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ABSTRACT: In this work we study the current bounds from the CEvNS process and meson
invisible decays on generic neutrino interactions with sterile neutrinos in effective field
theories. The interactions between quarks and left-handed SM neutrinos and/or right-
handed neutrinos are first described by the low-energy effective field theory (LNEFT)
between the electroweak scale and the chiral symmetry breaking scale. We complete the
independent operator basis for the LNEFT up to dimension-6 by including both the lepton-
number-conserving (LNC) and lepton-number-violating (LNV) operators involving right-
handed neutrinos. We translate the bounds on the LNEFT Wilson coefficients from the
COHERENT observation and calculate the branching fractions of light meson invisible
decays. The bounds on LNEFT are then mapped onto the SM effective field theory with
sterile neutrinos (SMNEFT) to constrain new physics above the electroweak scale. We
find that the meson invisible decays can provide the only sensitive probe for 7 neutrino
flavor component and s quark component in the quark-neutrino interactions involving two
(one) active neutrinos and for the effective operators without any active neutrino fields.
The CEvNS process places the most stringent bound on all other Wilson coefficients. By
assuming one dominant Wilson coefficient at a time in SMNEFT and negligible sterile
neutrino mass, the most stringent limits on the new physics scale are 2.7-10 TeV from
corresponding dipole operator in LNEFT and 0.5-1.5 TeV from neutrino-quark operator
in LNEFT.
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1 Introduction

The coherent elastic neutrino-nucleus scattering (CEvNS) process has been observed by
the COHERENT experiment at the 6.7¢ level [1]. The Standard Model (SM) predicts the
CEvNS process through the Z boson exchange [2] and the observation is consistent with the
SM at the 1o level. In the COHERENT experiment, the spallation neutron source produces
prompt v, and delayed 7, v, which reach the low-background Csl detector. Besides the

active neutrinos through the weak neutral current in the SM, any neutrino flavors including
light right-handed (RH) neutrinos! can be produced in the final state of the CEvNS process.

'RH neutrinos refer to sterile neutrinos which do not carry any SM gauge charges.



The COHERENT observation thus provides us an opportunity to explore the new physics
(NP) associated with generic neutrino interactions in the presence of light RH neutrinos.

CEvNS occurs when the transferred momentum during the neutrino scattering off a
nucleus is smaller than the inverse of the nuclear radius. Thus, the relevant neutral currents
can be well described by an effective field theory (EFT) below the electroweak (EW) scale.
The low-energy effective field theory (LEFT) is an EFT defined below the electroweak
scale Agw ~ 102 GeV. In the LEFT, the dynamical degrees of freedom are the SM charged
and neutral leptons and light quarks excluding the heavy top quark. They respect the
unbroken gauge symmetries SU(3). X U(1)ep, after integrating out the Higgs boson h, weak
gauge bosons W, Z and the top quark ¢ in the SM. The basis of LEFT operators up to
dimension-6 (dim-6) has been written down in ref. [3]. If the LEFT is extended by right-
handed (RH) neutrinos N, the corresponding effective field theory is named as LNEFT.
An independent subset of lepton-number-conserving (LNC) operators with RH neutrinos
N at dim-6 in LNEFT was given in ref. [4]. In this paper we construct the additional
lepton-number-violating (LNV) operators up to dim-6 involving N which may or may not
break the baryon number. Together with those in refs. [3, 4], they make up the complete
and independent operator basis for the LNEFT up to dim-6.? Moreover, to connect to
NP above the electroweak scale, we match the LNEFT to the SM effective field theory
extended by RH neutrinos N (SMNEFT) at the electroweak scale [5-8]. The SMNEFT
respects the SM gauge group SU(3). x SU(2);, x U(1)y and describes the physics above
the electroweak scale up to the NP scale. In this paper we revise the SMNEFT operator
basis involving N in ref. [8] by changing some notations.

Recently, refs. [9-14] considered constraints from the CEvNS process on the LNC
operators in LNEFT and SMNEFT. With the complete basis of LNEFT and SMNEFT,
however, we can perform a comprehensive study of the constraints on both the LNC and
LNV cases and investigate the implication for NP above the electroweak scale.

Besides the CEvNS process, invisible decays of light mesons can give additional infor-
mation for the nature of neutrinos. In the SM, the decay rates of 7°,7,n" — v are helicity
suppressed and those of light vector mesons (¢ and w) are also extremely small. Thus, the
observation of any of these meson invisible decays would clearly indicate the existence of
NP [15-18]. Moreover, they can provide the only sensitive probe for some flavor compo-
nents in the quark-neutrino interactions [19] and for the effective operators without any
active neutrino fields. In this work we study the correlation and complementarity of the
CEvNS process and meson invisible decay for the bound on generic neutrino interactions
with RH neutrinos in the frameworks of LNEFT and SMNEFT.

The paper is outlined as follows. In section 2, we describe the generic neutrino-photon/
quark operators in the LNEFT basis. The LNEFT operators are then matched to the SM-
NEFT. We derive the general constraints on LNEFT Wilson coefficients (WCs) in both
LNC and LNV cases from the CEvNS process in section 3. In section 4, we give the analyt-
ical expressions for the invisible decay branching fractions of light mesons. Section 5 shows
our numerical results and the lower bounds on the NP scales in the SMNEFT. Our con-
clusions are drawn in section 6. Some calculational details are collected in the appendices.

2The basis of LNV operators was also constructed in the journal version of ref. [4].



2 General neutrino interactions with RH neutrinos

The main focus of this work is on low-energy processes CEvNS and light meson invisible
decays. Thus, we will start from the framework of LNEFT. The LNEFT is defined below
the electroweak scale Agw and its dynamical degrees of freedom include the SM light
particles excluding h, W, Z,t and an arbitrary number of RH neutrinos N. The power
counting of LNEFT is determined by both the NP scale Axp and the electroweak scale
Arw. The LNEFT consists of dim-3 fermion mass terms, dim-4 kinetic terms and higher
dimensional operators Og?(d > 5) (dim-d) built out of those light fields and satisfies the
SU(3)e X U(1)em gauge symmetry. The LNEFT Lagrangian is

Lixerr = La<a+ )Y Cffi)c’)fﬁ ; (2.1)
i d>b

where Ci(dL) is the Wilson coefficient of operator (’)EdL). Generally, the Wilson coefficients

C’Z.(flL) scale as Ag‘*\;\f—d /A{p with integer n > 0. In appendix A we construct the complete
and independent operator basis involving RH neutrinos N up to dim-6 in the LNEFT for
the study of generic neutrino interactions. In this work we consider the non-renormalisable
dim-5 magnetic dipole operators and dim-6 four-fermion operators.

We assume the LNEFT is a low-energy version of the SMNEFT which is defined above
the electroweak scale. In the SMNEFT, the renormalizable SM Lagrangian is extended
by the RH neutrino sector and a tower of higher dimensional effective operators Ol(d) with
increasing canonical dimension d > 5. The importance of these operators is measured by
the Wilson coefficients CZ-(d) with decreasing relevance

LovnerT = Lsvin + DY o, (2.2)
i d>5

where Lgnm4n is the renormalizable SM Lagrangian extended by RH neutrinos N. Gener-
ally, each Wilson coefficient C’i(d) is associated with a NP scale Axp = (C’i(d))l/ (4=d) For a
given NP model, it can be precisely expressed as the function of the parameters in the NP
model through matching and renormalization group running procedures. In appendix B
we collect the relevant SMNEFT operators used in our analysis for the generic neutrino
interactions.

2.1 General neutrino operators in LNEFT basis

The generic neutrino operators entering the framework of LNEFT respect SU(3)cxU(1)em
gauge symmetry and are constructed by a neutrino bilinear coupled to the photon field
strength tensor or SM quark bilinear currents.? In the basis of LNEFT for neutrinos, the

dim-5 neutrino-photon and dim-6 neutrino-quark operators with lepton number conserva-

3The operators involving charged leptons are not related to the processes of interest and thus we do not
consider them here.



tion (LNC, |AL| = 0) are given by [3]

OunF = (Do N)F* 4+ h.c. (2.3)
(?qu)(VY v), O = @rVuar) (7"v) (2.4)
= (qzvuqL) (NN Oyne = @rvugr) (NA'N) (2.5)
qVNl = (qqr)(VN) + h.c. O N2 = (@rar)(PN) + hee. (2.6)
qVN = (qgot” qR)(VJWN) +h.c., (2.7)

where F),, is the electromagnetic field strength tensor, ¢ can be either up-type quarks u;
or down-type quarks d;, v; are active left-handed neutrinos, and N; are RH neutrinos.
The quark fields and the RH neutrino fields are in the mass basis, while the left-handed
(LH) neutrino fields are in the flavor basis. Both v; and N; carry lepton number L(v;) =
L(N;) = +1. The flavors of the two quarks and those of the two neutrinos in the above
operators can be different although we do not specify their flavor indexes here. For the
notation of the Wilson coefficients, we use the same subscripts as the operators, for instance
fofmﬁ together with (’);ﬁmﬁ , where p, 7 denote the quark flavors and «, 3 are the neutrino
flavors. We demand the vector operators to be hermitian, i.e. C’;’p rof — C)‘?Tp o with
X = qul,qu2,qN1,qN2, to ignore the h.c. in egs. (2.4) and (2.5).

The relevant dim-5 and dim-6 operators which induce lepton number violation (LNV,
|AL| = 2) are

(1/ ouwV)F* +h.c. Onnr = (NC0,, N)F* + hec., (2.8)
qum = (@YuqL) WOy N) + hc. qum = (@& uar)(vCy"N) + hee. (2.9)
qyl = (Qrqr )(1/ v)+h.c., q1/2 = (qrqr )(VCV) +h.c. (2.10)
qu = (qrqr)(NCN) + h.c. qu = (qzqr)(NCN) + h.c. (2.11)
= (qro™ qr) (v CUWV) +h.c. O4n = (QLJ“VQR)(NCOWN) +he.. (212

Note that the Wilson coefficients of the scalar operators are symmetric in the neutrino
indices and the dipole and tensor operators are antisymmetric in the neutrino indices.
Thus in particular the operators with the tensor neutrino current @a‘“’yg or Fga“” Ng
vanish for identical neutrino flavors (a = ).

LNEFT is a valid description between the electroweak scale Agw = my and chi-
ral symmetry breaking scale A, ~ 1 GeV for the low-energy neutrino-quark interactions.
There are large logarithms produced by the ratio of the two scales in the perturbative
expansion which can be resummed by solving the relevant renormalization group equa-
tions. In our case, the leading order contribution comes from the one-loop QCD and QED
corrections. The vector (and axial-vector) current operators are not renormalized at one-
loop level because of the QED and QCD Ward identities. However, the scalar and tensor
current operators are renormalized and their one-loop renormalization group equations for



the corresponding Wilson coefficients are [20]

d Qg o

Md/j,cs <%3CF + g3Q3> C(}Sv C(}S' € {Cfl/NhquN27Cqulvc&gu27cégNl7C&SNl} )
d Qs @ 2\ ~T T

M@Cq = (%CF + %Qq) Cys Ie {Cqqu Cos C, N} (2.13)

where Cp = (N2 —1)/2N,. = 4/3 with N, = 3 is the second Casimir invariant of the color
group SU(3)., Qg is the electric charge of quark field ¢ in the corresponding operator in
unit of positron’s charge e, and a = €?/(47)(as = g2/(4m)) is the (strong) fine structure
constant. The solutions for the above equations are straightforward and are given by

C(f(,u,l) (as(m)>30F/b <a(u2)>3Q3/be le(m)’

s(p1) (11)
i = (2 (2 (“2)>Qg/be CT () (2.14)
M=\ ag(m) (1) a \f2) ‘

between two scales y11 and pp. Here b = —11 4 2/3ns with ny being the number of active
quark flavors between scales 1 and p2, and be = ), %(Nc)ng = 4(3ny +4n,, +ng)/9 with
neq,d being the active number of leptons/up-type quarks/down-type quarks between the
two scales. If we take the scale p1 (u2) to be Ay (Agw), after including quark and lepton
threshold effects, the numerical results are

CI(Ay) = 1.67C% (Apw) , CF(Ay) = 1.66 C5 (Apw)
CT(A,) =0.85CL (Apw) , CT(Ay) = 0.84CF (Apw) - (2.15)

Compared to the pure QCD running effect in [21], we find the QED correction is almost

negligible. We can see the scalar-type operators are enhanced while the tensor-type oper-

ators are suppressed when evolving from the high scale Agw down to the low scale A,.
For the neutrino dipole operators, the renormalization group evolution is

d af O

Trra
MdﬂCZF - % i ZQq’I‘qu ﬁe( - mQT) ) (216)

where Cip € {Cynp,Cour,Cnnr} and C;‘Fi € {C:{VN,C;';,C ~} and 0 is the Heaviside
theta function. It includes the one-loop QED running of Cjr [20] which is the first term on
the right-hand side of eq. (2.16). Note that, at one-loop order, the renormalization group
evolution of the Wilson coefficients of the tensor operators qu N (’)T and OT induces a
mixing into the dim-5 dipole operators O,nyr, O, and OnnNF, that is the last term of
eq. (2.16).* The solution is

Cir(Ay) =1.03 Cip(Apw) + 3.0 x 1071 GeV CL (Agw) — 3.2 x 1074 GeV CL (Agw)
—6.4x1073 GeV CT(Agw) 4 0.16 GeV CL(Agw) — 0.18 GeV CL (Apw) . (2.17)

4The dipole running also receives a similar contribution from the LNV tensor neutrino-charged lepton
operators without the color factor N..



We will numerically include the effect of the above renormalization group corrections when
running up to the electroweak scale below. Due to the suppression by the light quark mass,
the constraint on the tensor operators through the above mixing effect would be rather
weak and thus we will not consider it in the following analysis. Note that, however, it can
lead to a constraint on the WCs with heavy quark flavors which is beyond the scope of
this work.

2.2 Matching to the SMNEFT

SMNEFT describes NP which enters at a sufficiently high scale above the electroweak
scale. See appendix B for a complete list of SMNEFT operators involving RH neutrinos
N up to dim-7 and the relevant dim-6 and dim-7 operators without N. LNEFT should be
matched to SMNEFT at the electroweak scale u = my in order to constrain NP. We list
the relevant tree-level matching conditions for the LNC and LNV cases in table 1. Here
v = (V2GFp)~1/? ~ 246 GeV is the SM Higgs vacuum expectation value (vev), and D is
the unitary matrix transforming left-handed up-type quarks between flavor u} and mass
eigenstate up, i.e. u} = Dtuy. Under a chosen flavor basis, the flavor and mass eigenstates
are identical for the left-handed down-type quarks and RH w,d quarks, and D is then the
usual CKM matrix.

Note that SMNEFT operators modify the Z boson couplings from their SM values
[Zf)pr = 6pr (T3 — Qs%,) and the modified couplings are given by [3]

1 v 1),pr 3),pr v? r
[ZV]PT = idpr - 5(0( b Cgﬂ)p ) ) [ZN]pT = _ECZN )

1 v? 1),pr 3),pr v? T

(Zeylpr = (_ B + 3%/1/) Opr — *<C( I + Cl(r{l) ? ) ) (Zeg)pr = S%/V(Spr - ?C%e )
1 2 v 1),pr 3),pr 2 v? v

(Zup)pr = (2 3312/V)6 - ?(C( v Cl('{;p ) ) [Zuglpr = s Wopr — ?C%u )

1 1 v? 1),pr 3),pr 1 v? r
Zaglor = (= 5+ 3% )3 = 5 (CI7 +CIY™ )+ Zanlor = 55% 00 — 5Chiu
[ZuN]pr 4\f< NL1 +2C]T$L2) ) (2.18)

where [Zn]pr is the modified neutral current coupling to the RH neutrinos defined via
Lz D gZ[ZN]pTN ZN, and [Z,N]pr is the modified neutral current coupling to the LNV
current Z/C’)/HN defined via Lz D —gz [ZZ,N]WV ZN + h.c.. For simplicity, we do not
consider the couplings [Zy] and [Z, 5] modified by Cyn, Cnr1 and Cypa below. One has
92 = sraw
contributions from SMEFT operators in the Higgs sector. In the following discussion we

with sy (e ) being the sine (cosine) of the Weinberg angle as we neglect the

also do not consider contributions from the operators C’gl) , CSZ) , Cg;, CS;, Che and Chyg,
since they are strongly constrained from electroweak precision measurements.

As only the quark-flavor diagonal u,d or s quark bilinears contribute to the CEvNS
process and the light unflavored meson invisible decays, we will simplify the notation for the
LNEFT operators and the corresponding Wilson coefficients by dropping the superscripts
for the quark fields and taking the subscript g to be either u, or d, or s to indicate the



Class Matching of the Wilson coefficients at the electroweak scale Agw
LNC |Gy = DDy, (G + O ™) = Lo (Zuy ) (Blas O™ = G = Tl Zunl 2l
v case | OIS = O O (7,1, 17,] 05 Ol = O — B (Zuylrl e
LNC | O = Dpu D3y O = Sl lr 20l s = O’ — Lol Zuglr [ Znlas
NN case | Cyti™” = CBRP = T (Za, 2o Ciita™® = O — T Zaglr [ Zn)os
Cone = +45¢(CN5 + Ciw)
INC | R =0 Culvs” = +D5CgNT
U ease | G = 43R, ~ SCT cins? =0
e’ <o Cme = Lo
Cng = +%”26(2ng3 + Cf?{W - C(Llfd{w)
LNV | CSrred — g Cuty " = +555 Do (Coif L + Courin)
vV case Cj,ﬁmﬂ =— 43}5 (Cg’L’Z;L mT nggz Hl) Cgl’f;m‘ﬁ =0
Cul™ =0 Cg"/,prm’j = +161i/§ (ngTQﬁLHl - ngrgaﬁn)
Civr = +3v%e(Cis — Ciiw)
LNV | O30 = — 125 Dy (Cn + Ct) OS5 =+ ;DL Clil
NN case | CSB = — 23 (O3 + CHli) OS5 = + 35C
Ol = + 155D (Conur = CoNur) O™ = 4155 (Covan — Cooxar)
LNV | U = =8 Dy D, Ot — s o Zunlas Cues? = - 200y — T Zunlpr Zonos
vN case | Ct? = =4 (CONGm — CoNims) — W ZalwlZnlos CLS" = = 550w — 1 Zanlyr Zunlas

Table 1. The matching result of the LNEFT and SMNEFT at the electroweak scale Agw. The
corresponding operators associated with the above SMNEFT Wilson coefficients are collected in
appendix B. Note that in LNC vv case, the notation of the Warsaw basis [5] is adopted.

specific quark flavor. For instance, O) | = (@rypur)(Py*v) and the corresponding Wilson

coefficient is C’X

1 for ¢ =u.

3 Coherent neutrino-nucleus scattering

In the COHERENT experiment, the Spallation Neutron Source produces v, 7, and v,
from the decay of stopped 7+ and p*. Each neutrino flavor reaches the CsI[Na] detector
and contributes to the neutrino flux. The expected number of CEvNS events depends on
the neutrino flux and the CEvNS differential cross section do/dT" with T being the recoil
energy of the nucleus. The differential cross section for YN = XN coherent scattering,
where X € {v,, N, N} denotes a neutrino, is at leading order given by [9, 13]

do  G*M T T T 1 1
=gt (1- ) + & (1- o ) + k(s - ) |
dT A7 Thax Thax 2T ax MT ME,




where M is the nucleus mass, F, is the energy of the incoming neutrino and the maximal

2E2 | 2EZ2
M+2E, — M -
negligible neutrino mass in final states, and thus applies for RH neutrino masses my <

value of recoil energy T is Tiax = This cross section formula holds for

0.5 MeV (see e.g. ref. [13]) irrespective of the mixing between LH and RH neutrinos. The
interference terms are suppressed by 7'/E, [13] and are thus not included here.

The &g, &y, & and Ay constants in eq. (3.1) define the effective parameters describing
the neutrino-nucleus interactions for scalar, vector, tensor and dipole currents, respectively.
They depend on the Wilson coefficients of relevant currents, the number of protons Z (and
neutrons N) in the nucleus, the quantities connecting the quark-level matrix elements and
the nucleon-level ones, and the nuclear form factor F, for protons (and F,, for neutrons).
By assuming that one single parameter is present at nuclear level at a time, the constraints
on these effective parameters were studied through fitting the COHERENT data. The 90%
CL bounds for the £ and {7 parameters are [10]

NG| < 062

&s
‘ NEgy| < 00 (3.2)

‘fT

where F(Q?) is the Helm form factor with @ being the transferred energy. The 90% CL
bound on the dipole operators is given by [13]

Ay = apvZE,(Q?), a3, ST2x1078, (3.3)

DO | =

where the factor of 1/2 accounts for the missing projection operator in the cross section
calculation in ref. [13]. The scalar, tensor and dipole operators have no interference with
the SM neutral current and the above bounds apply to both LNC and LNV cases.

For the vector currents the situation is more complicated and we have to distinguish
between LNC and LNV operators. As listed in table 1, there is a SM contribution to the
LNC vector operators with same-flavor quarks and same-flavor active neutrinos

=2
Vel IZ_ (T Qus2)8,0005 (3.4)
qv1(2),SM QM% q pra

in terms of isospin 73 and electric charge ();. Thus, the interference with the SM has to
be taken into account for the NP part of these operators. There is no interference with
the SM for the other vector operators. We thus discuss the constraints separately in the
following subsections based on the recent studies of the COHERENT experiment for non-
standard interactions (NSIs)® [22] and sterile neutrinos [13]. Both of these studies provide
constraints on the quark-level Wilson coefficients. Next we derive the matrix elements of
scattering processes in terms of the LNEFT operators and translate the above bounds to
the constraints on the LNEFT Wilson coefficients.

5The relationship between the chiral LNEFT operator basis and NSIs is discussed in appendix C.1.



3.1 LNC case

The relevant Lagrangian for neutrino-nucleus scattering in the LNC case is given by

Lrnc D Z [203//17 (@ynar) @ ve) + QC;/VS (TRVaR) Ty ve) + Coly (@Tar) (7, No)

q= uds
+qu/N2(QRQL)( o)+ C N (@0 qr) (Vo0 Ne) + CUL plpou No F* | + hec.
(3.5)

where p,o sum over the flavors of active neutrinos v and/or RH neutrinos N. We first
consider the short-distance contribution induced by the four-fermion operators. The ma-
trix elements at the nucleus level for the neutrino-nucleus scattering v, (p1)N (k1) —
vg/Np(p2)N (k2) are

MWoN — vgN) = vaa’B*(u,/yuPLul,)N”y N,

M(WoN — NgN) = fflofff*(uNPLuy)N/\/‘—f- /:\F/SJ’?;*(UNGWPLuV)/\_/‘UWN, (3.6)

where the spin-dependent terms are neglected as they are suppressed by O(E/m,, /n) with
respect to spin-independent terms. Ome should note that the terms with tensor quark
current have the property 0, Pr/p ® 0" Py /p = 0, Pr/r ® o and thus do not lead to
spin-dependent terms. The matrix elements at the quark level and the ones for antineutrino
nucleus scattering 7, (p1)N (k1) — 5/ Ng(p2)N (k2) are given in appendix D as reference.
In the above matrix elements for nucleus “i”, the coefficients

Cxe? = 2: [2CL87 + Cus?) + O’ + O’ B (@)

uvl

+N; [Ohs7 + O + 2Ol + O] @)

uvl

S, S, S, m Mn o
C./\/'l/][zf = Z (quNﬂl +qu]\/52) [Zln,;)f%inp(QQ) +sz7;lquFn(Q2) )

q=u,d,s
CRN = 2 Cud [ZadhF(Q%) + Nid Fu(@)] (37)
q=u,d,s

parameterize the vector, scalar and tensor contributions [12]. The number of neutrons
and protons for Caesium and lodine are Ngg = 77.9,Zcs = 55 and Ny = 73.9,7Z; = 53,
respectively. We assume the proton and neutron form factors are equal to the Helm form
factor, i.e. F,(Q%) = F,(Q?*) = F(Q?). The connections between various quark currents
and the nucleon-level ones can be found for instance in refs. [23, 24]. f% " and 55/ " are
the nucleon form factors for scalar and tensor currents, respectively. For later numerical
analysis, we take the following default values from micrOMEGAs 5.2 [25, 26]

2 =0.0153 2, =0.0191, 2 =0.0447 ,
5P =084, §h=—0.23, 57 = —0.046 ,
ft =0.0110, i =0.0273, fiE = 0.0447
5" =—0.23, 5" =0.84 5" = — 0.046 . (3.8)



Using the expressions for the matrix elements in eq. (3.6) it is straightforward to
compare them with those in refs. [9, 10] and relate the LNEFT Wilson coefficients to the §
paurameterization.6 We obtain the following constraints on the scalar and tensor coefficients

o « Z n pn 2
L5 Z\ NoTeR Z;l (Cost + C;i#i)( T quq)\ <0.622, (3.9)

N2F2 = Z(GF > CqTV§"V5< 6P+5”> ’2 < 0.591% . (3.10)

q=u,d,s

These bounds apply for initial state neutrino flavor & = e or u. The 90% CL bounds on
the quark-level vector Wilson coefficients can be read off from figure 12 in ref. [22]. There
is interference between the NP contribution and the SM contribution for LNC vector oper-
ators with same-flavor active neutrinos. The interference leads to the following constraints
for the NP part of the Wilson coefficient for neutrino flavors ee and pu

V,ee V,ee
Cuul NP + CuVQ,NP
2\/>GF
V,ee V,ee
Cuane T Caanp
2\/§GF
Vi Vi
Cul/l,NP + CuuZ,NP

2V2G

O VoHr CV 7

€ [~0.45,0.065] ,

€ [~0.41,0.060] ,

€ [~0.45, —0.34] U [—0.049,0.059] ,

av1,Np T CaoNp
: € [—0.41,—-0.31] U [—0.044, 0.054] . 3.11
g el Ul | (311)
Note that the allowed region for the operators C Vi (” 5),NP consists of two disjoint pieces.

Taking into account the SM contribution, the AX2 function for the coefficients of vector
operators exhibits two minima as shown in ref. [22]. When taking the 90% CL allowed
ranges, we obtain two distinct pieces in the fit results of eq. (3.11). There is no interference
for the other LNC vector operators

v, v, v, v,
Covine T Cuyanp Caine + Calonp
<0.13, <0.11, (3.12)
2\[GF 2\[GF
v, v, v, %
Cuine + Culaxp Caine + Calanp
<0.18, <017, (3.13)
2\/>GF QWGF
v, v, V, Vv,
CuuliTNP +C VgTNP C V;IL’E\IP + Cdl/gji\IP
<0.16 <0.15, (3.14)
2v2Gr 2v2Gk

and thus their allowed regions are symmetric around zero. In the following numerical
analysis, we will use the weakest bounds for the Wilson coefficients with diagonal neutrino
flavors ee and pp in eq. (3.11) to obtain conservative constraints. Note that, if one adopts

5The relationship between the chiral LNEFT operator basis and the quark-level parameterization in
ref. [10] is given in appendix C.2.
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other bounds, a stronger limit for the relevant Wilson coefficient and a larger corresponding
NP scale will be obtained.

Similarly we derive the constraint on the long-distance contribution to neutrino-nucleus
scattering. It is induced by the dipole operator O,y and a virtual photon which mediates
the neutrino electromagnetic dipole interaction with the electric charge of the quarks. The
nucleon-level matrix element for v, (p1)N (k1) — Ng(p2)N (k) scattering is

G ¥ —
M(veN — NgN) = zeq FAﬁ/[’BVNF(uNJWPLuZ,)N’y“t”N , (3.15)

where the transferred 4-momentum is given by ¢ = p; — po = ks — k1. The corresponding
matrix element for 7, N — NN is given in appendix D. From the matrix element we
determine the dipole operator contribution to the differential scattering cross section

e =25 \CVNF FAQY) (3.16)

where Z denotes the number of protons and Fﬁ(QQ) the square of the nuclear form factor
for protons as discussed above. Using the result in ref. [13], this translates directly into
a constraint on the combination of dipole operator Wilson coefficients 3 c F|2 where
we sum over the final state neutrino flavor

SO E = Z(G VNF‘ <72%x1078. (3.17)

3.2 LNV case

For LNV operators with at least one active neutrino v, the relevant effective Lagrangian is

ENEDY (Co8 @Ran) (G vo) + CoA @Ear) (G vo) + CLr (@Ro™ 4r) (v opuve) (3.18)

q= uds

V, — —C V, S sl sl
+C M @yuar) (V57 No ) +C Vo (@R uar) (VS No) +Cp7 (VS 0, ve) F* | +hc. .

The dim-6 interactions in the above lead to the following matrix elements for neutrino-
nucleus scattering v, (p1)N (k1) — v5/Na(p2)N (k2) at the nucleus level

MWoN — 03N) = s ”8( S Pru, )NN — 2CTO”B(U O’M,,PLUV)NU'LWN

1
M(vaN = NaN) = 5 Cn (0§, Pruy )N AN (3.19)

where the coefficients C Naﬁ C’X/O‘B and C}\}’SB have similar expressions as the LNC case

in eq. (3.7) with a proper replacement of the quark level Wilson coefficients: C¥/1(2)7
CqSyNI(Q)’ and C N by cVv GN1(2) Cqsyl( 9 and qu, respectively. The quark-level matrix
elements and the matrlx elements for antineutrino nucleus scattering v, N — vg/NgN are

also given in appendix D. For the scalar and tensor coefficients we again relate them to the

- 11 -



& parameterization and get the following constraints

&% oSab | osap) (Lim m ? 2

o = Z (coe + c55%) N B A )| <062 (320)
q uds

& s (Li 2 ,

N2F2 q_zu:dscq,,o‘ N, <P+ 07 )| <0.591%, (3.21)

The above constraints apply for o = e, for initial neutrino flavors. The LNV vector
currents lead to RH neutrinos in scattering final states and such process has been studied
in refs. [13, 27] through fitting the COHERENT data for the vA” — x\ scattering. After
comparing the amplitudes and translating the bound developed in ref. [13], we find the
following constraint on the LNV vector Wilson coefficients

2
= Z \[G (Coii + Cpia)| < 1.1x1072, (3.22)
where a = e, p again and the factor of 1/2 accounts for the missing projection operator in
the cross section calculation of ref. [13].

Finally, the coupling of the photon to active neutrinos via the LNV dipole operator
O, r also induces a long-distance contribution to neutrino-nucleus scattering v, (p1)N (k1)
— vg(p2)N (k2). The corresponding matrix element is given by

eGF

MV = 7gN) = —i—5-AS] (05 00 P )Ny 7N (3.23)

where ¢ = p1 — po = ko — k1 denotes the transferred 4-momentum. The matrix element for
the antineutrino-nucleus scattering 7, N — vgN is given in appendix D. Both neutrino-
nucleus and antineutrino-nucleus scattering are described by the same dipole operator
contribution

2F2(Q2) , (3.24)

4
2 Z 8
AMVVF Z ’ GfF CSVF P
B

to the differential scattering cross section in eq. (3.1). The constraint given in ref. [13]
allows to place a constraint on »_5|Cy) F|2

L, 8 |2
§a’Ml/VF - 5 25: ‘GFUCSVF

where « denotes the initial state neutrino flavor. Note, that there is no constraint on

<7.2x1078%, (3.25)

the Wilson coefficient of the LNV dipole operator Oy n g from neutrino-nucleus scattering,
because the initial state in the COHERENT experiment is always an active neutrino v, or
antineutrino 7.

4 Meson invisible decay

Next we consider the constraints on the LNEFT Wilson coefficients from meson invisible
decays as listed in table 2. For simplicity we focus on the case, where the mixing between
LH and RH neutrinos can be neglected (|sin6|? < 0.01).
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Pseudoscalar meson

Upper limit on BR

Vector meson

Upper limit on BR

m — invisible
1 — invisible
7'(958) — invisible

2.7x 1077
1.0 x 1074
5.0 x 1074

w(782) — invisible
#(1020) — invisible

7.0 x 107°
1.7 x 1074

Table 2. Relevant constraints on the invisible decays of pseudoscalar mesons J’¢ = 0~F and
vector mesons JF¢ =177 [28].

4.1 Light pseudoscalar meson decays

For a pseudoscalar meson P, the transition matrix element to the vacuum state from the
scalar, vector, and tensor quark currents are zero. The only non-vanishing matrix elements
are for pseudo-scalar currents, axial-vector currents and the anomaly matrix elements.
They can be parameterized by the form factors ff, h% and ap [29, 30

. B _hi Qg =
Olav"ysalP(p)) = ifgp", (OlavsalP(p)) = —ig =, (01> GawGe”|P(p)) = ap, (4.1)
q

where é;w = 1€uwpoGP7 and €gr1a3 = 1 and the form factors satisfy h%, = m% fi —ap. The
form factors for the mesons 7%, 7,1’ can be expressed in terms of the input form factors
fq=1.07fz, fs = 1.34f;, and fr = 130.2MeV [2§]

1

f#:_fg:\/ifﬂv f;:()a h:r:mgrf;n t=u,d,s,
u d Co s u d Co s
fn:fnzﬁfqa fn:_sqi)fs; hn:hn:ﬁhqv hn:_s(bhsa
S S
fo=fh="%f,  fS=cefs:  hY=hl="%h h = cohs,  (4.2)

V2 NG n
where s4 = sin ¢ and ¢y = cos ¢ with ¢ = 39.3° being the mixing angle between flavor SU(3)
octet ng and singlet ;. We assume isospin symmetry following the FKS scheme [31-33] for
the form factors of 7 and 1’ and take the numerical values from ref. [29] unless otherwise
stated. The pseudoscalar input form factor h, and hs can be expressed in terms of f,, fs
and ¢ as follows

hg = fq(m7270¢ + m%,s ) — ﬂfs(mg/ - m%)sqg% ,

2

v m,27)5¢c¢ . (4.3)

— 1L m

Given the definition of the above-listed form factors, we can write the branching ratio for

the invisible decay of a pseudoscalar meson to neutrinos as’

q 2 2\ 5
B(P — inv) = LS {2 2 (et - et (1-42%)

167 mp
1= —
mp

(4.4)

a,

hp (ASaB _ ~Sap
+2 ‘4mq (qui?\fl - quﬁ\&)

"Calculational details are collected in appendix E.
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R 2
| e (Cs,aﬁ_ Suﬁ)‘

Img qu2
+ ‘h% (CS,aﬁ _ C&Ozﬁ) ‘2 (1 _ 2771%,) (1 _ 4771?\,);
2myq aN1 qN2 m%; m%;
et (el - o) (1-25) ]
P

where we implicitly sum over light quark flavors u,d, s. The contributions in the first two
lines describe LNC decays and the remaining lines LNV decays. In the SM, there is only a
contribution to the operators (’)(‘121 (2)7 whose contribution to the decay is helicity suppressed
and thus negligible due to the tiny neutrino masses.

4.2 Light vector meson decays

The non-vanishing hadronic matrix element for an unflavored vector meson V with mo-

mentum p and polarization vector €}, can be parameterized as [30, 34]

0lgv"qlV (p)) = fimvey (Olgo™ q|V(p)) = ify " (ehp” — eip") (4.5)
In particular the form factors for the vector mesons w ~ witdd oy ¢ ~ s§ are
V2
u d 1 s T T,d 1 T T,s
fw:fw:ﬁfwv Jo=0, w’:w7:ﬁfw7 =0,
fi=fi=0, fo=1fs,  fU=f=0, f.0=15, (46)

with f, = 187MeV, fI' =151 MeV [34], f, = 233MeV and f; = 177 MeV [35].
Using the definition of these form factors, it is straightforward to derive an expression

for the branching ratio of the vector meson invisible decay to neutrinos”

2

3 q
. Tvm f v, v,
BV = inv.) = =¥ {2 %(cq;fw+cqugfw)+cvaaaﬁ (4.7)
a?
e ( was VaB ? my my 2
2—(C’a C’a) - — 1-4—
T2 \Cant T Cgne m2, m?,
2
o s m2 mA m2
8 T,qCT,aﬁ o \%4 Ca 1+ N _ N _ 7N
+ 8| fy quN qumV vNF m%/ m%/ m%/
T, T fq 5] ?
+ 16 fV7quV’a/8 - qu v CSI/F
my
q 2 2 2 2
T.q ~T,af Jv aB my my
it et (1278) (1473

+4

IV (Vi . Viap
7 (Cqu?\fl + qu/?\f?)

Ly (i}
2mi, Qm%, mi, ’

where we implicitly sum over light quark flavors u, d, s. The first three lines describe LNC
decays and the latter three LNV decays. The dipole operators contribute to the vector
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meson invisible decays through a photon propagator and a QED vertex. Here we have
split the contribution from the vector operators C;/;1(2) into the NP contribution and the
SM part as

2
g 1 4 1 2
Cé/M__4WfQZ|:<2_3SIQ/V>f\1}_ <2_3812/V (f3+f13/> : (4.8)
with
2.2 2
975w Jw ¢ 125 \9z/s
Cw = == 5 C = - — = . 49

The SM predictions for the vector meson invisible decays are
B(w—inv.) ~ 1.5 x 1073 | B(¢ — inv.) ~ 3.4 x 10719 (4.10)

and consequently negligible compared with the current experimental upper limits listed in
table 2.

Generally, the scalar-type and tensor-type LNEFT operators can only be constrained
by pseudoscalar and vector meson invisible decays, respectively. For vector-type opera-
tors, both pseudoscalar and vector meson decays are sensitive to LNC O};/Nl(2) and LNV

OV

quN1(2)"
meson decay.

The LNC operators (’)C‘I/Vl(g) and all dipole operators only contribute to vector

5 Numerical results

In this section we present the numerical constraints on the Wilson coefficients of LNEFT
and SMNEFT from the CEvNS process and meson invisible decays. We assume that one
operator dominates at a time. We first show the upper bounds on the LNEFT Wilson
coefficients from meson invisible decays as a function of my in The different colored lines
correspond to different mesons: 7° (purple), 1 (red), 1’ (orange), w (dark green) and ¢
(blue).figures 1 and 2.

Figure 1 shows the constraints for the dipole operators. Solid (dashed) [dotted] lines
correspond to the Wilson coefficients C°% . (C%a 1) [C27.]. The constraints on C% . are
cut off for smaller RH neutrino masses compared to the ones for Cﬁ‘ f, p due to the smaller
phase space with two massive RH neutrinos in the final state.

In figure 2, solid (dashed) [dot-dashed] lines indicate vector (scalar) [tensor] Wilson
coefficients. The horizontal dotted lines show the bounds on the Wilson coefficients without
RH neutrino field for completeness. For C’qsy’?é) and C{f]’\?‘f@) with symmetric neutrino flavors
in the LNV case, which are shown in the bottom, we show the components with different
flavors (o # ). The bounds on the Wilson coefficients with identical flavors (a = 3) are
enhanced by a factor of /2 with respect to those with o # 3. One can see that, from
pseudoscalar meson decay, the upper limits on the C;/Nl(2) in LNC case and the C;f/ N1(2)
in LNV case both scale as ~ 1/my and are thus less stringent than the constraints from
vector meson decay in the small my limit. The bounds on other coefficients turn out to

be a constant if the decay is kinematically allowed.
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|
s10°ty ] e Clurlw]
9. aB
Q1 e CwF[¢]
1072 ‘ : :
107! 10° 10? 102 103

my [MeV]

Figure 1. The upper bounds on the LNEFT Wilson coefficients of dipole operators from meson
invisible decays as a function of the RH neutrino mass my.

Next, tables 3 and 4 show the constraints on the Wilson coefficients of LNEFT from

the CEvNS process and meson invisible decays in the limit of massless RH neutrinos.
Va8

v1(2
a = e, pu in CEvNS process. In the LNV case, for the scalar-type operators with symmetric

The neutrino flavors «, 8 are arbitrary unless they are specified for C ) or taken to be
neutrino flavors, the numbers outside and inside the square bracket in table 4 indicate the
case with different neutrino flavors o # [ and identical flavors a = 3, respectively. The
gray cell displays the strongest constraint for each Wilson coefficient. One can see that the
vector meson decays provide the sole bound on the particular flavor components C’u( D1 (2)

and CV1(2) in the LNC case and C’V’O‘B ( ) in the LNV case. The coefficients without active

neutrino degree of freedom, such as C; N1 (2) in the LNC case and Cxﬁv o ij\‘;‘lﬁ( 2); CT of
the LNV case, can only be constralned by meson decays. The CEvNS process places the
most stringent bound on all remaining Wilson coefficients with o = e, u. The remaining
WCs with @ = 7 can not be constrained by CEvNS and we highlight the strongest con-
straints by meson decays in light gray. In the last columns of tables 3 and 4, we also show
the effective scale derived from the strongest constraint for each Wilson coefficient. The
effective scales shown in parentheses correspond to the WCs in light gray for o = 7.

We then include the one-loop QCD/QED running result for the LNEFT Wilson co-
efficients from the chiral symmetry breaking scale to the electroweak scale and match
them to SMNEFT at the electroweak scale in order to constrain new physics using the
matching conditions from table 1. In table 5 we display the constraints on the Wilson
coefficients C;(Agw) associated with the relevant dim-6 and dim-7 SMNEFT operators
from the strongest limits of the corresponding LNEFT WCs in the gray sectors of tables 3
and 4. By further assuming Axp = |C;(Agw)|"/*~® with d being the SMNEFT operator
dimension, the constraints on the Wilson coefficients are also converted into the limits on
the NP scale in units of the SM Higgs vev. The most stringent bounds on the NP scale are

. 1

A6 — (Caﬁ + C’]C\“,%/) 2>41v (a=e,pn), (5.1)
. 1

AT = (2OLHB + CLHW CLIB{W) 3> 11v (,B=e,u,7), (5.2)
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Figure 2. Upper bounds on the LNEFT Wilson coefficients of dim-6 neutrino-quark operators
from meson invisible decays as a function of my for LNC (LNV) operators on the left (right). The

top (middle) [bottom] row show WCs for up (down) [strange] quarks. For the LNV WCs Cqsy‘f(ﬁz),

cses 9y We display the components with a # 8. The bounds for the corresponding WCs with oo = 3

aN1(2)
are stronger by a factor V2.
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LNEFT WC CEvNS 7 — inv. n — inv. 7 — inv. w — inv. ¢ — inv. | ALNEFT = \Cl‘ﬁ
[GeVi—d] a=corpu | 27x1077 | 1.0x 1074 5.0 x 1074 70x107% | 1.7x 107* [GeV]
Cosiowe | 15x107° - - - L5x 107! - 260
CX;LG;‘(!Q),NP 43 %107 - - - 1.5%x 107! - 480

KL(IT(Z),NP 5.9 x 107 - - - 1.5x 107! - 410
Xff?zwp 1.5 x107° - - - 1.5 x 107! - 260
Cotiynp | 53x107° - - - 15 % 107! - 440
Cﬁ?ﬂz),NP - - - - 1.5 x 107! - 2.6
Ciione | LAX10°° - - - 1.5 x 107! - 270
Cotynp | 36x107° - - - 1.5 % 107! ; 520
Catne 5.6 x 1076 i - - 1.5 x 107! - 420
Caot e 1.4x107° - - - L5x 107! - 270
C;!/lllll(Tz)NP 5.0 x 1070 - - - 1.5x 107! - 450
C;;I(Tz),NP - - - - 1.5 x 1071 - 2.6
Cs‘j/,(lx(ﬁ?).NP - - - - - 6.2 x 1072 4.0
eMfv: - - - - 1.5 x 1071 - 2.6
Coxtla) - - - - 1.5 x 10! - 2.6
il - - - - . 6.2 x 102 4.0
coN e 5.4 x 1077 - - - 2.8x 1071 | 1.6x 107! | 1.9 x 106 (1.9)
) 76x10°7 | 32x107% | 7.3x107% | 1.9x 1072 - - 1100 (560)
Cj;j;;?w) 88x 1077 | 6.9x1076 | 1.6x1073 | 4.0x1072 - - 1100 (380)
o 9.4 x10°6 - 52x1074 | 8.9x 1073 - - 330 (44)
CoN 3.3x107° - - - 4.5 % 1072 - 550 (4.7)
CL 1.8 x 1076 - - - 4.5 x 1072 - 750 (4.7)
el 1.5 x 1075 - - - - 4.1 x 1072 250 (4.9)

Table 3. Constraints on the Wilson coefficients of the LNC operators in the LNEFT. The neutrino
flavors for the vector type operators C’X( dvi(2) are displayed explicitly. For CErNS the initial
neutrino flavor is @ = e, u. In other cases the neutrino flavors «, 8 are arbitrary. The gray cell
displays the strongest constraint for each WC. In the last column we also show the effective scale
derived from the strongest constraint for each WC. Note that in the last sector, the gray and light

gray cells are for a = e, p and a = 7 flavors respectively. For the a = 7 case, the effective scale is

shown in parentheses (...) in the last column.

from the corresponding dipole operators in LNEFT

dim—6
ANP

Adim—ﬁ _

NP

Adim—7 _

NP

Adim*7 —

NP

= (C)58) > 600 (a=

= (C'Clglﬁ\%:)_lﬂ >29v (a=
(Cé"gluaLﬁLH T Cé'gluﬁLaLH
(C’%TLBLH)_US >20v (a=p=1),
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LNEFT WC CEvNS 70 = inv. 7 — inv. 7 — inv. w — inv. ¢ — inv. AL NEFT = ‘Ci|ﬁ
[GeV*¥ Y | a=corp 2.7 x 1077 1.0x 1074 50x 107 | 7.0x107% | 1.7 x 107* [GeV]
Cole 2.7% 1077 - - - 14x 107" | 7.8 %102 3.7 x 106
Costy 3.8x10°7 | 1.6[2.3] x 1076 | 3.7(5.2] x 10~* | 9.3[13] x 103 - - 1600 (660)
Coitey 44 %1077 | 3.5[4.9] x 1075 | 7.9[11] x 10~* | 2.0[2.8] x 1072 . B 1500 (450)
Cf;j“g) 4.7 % 1076 - 2.6[3.7] x 10~ | 4.4[6.3] x 10~3 - - 460 (52)
clher 1.7 x 1076 - . . 2.3 x 1072 N 780
chab 0.9 x 1076 - - - 2.3 x 1072 - 1100
0 7.7 x 1076 - . _ ] 1.0 x 10-2 360
i - - - - 14x107! | 7.8 %102 13
Nt - 1.6[2.3] x 1076 | 3.7[5.2] x 10~ | 9.3[13 ] x 10~3 - . 790[660]
Cj}\‘;f(z) - 3.5[4.9] x 1076 | 7.9[11 ] x 107 | 2.0[2.8] x 1072 - - 540[450]
Colo - - 2.6[3.7) x 10~ | 4.46.3] x 10~ - - 62[52]
i’ - - - - 2.3 x 102 - 6.6
e’ - - - - 2.3 x 1072 - 6.6
ot - - - - - 1.0 x 1072 10
Cothe | 24x107° - - - 1.0 x 10! - 630 (3.2)
Chvi 2.4 x1076 - - - 1.0 x 107! - 650 (3.2)
CZJK% - - - - - 4.4 %1072 4.8

Table 4. Constraints on the Wilson coefficients of the LNV operators in the LNEFT. For the scalar
type operators, the numbers outside [inside] the square bracket indicate the case with the neutrino

flavors o # Bla = B]. Note that the Wilson coefficients C’fy’;&) in the first sector and C;/u’;vﬂuz)

in the last sector can not be constrained by CEvNS. The strongest constraints on them are from
the meson decays marked by the light gray cells, and the corresponding effective scale is shown in
parentheses (... ).

from neutrino-quark operators in LNEFT. Note that in this paper we work in a mixed
mass-flavor basis for neutrinos. In a realistic Seesaw model, due to the N — v mixing, the
interactions of sterile neutrinos with SM particles exhibit a small mixing and are further
suppressed. This generally leads to a natural suppression of the Wilson coeflicient and thus
relaxes the constraints on new particles mediating the effective interactions.

Besides the CEvNS and meson invisible decays, the search for dark matter in events
with an energetic jet and large missing energy at the Large Hadron Collider (LHC) can
also place constraints on the quark-neutrino interactions. The interpretations of the LHC
search for dark matter assumed simplified models with a mediator between the SM and
the dark sector. The relevant limits can be applied for the constraints on the energy scale
in the neutrino-quark interactions by taking nearly massless sterile neutrinos. Assuming
the neutrino-quark interactions mediated by a colored scalar, the mono-jet search excluded
the mediator mass up to 1.67 TeV [36] or 1.4 TeV [37]. A vector mediator is excluded up
to a mass of 3.1 TeV [36] assuming the couplings to be unity.
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dim-6 SMNEFT WC w2 | Anp =G| 77 0] dim-6 SMNEFT WC w2 | Axp = |Ci|"2 o]
Cl(ql),cell + Cl(;)’w“, Ceelt 0.90 11 Cl(ql),ecll _ Cl(;)"wu., Cpent 0.82 11
Cl(ql)ﬂlm + Cl(;)-,eu117clz;711 0.26 2.0 C[(;),eun _ Cl(;)’em],cf;;‘“ 0.92 21
ot g ot o 0.36 1.7 ot — et o 0.34 1.7
Cl(ql),/wll + C](;)JWH’ Cff,,“” 0.90 1.1 Cl(ql).,uull _ Cz(;s)‘/‘}1'11, Cﬁiﬂn 0.82 11
Cl(ql).wn i C;;5)7u71170;;r11 0.32 18 Cl(;)ﬁurn B CZE;"’“T“,C{;T“ 0.30 18

C 4+ C a=en 6.0 x 1074 a1
CNba— SCTubna =6 | 3.2x1072 5.6 CTRba— 5CTion 0.25 2.0
Cg‘f\%d - %Cﬁfﬁv, a=ep 0.34 1.7 Cﬁéd - %CZ%’N 19 0.23

C}?lfﬁb a=e,pn 2.8 x 1072 6.0 Céfh 0.12 2.9
Cligna =6 0.13 2.8 P a=c,p 11 1.0
dim-7 SMNEFT WC 3 | Axp = |Cif 5 o] dim-7 SMNEFT WC 3 | Axp = [Ci| 75 [v]
2008y b ool | 85x 107! 11
C;’ZéfLHl + C;’/Zglm: a=6p 0.09 2.2 Clibin 0.51 1.3
Chronm + Conoy i@ = €5 0.97 1.0 oy i/ 38 0.3
Cg:LﬂLH + CC%Z‘SL"LH, a=e,p 0.04 2.9 Corn 0.12 2.0
Citom ~ Citom L5 0.88 Chiam ~ Choun 13 0.43
Coinr + Connrr 0.33[0.48] 1.5[1.3) Conirr + Condn 0.72[1.0] 1.1[1.0]
Cognr 0.08[0.12] 2.3 [2.0] Clioi 0.18[0.25) 1.8[1.6]
Contma=ep 0.21 1.7 Consm — Contpma=cp| 021 1.7
CoNta=ep 0.21 17 e o —e 0.21 17

Table 5. Constraints on the Wilson coefficients of the relevant dim-6 and dim-7 SMNEFT from
the strongest limits for the corresponding LNEFT WCs in the gray sector of table 3 and table 4,
where v ~ 246 GeV is SM Higgs vacuum expectation value. For the dim-7 scalar type operators, the
numbers outside [inside] the square bracket indicate the case with the neutrino flavors o # Sla = f].

Although this work is focussed on the quark-neutrino neutral current interactions, we
find some of the involved SMNEFT operators, which are obtained by matching using the
results in table 1, also contribute to the quark-lepton charged interactions. There could
be complementary constraints on them from low energy nuclear-level processes like beta
decay and neutrinoless double beta (0vS3) decay. Specifically, the Wilson coefficients
C’gf ]\C}L,Czﬂz\}é? d,CZZIQBN contribute to the 3 decay directly, while Cé?luofLH’Cégé‘fLHl(z) to
the OvB3 decay via the long distance contribution which is mediated by neutrinos. From

ref. [12], the constraints from beta decay translate into a limit on the NP scale in our basis

N|=
I

(C(}?ﬁL)*%ngeV, (CiNGa — CLion/2) 2 29TeV, (Ciusy) 2 2 400GeV. (5.7)

Similarly, using the results in refs. [38-40], Ov35 decay constrains the NP scale for the
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latter LNV operators as

=

_1 _1
2100TeV, (Clits, ) *2100TeV, (Chls, ) * 2100TeV. (5.5)

11 B
<CQue£LH)
For massive sterile neutrinos N the LNC operators (’)Eﬁ% & OE%N can also contribute to
the OvBf decay via the mass mechanism. The authors of ref. [41] performed a detailed
calculation of the contribution of sterile neutrinos to the 0v33 process in an effective field
theory framework. In particular the scale of the operator (’)zldlgN is constrained to be

(C’EEZBN)_U 2> 10TeV for sterile neutrino masses my € [0.1 MeV, 100 GeV]. However, for
mpy < 1keV the CEvNS process places a stronger constraint on this operator. Nevertheless,
compared with table 5, one can see the charged current processes indeed give more stringent
bounds on the NP scale associated with the relevant operators. We leave a detailed study
of the charged current processes to future work [42].

6 Conclusions

We investigate the complementarity of the CEvNS process and meson invisible decay in
constraining generic neutrino interactions with RH neutrinos in effective field theories. The
interactions between quarks and left-handed SM neutrinos and/or right-handed neutrinos
are first described by the LNEFT between the electroweak scale and the chiral symmetry
breaking scale. We complete the independent operator basis for the LNEFT up to dim-6
by including both the LNC and LNV operators. We translate the bounds on the LNEFT
Wilson coefficients from the COHERENT observation and calculate the branching fractions
of light meson invisible decays. Finally, we include the one-loop QCD/QED running for the
LNEFT Wilson coefficients from chiral symmetry breaking scale to the electroweak scale.
The bounds on the LNEFT Wilson coefficients are then matched up to the SMNEFT to
constrain new physics above the electroweak scale. We summarize our main conclusions in
the following

e In the LNC case, the vector meson invisible decays provide the sole but weak con-

straint on C;f;;(Tz),NP’ CZ/’?(@) and C;/]’\%B(Q). The LNEFT cutoff scale is 2 — 4 GeV.

CEvNS places the most stringent bound on the other vector LNEFT operators as

OAB S,QB T,OZB 3 — B S) B T) B
well as CUy g, ) o) and C i with a = e, pi. The WCs Clonp Cqu§V1(2) and C_)y
can only be constrained by meson decay.

e In the LNV case, the meson invisible decays provide the sole constraint on C’X‘g\,F,
CSeb CqT]’Vaﬁ and ngﬁvﬁl(z)' CEvNS gives the most stringent constraint on c’

gN1(2)’ vvED

T, . . S, V, S,
C’qyaﬁ and the components with o = e, p in qu‘f(ﬁz) and Cu(g)iNl(Z)' The WCs qu/lg)
and C’:(’;)ﬂu N1(2) Can only be constrained by meson decay.

e The most stringent bounds on the NP scale in SMNEFT are

. _1
ASm=6 — (Cﬁ‘,% + CJO\%V) 2>41v~10TeV (a=e,p),
. 1
Alel?_7 = (2021/8{3 + Cf?{W - CgIB—IW) > 11v>27TeV (O[?ﬁ = G,M,T) )

- 21 —



from the corresponding dipole operators in LNEFT and

Afm=6 = (C)5e ) > 6.0 v L5TeV (a=e,p)
AFR=0 = (CHR) T > 290~ 07TeV (a=1),
dim—7 _ (1108 118 -1/3 N B
AT = (Ch + Col ) > 290 207TeV (a=e,p),

dim-7 _ (~11aB  \—1/3 N o
AT = (Ch ) > 200 =05TeV (a=B=7),

from neutrino-quark operators in LNEFT.

Finally, we comment on the UV-completions of the above EFT operators. While the small
mixing between active and sterile neutrinos leads to suppressed Wilson coefficients of the
effective operators with neutrinos and quarks in the conventional Seesaw models, Wilson
coefficients are generally unsuppressed in models with additional interactions beyond the
neutrino Yukawa coupling.

Simple extensions are UV models with an additional neutral Z’ gauge bosons. This
includes models of gauged U(1) lepton number symmetry, where right-handed neutrinos
are naturally present to cancel anomalies and the new gauge interaction will introduce
new interactions of sterile neutrinos with other SM fermions which are not suppressed by
the active-sterile mixing. Similarly, left-right symmetric theories introduce right-handed
neutrinos with new gauge interactions. See e.g. refs. [43-45] for recent studies of neutrino
interactions with charged SM fermions within models with new Z’ gauge bosons. Also
several classes of radiative neutrino mass models features large neutrino-quark interac-
tions [46].

Another possibility to produce effective quark-neutrino interactions from a generation
of SU(2)z doublet and singlet vector-like leptons together with a singly-charged scalar has
been discussed in ref. [4]. The simplest model that gives quark-neutrino interactions is a
leptoquark which couples to a quark and a sterile neutrino (See e.g. ref. [47] for a recent
review of leptoquarks.). This includes the SU(2)y singlet scalar leptoquarks Sy, S and
vector leptoquarks Uy, U; as well as the SU(2);, doublet scalar and vector leptoquarks
Ry [41] and V,. Finally, the minimal supersymmetric SM (MSSM) provides several new
contributions to neutrino-quark operators. Within the MSSM with conserved R-parity, the
effective operators can arise at the one-loop level [48].
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A The complete operator basis involving RH neutrinos NV in the LNEFT

In this section we construct the complete and independent operator basis for the LNEFT
involving RH neutrinos N up to dim-6. We work in the chiral basis and collectively denote
the left- and right-handed down-type quarks as dy and dg, the up-type quarks as vy, and
upR, charged leptons as ey, and er, and the SM left-handed neutrino fields as v and the RH
neutrinos as IV, respectively. We drop the flavor indices for all of these fields for simplicity.
For a fermion field 1), its charge conjugation is defined via ¢ = CtT where the matrix C
satisfies the relations CT = CT = —C and C? = —1. Except the up-type quarks with the
total flavors n, = 2, the remaining charged fermions have ny = 3 flavors. We consider an
arbitrary number ny of N flavors.

At dim-5, it is easy to figure out that there are two independent non-hermitian oper-
ators

Onnr = (NCo,, N)F™, Ounr = (Vo N)F* . (A.1)

The full list of independent LNEFT operators with at least one RH neutrino N at dim-6
is listed in tables 6 and 7, where in the third and sixth columns in each table we also show
the independent number of operators with flavors being considered. All those operators
are classified in terms of the net number of the SM global baryon and lepton quantum

numbers. An independent subset of lepton and baryon number conserving operators in
LNEFT is given in ref. [4].

B The SMNEFT operator basis at dim-6 and dim-7

Besides the SMEFT operators at dim-6 [5] and dim-7 [6, 7], the SMNEFT also includes
additional operators involving RH SM singlet fermions V. These operators with RH neu-
trino N are classified in ref. [8] and repeated in table 8 at dim-6 and table 9 at dim-7. For
the dim-7 operators, by using the Fierz transformations here, we have rearranged some of
the four-fermion operators given in ref. [8] to have clear flavor symmetry and quark-lepton
current structure. In addition, for the operators involving gauge field strength tensors,
we accompany a corresponding gauge coupling constant for each involved field strength
tensor. Besides the operator basis involving RH neutrinos N in table 8 and table 9, in our
matching calculation we also need the following relevant SMEFT dim-6 operators

O = (InL)(@1'Q) . O = Ly’ L)(@'71Q) .
O = (f’yuL)(ﬂfy“u) , O = (ZVML)(EV“d) , (B.1)

and also dim-7 operators

OLuB = g1€ij€mn(LCi0,, L™)H H" B* | OdroLm1 = €ijemn(dLY)(QCIL™)H™ |
Oraw = 9265 (€7 ) (L0, L™YHIH"W™ | Ogupiy = €;(Qu)(LELYHI |, (B.2)

where g1 are the gauge coupling constants for the gauge groups U(1)y and SU(2)r,
respectively.
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Operator Specific form #(ng, nu) Operator Specific form #(nyg, nu)
(AL,AB) = (0, 0)
(LL)(RR) (RR)(RR)
Odni(3%)(H) | (ezyuer)(N7y,.N) n} Olna () (H) | (eryuer)(NvuN) | n}
Oini (o) (H) | (dryudr)(NyuN) n} Oina(x)(H) | (dryudr)(NyuN) | nf
Ouni (o) (H) | (@yuur)(NyuN) nin;, On2()(H) | (@ryur) (NyuN) | nfng
Olaeni(®) | @dr)@EWN) | njn. Oaena(*) (@Y dr) ERN) | nna
Oy (H) | (7yur)(NyuN) n} O (x5 xx)(H) | (NuN)(NyuN) | gnj(ng +1)°
(LR)(LR) (RL)(LR)
Oim() | (ezer)(®N) n O%,v2(%) (erer)(N) n}
Oy (%) (€zo" er)(WouwN) | nj
Odun1 () (drdr)(TN) n} Odna(*) (drdL)(7N) n}
Ohn(%) (dro™dg)(@ouwN) | n}
Oz (%) (uzur)(@N) ning Oy () (urur)(@WN) ning
Ouun () (@ro" ur)(@ouwN) | nini
OZaen1 () (uzdr)(€LN) nin. Orlena(*) (urdr)(eLN) nn,
Oen (%) (wro*dr)(eLouwN) | nin.
OFnun (%) (ZN)(TN) 3nf(nf +1)
(AL,AB) = (2, 0)
(LL)(RR) (RR)(RR)
Ol n1(%) (€zvmer) (VT N) ng O, na(%) (Eruer) wuN) | n}
Ohwi(¥) | ([dyde)(@“wN) | nj Ola(*) (dryudr) (TN |
Oilun (%) (@Eyuun)(WCN) | njng, Oiluna () (@rur)(vOyuN) | ning
Otuent (%) (dryuur)(€§yuN) | nina Ofuena(*) (dryuur)(efyuN) | nfn.
OJun (%) (77) (vCyuNN) 3nf(ng +1) | OXun(x%%) | (N3uN)(W9yN) | gnf(ns +1)

Table 6. Dim-6 operator basis involving RH neutrinos N in LNEFT. Here all operators are non-
hermitian expect those with a (H) in the first sector. The number of * after each operator indicates

the number of the RH neutrinos involved in the same operator.

C Relations to other operator bases

In this appendix we briefly summarize how our operator basis relates to other bases used

in papers which we refer to in the main part of the text.

C.1 Non-standard interactions

A commonly used operator basis are non-standard interactions (NSIs) [49-51] (Recent

progress on NSI can be seen in ref. [52] and the references therein.), which describe the

interactions of active neutrinos at low energies.
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Operator Specific form #(ng, nu) Operator Specific form #(ng, nu)
(LR)(LR) (RL)(LR)

OSvi(x) | (ezer)(NCN) Inbns+1) | Ofna(ex) | (@Rer)(NON) | dnf(ng +1)
Oy (%) (eLouwer)(No"'N) | Inj(ns 1)

Odni(%) | (dedr)(NON) bns+1) | Ofna(ox) | (drd)(NCN) | $nf(ng +1)
Olfn (%) (d2owdr)(NCo* N) | inj(ns —1)

Oini(%) | (@rur)(NEN) ming(ng +1) | Ofya(ex) | (@ruL)(NCN) | dng(ng + 1n}
Oy (3%) (@Louur)(NCo* N) | gning(ng —1)

Ofueni(*) | (drur)(e§N) nin, Ofvena(*) | ([drur)(€GN) | nin,
Ohuen) | (o ur)(€GouN) | nin. (RL)(RL)

Ofnn(x%%) | (FN)(NON) i —1) | OR(%) \(Nv)(T%) \%n%n?—m

(AL,AB) = (4, 0)
(LR)(LR) (RL)(IR)
O (x+x%) | (NON)(NON) Lndmi—1) | OSv() | WOV)(NON)
(AL,AB) = (1, —1)

%n?(nf +1)?

(RR)(RR) (ZR)(LR)
Olauni() | @y d§) @) | nima OSuani (%) | @S)@LN) | nina
(RL)(ZR)
Ofuui(¥) | (drd§)(@EN) [ 130y — s

(AL,AB) = (1, 1)

(LL)(RR) (LR)(LR)
Obuna®) | (@ d)(uSv,N) | min, Olaana(x) | (uGdm)(@GN) | nin.
(RL)(LR)
Ofuuna®) | (@Zdr)(WgN) BN
Total # = 2331|520 + 2304|522 + 84|54 + 252|521 | + 252|522 = 5223, (ny, nu) = (3, 2)

Table 7. Continuation of table 6.

In particular, neutral-current interactions with quarks are described by®

Lxst = —V2Gpely (Dar" PLyg)vuq , (C.1)

with €2 B = E%‘;* The € parameterization is related to the NP contribution to the vector

Wilson coefficients in our operator basis via

1 o Q
—V2Grel = 5 (Coiie + Cosie ) (C.2)

80ne possible underlying UV completion of these NSIs are models with a new neutral vector boson Z’.
See e.g. ref. [53] for a recent study of COHERENT in the context of a Z’ model.
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%2 H3(+h.c.) (LR)(LR)(+h.c.) (LL)(RR)
OLNH (LN)H(H'H) OLNLe (LN)e(Le) OrLn (Ly*L)(N~y,N)
Y?H?D(+h.c.) OLNQa (LN)e(Qd) Ogn (@*Q)(NvuN)
Oun(H) | (NyN)(HYiD, H) OLaqw (Zd)<(@N) (AL,AB) = (4, 0)
Onne | (Nyte)(fATiD,H) (RR)(RR) Oy | (NON)®ON)
Y2HX (+h.c.) ONN (NY*N)(Nv,.N) (AL,AB) = (1, 1)
OnNB g1(Louy N)HB Oen (ev"e)(NvuN) 0QqdN Gijeaﬂa(wQ%)(EN)
Onw | 92(Lop N)rTHWI#v Oun (@ u)(NYuN) | Ouddn €apo(uGdg)(dGN)
(LR)(RL)(+h.c.) Oun (dy#d)(N.N)
Oguvi | @u®L) Ouune(the) | (A u)(Naue)

Table 8. The basis of dim-6 operators involving RH neutrino N in SMNEFT [7], where o, 8, o
and ¢, j are SU(3)¢ and SU(2) indices, respectively.

NYH?D Ny*D N2 H
Onr1 | €j(NCr L) GD*HIYHTH) | Ocnrrp eij(ewzv)(ﬁi‘ﬁuu) OLNeH (LN)(NCe)H
Onpz | €;(NCAuLYHI(HUDEH) | Ogunep | (druw)(NCiDte) | Ocinm H(eL)(NCN)
Ny H2D? Ogunip | (QiDu)(NCAL) | Ogonan @N)(NCd)H
ONeD ‘ €ij(mﬁ”€)(HiD”Hj) OaQNLD Eij(giﬁuQi)(WV“Lj) OiQNH HY(dQ)(NCN)
NyH?2X N2y2D OoNuH (QN)(NCuw)H
ONew ‘92(67 )ij (NCorve)(H H)W], | OLnp (ZWL)(Wi?“N) OuQNH AT (@Q)(NCN)
N¢HDX Oonp | @uQNTi N) N H
ONLB1 g1eij(NCH# L) (DY HI) By, OeND (yue)(NCi rl HN) OLNNH (LN)(NCN)H
Onrp2 | g1ei;(NOyHLY) (DY HY) By, OunD () (N Kl KN) ONLNH HY(NL)(NCN)
Onzwi | g2(er!)ij(NCAHLY(DY HNW], | Oanp | ([@drud)(NCi'D #N) B: Ny*D & NyPH
OnLw2 92(ETI)ij(WV”Li)(D"H])WIV N4D OuNdD €aBa(ﬁa7uN)(aﬁi<B“dac)
N2H* Onwp | (NuN)(NCiD“N) | Oangp | €ijeaps (@arulN)(@igi D QS,)
Ong (NCN)(HTH)? Ny3H OqgNdH €ij€apo(@iaN)(dgdS ) HY
N2H?2D? Orncw | € (LyuL)(NCyHLYHI | Ognam €ijeapo(QinN)(Q;5Q5 ) H
ONHDI1 (W?#N)(HTWH) Ogonrm | € (QvuQ)(NCAH LY HI | OgNudn €apo(QaN)(WpdS)H
ONHD2 (NCN)(D,H) DFH Ognima | €j(QvuQY)(NCAHLIH N2X2
N2H2X Ocnrr | €j@Evue)(NCAHLYHI | Onp a1(NCN)B,, B*
OnnB 91(NCou, N)(HH)BH Oanr | €;@rud)(NCAHLYHI | Onps a1(NCN)B,, B
Onaw | 92(NCou NYHITTHYWIr | Ounrw | e (@yuuw)(NCAHLYHI | Onw as(NONYWL,winv
Oaunrn | €j(dyuu)(NCHHLYHT | Onwa az(NCN)W, L Wi
OuQNeH € (dQY)(NCe)HI Onc1 a3(NCN)G ;j,,GAW
OQuNeH1 (Qu)(NCe)H OnNaG2 ag(NON)GA,GAwY
Oguner2 | (Qouu)(NCohve)H

Table 9. The basis of dim-7 operators involving RH neutrino N in SMNEFT, where all of the

operators are non-hermitian with the net global quantum number |AL — AB| = 2. Here g123
are the gauge coupling constants for the gauge groups U(1)y,SU(2),SU(3)¢, respectively, and
= g7 /(4n).
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and to the &y parameter in eq. (3.1) via

& = 4[(gh + 2¢4Y + V) ZF,(Q%) + (g + ey + 2e2V )NF,(Q%)]?
FAY 0 |2y + eBNZE(Q?) + (el + 2B )INFL(Q%))? (C.3)

(03
with the SM couplings being

1 ) 1
g€:§—2sm20w, g"}:—§.
C.2 CD parameterization

For the vector Wilson coefficients in LNV case, the relation to the quark-level C’{I/ parameter
in ref. [13] is
* * 1 V, V,
OF -~ DY = o (o +Conty) - (C.4)

For the scalar and tensor Wilson coefficients, we have the following relations to the quark-

level parameters in ref. [10]

. 1 S,aB% S,aB% . \/§ T,aB%
Cg' + ZD;I:’ = Cqu?\fﬁl + CqV?VBQ ) ng - ZD'% = 7qu/?\tfﬂ ) (05)
\/iGF GF
in the LNC case and
2 2v/2
C%+iD% = g;(cjﬁﬂ + Cf;gﬁ) ., C%— iDL = _égogy»aﬁ , (C.6)

in the LNV case.

D The matrix elements of neutrino scattering

In the LNC case, the quark-level amplitudes for the scattering v,(p1)g(k1) —
v /Ng(p2)q(k2) and U (p1)g(k1) = vg/Ng(p2)q(ke) is given by

1 o _
M(vagq = v5q) = (Co" + Coo®) @y, Pruy) (@y"q) +[SD]

2
_ _ 1 v VB — _
~M(Vagq — Dpq) = 5(0,1;?5 + Cp™) (05 Pryvn) (@7"q) + ,
1 S * S kN S _ ., .
M(vag = Npq) = 5(Coii" + Coy) (@nPru) (@a) + Coy " (UN0m Pruy) (@o"” )
~2€ * o _
2t )+ 53]

_ = 1 s s __ _ T8 — —w
~M(Vagq — Npq) = 5(0,1;%61 + O ) W Pruy) (@q) + Co (T Projuwvy ) (@™ q)

2e - _
+i chq Conr (5 Prowv ) (@"tq) +[SD], (D.1)

where stands for spin-dependent terms and the exchanged 4-momentum ¢ = p; —ps =
ko — kq.
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In the LNV case, the quark-level amplitudes for the scattering v,(p1)g(k1) —
v/ Np(p2)q(ke) and va(p1)g(k1) — vs/Npg(p2)q(k2) are

M(vag = 73q) = (Co3" + Cos?) (0§ Prun) (Gq) — 20528 (v 0, Pruy ) (G0 q)

46
430 008, (E o L) @rt'a) + (5D,

M(Dagq = vpq) = (Co™ + Co5) (5 Pruf ) (Gq) — 2055 (05 Projuwul ) (G0 q)

46 «
Qq OSEF(UVPRUMVU )(Q’Yuty ) + )
M(Vaq — Npq) = —f<cm + C o) WS Pruy) (3"q) + [SD ],
M (Pagq — Naq) = <c:;7é* Coois ) @y Pruf) (@) +[SD]. (D.2)

The nucleon-level matrix elements for the scattering of an active antineutrino off a nucleus,
Va(p1)N (k1) — vg/Ng(p2)N (k2), are given by

1 _
~M (BN = 73N = =C G (05 Pryuvs ) NN
B 2 Nv 14

_ 1 _
—M (N = NaN) = fcfya (T Prog )NN + Crom (05 Prouvg )N o' N
M(DaN — NgN) = zeg;F A (U5 Proum g NN (D.3)

for LNC interactions and the corresponding matrix elements for LNV interactions are

MO N — vgN) = Cf/aﬂ*(vyPRu NN -2 Taﬁ*(vl,PRaw,u YN N,
M(D N — NgN) = —% X/Sﬁ*(vyyuPLuN)./\/"y“N

M — v5N) = efF A% (55 ProuuS YNAMVNT (D.4)

E The matrix elements of meson invisible decays

For the quark-level process of qg — invy(kj)inva(k2), the LNC amplitudes are

M(qq — vaig) = (qu;?ﬂ @ Pra+Cy, P meRq) Uy Proy
M(qq — NoNp) = (Cqm TvPra+ Cois meRq) uny"Proy

M(qq — VaN,B) = (CqVquPRq +C ,,NQQPLQ> UVPRUN
_ . k14 k2), _ .
+ <C£/’§"Vﬁqam,PRq —12eQq VﬁFW 'y“q> uyot” Prugy
M(qq — UoaNg) = (Cfﬁfl qPLq+Co% N9 qPRq) un Py

k1 +k2)y
( 1+ 2)2q,yﬂq> WUMVPLUQ, (El)

+ (C,l;(]lvﬁ*qg“VPLq — ZQCQQC;/X]@}W

q
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The LNV amplitudes with AL = —2 are
M(qq — Vavpg) = (C PaPLg+ Coy qPRq) oS PLuy

ki1 4+ ko), .y
<CT 5q0',uuPLq_Z2€Qq VVFM 'Y,uQ>U o Pruy

M(q7 — NoNg) = 2 (Cqu\?‘lﬁqPLq + C’ qPRq> ’UNPRUN/

k1 + ko)y _ &
+2 (C’ N qa”,,PRq ZZquC%%Fquq) fu]%a“ Pruy ,

M(qq — Do Np) = — (Cq,,quwPLq + CqVquwPRq) VS Prug (E.2)

where vy (vy) and vy (vy,) are the spinors of anti-neutrinos 7, (N,) and 75(Ng), respec-

tively. The amplitudes with AL = 2 are

./\/l(q(j — I/aVﬁ) =2 (nylﬁ*qPRq -+ C qPLq) @PR’US;

. . w (k1 + ko) _ .
2 (C'qT,,’aﬁ 40w Prq — Z2quCS”BFEk1+kQ;2q7“q> uya’“’PRug ,

M(qq — NaNB) =2 (ij\?‘f*qPRq + C;g]\([xf qPLq) WPL’U,%/

« (k1 +Ek

+2 C’T]\?"B qouwPrq — iZquCﬁ‘g\,Fwiyuq uyot” PLuN, ,
(k1 + k2)

M(qq — vaNg) = — (quy?‘fl T Pra+ Ch Q'VMPRQ> WA Pruf (E.3)

where up(uy) and uy (uy,) are the spinors of neutrinos v, (Vo) and vg(Ng), respectively.
We list the individual matrix elements for pseudoscalar invisible decays to neutrinos

~M(P = vaig) = % £2 (O;’V‘fﬁ qu;g“ﬁ) U pPrvy =0,
~M(P = NoNy) = £ 4 (Ol — Oy ) wwpPavs
- (GO — Cas) wPauy
M(P = DoNg) = 1— Cfl,?vﬁl* C’;/O](,BQ ) unPrup ,

057“5 i) oG Prow

—~M(P = vavp) = z Ui <CS’O‘B* C’fygﬂ*> T, Pru$
S S,
(C’ af Cq]\?f) U]%PR’UN/ ,
<CS o+ Cf;f*) NP |

M(P = 7,Ng) = if} ( Coiit = Coitls) vSpPLYS

M(P = voNg) = if} (quﬁv‘i* ch;?V@*) wpPLu, (E.4)
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where in each amplitude the quark label ¢ is summed over the first three light quarks
(u,d, s) implicitly and up(uy) and uy (uy ) are the spinors of neutrinos v, (Ny) and vg(Ng),
respectively. By evaluating the squared matrix elements, we find the following results for
the vector and scalar currents

— (m? —m3)? m? + m2
]ulpPL/Ru2|2 = m% m% + m% — L T 5 2. ]ulPL/Ruz\Q = %; 1— 12 5 2|, (E.5)
m m
P P

One can see that the above relation holds for any projection operator and it is true for
either particles or antiparticles in the final states. It also applies for neutrino bilinears with
charge-conjugate fields, since u(p,s) = Co(p,s)” and v(p,s) = Cu(p,s)’. Taking all this
together, we obtain the branching ratio in eq. (4.4).

Similarly the decay matrix elements of vector meson V are given by

_ Iy
M(V - VO&VB) = mV?V (C;ffllﬂ + CV&ﬁ) uV'Y/LPL'UVGV s
q
M(V — NQNB) mvf— (C;/Nalﬁ + CV’Q'B> W’YNPRUNGl(/ s
MV = voNp) = i2 ( friChsl — €Qq U c;“fVF> Wo Progelp”

MV = 0o Ng) = i2 ( friohar — eQq v cgﬁ;) N Prugets p”

MV — poig) =4 ( TqCT af _ eQq fv C’ng) EU“VPL’UZ—,/G/‘ij
T,aB _ fV C My
M(V — N,Np) = i4 CqN Qq NNF V50w PrRON €D
_ Iy
MV — VaNﬂ) = mv?v (C’Z}?fl + C‘;?\g) N’yMPLv,,eV ,
MV = vavg) =14 (fg’chgaﬁ* —eQq fv C‘;f;) W0, PruS éllp”
M(V = N,Ng) = i4 ( FRICTEP — eQq f =¥ c;;ﬂj;F> UN O PLuSoelp”
~M(V = voNg) = f v (CVO‘B* + CV,,?V@*) Wy Pru§el (E.6)

where we again sum over quark flavor ¢ = u,d, s implicitly. By evaluating the squared
matrix elements, we find the following results for the vector and tensors currents

1 3 2 2 m2 + m?2 m2 — m?2)2
§Z|U1WPL/RU2€W :gm%/ {1— - : (m 2) :

2 1
ol 2my, 2my,
1 m? + m3 m?2 — m2)?2
- Z ‘ulau,,PL/RuzeVp ’ fm%/ {1 1 5 2 _ 2( 1 1 2) , (E.7)
my, my,

pol

after averaging over the initial polarizations of the vector meson V. Combining the above
results, we obtain the branching ratio given in the main part of the text in eq. (4.7).
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