satisfies the moment equations, Eqs. (11), identically.
For unperturbed translational motion, two components of the force equations of motion, Eq. (10), vanish identically and only the equation for the longitudinal direction remains. Moreover, it is customary to assume that the internal gas flow is steady so that, in view of the fact that in vacuum $p_{a}=0$, this component has the form

$$
\begin{equation*}
p_{e} A_{e}+|\dot{M}| v_{e}-M g=M \ddot{R}_{0 x} \tag{55}
\end{equation*}
$$

where $|\dot{M}|$ is the rate of mass decrease of the entire rocket and v_{e} the exhaust velocity of the hot gases. But $|\dot{M}|$ is assumed to be constant in time, from which it follows that the solution of Eq. (55) has the form

$$
\begin{equation*}
\left.\dot{R}_{0 x}=\dot{R}_{0 x}(0)+\left(\frac{P_{e}^{A} e}{|\dot{M}|}\right)+v_{e}\right) \ln \frac{M_{0}}{M_{0}-|\dot{M}| t}-g t \tag{56}
\end{equation*}
$$

where M_{0} is the vehicle initial mass. The remaining two velocity components are zero, $\dot{R}_{0 y}=\dot{R}_{0 z}=0$. In the following we shall regard the rigid body motion as known in time.

In view of the above assumptions and results, the differential equation for the axial vibration, Eq. (48), becomes

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(E A_{c} \frac{\partial u_{x}}{\partial x}\right)-\frac{\partial}{\partial \dot{x}}\left(p A_{f}\right)-m g-\frac{\partial}{\partial x}\left(v^{2} m_{\dot{x}}\right)=m\left(\ddot{R}_{0 x}+\ddot{u}_{x}\right) \tag{57}
\end{equation*}
$$

which is subject to the boundary conditions

$$
\begin{array}{ll}
E_{C} \frac{\partial u_{x}}{\partial x}=P_{x 1} & \text { at } x=I / 2 \\
E A_{C} \frac{\partial u_{x}}{\partial x}=P_{X 2} & \text { at } x=-I / 2 \tag{58}
\end{array}
$$

At this point we postpone the discussion of the equations for the transverse vibration and turn our attention to the internal gas flow, which is the problem of a steady, adiabatic flow in a channel of uniform cross-sectional area. The problem is unusual in the sense that mass is continuously added to the flow at constant enthalpy and at negligible kinetic energy. An exact solution of the internal flow problem is extremely difficult and forms the subject of a separate inves-- tigation, (see Reference l0). The assumption of zero viscosity implies
that there are no tangential forces acting between the unburned fuel and the flowing gases so that the equation of motion for the gas alone can be separated in the form

$$
\begin{equation*}
-\frac{\partial}{\partial x}\left(p A_{f}\right)-\frac{\partial}{\partial x}\left(v^{2} m_{f}\right)=m_{f}\left(\ddot{R}_{0 x}+\ddot{u}_{x}+g\right) \tag{59}
\end{equation*}
$$

which is subject to the continuity equation, Eq. (18). For uniform burning, Eq. (18) yielas the relation

$$
\begin{equation*}
v m_{f}=m_{0}^{\beta}\left(\frac{L_{1}}{2}-x\right) \tag{60}
\end{equation*}
$$

where $m_{0} \beta=-\dot{m}=$ constant is the uniform rate of mass burning per unit length, in which $m_{0}=M_{0} / L$ is the initial distributed mass of the rocket. It turns out that, as far as the gas flow is concerned, the right side of Eq. (59) is negligible with the result

$$
\begin{equation*}
-\frac{\partial}{\partial x}\left(p A_{f}\right)-\frac{\partial}{\partial X}\left(v^{2} m_{f}\right) \cong 0 \tag{61}
\end{equation*}
$$

which can be integrated to yield

$$
\begin{equation*}
\mathrm{pA}_{f}(x)=\mathrm{pA}_{f}(L / 2)-\mathrm{v}^{2} \mathrm{~m}_{f}(x) \tag{62}
\end{equation*}
$$

so that the pressure drops as the gases approach the nozzle. Note that at $x=L / 2$ the velocity is zero, $v(L / 2)=0$, and the pressure $p(L / 2)$ is the stagnation pressure (see Appendix).

Denoting the mass of the case and unburned fuel per unit length by $m_{c}=m=m_{f}$, regarding m_{f} as small compared to m_{c}, and introducing Eqs. (55), (60), and (61) into Eq. (57), we obtain
-
$-E A c \frac{\partial^{2} u_{x}}{\partial x^{2}}+m_{c} \ddot{u}_{x}=-\frac{1}{L}\left(p_{e} e_{e}+\bar{v}_{e} M_{0} B\right)$
which at the end $x=L / 2$ is subject to the boundary conditions

$$
\begin{equation*}
\left.\mathrm{EA}_{C} \frac{\partial u_{\mathrm{x}}}{\partial \mathrm{X}}\right|_{\mathrm{x}=\mathrm{L} / 2}=P_{\mathrm{XI}}=\mathrm{pA}_{f}(\mathrm{~L} / 2) \tag{64}
\end{equation*}
$$

On the other hand, from Eq. (62), we conclude that the boundary condition at the end $x=-L / 2$ is

$$
\begin{equation*}
\left.E A_{c} \frac{\partial u_{x}}{\partial x}\right|_{x=-L / 2} ^{=} P_{x 2}=p A_{f}(L / 2)-p_{e} A^{A} e^{-v} e^{M_{0} \beta} \tag{65}
\end{equation*}
$$

To obtain the exit pressure p_{e}, exit velocity v_{e}, and the mass per unit length $\rho_{e} e_{e}$ at the exit, one must analyze the compressible flow in the nozzie (see Appendix).

Returning to the transverse vibration, we conclude that for axial symmetry, $I_{c y}=I_{c z}=I_{c}$, the two flexural equations of motion can be combined into a single equation by introducing the complex vector

$$
\begin{equation*}
u_{y z}=u_{y}+i u_{z} \quad, \quad i=\sqrt{-1} \tag{66}
\end{equation*}
$$

Under the same assumptions as for the axial vibration, this definition enables us to combine Eqs. (50) and (52) into

$$
\begin{equation*}
-E I_{c} \frac{\partial^{4} u_{y z}}{\partial x^{4}}+\frac{\partial}{\partial x}\left(P \frac{\partial u_{y z}}{\partial x}\right)=m\left(\ddot{u}_{y z}+2 i \omega \dot{u}_{y z}-\omega^{2} u_{y z}\right) \tag{67}
\end{equation*}
$$

whereas the boundary conditions become

$$
\begin{align*}
& \mathrm{EI}_{C} \frac{\partial^{2} u^{y} y z}{\partial x^{2}}=0 \quad \text { at } \quad x=-I / 2, I / 2 \\
& -E I_{c} \frac{\partial^{3} u y z}{\partial x^{3}}+P_{x I} \frac{\partial u_{y z}}{\partial x}=0 \quad \text { at } \quad x=L / 2 \tag{68}\\
& -E I_{c} \frac{\partial^{3} u y z}{\partial x^{3}}+P_{x 2} \frac{\partial u y z}{\partial x}=0 \quad \text { at } \quad x=-L / 2
\end{align*}
$$

Note that in Eqs. (67) and (68) it was assumed that the flexural stiffness is uniform.

Examining the differential equations (63) and (67), with the associated boundary conditions, we conclude that the equation for the axial elastic motion u_{x} can be solved independently of the equation for the transverse elastic motion $u_{y z}$. On the other hand, Eq. (67) depends on u_{x} through the axial force P so that we must solve for the axial elastic motion before attempting a solution for the transverse elastic motion.
a. The axial vibration of a rocket.

The mathematical formulation for the axial elastic motion of the rocket comprises a nonhomogeneous differential equation, Eq. (63), to be satisfied over the entire length of the rocket, and the boundary conditions, Eqs. (64) and (65). The differential equation possesses time-dependent coefficients as the distributed mass m_{c} is a function of time; the axial stiffness EA ${ }_{c}$ is attributed entirely to the casing material, hence it is constant in time. In view of our assumptions concerning the relative magnitudes of the various motion components, it turns out that the axial vibration is independent not only of the
transverse vibration but also of the rotation ω about the longitudinal axis.

A solution of the boundary-value problem, Eqs. (63), (64), and (65), is possible by means of the modal analysis, provided the mass density m_{c} is constant. This, of course, is not the case but let us assume for the moment that it is. The modal analysis amounts to solving the eigenvalue problem associated with the constant-mass system, obtain the so-called normal modes, and express the system response as a superposition of the normal modes multiplied by corresponding generalized coordinates; such a solution is referred to as normal-mode vibration. Because the actual boundary-value problem possesses timedependent coefficients, however, no normal-mode vibration is possible. Nevertheless, by virtue of the uniform-burning assumption, it turns out that a procedure based on the normal-mode approach can be used here to obtain a solution. But, because the normal modes imply a physical behavior which the actual system does not possess, we shall regard the solution as a superposition of eigenfunctions associated with the constant-mass systiem, rather than a superposition of normal modes. Instead of working with a boundary-value problem consisting of a nonhomogeneous differential equation with nonhomogeneous boundary conditions, it will prove more convenient to transform the problem into another one defined by a nonhomogeneous differential equation with homogeneous boundary conditions.* To this end we introduce the transformation

$$
\begin{equation*}
u_{x}(x, t)=w(x, t)+P_{I} g_{1}(x)+P_{2} g_{2}(x) \tag{69}
\end{equation*}
$$

[^1]where $P_{1}=P_{x 1}$ and $P_{2}=P_{x 2}$ are the same functions as in boundary conditions (64) and (65), and g_{1} and g_{2} are so chosen as to render the boundary conditions in terms of $w(x, t)$ homogeneous. Introducing Eq. (69) into Eqs. (64) and (65), and insisting that the boundary conditions in terms of w have the form
\[

$$
\begin{equation*}
\left.E A_{C} \frac{\partial w}{\partial x}\right|_{x=L / 2}=\left.E A_{C} \frac{\partial w}{\partial x}\right|_{x=-L / 2}=0 \tag{70}
\end{equation*}
$$

\]

we are led to the following relations

$$
\begin{array}{ll}
\left.\mathrm{EA}_{c} \frac{\mathrm{dg}_{1}}{d x}\right|_{x=L / 2}=1 & ,\left.\quad E A_{c} \frac{d g_{1}}{d x}\right|_{x=-L / 2}=0 \tag{71}\\
\left.E A_{c} \frac{d g_{2}}{d x}\right|_{x=L / 2}=0 \quad,\left.\quad E A_{c} \frac{d g_{2}}{d x}\right|_{x=-L / 2}=1
\end{array}
$$

It is not diffic t to verify that expressions

$$
\begin{equation*}
\mathrm{EA}_{C} \frac{\mathrm{dg}_{1}}{d x}=h\left(x-\frac{L}{2}\right) \quad, \quad E A_{C} \frac{d g_{2}}{d x}=: \quad h\left(x+\frac{L}{2}\right) \tag{72}
\end{equation*}
$$

where $h\left(x-x_{0}\right)$ is a unit step function applied at $x=x_{0}$, satisfy conditions (71). Integrating Egs. (72), and substituting the result into Eq. (69), we obtain

$$
\begin{equation*}
u_{x}(x, t)=w(x, t)+\frac{P_{1}}{E A_{c}}\left(x-\frac{L}{2}\right) h\left(x-\frac{L}{2}\right)+\frac{P_{2}}{E A_{c}}\left(x+\frac{I}{2}\right)\left[I-h\left(x+\frac{L}{2}\right)\right] \tag{73}
\end{equation*}
$$

Introduction of Eq. (73) into (63) yields the differential equation in terms of w

$$
\begin{equation*}
-E A_{c} \frac{\partial^{2} w}{\partial x^{2}}+m_{c} \ddot{w}=P_{1} \delta\left(x-\frac{L}{2}\right)-P_{2} \delta\left(x+\frac{L}{2}\right)-\frac{1}{L}\left(p_{e} A_{e}+v_{e} M_{0} B\right) \tag{74}
\end{equation*}
$$

provided P_{1} and P_{2} are constant, which turns out to be the cas for steady flow. Equation (74) is subject to the homogeneous boundary conditions (70).

To solve the boundary-value problem defined by Eqs. (74) and (70), we consider first the eigenvalue problem consisting of the differential equation

$$
\begin{equation*}
E A_{c} \phi^{\prime \prime}+\Omega^{2} m_{0} \phi=0 \tag{75}
\end{equation*}
$$

over the domain $-L / 2<x<I_{1} / 2$ and the boundary conditions

$$
\begin{equation*}
\phi^{\prime}(L / 2)=\phi^{\prime}(-I / 2)=0 \tag{76}
\end{equation*}
$$

where primes denote differentiations with respect to x . The eigenvalue problem, Eqs. (75) and (76), corresponds to the axial vibration of a uniform, constant mass bar with both ends unrestrained. The solution of the problem can be shown to consist of the denumberably infinite set of eigenfunctions (see, for example, Reference 14, pp. 151-154)

$$
\begin{align*}
\phi_{r}(x)= & \sqrt{2 / m_{0} I}(-1)^{(r+1) / 2} \sin r \pi x / L \quad, \quad r=1,3,5, \ldots \tag{77}\\
\sqrt{2 / m_{0} I_{r}} & (-I)^{r / 2} \quad \cos r \pi x / I, \quad r=2,4,6, \ldots
\end{align*}
$$

and the eigenvalues

$$
\begin{equation*}
\Omega_{r}=r \pi \sqrt{E A_{C} / m_{0} L^{2}} \quad, \quad r=1,2,3, \ldots \tag{78}
\end{equation*}
$$

The eigenfunctions are orthogonal to each other and, in addition, they are normalized so as to satisfy the relation
$-\int_{-I / 2}^{I / 2} m_{0} \phi_{I}(x) \phi_{S}(x) d x=\delta_{r s} \quad, \quad r, s=1,2,3, \ldots$
where $\delta_{\text {rs }}$ is the Kronecker delta. The eigenfunction corresponding to $r=0$ represents the rigid-body mode $\phi_{0}=\sqrt{1 / m_{0} L}$ and the associated eigenvalue is zero, $\Omega_{0}=0$, as is to be expected for a semi-defirite system. It is easy to see also that ϕ_{0} is orthogonal to the ejsenfunctions $\phi_{S}(s m 1,2,3,---)$.

The solution of Eq. (74) is assumed in the form

$$
\begin{equation*}
w(x, t)=\sum_{r=1}^{\infty} \phi_{r}(x) q_{r}(t) \tag{80}
\end{equation*}
$$

where q_{r} are the generalized coordinates and the functions ${ }^{\prime} r$ satissy Eq. (75). Introducing Eq. (80) into (74), multiplying both side of the result by $\phi_{S}(x)$, integrating over the entire domain, ard using Eq. (79), we obtain the set of uncoupled ordinary differential equatiors with time-dependent coefficients

$$
\begin{equation*}
(1-\beta t) q_{r}+\Omega_{r}^{2} q_{r}=Q_{r}, \quad r=1,2,3, \ldots \tag{8I}
\end{equation*}
$$

where B was defined previously and

$$
\begin{align*}
Q_{r} & =\int_{-I / 2}^{L / 2}\left[P_{1} \delta\left(x-\frac{L}{2}\right)-P_{2} \delta\left(x+\frac{L}{2}\right)-\frac{1}{L}\left(p_{e}^{A} e^{A}+v_{e^{M}} \beta\right)\right] \phi_{r}(x) a x \\
& =P_{1} \phi_{r}(L / 2)-P_{2} \phi_{r}(-L / 2) \quad, \quad r=1,2,3, \cdots \tag{82}
\end{align*}
$$

play the role of generalized forces. Letting the initial conditiors be

$$
\begin{equation*}
w(x, 0)=w_{0}(x), \quad \dot{w}(x, 0)=0 \tag{83}
\end{equation*}
$$

it is shown in Reference 3 that the solution of Eq. (81) is

$$
\begin{align*}
q_{I}(t) & =\left[\frac{Q_{r}}{\Omega_{r}^{2}}+\left(w_{r}-\frac{Q_{r}}{\Omega_{r}^{2}}\right) \frac{\pi \lambda_{r}(I-\beta t)^{I / 2}}{2}\left\{Y_{0}\left(\lambda_{r}\right) J_{I}\left[\lambda_{r}(I-\varepsilon t)^{1 / 2}\right]\right.\right. \\
& \left.\left.-J_{0}\left(\lambda_{r}\right) Y_{I}\left[\lambda_{r}(I-\beta t)^{1 / 2}\right]\right\}\right], \lambda_{r}=\frac{2 \Omega_{r}}{\beta}, r=1,2,3, \ldots \tag{84}
\end{align*}
$$

where

$$
\begin{equation*}
w_{r}=\int_{-I / 2}^{L / 2} m_{0} W_{0}(x) \phi_{I}(x) d x \quad, \quad r=1,2,3, \ldots \tag{85}
\end{equation*}
$$

and $J_{0}, J_{1}, Y_{0}, Y_{1}$ are Bessel functions of zero and first order and first and second kind, respectively. Solution (84) is obtained by introducing the transformation $I-\beta t=\sigma^{2}$ which leads to a Bessel equation in q_{r} with σ as the independent variable. This completes the formal solution for the axial vibration.
b. The transverse vibration of the spinning rocket.

Having calculated the axial displacement u_{x} we are now in the position to determine the axial force $P=E A_{C} \partial u_{x} / \partial x$. This, in turn, should enable us to solve the boundary-value problem, Eqs. (67) and (68), For the transverse vibration $u_{y z}$ of the spinning rocket. This, however, is a formidable problem because of the complicated time dependence of the coefficients introduced into Eq. (67) by P. A solution may inceed be attempted by using an eigenfunction expansion, as in tue case of the axial vibration, and converting the partial differential equation into an ordinary one, whose solution may be obtained by the method
of Frobenius. Practical reasons, however, render such a solution intractable. The situation is considerably improved if, through damping, the solution for the axial displacement reaches a steady-state condition in which the axial force P is no longer time dependent. We shall attempt a solution for the transverse vibration under these circumstances.

Ignoring the term containing the axial elastic acceleration \ddot{u}_{x} in Eq. (63), and considering the boundary conditions (64), the axial force can be shown to have the expression

$$
\begin{equation*}
P=E A_{C} \frac{\partial u_{x}}{\partial x}=P_{I}-\left(\frac{I}{2}-\frac{x}{\bar{I}}\right)\left(P_{1}-P_{2}\right) \tag{86}
\end{equation*}
$$

Upon introducing Eq. (86) into Eq. (67) we obtain a homogeneous partial differential equation with time-dependent coefficients entering through the mass m which is a known function of time. Equation (67) is subject to the homogeneous boundary conditions (68). A solution of the corresponding boundary-value problem can, likewise, be attempted in terms of the eigenfunctions of the associated uniform, constant-mass bar in transverse vibration but, by contrast, this time no transformation is necessary as the boundary conditions are already in homogeneous form.

Let us consider the eigenvalue problem comprising the differential equation

$$
\begin{equation*}
\operatorname{EI}_{C} \psi^{\prime \prime \prime}=\Lambda^{2} \mathrm{~m}_{0} \psi \tag{87}
\end{equation*}
$$

and the boundary conditions

$$
\begin{equation*}
\psi^{\prime \prime}=\psi^{\prime \prime \prime}=0 \quad \text { at } x=-I / 2, I / 2 \tag{88}
\end{equation*}
$$

The solution of this problem is given in Reference 14, Sections 5-10 and 10-5. Using the results from there, we can write the solution of Eq. (67), with P given by Eq. (86), in the form

$$
\begin{equation*}
u_{y z}(x, t)=\sum_{r=1}^{\infty} \psi_{x}(x) \eta_{r}(t) \tag{89}
\end{equation*}
$$

where $\psi_{r}(r=1,2,3,--)$ are the solutions of the eigenvalue problem, Eqs. (87) and (88), and η_{r} are associated generaiized coordinates, which in this case are complex. Introducing Eq. (89) into (67), multiplying the result by ψ_{S}, and integrating over the domain, we obtain

$$
\begin{equation*}
\frac{m}{m_{0}}\left(\ddot{n}_{s}+2 i \omega \dot{\eta}_{s}-\omega^{2} \eta_{s}\right)+\sum_{r=1}^{\infty} k_{r s} \eta_{r}=0 \quad, \quad s=1,2,3,-- \tag{90}
\end{equation*}
$$

where consideration has been given to Eq. (87) and the fact that the eigenfunctions are orthogonal. The coefficients $k_{r s}$ have the form

$$
\begin{equation*}
k_{r s}=\Lambda_{r}^{2} \delta_{r s}+\int_{-L / 2}^{L / 2} P \psi_{r}^{\prime} \psi_{s}^{\prime} d x \tag{9I}
\end{equation*}
$$

by virtue of the fact that $u_{y z}$ satisfies boundary conditions (68), as can be seen in Reference i4 (page 447). In fact from the same source (see pages 450-451), we can write the coefficients for $x=s$

$$
\begin{align*}
k_{r r} & =\Lambda_{r}^{2}+\frac{L}{32}\left[\left(3 P_{1}+P_{2}\right)\left(\psi_{r}^{\prime}(L / 2)\right)^{2}+\left(P_{I}+3 P_{2}\right)\left(\psi_{r}^{\prime}(-L / 2)\right)^{2}\right] \\
& +3\left[P_{I} \psi_{r}(L / 2) \psi_{r}^{\prime}(I / 2)-P_{2} \psi_{r}(-L / 2) \psi_{r}^{\prime}(-I / 2)\right] \\
& -\frac{3}{L}\left(P_{1}-P_{2}\right)\left[\psi_{r}^{2}(L / 2)-\psi_{r}^{2}(-L / 2)\right] \tag{92}
\end{align*}
$$

whereas for $r \neq s$ we obtain

$$
\begin{align*}
& k_{r S}=\frac{1}{\Lambda_{r}^{2}-\Lambda_{S}^{2}}\left\{\Lambda_{r}^{2}\left[P_{1} \psi_{r}(L / 2) \psi_{S}^{\prime}(I / 2)-P_{2 \psi_{r}}(-I / 2)_{\psi_{S}}^{\prime}(-I / 2)\right]\right. \\
& \left.-\Lambda_{S}^{2}\left[P_{I} \psi_{r}^{\prime}(I / 2) \psi_{S}(I / 2)-P_{2} \psi_{r}^{\prime}(-L / 2) \psi_{S}(-I / 2)\right]\right\} \\
& +\frac{4\left(P_{I}-P_{2}\right)}{L} \frac{\Lambda_{r}^{2} \Lambda_{S}^{2}}{\left(\Lambda_{r}^{2}-\Lambda_{S}^{2}\right)} 2\left[\psi_{r}(I / 2) \psi_{S}(I / 2)-\psi_{r}(-L / 2) \psi_{S}(-L / 2)\right] \tag{93}
\end{align*}
$$

Equations (90) constitute an infinite set of coupled ordinary differential equations with time-dependent coefficients; the coupling enters through the coefficients $k_{r s}, r \neq s$. But for large values of r and s the coefficients for which $r \neq s$ become increasingly small compared to the ones for which $r=s$. This is equivalent to the uncoupling of the equations corresponding to high values of r from the ones corresponding to low values of r so that we can limit the set (90) to the first n equations and truncate the series in these equations accordingly. The resulting n equations can be written in the matrix form

$$
\begin{equation*}
\frac{m}{m_{0}}\{\ddot{n}\}+\frac{m}{m_{0}} 2 i w\{\dot{\eta}\}-\frac{m}{m_{0}} \omega^{2}\{\eta\}+[k]\{n\}=\{0\} \tag{94}
\end{equation*}
$$

where $\{n\}$ is an $n x l$ column matrix and $[k]$ is the $n x n$ symmetric matrix of the coefficients $k_{r s}(x, s=1,2,-\cdots-n)$. It turns out that the set of n equations, Eq. (94), can be uncoupled by means of a linear transformation. To this end, we consider the eigenvalue problem associated with the symmetric matrix $[k]$ in the form

$$
\begin{equation*}
[k][z]=[z][\gamma] \tag{95}
\end{equation*}
$$

where $[\mathrm{Z}]$ is the modal matrix associated with $[\mathrm{k}]$ and $[\gamma]$ is the corresponding diagonal matrix of the eigenvalues. It can be shown (see Reference 14, Section 4-8) that the modal matrix possesses the orthogonality property and, if also normalized, it satisfies the relation

$$
\begin{equation*}
[z]^{T}[z]=[I] \tag{96}
\end{equation*}
$$

where $[Z]^{T}$ is the transpose of $[Z]$ and $[I]$ is the identity matrix.
Next we introduce the linear transformation

$$
\begin{equation*}
\{n\}=[z]\{\zeta\} \tag{97}
\end{equation*}
$$

into Eq. (94), premultiply throughout the resulting equation by $[Z]^{T}$, recall Eq. (95), and obtain

$$
\begin{equation*}
\frac{m}{m_{0}}\{\ddot{\zeta}\}+\frac{m}{m_{0}} 2 i \omega\{\dot{\zeta}\}-\frac{m}{m_{0}} \omega^{2}\{\zeta\}+[\gamma]\{\zeta\}=\{0\} \tag{98}
\end{equation*}
$$

where, from Eqs. (95) and (96), we substituted $[z]^{T}[k][z]=[\gamma]$. Equation (98) represents a set of n uncoupled equations of the form

$$
\begin{equation*}
(1-\beta t)\left(\ddot{\zeta}_{s}+2 i \omega \dot{\zeta}_{s}-\omega^{2} \zeta_{s}\right)+\gamma_{s}^{\zeta} s=0, s=1,2, \ldots, n \tag{99}
\end{equation*}
$$

in which we substituted $m / m_{0} \cong 1-\beta$ on the assumption that m_{f} is small relative to m_{c}.

Through a change of the independent variable. Eqs. (99) can be brough into a form which lends itself to a closed-form solution. To show this, we introduce the transformation $\sigma^{2}=1-\beta t$ leading to
$=\frac{d^{2} \zeta}{d \sigma^{2}}-\left(\frac{1}{\sigma}+\frac{4 i \omega \sigma}{\beta}\right) \frac{d \zeta s}{d \sigma}+\frac{4}{\beta^{2}}\left(\gamma_{s}-\omega^{2} \sigma^{2}\right) \zeta_{s}=0, s=1,2, \ldots, n$

It is not diffjcult to show that the general solution of Eqs. (100) is

$$
\begin{equation*}
\zeta_{S}=\sigma e^{i \omega \sigma^{2} / \beta}\left[c_{s 1} J_{1}\left(\alpha_{s} \sigma\right)+c_{s 2} Y_{1}\left(\alpha_{s} \sigma\right)\right] \quad, \alpha_{s}^{2}=\frac{4 \gamma_{S}}{\beta^{2}} \tag{101}
\end{equation*}
$$

where the constants $c_{s 1}$ and $c_{s 2}$ depend on the initial conditions. Assuming the initial conditions.

$$
\begin{equation*}
\zeta_{s}(0)=\zeta_{s 0},\left.\frac{d \zeta_{s}(t)}{d t}\right|_{t=0}=0, s=1,2, \ldots, n \tag{102}
\end{equation*}
$$

solution (101) becomes

$$
\begin{align*}
\zeta_{S}(t) & \left.=\frac{\pi(I-\beta t)^{1 / 2} e^{-i \omega t_{\zeta_{S 0}}}\left\{\left[2 i \omega Y_{I}\left(\alpha_{s}\right)+\alpha_{s} Y_{0}\left(\alpha_{s}\right)\right] J_{I}\left[\alpha_{S}(1-\beta t)^{I / 2}\right]\right.}{2}-\left[2 i \omega J_{I}\left(\alpha_{s}\right)+\alpha_{s} J_{0}\left(\alpha_{s}\right)\right] Y_{I}\left[\alpha_{S}(1-\beta t)^{1 / 2}\right]\right\}, s=1,2,-\ldots, n
\end{align*}
$$

We notethat the initial conditions (102) are related to the initial transverse displacement and velocity of the rocket. The second of Eqs. (102) implies that the initial transverse velocity is zero. On the other hand, the quantities $\zeta_{s 0}$ are related to the initial transverse displacement

$$
\begin{equation*}
u_{y z}(x, 0)=u_{y z 0}(x) \tag{104}
\end{equation*}
$$

by

$$
\begin{equation*}
\left\{\zeta_{0}\right\}=[z]^{T}\left\{n_{0}\right\} \tag{105}
\end{equation*}
$$

where the $s t h$ element of the matrix $\left\{\eta_{0}\right\}$ has the form

$$
\begin{equation*}
\eta_{s 0}=\eta_{s}(0)=\int_{1-L / 2}^{L / 2} m_{0}^{u_{y z 0}}(x) \psi_{s}(x) d x, \quad s=1,2, \ldots, n \tag{106}
\end{equation*}
$$

This completes the formal solution of the transverse vibration problem.

7. Numerical Results

The solution for the rigid-body motion and the one for the axial and transverse vibrations have been evaluated numerically on an IBM 7040 computer. The data used, taken to represent a typical solidfuel sounding rocket, is as follows
$p_{e}=0 \quad, \quad v_{e}=8,290 \mathrm{ft} \mathrm{sec}^{-1} \quad, \quad L=100 \mathrm{in}$
$\mathrm{m}_{0} g=4.25 \mathrm{lb} \mathrm{in}^{-1}, \quad \dot{\mathrm{~m}}_{\mathrm{C}} g=0.5,1.57,3.0 \mathrm{lb} \mathrm{in}^{-1} \mathrm{sec}^{-1}$
$E=30 \times 10^{6} \mathrm{Ib} \mathrm{in}{ }^{-2}, \quad A_{C}=7.53 \mathrm{in}^{2}, \quad I_{C}=93.00 \mathrm{in}^{4}$
$\mathrm{A}_{\mathrm{f} 0}=36.4 \mathrm{in}^{2}, \quad \mathrm{p}_{\mathrm{L}} / 2=2,000 \mathrm{lb} \mathrm{in}{ }^{-2}, \quad \omega=10,20 \mathrm{rad} \mathrm{sec}{ }^{-1}$

The initial conditions have the form

$$
\begin{aligned}
& X(0)=u_{X}(x, 0)=u_{z}(x, 0)=0 \\
& u_{Y}(x, 0)=\left[A\left(\cos \frac{\pi x}{I_{1}}-\frac{2}{\pi}\right)+B\left(\sin \frac{2 \pi x}{I}-\frac{6 x}{\pi I}\right)\right] f t
\end{aligned}
$$

where A and B are coefficients measured in feet. We note that, depending on these coefficients, $u_{Y}(x, 0)$ can be made to resemble approximately the first or the second eigenfunction of the constant-mass system. Several combinations of A and B have been explored.

Figure 4 shows the rigid-body motion in the longitudinal direction for three different burning rates. Clearly, for larger burning rates the rocket climbs faster.

Figures 5 through 8 show the axial and transverse elastic displacements for selected times. The plots are for various burning rates and spin velocities. We note from Figures $5 a$ and 6 a that in the

- initial stages of the flight the burning rate $\dot{m}_{c} g$ affects the axial displacement u_{x} to a much larger extent than it affects the transverse
displacements u_{y} and u_{z}. The explanation is that the mass rate of change has an immediate effect on the axial force and, as soon as the pressure has built up in the combustion chamber, the axial tension begins to produce an elongation of the missile case. The rate of burning affects also the transverse displacements, but this effect takes langer to make itself felt, as can be seen from Figures $5 b$ and $6 b$. Although the displacements u_{x}, u_{y}, and u_{z} are oscillatory in nature, they do not represent normal mode vibration (in the commonly accepted sense) by any means, as both the amplitude and period of oscillation depend on the burning rate and on time.

The rocket spin velocity ω has no effect whatsoever on the axial vibration but it does have an effect on the transverse vibrations. The term $e^{-i \omega t}$ represents a complex vector of unit magnitude, rotating in the negative sense with angular velocity ω. With regard to the components of Eq. (103), the term $e^{-i \omega t}\left[2 i \omega Y_{1}\left(\alpha_{s}\right)+\alpha_{S} Y_{0}\left(\alpha_{s}\right)\right]$ can be interpreted as a rotating vector $r_{1} e^{-i\left(\omega t-\varphi_{1}\right)}$, where $r_{1}=$ $\left[4 \omega^{2} Y_{1}^{2}\left(\alpha_{s}\right)+\alpha_{s}^{2} Y_{0}^{2}\left(\alpha_{s}\right)\right]^{1 / 2}$ and $\varphi_{1}=\tan ^{-1}\left[2 \omega Y_{1}\left(\alpha_{s}\right) / \alpha_{S} Y_{0}\left(\alpha_{s}\right)\right]$. A similar interpretation can be given to the term $e^{-i \omega t}\left[2 i \omega J_{1}\left(\alpha_{s}\right)\right.$ $\left.+\alpha_{s} J_{0}\left(\alpha_{s}\right)\right]$. Hence, the effect of ω is to rotate both components of the transverse vibration $\zeta_{S}(t)$ with the angular velocity ω with respect to the body axes but with different phase angles. Of course, the two components have different time-dependent amplitudes and periods. Figures $7 a$ through $8 b$ show plots of the transverse displacements for various spin rates.

As expected, the rocket undergoes an axial displacement u_{x} regardless whether it was subjected to an initial displacement in the axial direction or not. By contrast, under the assumptions of zexo external
fransverse forces and reactive transverse forces at the nozzle, the displacements u_{y} and u_{z} are entirely dependent on the transverse initial conditions. In fact, the response persists on alternating between the first and second eigenfunction of the constant-mass system. This can be easily explained by the fact that the initial transverse displacement is a combination of two functions resembling the first two eigenfunctions in question. Moreover, the assumption that the mass remains uniformly distributed throughout burning tends to eliminate the other eigenfunctions from the solutions. No tendency of the amplitudes to increase with time is detected. This is true for a relatively large range of spin rates. Since the effect of the spin rate was not found to be significant, response curves for only two values of ω are reported.

8. Summary and Conclusions

In the first part of this paper (Sections 2 through 5) a new and general formulation of the dynamical problems associated with the powered flight of a flexible, variable-mass rocket is presented. The formulation is more complete than any of the existing ones, and it includes in one unifying treatment many effects treated heretofore separately. Quite often it is difficult to justify separating these effects on physical grounds, and this seems to be the case especially with the vehicle flexibility and mass variation, at least in the case of rapid mass variation. The mathematical formulation is reduced to six ordinary differential equations, for three rigid-body translations and three rigid-body rotations, as well as three partial differential equations with the corresponding boundary conditions, for one longitudinal and two trans-verse elastic displacements. The equations are nonlinear and possess
time-dependent coefficients due to the mass variation. The state of the art does not permit a closed-form solution of the complete equations. We have considerable interest in the vibrational characteristics of the vehicle during the powered flight. To obtain an analytical solution revealing these characteristics, certain simplifying assumptions reflecting reasonably well the physical picture are made. In the second part of the paper, namely in Section 6, such solutions are obtained. We first assume in that section that the forces and torques are not affected by the elastic displacements. Under this assumption, the rigid-body motion can be solved independently of the elastic motion. The equations for the rigid-body reduce to the familiar case of a six-degree-of-freedom rigid body, possessing variable mass. The aerodynamic forces are assumed to be sufficiently small during the first instants of the flight that they can be ignored. If the mass distribution, as well as the rate of decrease of mass, is assumed to be uniform, then the mass center does not shift relative to the vehicle. As a result, the equations for the rigid-body translations and the ones for the rigidbody rotation become uncoupled. The terms corresponding to the rigidbody solution appear as inertia forces in the equations for the elastic displacements.

If the rocket travels vertically upward with a given spin, and zero angle between the engine axis and the vehicle axis, then the rigidbody motion reduces to pure translation in the axial direction and pure spin at a constant rate about the longitudinal axis. For zexo viscosity, the equation for the internal gas flow can be separated from the equation for the longitudinal elastic displacement. The gas flow problem is one of a steady adiabatic flow in a channel of uniform cross-sectional
area to which mass is added continuously at constant enthalpy and negligible kinetic energy. The solution of this problem leads to the axial forces at the boundaries, namely at the closed end and the nozzle end. We note that these forces induce a tensile axial force in the vehicle. It turns out that the equation for the longitudinal motion can be solved independently of the transverse motion. The boundaryvalue problem for this comprises a nonhomogeneous differential equation with nonhomogeneous boundary conditions. Through a change of the dependent variable, the problem is reduced to one defined by a nonhomogeneous differential equation with homogeneous boundary conditions. A solution of this problem is obtained in the form of an infinite series of eigenfunctions, associated with the constant-mass missile free at both ends, multiplied by time-dependent generalized coordinates. A procedure resembling the modal analysis leads to a set of uncoupled differential equations whose solutions involve Bessel functions of time-dependent argument multiplied by time-dependent coefficients. The arguments are the counterpart of the natural frequencies for the constantmass system. It is clear from this analysis that this is by no means normal-mode vibration, which is generally identified with constant coefficients (indicating the degree of participation of each mode in the response) and constant natural frequencies.

For axial symmetry the equations for the transverse vibrations can be combined into one equation by using a complex vector to represent the two orthogonal components of displacement. This equation also can be solved by a procedure similar to the modal analysis and analogous con-- clusions concerning the normal-mode vibration concept can be drawn for the transverse vibration as for the longitudinal vibration. By contrast,
however, the equations do not uncouple inmediately. Fortunately, truncating the series solution, and using a linear transformation, it is possible to derive a set of uncoupled ordinary differential equations, the solution of which is readily obtained.

In conclusion, the closed-form solutions for the axial and transverse vibrations of the rocket show clearly that normal-mode vibration, in the commonly accepted sense, does not exist for variable-mass systems. A commonly used method of treating such systems is the so-called "timeslice" method, according to which the mass can be regarded instantaneously as constant thus permitting a normal-mode solution. The closedform solution obtained here can be used to check the measure of validity of the time-slice approach, especially in the case of systems with rapid mass variation such as solid-fuel rockets. Moreover, we call attention to the fact that, in the case of solid-fuel rockets, at least, the engine thrust gives rise to a tensile axial force in the missile, as a result of the internal pressure in the combustion chamber. This effect tends to reduce the transverse deformation as opposed to the unstabilizing effect of a compressive force, which would obtain if the engine thrust was assumed to be concentrated at the vehicle aft end.

It must be stressed that the formulation is of a very general nature and is applicable to a large number of problems in rocket dynamics. The two problems solved, namely the longitudinal and transverse vibrations under pure axial rigid-body translation, should be regarded as special cases in which closed-form solutions are possible. No closed-form solution can be expected for the general case and a strictly numerical solution by means of a high-speed computer cannot be avoided.

9. Acknowledgment

The numerical solution presented in section 7 has been obtained by means of a computer program written by Mr. John Bankovskis, Research Assistant, University of Cincinnati.

The purpose of a nozzle is to convert the enthalpy of the flowing gas into kinetic energy in an efficient manner while, at the same time, restricting the escape of the gas to a rate suitable for the propellant reaction inside the combustion chamber. We shall assume that the nozzle under consideration is convergent-divergent, designed to allow an isentropic expansion to an ambient pressure less than critical. In the convergent portion of the nozzle, before the throat, the flow is subsonic, reaching sonic level at the throat section, at which point the flow properties are referred to as critical, and becoming supersonic in the divergent portion after the throat. Although losses may occur in the nozzle, they are assumed to be small so that the analysis is based on the equations for one-dimensional. isentropjc steady flow of a compressible perfect gas.

Let us consider the one-dimensional isentropic flow of Figure Al and assume that the stagnation conditions, denoted by the subscript 0 , are known. Under these circumstances, we may write the equations governing the flow as follows:

First the flow must satisfy the first law thermodynamics. Considering the control volume shown in Figure Al, and aenoting the enthalpy per unit mass by h, this law can be stated

$$
\begin{equation*}
h_{0}=h_{1}+\frac{1}{2} v_{1}^{2}=h_{2}+\frac{1}{2} v_{2}^{2} \tag{AI}
\end{equation*}
$$

Assuming that there is no friction or heat transfer present, the second law of thexmodynamics becomes simply

$$
\begin{equation*}
s=s_{0}=\text { constant } \tag{A2}
\end{equation*}
$$

or the entropy s is constant, as implied by the name of the type of flow under consideration.

The flow must also satisfy the countinuity equation. Since there is no mass addition within the nozzle, we must have

$$
\begin{equation*}
\rho_{1} \mathrm{~A}_{1} \mathrm{v}_{1}=\rho_{2} \mathrm{~A}_{2} \mathrm{v}_{2}=\text { constant } \tag{A3}
\end{equation*}
$$

where the flow properties at stations 1 and 2 are denoted by the corresponding subscripts.

Similarly the flow must satisfy the momentum equation. Denoting the force exerted by the nozzle wall on the gas by F_{T}, this equation can be written

$$
\begin{equation*}
F_{T}=p_{1} A_{1}-p_{2} A_{2}=\rho_{2} A_{2} v_{2}^{2}-\rho_{1} A_{1} v_{1}^{2} \tag{A4}
\end{equation*}
$$

Equations (Al) through (A4) must be supplemented by the equation of state which for a perfect gas has the form

$$
\begin{equation*}
\mathrm{p}=\rho \mathrm{RT} \tag{A5}
\end{equation*}
$$

in which R is the universal gas constant and T the temperature.
The above relations can be used to derive expressions for the pressure, density, etc., at any point along the nozzle. For a perfect gas the speed of sound is given by

$$
\begin{equation*}
c=(k R T)^{1 / 2} \tag{A6}
\end{equation*}
$$

where

$$
\begin{equation*}
k=c_{p} / c_{v} \tag{A7}
\end{equation*}
$$

in which c_{p} and c_{v} are the specific heats. Then the following relations
can be shown to hold true.*

$$
\begin{align*}
& \frac{\mathrm{T}}{\mathrm{~T}_{0}}=\frac{1}{1+[(k-1) / 2] \mathrm{M}^{2}} \tag{A8}\\
& \frac{\mathrm{p}}{\mathrm{P}_{0}}=\frac{1}{\left\{1+[(k-1) / 2] \mathrm{M}^{2}\right\}^{k /(k-1)}} \tag{A9}\\
& \frac{\rho}{\rho_{0}}=\frac{1}{\left\{1+[(k-1) / 2] \mathrm{M}^{2}\right\}^{1 /(k-1)}} \tag{A10}
\end{align*}
$$

where $\mathbb{M}=\mathrm{V} / \mathrm{C}$ is the Mach number. Moreover, the cross-sectional area A at any point is related to the cross-sectional area A_{*} at the throat by

$$
\begin{equation*}
\frac{A}{A_{*}}=\frac{G_{*}}{G}=\frac{1}{M}\left[\frac{2}{k+1}\left(1+\frac{k-1}{2} M^{2}\right)\right]^{(k+1) /[2(k-1)]} \tag{A1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
G=\rho v \tag{A12}
\end{equation*}
$$

is the mass flow per unit area at any point and

$$
\begin{equation*}
\mathrm{G}_{*}=\left(\frac{\mathrm{kp}_{0}^{2}}{\mathrm{RT}}\right)^{1 / 2}\left(\frac{2}{\mathrm{k}+1}\right)(\mathrm{k}+1) /[2(k-1)] \tag{A13}
\end{equation*}
$$

is the mass flow per unit area at the throat.
Equations (A8) through (A13) are sufficient to determine the isentropic flow in the nozzle provided the stagnation conditions axe known. We are interested primarily in the flow conditions at the nozzle exit. For a given rocket design the cross-sectional areas A_{e} and A_{*} may be

* See Reference 12, Section 13-5.
regarded as known. Since k is also a known quantity, we can use Eq. (AII) and obtain the Mach number M_{e} at the exit. Introducing this value into Eq. (A9) we can determine the exit pressure p_{e}, which enables us to write the expression for rocket thrust

$$
\begin{equation*}
\left.F_{T}=p_{e}^{A} e+\rho_{e} e^{A} v_{e}^{2}=p_{e}^{A} e^{(I+}+k M_{e}^{2}\right) \tag{A14}
\end{equation*}
$$

for flight in vacuum. If the rocket operates in the lower fringes of the atmosphere, then the term $p_{a} A_{e}$ where p_{a} is the atmospheric pressure, must be subtracted from the right side of Eq. (AI4).

In the above analysis, we have assumed that the stagnation conditions are known. This assumption necessitates further scrutiny. The stagnation conditions are determined by events occurring upstream of the nozzle. The flow in the combustion chamber may be regarded as a steady, adiabatic flow in a channel of uniform cross-sectional area with mass addition at constant enthalpy, and at negligible kinetic energy. The flow is not isentropic and the stagnation conditions are not constant but decreasing as the nozzle is approached. This problem is discussed in detail in Reference 10. The conclusion that can be reached is that for a Mach number less than 0.4 in the combustion chamber the drop in the stagnation pressure may not be significant. Hence, we shall assume that the stagnation pressure as well as the remaining stagnation conditions occurring at the fore end of the combustion chamber are equally applicable to the nozzle. In a more refined analysis of the gas flow this assumption may have to be revised.

References

1. Grubin, C., "Mechanics of Variable Mass Systems," Jour. Franklin Inst., Vol. 276, 1963, pp. 305-312.
2. Dryer, M., "Equations of Motion for an Arbitrary Body of Variable Mass," Martin-Denver Res. Dept. R-61-18, 1961.
3. Leitmann, G., "On the Equation of Rocket Motion," Jour. British Interplanetary Soc., Vol. 16, 1957, pp. 141-147.
4. Davis, L. Jr., Follin, J.W. Jr., and Blitzer, L., Exterior Ballistics of Rockets, Van Nostrand Co., Princeton, N.J., 1958.
5. Seide, P., "Effect of Constant Longitudinal Acceleration on the Transverse Vibration of Uniform Beams," Aerospace Corp., TDR-169 (3560-30) TN-6, 1963.
6. Beal, T.R., "Dynamic Stability of a Flexible Missile Under Constant and Pulsating Thrusts," AIAA Jour. V Vol. 3, 1965, pp. 486-494.
7. Miles, J.W., Young, D., Fowler, J.R., et al "Generalized Missile Dynamics Series," Space Technology Labs., Vols. I-VII, GM-TR-0165, 1958.
8. Birnbaum, J. , "Bending Vibrations of a Perforated Grain Solid Propellant During Powered Flight," IAS Paper No. 61-30, 1961.
9. Edelen, D.G.E., "On the Dynamic Effect of Fuel Flow on the Motion of Boost Vehicles," Fand Corp., RM-3268-NASA, 1962.
10. Price, E.W., "One-Dimensional, Steady Flow With Mass Addition and the Effect of Combustion Chamber Flow on Rocket Thrust," ARS Jour., Vol. 5, N゙O. 2, 1955, pp. 61-68, 78.
11. Meirovitch, L., and Wesley, D.A., "On the Dynamic Characteristics of a Variable-Mass Slender Elastic Body Under Figh Accelerations," AIAA Jour., Vol. 5, No. 8, 1967, pp. 1439-1447.
12. Shames, I., Mechanics of Fiuids, McGraw-Hill Book Company, Inc., N.Y., 1962.
13. Gantmakher, F.R., and Ievin, L.M., The Flight of Uncontrolled Rockets, The Macm: Zlan Company, N.Y., 1964.
14. Meirovitch, L., Analytical Methods in Vibrations; The Macmillan Company, N.Y., 1967.

Figure 3-The Rocket Element of Unit Length

Figure 4 - Height vs Time

55

Figure 5b - Elastic Displacements for $A=0.1 \times 10^{-5} \mathrm{ft}, \mathrm{B}=0.025 \times 10^{-5} \mathrm{ft}$ (with mass ratc of change as parameter) (Continued)
$t=0.0 \mathrm{sec}$

$$
\begin{aligned}
& 1 \\
& \omega=10 \mathrm{rad} / \mathrm{sec} \\
& \dot{\mathrm{w}}=\dot{m}_{c} g \text { in } 1 \mathrm{bs} / \mathrm{in} / \mathrm{sec}
\end{aligned}
$$

$t=0.0004$

$t=0.0008$

Figure $6 \mathrm{a}-\underset{\mathrm{Elastic} \text { Displacements for } A=0.1 \times 10^{-5} \mathrm{ft}, \mathrm{B}=0.050 \times 10^{-5} \mathrm{ft}}{ } \quad \begin{aligned} & \text { (with mass rate of change as parameter })\end{aligned}$

Figure 6 b - Elastic Displacements for $\mathrm{A}=0.1 \times 10^{-5} \mathrm{Et}, \mathrm{B}=0.050 \times 10^{-5} \mathrm{ft}$ (with mass rate of chango as parameter) (Continued)

Figure 7b - Elastic Displacements for $A=0.1 \times 10^{-5} \mathrm{ft}, \mathrm{B}=0.025 \times 10^{-5} \mathrm{Et}$ (with spin rate as parameter) (Continued)

Figure 8a - Elastic Displacements for $A=0.1 \times 10^{-5} \mathrm{ft}, \mathrm{B}=0.050 \times 10^{-5} \mathrm{ft}$ (with spin rate as parameter)

$$
t=0.75
$$

Figure 8 b - Elastic Displacements for $A=0.1 \times 10^{-5} \mathrm{ft}, \mathrm{B}=0.050 \times 10^{-5} \mathrm{ft}$ (with spin rate as parameter) (Continued)

Figure A1 - The Nozzle

[^0]: * See references at the end of this paper.

[^1]: * For a discussion of this type of transformations, see the text by L. Meirovitch (Reference 14), Section 7-14.

