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GENERAL NATURAL RIEMANNIAN ALMOST PRODUCT AND
PARA-HERMITIAN STRUCTURES ON TANGENT BUNDLES

Simona-Luiza Druţǎ-Romaniuc

Abstract. We find the almost product (locally product) structures of general
natural lift type on the tangent bundle of a Riemannian manifold. We get the
conditions under which the tangent bundle endowed with such a structure and
with a general natural lifted metric is a Riemannian almost product (locally
product) or an (almost) para-Hermitian manifold. We give a characterization
of the general natural (almost) para-Hermitian structures, which are (almost)
para-Kählerian on the tangent bundle.

1. INTRODUCTION

Geometric structures on (the total space of) fiber bundles have been object of
much study since the middle of the last century. The latest papers in this field are
related to natural fiber bundles over manifolds (e.g. see [1, 14-16, 21-28, 32]). The
natural lifts of the metric g, from a Riemannian manifold (M, g) to (the total space
of) its tangent or cotangent bundles, induce new (pseudo) Riemannian structures,
with interesting geometric properties, some of them studied by the present author
(e.g. in [9, 10]). To avoid a possible confusion, we mention that in the sequel the
total space of the tangent bundle will be frequently called tangent bundle.

Maybe the best known Riemannian metric on the tangent bundle is that intro-
duced by Sasaki in 1958 (see [31]), but in most cases the study of some geometric
properties of the tangent bundle endowed with this metric led to the flatness of the
base manifold. In the next years, the authors were interested in finding other lifted
structures on the tangent bundles, with quite interesting properties. The results in
[14-16], concerning the natural lifts, allowed the extension of the Sasaki metric to
the metrics of general natural lifted type (see [25]), leading to interesting geometric
structures studied in the last years (see [1, 26-28]), and to interesting relations with
some problems in Lagrangian and Hamiltonian mechanics (e.g. see [6]).
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Many authors considered almost product structures and almost para-Hermitian
structures (called also almost hyperbolic Hermitian structures) on the tangent and
cotangent bundles (see [4, 5, 7, 8, 12, 13, 18, 29, 33]).

The theory of Riemannian almost product structures was initiated by K. Yano in
[33]. In 1983, A. M. Naveira made a classification of these structures, with respect
to their covariant derivatives, obtaining 36 classes (see [24]). Having in mind these
results, M. Staikova and K. Gribachev obtained, in 1992, a classification of the
Riemannian almost product structures, for which the trace vanishes (see [30]). The
basic class corresponds to the nonintegrable almost product structures, studied in
some recent articles, such as [17].

In 1988, C. Bejan gave a classification of the almost para-Hermitian structures.
She obtained 36 classes, up to duality, and the characterizations of some of them
(see [3]). A classification à la Gray-Hervella was given in 1991, by P. M. Gadea
and J. Muñoz Masqué, in [11], where 136 classes, up to duality, were obtained.

The present paper aims to determine the almost product structures P of general
natural lift type on the tangent bundle TM of a Riemannian manifold M and the
conditions under which the tangent bundle endowed with a structure of this type
and with a general natural lifted metric G is a Riemannian almost product (locally
product) manifold or an (almost) para-Hermitian manifold.

The best known class of almost para-Hermitian structures is that of the almost
para-Kähler structures (see [2]), characterized by the closure of the associated 2-
form. In the last section of this paper we shall characterize the general natural
(almost) para-Kähler structures on the tangent bundle of a Riemannian manifold.

The manifolds, tensor fields and other geometric objects considered in this paper
are assumed to be differentiable of class C∞ (i.e. smooth). The Einstein summation
convention is used throughout this paper, the range of the indices h, i, j, k, l,m, r,
being always {1, . . . , n}.

2. PRELIMINARY RESULTS

Let (M, g) be a smooth n-dimensional Riemannian manifold and denote its
tangent bundle by τ : TM → M . The total space TM has a structure of 2n-
dimensional smooth manifold, induced from the smooth manifold structure of M .
This structure is obtained by using the local charts on TM induced from the lo-
cal charts on M . If (U, ϕ) = (U, x1, . . . , xn) is a local chart on M , then the
corresponding induced local chart on TM is (τ−1(U), Φ) = (τ−1(U), x1, . . . , xn,
y1, . . . , yn), where the local coordinates xi, yj , for i, j = 1, . . . , n, are defined as
follows. The first n local coordinates of a tangent vector y ∈ τ−1(U) are the local
coordinates in the local chart (U, ϕ) of its base point, i.e. xi = xi ◦ τ , by an abuse
of notation. The last n local coordinates yj, j = 1, . . . , n, of y ∈ τ−1(U) are the
vector space coordinates of y with respect to the natural basis in Tτ (y)M defined
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by the local chart (U, ϕ). Due to this special structure of differentiable manifold
for TM , it is possible to introduce the concept of M -tensor field on it (see [20]),
called by R. Miron and his collaborators distinguished tensor field or d-tensor field
(e.g. see [6] and [19]).

Denote by ∇̇ the Levi Civita connection of the Riemannian metric g on M .
Then we have the direct sum decomposition

(2.1) TTM = V TM ⊕ HTM

of the tangent bundle to TM into the vertical distribution V TM = Ker τ∗ and
the horizontal distribution HTM defined by ∇̇ (see [34]). The set of vector fields
{ ∂

∂y1 , . . . , ∂
∂yn } on τ−1(U) defines a local frame field for V TM , and for HTM we

have the local frame field { δ
δx1 , . . . ,

δ
δxn }, where δ

δxi = ∂
∂xi −Γh

0i
∂

∂yh , Γh
0i = ykΓh

ki,

and Γh
ki(x) are the Christoffel symbols of g.

The set { δ
δxi ,

∂
∂yj }i,j=1,n, denoted also by {δi, ∂j}i,j=1,n, defines a local frame

on TM , adapted to the direct sum decomposition (2.1).
Consider the energy density of the tangent vector y with respect to the Rieman-

nian metric g,

(2.2) t =
1
2
‖y‖2 =

1
2
gτ (y)(y, y) =

1
2
gik(x)yiyk, y ∈ τ−1(U).

Obviously, we have t ∈ [0,∞) for all y ∈ TM .
We shall use the following lemma, which may be proved easily.

Lemma 2.1. If n > 1 and u, v are smooth functions on TM such that
ugij + vg0ig0j = 0, or uδj

i + vyjg0i = 0,

on the domain of any induced local chart on TM , then u = 0, v = 0. We used
the notation g0i = yhghi.

3. ALMOST PRODUCT STRUCTURES OF GENERAL NATURAL LIFTED TYPE ON TM

In this section we shall construct an (1, 1)-tensor field P , obtained as general
natural lift of the metric g, from the base manifold to the tangent bundle TM , and
we shall get the conditions under which P defines an almost product structure on
the tangent bundle.

Let us recall some general definitions concerning almost product and almost
paracomplex manifolds.

An almost product structure J on a differentiable manifold M is an (1, 1)-
tensor field on M such that J 2 = I . The pair (M, J) is called an almost product
manifold. An integrable almost product manifold is usually called a locally product
manifold.
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An almost paracomplex manifold is an almost product manifold (M, J), such
that the two eigenbundles associated to the two eigenvalues +1 and −1 of J ,
respectively, have the same rank. Equivalently, a splitting of the tangent bundle
TM into the Whitney sum of two subbundles T ±M of the same fiber dimension
is called an almost paracomplex structure on M .

Authors like C. Bejan, V. Cruceanu, A. Heydari, S. Ianuş, S. Ishihara, I. Mihai,
C. Nicolau, V. Oproiu, L. Ornea, N. Papaghiuc, E. Peyghan, and K. Yano, considered
almost product structures on the tangent and cotangent bundles of a manifold M .

Let ∇ be a linear connection on M and denote by XV and XH the vertical
and horizontal lift of the vector field X ∈ T 1

0 (M) to the tangent bundle TM . The
simplest almost product structures on TM , denoted by P and Q are defined by the
relations

(3.1) P (XV ) = XV , P (XH) = −XH ,

(3.2) Q(XV ) = XH , Q(XH) = XV .

The structure P is a paracomplex structure if and only if ∇ has vanishing curvature,
while Q is paracomplex if and only if ∇ has both vanishing torsion and curvature.
These structures have been extended to the case of a nonlinear connection, and to the
specific case of a nonlinear connection defined by a Finsler, Lagrange or Hamilton
structure.

Let us introduce a natural 1st order lift of g to TM , by the relation:

(3.3)




PXH
y = a1(t)XV

y + b1(t)gτ(y)(X, y)yV
y − a4(t)XH

y − b4(t)gτ(y)(X, y)yH
y ,

PXV
y = a3(t)XV

y + b3(t)gτ(y)(X, y)yV
y + a2(t)XH

y + b2(t)gτ(y)(X, y)yH
y ,

∀X ∈ T 1
0 (TM), ∀y ∈ TM, where aα and bα are smooth functions of the energy

density t, for α = 1, 4.
Remark that in the case when a3(t) = a4(t) = 1, and the other coefficients

vanish, we have the structure given by (3.1), and when the only nonzero coefficients
are a1(t) = a2(t) = 1, we get the structure defined by (3.2).

In the following, all the computations are done by using the expressions with
respect to the adapted frame {δi, ∂j}i,j=1,n on TM . Thus (3.3) becomes

(3.4) Pδi = (1P )j
i ∂j − (3P )j

iδj , P∂i = (4P )j
i∂j + (2P )j

iδj,

where the M−tensor fields involved as coefficients have the forms

(3.5) (αP )j
i = aα(t)δj

i + bα(t)yjg0i, ∀α = 1, 4.

The matrix associated to P with respect to the adapted frame {δi, ∂j}i,j=1,n is

(3.6) P =

(
−(3P )j

i (1P )j
i

(2P )j
i (4P )j

i

)
.
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In the following theorem we give the conditions under which the above (1, 1)−tensor
field P is an almost product structure on the tangent bundle.

Theorem 3.1. The natural tensor field P of type (1, 1) on TM , given by (3.3),
defines an almost product structure on TM , if and only if a 4 = a3, b4 = b3, and
the coefficients a1, a2, a3, b1, b2 and b3 are related by

(3.7) a1a2 = 1 − a2
3 , (a1 + 2tb1)(a2 + 2tb2) = 1− (a3 + 2tb3)2.

Proof. We have to solve the following system


(3P )j
i (

3P )i
l + (1P )j

i (
2P )i

l = δ
j
l , −(3P )j

i (
1P )i

l + (1P )j
i (

4P )i
l = 0,

−(2P )j
i (

3P )i
l + (4P )j

i (
2P )i

l = 0, (2P )j
i (

1P )i
l + (4P )j

i (
4P )i

l = δj
l .

Replacing (3.5) and taking into account the relation yig0i = 2t, the second and
third equation become, respectively

−a1(a3 − a4)δ
j
l + [b1(a4 − a3) − (b3 − b4)(a1 + 2tb1)]yjg0l = 0,

−a2(a3 − a4)δ
j
l + [b2(a4 − a3) − (b3 − b4)(a2 + 2tb2)]yjg0l = 0.

Using Lemma 2.1, both relations lead to a3 = a4 and b3 = b4. Then, the first
and fourth equations in the studied system take the same form

(3.8) (a1a2 +a2
3 −1)δj

l +[b1(a2 +2tb2)+a1b2 +a3b3 + b3(a3 +2tb3)]yjg0l = 0.

This relation holds if and only if the two coefficients involved are zero. From the
vanishing condition of the first one, we have the first relation in (3.7). We obtain
also the second relation in the statement of the theorem if to the first coefficient we
add the second one, multiplied by 2t. Thus the theorem is proved.

Remark 3.2. If we take a3 = b1 = b2 = b3 = 0 and some particular values for
a1 and a2, such that a1a2 = 1, we obtain the almost product structures studied in
[12] and [29].

Now we characterize the general natural locally product structures on the tangent
bundle, i.e. the integrable general natural almost product structures on TM .

Theorem 3.3. Let (M, g) be an n-dimensional connected Riemannian manifold,
with n > 2. The general natural almost product structure P on TM is integrable
(i.e. P is a locally product structure on TM) if and only if (M, g) has constant
sectional curvature c, and the coefficients b 1, b2, b3 are given by:
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b1 =
a2
1a

′
1 + a1c + 3a1a

2
3c − 2a2

1a
′
2ct + 2a2c

2t − 2a2a
2
3c

2t

a1(a1 − 2a′
1t + 2a2ct + 4a′

2ct
2)

,

b2 =
1

2a3
[2a′

2a3−a2a
′
3−

(a2+2a′
2t)(2a1a2a3c−a2

1a
′
3−4a′

1a2a3ct−2a′
3ct−6a2

3a
′
3ct)

a2
1−2a1a

′
1t+2a1a2ct−4a′

1a2ct2−8a3a
′
3ct

2
],

b3 =
a2
1a

′
3 − 2a1a2a3c + 4a′

1a2a3ct + 2a′
3ct + 6a2

3a
′
3ct

a2
1 − 2a1a′

1t + 2a1a2ct − 4a′
1a2ct2 − 8a3a′

3ct
2

.

Proof. The integrability of an almost product structure P on TM is characterized
by the vanishing condition of its Nijenhuis tensor field NP , defined by

NP (X, Y ) = [PX, PY ] − P [PX, Y ] − P [X, PY ] + [X, Y ],

for all the vector fields X and Y on TM .
From the condition NP (∂i, ∂j) = 0 we obtain, by using Lemma 2.1, that the

horizontal component of this Nijenhuis bracket vanishes if and only if

(3.9) a′2 =
a2a

′
3 + 2a3b2 − a2b3

2(a3 + tb3)
,

and the vertical component vanishes if and only if

(a1a
′
2 − a1b2 − 2a′3b3t)(δh

i g0j − δh
j g0i)− a2

2y
kRh

kij

+a2b2y
kyl(g0iR

h
kjl − g0jR

h
kil) = 0.

(3.10)

Since the curvature of the base manifold does not depend on y, we differentiate
with respect to yk in (3.10). From the value of this derivative at y = 0, we get

(3.11) Rh
kij = c(δh

i gkj − δh
j gki),

where

c =
a1(0)
a2

2(0)
(a′2(0)− b2(0)),

which is a function depending on x1, ..., xn only. According to Schur’s theorem, c
must be a constant when n > 2 and M is connected.

Now, from the vanishing conditions of the vertical and horizontal components
of NP (δi, δj) we obtain the expressions of a′1 and a′3

(3.12) a′1 =
a1b1 − c(1 + 3a2

3 + 4ta3b3)
a1 + 2tb1

, a′3 =
a1b3 + 2ca2(a3 + tb3)

a1 + 2tb1
.

Replacing the obtained value of a′3 in (3.9), and using the relations (3.7) we
have

(3.13) a′2 =
2a3b3 − a2b1 − ca2

2

a1 + 2tb1
.
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The vertical component of the mixed Nijenhuis bracket NP (∂i, δj) vanishes
when we replace the values of a′1 and a′3 from (3.12) and a′2 from (3.13). The same
values fulfill also the relation

(3.14) a1a
′
2 + a′1a2 = −2a3a

′
3,

obtained by differentiating the first of the relations (3.7) with respect to t.
Solving the system given by (3.9) and (3.12), with respect to b1, b2, b3, and

taking into account the relation (3.14), we obtain the expressions in the statement,
which satisfy the vanishing conditions of all the components of the Nijenhuis tensor
field NP . Thus the almost product structure P on TM is integrable.

Example 3.4. When a3, b1, b2, b3 vanish and a2 = 1
a1

= a(L2), where L2 = 2t,

the relation (3.13) becomes of the form 2a′ = −ca3. Using the notations of A.
Heydary and E. Peyghan, the characterization of the first locally product structure
constructed in [12] is proved. In an analogous way, we can obtain the other locally
product structures in the mentioned paper and in [29].

Remark 3.5. Considering a1 = 1
a2

=
√

2t, a3 = b1 = b2 = b3 = 0, the relation
(3.10) becomes

(δh
i gkj − δh

j gki)yk + Rh
kijy

k = 0,

which implies that the base manifold has constant sectional curvature −1, and [29,
Theorem 12] is proved, since all the other components of the Nijenhuis tensor
vanish.

4. RIEMANNIAN ALMOST PRODUCT AND ALMOST PARA-HERMITIAN TANGENT BUNDLES

The theory of Riemannian almost product structures was initiated in 1965 by
K. Yano and developed by A. M. Naveira, M. Staikova, K. Gribachev, D. Mekerov,
etc. On the other hand, the almost para-Hermitian structures, classified by C. Bejan,
then by P. M. Gadea and J. Muñoz Masqué, were studied by many authors.

A Riemannian manifold (M, g), endowed with an almost product structure J ,
satisfying the relation

(4.1) g(JX, JY ) = εg(X, Y ), ∀X, Y ∈ T 1
0 (M),

is called a Riemannian almost product manifold if ε = 1, or an almost para-
Hermitian manifold if ε = −1.

In the sequel we shall obtain the conditions under which the tangent bundle
TM , endowed with the almost product structure P determined in the previous
section and with a metric G of general natural lift type, is a Riemannian almost
product manifold, or a para-Hermitian manifold.
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Recall the expression of the semi-Riemannian metric G of general natural lift
type on TM , considered by V. Oproiu in [25]:


G(XH

y , Y H
y ) = c1(t)gτ (y)(X, Y ) + d1(t)gτ (y)(X, y)gτ (y)(Y, y),

G(XV
y , Y V

y ) = c2(t)gτ (y)(X, Y ) + d2(t)gτ (y)(X, y)gτ (y)(Y, y),

G(XV
y , Y H

y ) = c3(t)gτ (y)(X, Y ) + d3(t)gτ (y)(X, y)gτ (y)(Y, y),

(4.2)

∀X, Y ∈ T 1
0 (TM), ∀y ∈ TM, where cα, dα, with α = 1, 3, are six smooth

functions of the energy density on TM .
The conditions for G to be nondegenerate are assured if

c1c2 − c2
3 
= 0, (c1 + 2td1)(c2 + 2td2) − (c3 + 2td3)2 
= 0.

The metric G is definite positive if

(4.3) c1+2td1 > 0, c2 +2td2 > 0, (c1+2td1)(c2+2td2)−(c3+2td3)2 > 0.

Now we prove the following theorems.

Theorem 4.1. The tangent bundle of a Riemannian manifold M , endowed with
the metric G and the almost product structure P of general natural lift type, is
a Riemannian almost product manifold if and only if the coefficients of G and P

satisfy the relations

a1c2 − a2c1 = 2a3c3,

(a1 + 2tb1)(c2 + 2td2)− (a2 + 2tb2)(c1 + 2td1) = 2(a3 + 2tb3)(c3 + 2td3).

If moreover, the conditions in Theorem 3.3 hold, then (TM, G, P ) is a Riemannian
locally product manifold.

Proof. With respect to the adapted frame {δj, ∂i}i,j=1,n, for ε = 1, (4.1) has
the form

(4.4) G(Pδi, P δj) = G(δi, δj), G(P∂i, P ∂j) = G(∂i, ∂j), G(P∂i, P δj) = G(∂i, δj).

Replacing in (4.4) the expressions of the almost product structure P and of the
metric G, and using Lemma 2.1, we have that the coefficients of gij and g0ig0j

vanish. From the vanishing conditions of the coefficients of gij we get the following
homogeneous linear system in c1, c2, c3

(4.5)




(a2
3 − 1)c1 + a2

1c2 − 2a1a3c3 = 0,

a2
2c1 + (a2

3 − 1)c2 + 2a2a3c3 = 0,

−a2c1 + a1c2 − 2a3c3 = 0.



General Natural Riemannian Almost Product Structures 505

It is easy to see that the rank of the system (4.5) is 1, due to the first relation in
(3.7), then the first relation in the statement holds.

The vanishing conditions for the coefficients of g0ig0j in (4.4) lead to a more
complicated system. Multiplying the equations of the new system by 2t, and then
adding the corresponding equations from (4.5), we obtain:

(4.6)




[(a3 + 2tb3)2 − 1]S1 + (a1 + 2tb1)2S2 − 2(a1 + 2tb1)(a3 + 2tb3)S3 = 0,

(a2 + 2td2)2S1 + [(a3 + 2tb3)2 − 1]S2 + 2(a2 + 2tb2)(a3 + 2tb3)S3 = 0,

−(a2 + 2tb2)S1 + (a1 + 2tb1)S2 − 2(a3 + 2tb3)S3 = 0,

where we denoted by S1, S2, S3, the unknowns c1 + 2td1, c2 + 2td2, c3 + 2td3.
Since the second relation in (3.7) holds, the rank of the above system is equal to 1, and

the second relation in the statement of the theorem is true.

Remark 4.2. If we consider a1 = 1
a2

=
√

2t, c3 =
√

2
t , and the other coefficients in

the definitions of P and G vanish, the systems (4.5) and (4.6) are satisfied, and we obtain
the results in [29, Theorem 11]. Taking Remark 3.5 into account, [29, Theorem 12] is also
proved.

Theorem 4.3. The family of general natural Riemannian metrics G on TM such that
(TM, G, P ) is an almost para-Hermitian manifold, is given by (4.2), provided that its
coefficients are related to the coefficients of the almost product structure P of general
natural lift type by the following proportionality relations

(4.7)
c1

a1
= − c2

a2
=

c3

a3
= λ,

c1 + 2td1

a1 + 2tb1
= −c2 + 2td2

a2 + 2tb2
=

c3 + 2td3

a3 + 2tb3
= λ + 2tµ,

where the proportionality coefficients λ > 0 and λ+2tµ > 0 are functions depending on t.
If moreover, the base manifold is a space form, and b1, b2, b3 have the expressions given
in Theorem 3.3, then (TM, G, P ) is a para-Hermitian manifold.

Proof. We use the local adapted frame {δi, ∂j}i,j=1,...,n. The metric G is almost
para-Hermitian with respect to the almost product structure P if and only if the following
relations are fulfilled

(∗)G(Pδi, P δj) = −G(δi, δj), G(P∂i, P ∂j) = −G(∂i, ∂j), G(P∂i, P δj) = −G(∂i, δj).

By using Lemma 2.1 we obtain that the coefficients of gij and g0ig0j in (∗) must vanish.
Imposing this condition for the coefficients of gij it follows that the parameters c1, c2, and
c3, in the definition of the metric G, satisfy the homogeneous linear system

(4.8)




(a2
3 + 1)c1 + a2

1c2 − 2a1a3c3 = 0,

a2
2c1 + (a2

3 + 1)c2 + 2a2a3c3 = 0,

−a2a3c1 + a1a3c2 + 2a1a2c3 = 0.

The rank of the system (4.8) is 2, and its nontrivial solutions satisfy the first relation
in (4.7).
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From the vanishing condition for the coefficients of g0ig0j in (∗), we obtain a much
more complicated system, fulfilled by d1, d2, d3. In order to get a certain similitude with
the above system (4.8), fulfilled by c1, c2, and c3, we multiply the new equations by 2t
and add the equations of the system (4.8), respectively. The new system may be written in
the following form


[(a3 + 2tb3)2 + 1]S1 + (a1 + 2tb1)2S2 − 2(a1 + 2tb1)(a3 + 2tb3)S3 = 0,

(a2 + 2tb2)2S1 + [(a3 + 2tb3)2 + 1]S2 + 2(a2 + 2tb2)(a3 + 2tb3)S3 = 0,

−(a2+2tb2)(a3+2tb3)S1+(a1+2tb1)(a3+2tb3)S2+2(a1+2tb1)(a2+2tb2)S3 = 0,

where the new unknowns are S1 , S2, and S3, defined in the previous proof.
The nonzero solutions of the above system satisfy the second relation in (4.7).
Moreover, the conditions (4.3) are fulfilled, due to the properties (3.7) of the coefficients

of the almost product structure P .
Finally, the explicit expressions of the coefficients d1, d2, and d3, obtained from (4.7),

are

(4.9) d1 = λb1 + µ(a1 + 2tb1), d2 = −λb2 − µ(a2 + 2tb2), d3 = λb3 + µ(a3 + 2tb3).

Example 4.4. In the case when a1 = a2 = 1 and a3 = 0, it follows from (4.8) that
c1 = −c2 = 1. If the other coefficients involved in the definitions (3.3) and (4.2) vanish,
we obtain the almost para-Hermitian structure considered in [7].

Remark 4.5. When a1 = 1
a2

=
√

2t, c1 = −2, c2 = 1
t
, and the other coefficients in

the definitions of P and G vanish, the two systems in the above proof are satisfied, and
thus [29, Theorem 16] is proved. Taking into account Remark 3.5, we obtain the result
stated in [29, Theorem 18].

5. ALMOST PARA-KÄHLER STRUCTURES OF GENERAL NATURAL LIFT TYPE ON TM

Considering the 2-form Ω defined by the almost para-Hermitian structure (G, P ) on
TM ,

Ω(X, Y ) = G(X, PY ),

for all the vector fields X, Y on TM , we obtain the following result:

Proposition 5.1. The expression of the 2-form Ω associated to the general natural
almost para-Hermitian structure (G, P ) on the tangent bundle is given by

Ω
(
XV

y , Y V
y

)
= 0, Ω

(
XH

y , Y H
y

)
= 0,

Ω
(
XH

y , Y V
y

)
= −Ω

(
XV

y , Y H
y

)
= λgτ(y)(X, Y ) + µgτ(y)(y, X)gτ(y)(y, Y ),

for every tangent vector fields X, Y ∈ T 1
0 (M), and every tangent vector y ∈ TM .

In the local adapted frame {δi, ∂j}i,j=1,...,n on TM we have

(5.1) Ω = (λgij + µg0ig0j)dxi ∧Dyj ,

where Dyi = dyi + Γi
0hdxh is the absolute differential of y i .
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Next, by calculating the exterior differential of Ω, we obtain:

Theorem 5.2. The almost para-Hermitian structure (G, P ) of general natural lift type
on TM is almost para-Kählerian if and only if

µ = λ′.

Proof. The differential of Ω is

dΩ = (dλgij + λdgij + dµg0ig0j + µdg0ig0j + µg0idg0j) ∧ dxi ∧ Dyj

−(λgij + µg0ig0j)dxi ∧ dDyj .

We first obtain the expressions of dλ, dµ, dg0i and dDyi:

dλ = λ′g0hDyh , dµ = µ′g0hDyh , dg0i = ghiDyh + g0hΓh
ikdxk,

dDyh =
1
2
Rh

0ikdxi ∧ dxk + Γh
ikDyi ∧ dxk.

By substituting these relations into dΩ, using the properties of the exterior product, the
symmetry of gij and Γh

ik, and the Bianchi identities, we get

dΩ =
1
2
(µ − λ′)(gijg0k − g0igjk)Dyk ∧ Dyi ∧ dxj.

Hence the structure (G, P ) on TM is almost para-Kählerian (i.e. dΩ = 0) if and only
if µ = λ′.

Remark 5.3. The family of general natural almost para-Kählerian structures on TM
depends on five coefficients, a1, a3, b1, b3, and λ, which must satisfy the supplementary
conditions a1 > 0, a1 + 2tb1 > 0, λ > 0, λ + 2tµ > 0.

Combining the results from the theorems 3.1, 3.3 and 5.2 we may state

Theorem 5.4. An almost para-Hermitian structure (G, P ) of general natural lift type
on TM is para-Kählerian if and only if the almost product structure P is integrable (see
Theorem 3.3) and µ = λ′.

Remark 5.5. The family of general natural para-Kählerian structures on TM depends
on three parameters, a1, a3, and λ, which must satisfy the supplementary conditions a1 >
0, a1 + 2tb1 > 0, λ > 0, λ + 2tλ′ > 0, b1 being given in Theorem 3.3.
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REFERENCES

1. M. T. K. Abbassi and M. Sarih, On some hereditary properties of Riemannian g-
natural metrics on tangent bundles of Riemannian manifolds, Diff. Geom. Appl., 22
(2005), 19-47.

2. D. V. Alekseevsky, C. Medori and A. Tomassini, Homogeneous Para-K̈ahler Einstein
manifolds, Russ. Math. Surv., 64(1) (2009), 1-43.

3. C. Bejan, A classification of the almost parahermitian manifolds, Proc. Conference
on Diff. Geom. and Appl., Dubrovnik, 1988, pp. 23-27.

4. C. Bejan, Almost parahermitian structures on the tangent bundle of an almost para-
cohermitian manifold, Proc. Fifth Nat. Sem. Finsler and Lagrange spaces, Brasov,
1988, pp. 105-109.

5. C. Bejan and L. Ornea, An example of an almost hyperbolic Hermitian manifold,
Int. J. Math. Math. Sci., 21(3) (1998), 613-618.
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