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We present a general theory of non-Markovian dynamics for open systems of noninteracting fermions

(bosons) linearly coupled to thermal environments of noninteracting fermions (bosons). We explore the

non-Markovian dynamics by connecting the exact master equations with the nonequilibirum Green’s

functions. Environmental backactions are fully taken into account. The non-Markovian dynamics consists

of nonexponential decays and dissipationless oscillations. Nonexponential decays are induced by the

discontinuity in the imaginary part of the self-energy corrections. Dissipationless oscillations arise from

band gaps or the finite band structure of spectral densities. The exact analytic solutions for various non-

Markovian thermal environments show that non-Markovian dynamics can be largely understood from the

environmental-modified spectra of open systems.
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Understanding the dynamics of open quantum systems is
one of the most challenging topics in physics, chemistry, and
biology. The environment-induced quantum dissipation and
decoherence dynamics are the main concerns in the study of
open quantum systems [1,2]. Decoherence control has also
recently become a key task for practical implementations of
nanoscale solid-state quantum information processing [3,4],
where the decoherence is mainly dominated by non-
Markovian dynamics due to the strong backactions from
the environment. A fundamental issue is how to accurately
take into account non-Markovian memory effects, which
have attracted considerable attention very recently both in
theory [5–13] and in experiments [14–16].

The non-Markovian dynamics of an open quantum sys-
tem can be described by the master equation of the reduced
density matrix �ðtÞ. This is obtained by tracing over the
environmental degrees of freedom, �ðtÞ ¼ tr½�totðtÞ�,
where �totðtÞ is the density matrix of the total system.
The standard approach to the non-Markovian dynamics
uses the Nakajima-Zwanzig operator projective technique
[17] where the master equation is formally written as

d�ðtÞ
dt

¼
Z t

t0

d�Kðt� �Þ�ð�Þ: (1)

The non-Markovian memory effects are taken into account
by the time nonlocal integral kernelKðt� �Þ. In practice,
very few systems can be exactly solved from (1).
Therefore, the generality of non-Markovian dynamics has
not been fully understood.

In general, there are three typical time scales in an open
system to characterize non-Markovian dynamics: (i) the
time scale of the system �1="s, where "s is a typical
energy scale of that system; (ii) the time scale of
the environment �1=d, where d is the bandwidth of the
environmental spectral density; (iii) the mutual time scale

arising from the coupling between the system and the
environment �1=�, where � is the dominant coupling
strength. It is usually believed that non-Markovian mem-
ory effects strongly rely on the relations among these
different time scales. However, such relationships have
not been quantitatively established yet.
Here, we explore the non-Markovian dynamics from the

analytical solution, solved by connecting the exact master
equation with the nonequilibirum Green’s functions. Exact
master equations have been derived for open systems of
noninteracting fermions (bosons) linearly coupled to ther-
mal environments of noninteracting fermions (bosons)
[8,18–20]. Establishing the connection between the master
equation and the nonequilibrium Green’s functions provides
a new way to explore the non-Markovian dynamics even if
the exact master equation of the open system is unknown.
Exact master equation and nonequilibrium Green’s

functions.—We begin with noninteracting fermonic (bo-
sonic) many-body systems consisting of N single-particle
energy levels "i (i ¼ 1; 2; � � � ; N), coupled, via particle-
particle exchanges [21], to a noninteracting fermionic (bo-

sonic) environment, HSB ¼ P
�kiðV�kia

y
i b�k þ V�

�kib
y
�kaiÞ

[22]. The environment can contain many different reser-
voirs, and each reservoir is specified by its spectral density
J�ijð!Þ ¼ 2�

P
kV�kiV

�
�kj�ð!� �kÞ, where V�ki is the

coupling strength between the system and reservoir �.

The operators ayi (ai) and b
y
�k (b�k) are the particle creation

(annihilation) operators of the discrete energy level i of the
system and the continuous level k of reservoir �, respec-
tively. These creation-annihilation operators obey the stan-
dard anticommutation (commutation) relationship for
fermions (bosons). Using the coherent-state path-integral
method [23] to the Feynman-Vernon influence functional
[24], the exact master equation of such an open system can
be derived [8,19,20],
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d�ðtÞ
dt

¼ 1

i
½ ~HSðtÞ; �ðtÞ� þ

X
ij

f�ijðtÞ½2aj�ðtÞayi

� ayi aj�ðtÞ � �ðtÞayi aj� þ ~�ijðtÞ½ayi �ðtÞaj
� aj�ðtÞayi � ayi aj�ðtÞ � �ðtÞajayi �g: (2)

The first term in (2) is the unitary termwith the renormalized

Hamiltonian ~HSðtÞ ¼
P

ij~"sijðtÞayi aj. The second and third

terms give the nonunitary dissipation and fluctuations, re-
spectively. The � and � signs in the third term correspond
to the system being bosonic or fermionic. The renormalized
energy levels ~"sðtÞ, the time-dependent dissipation coeffi-
cient �ðtÞ and the fluctuation coefficient ~�ðtÞ in (2) are
given by

~"sðtÞ ¼ i

2
½ _uðt; t0Þu�1ðt; t0Þ � H:c:�; (3a)

�ðtÞ ¼ � 1

2
½ _uðt; t0Þu�1ðt; t0Þ þ H:c:�; (3b)

~�ðtÞ ¼ _vðt; tÞ � ½ _uðt; t0Þu�1ðt; t0Þvðt; tÞ þ H:c:�: (3c)

In Eqs. (3), the N � N matrix functions uðt; t0Þ
and vðt; tÞ are related to the nonequilibrium Green’s func-
tions of the system in the Schwinger-Keldysh nonequilib-

rium theory [25,26], uijðt;t0Þ¼ h½aiðtÞ;ayj ðt0Þ��i, and

vijðt; tÞ ¼ hayj ðtÞaiðtÞi subtracting an initial-state depen-

dent part [27]. These Green’s functions obey the Dyson
equations,

d

d�
uð�; t0Þ þ i"suð�; t0Þ þ

Z �

t0

d�0gð�; �0Þuð�0; t0Þ ¼ 0; (4a)

d

d�
vð�; tÞ þ i"svð�; tÞ þ

Z �

t0

d�0gð�; �0Þvð�0; tÞ ¼
Z t

t0

d�0~gð�; �0Þu yð�0; t0Þ; (4b)

subjected to the boundary conditions uðt0; t0Þ ¼ 1 and
vðt0; tÞ ¼ 0 with t0 	 � 	 t, where "s is a N � N matrix
given by the bare single-particle energy levels of the sys-
tem. The self-energy corrections, gð�; �0Þ and ~gð�; �0Þ,
which take into account all the backactions from the envi-
ronment, are expressed explicitly by

gð�; �0Þ ¼ X
�

Z d!

2�
J�ð!Þe�i!ð���0Þ; (5a)

~gð�; �0Þ ¼ X
�

Z d!

2�
J�ð!Þf�ð!Þe�i!ð���0Þ; (5b)

where the function f�ð!Þ ¼ ½e��ð!�	�Þ � 1��1 is the
Bose-Einstein (Fermi-Dirac) distribution of bosonic (fer-
mionic) reservoir � at the initial time t0. Equations (2)–(5)
establish a rigorous connection between the known exact
master equation and the nonequilibrium Green’s functions
for open systems we concern.

General solutions of non-Markovian dynamics.—
Different from the Nakajima-Zwanzig master equation,
the exact master equation (2) is local in time, characterized
by the dissipation and the fluctuation coefficients, �ðtÞ and
~�ðtÞ. Non-Markovian memory effects are manifested as
follows: (i) The coefficients �ðtÞ and ~�ðtÞ are microscopi-
cally and nonperturbatively determined by the nonequilib-
rium Green’s functions from the Dyson equations (4). The
non-Markovian memory effect is fully coded into the
homogenous nonlocal time integrals in (4) with the integral
kernel gð�; �0Þ. In other words, the self-energy correction
gð�; �0Þ serves as a memory kernel that count all the back-
actions from the environment. (ii) The coefficients �ðtÞ and
~�ðtÞ are constrained by the nonequilibrium fluctuation-
dissipation theorem. The inhomogenous nonlocal time in-
tegral in (4b) with the integral kernel ~gð�; �0Þ, depicts
the fluctuation arisen from the environment. Because
vðt0; tÞ ¼ 0, we can analytically solve Eq. (4b),

v ð�; tÞ ¼
Z �

t0

d�1
Z t

t0

d�2uð�; �1Þ~gð�1; �2Þuyðt; �2Þ: (6)

This solution shows that Eq. (3c) is a generalized nonequi-
librium fluctuation-dissipation theorem in the time domain
(the reduction to the equilibrium fluctuation-dissipation
theorem is given in the Supplemental Material,
Ref. [22]). The fluctuation-dissipation theorem is a conse-
quence of the unitarity of the whole system. It guarantees
the positivity of the reduced density matrix during the non-
Markovian time evolution.
Based on the above intrinsic features of open quantum

systems, we can now explore the general properties of non-
Markovian dynamics. From Eqs. (3), we can express the
Green’s function uðt; t0Þ in terms of the dissipation coeffi-
cient �ðtÞ as

u ðt; t0Þ ¼ T exp

�
�

Z t

t0

d�½i~"ð�Þ þ �ð�Þ�
�
; (7)

where T is the time-ordering operator. This solution in-
dicates that uðt; t0Þ fully determines the dissipation dynam-
ics of the system. However, due to the time dependence of
the dissipation coefficients, the detailed dissipation dynam-
ics can vary significantly for different environments.
Explicitly, Eq. (5) show that gð�; �0Þ ¼ gð�� �0Þ

and ~gð�;�0Þ¼ ~gð���0Þ. Thus we can write uðt; t0Þ ¼
uðt� t0Þ. Using the modified Laplace transform UðzÞ ¼R1
t0
dtuðtÞeizðt�t0Þ, it is easy to obtain

U ðzÞ ¼ i

zI� "s ��ðzÞ ; (8)

where I is the identity,�ðzÞ is the Laplace transform of the
self-energy correction,

�ðzÞ ¼ X
�

Z d!

2�

J�ð!Þ
z�!

!z¼!�i0þ
�ð!Þ � i

X
�

J�ð!Þ
2

; (9)
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and �ð!Þ ¼ P
�P

R
d!0
2�

J�ð!0Þ
!�!0 is the principal value of the

integral. It can be shown that the general solution of uðt; t0Þ
is given by

uðt� t0Þ ¼
X
i

Zie
�i!iðt�t0Þ þX

k

Z
Bk

d!

2�
½Uð!þ i0þÞ

� Uð!� i0þÞ�e�i!ðt�t0Þ: (10)

The first term in (10) corresponds to localized modes with
poles f!ig located at the real z axis with

P
�J�ð!Þ ¼ 0.

The coefficients fZig are the corresponding residues. The
localized modes exist only when the environmental spec-
tral density has band gaps or a finite band; i.e.,

P
�J�ð!Þ

vanishes in some frequency regions; see Fig. 1. These
localized modes do not decay, and give dissipationless
non-Markovian dynamics. The second term in (10) is the
contribution from the branch cuts fBkg, due to the disconti-
nuity of �ðzÞ, so does UðzÞ, across the real axis on the
complex space z; see Eq. (9). The branch cuts usually
generate nonexponential decays [28], which is another
significance of the non-Markovian dynamics. When the
system is weakly coupled to the environment, the nonex-
ponential decays are reduced to exponential-like decays.

Equation (10) provides indeed a general solution of
the non-Markovian dissipation dynamics. It shows that the
non-Markovian dissipation dynamics consists of nonexpo-
nential decays plus dissipationless localized modes. Such a
solution for the two-point Green’s function uðt; t0Þ is generic
and can be proven from the quantum field theory [29], even
if particle-particle interactions are included.

The Green’s function uðt; t0Þ reveals the general non-
Markovian dissipation dynamics. The non-Markovian
fluctuation dynamics are constrained by the fluctuation-
dissipation theorem via the Green’s function vðt; tÞ of (6).
Thus, the whole picture of non-Markovian dynamics is
fully characterized by the dissipation and fluctuation co-
efficients of (3). The nonexponential decay part of (10)
makes the dissipation coefficient �ðtÞ oscillate between
positive and negative values, representing the backflow
of information from the system to the environment
[9,10]. Nonexponential decays alone give �ðtÞ a nonzero
asymptotical value. If there are localized modes, �ðtÞ will
vanish in the steady-state limit, resulting in dissipationless
oscillations. In the weak coupling region, �ðtÞ can still be
time dependent but keeps positive, the corresponding dy-
namics give simple exponential-like decays, observed

mainly in the Markovian limit. Furthermore, Eqs. (3c) and
(6) together show that except for the initial environmental
temperature dependence, the time dependence of the fluc-
tuation coefficient ~�ðtÞ behaves similar to �ðtÞ, due to the
fluctuation-dissipation theorem. In conclusion, non-
Markovian dynamics can be fully understood from the
solution of the Green’s function uðt; t0Þ.
Examples and discussion.—To be more specific, let us

first examine the non-Markovian dynamics of a single-
mode bosonic nanosystem, such as a nanophotonic or
optomechanical resonator, coupled to a general non-
Markovian environment with spectral density

Jð!Þ ¼ 2�
!

�
!

!c

�
s�1

exp

�
� !

!c

�
; (11)

where 
 is the coupling constant between the system and
the environment, and !c is the frequency cutoff. When
s ¼ 1, <1, and >1, the corresponding environments are
Ohmic, sub-Ohmic, and super-Ohmic, respectively [30].
Following the above general procedure, the analytical so-
lution of the non-Markovian dissipation dynamics is given
by (setting t0 ¼ 0 for simplicity)

uðtÞ ¼ Ze�i!0t

þ 2

�

Z 1

0
d!

Jð!Þe�i!t

4½!� "s � �ð!Þ�2 þ J2ð!Þ ; (12)

where �ð!Þ ¼ 1
2 ½�ð!þ i0þÞ þ �ð!� i0þÞ� and the

Laplace transform of the self-energy correction

�ð!Þ¼

8>><
>>:

!c½�

ffiffiffiffiffiffiffiffiffi� ~!
p

e� ~!erfcð ffiffiffiffiffiffiffiffiffi� ~!
p Þ� ffiffiffiffi

�
p � s¼1=2


!c½ ~!expð� ~!ÞEið ~!Þ�1� s¼1


!c½ ~!3e� ~!Eið ~!Þ� ~!2� ~!�2� s¼3

;

(13)

with ~! ¼ !=!c. Due to the vanishing spectral density for
!< 0, a localized mode at !0 ¼ "s � �ð!0Þ< 0 occurs
when 
!c�ðsÞ> "s, here �ðsÞ is a gamma function. The
localized mode leads to the dissipationless process. The
corresponding residue is Z ¼ ½1� �0ð!0Þ��1. This ana-
lytical solution precisely reproduces the exact numerical
solution in the previous work [11]. Figure 2 shows that for
a small 
, the dissipation dynamics is an exponential-like
decay, The corresponding �ðtÞ and ~�ðtÞ are time dependent
but positive (corresponding to Markovian dynamics).
When 
 * 0:3, the nonexponential decay dominates, and
�ðtÞ and ~�ðtÞ oscillate in positive and negative values with
nonzero asymptotical values. When 
 * 0:6, the localized
state occurs, and uðtÞ does not decay to zero.
Correspondingly, �ðtÞ and ~�ðtÞ asymptotically approach
to zero.
The second example is a fermionic system, a single

electron transistor made of a quantum dot coupled to a
source and a drain. The source and the drain are treated as
two reservoirs of the environment. Their spectral densities
take a Lorentzian form with a sharp cutoff,

FIG. 1 (color online). A schematic pole structure of the
Green’s function UðzÞ. The red-shaded regimes on the real z
axis correspond to

P
�J�ðzÞ � 0.
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J�ð!Þ ¼ ��d
2
�

ð!�!cÞ2 þ d2�
�ð�� j!�!cjÞ; (14)

with � ¼ LðRÞ for the source (drain), where d� is the half-
width of the spectral density and �� is the coupling
strength between the system and reservoir �. We add a
sharp cutoff to simulate a finite band for the environmental
density of states. When� ! 1, the above spectral density
is reduced to the usual Lorentzian spectral density that has
been used in various studies of nanoelectronics [8,31–34].
We consider the symmetric case, ð�L; dLÞ ¼ ð�R; dRÞ ¼
ð�; dÞ. Then the analytical solution of the Green’s function
uðtÞ becomes

uðtÞ¼X2
j¼1

Zje
�i!0

jt

þ 1

�

Z !cþ�

!c��
d!

Jð!Þe�i!t

½!�"s��ð!Þ�2þJ2ð!Þ ; (15)

where Jð!Þ ¼ JLð!Þ ¼ JRð!Þ and �ð!Þ is the real part of
the self-energy �ð!Þ,
�ð!Þ ¼ Jð!Þ

�

�
log

!c ���!

!c þ��!
þ 2ð!�!cÞ

d
tan�1 �

d

�
:

(16)

The two localized states are located outside of the band,
i.e., !0

j ¼ "s þ �ð!0
jÞ, with !0

1 <!c ��, and !0
2 >

!c þ�. The corresponding residue is given by Zj ¼
½1� �0ð!0

jÞ��1. Again, the localized modes lead to a

dissipationless process and the integral term shows a
nonexponential decay. Taking � ! 1, the two localized
modes are excluded, and the solution of uðtÞ reproduces the
exact non-Markovian dynamics of the usual Lorentzian
spectral density (for detailed derivation, see Ref. [22]).

The third example is a two-level system with single-
photon processes under the rotating wave approximation

(spontaneous emission). In general, a multilevel atomic
open system does not obey the master equation (2).
However, the Schrödinger equation of a two-level atomic
system with only spontaneous single-photon emission pro-
cesses (at zero temperature) can be reduced to the Dyson
equation of (4a) [35–37]. For a two-level artificial atom,
such as a quantum dot, embedded in photonic crystals,
because of the photonic band gap it was shown [36] that
the corresponding solution contains exponential decays,
nonexponential decays, and localized bound modes all
together. We find analytically [38] that the complex pole
with exponential decay shown in Ref. [36] has been in-
cluded in the branch-cut integral of (10). Explicitly,
the spectral density of the photonic crystals is Jð!Þ ¼

2Cffiffiffiffiffiffiffiffiffiffi
!�!e

p �ð!�!eÞ [35,36]. From Eq. (10), we directly

obtain the analytical solution of the spontaneous-emission
dynamics

uðtÞ ¼ 2!r

3!r þ�
eið!r�!eÞt

þ C

�

Z 1

!e

d!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!�!e

p
e�i!t

ð!� "sÞ2ð!�!eÞ þ C2
; (17)

where !r is the real root given by ð!r þ�Þ ffiffiffiffiffiffi
!r

p ¼ C, and

� ¼ "s �!e is the detuning. This analytical solution
recovers both the exact analytical and numerical solutions
given in Refs. [35,36].
The above examples show that very different open sys-

tems coupled to very different environments obey the same
solution, Eq. (10), of the non-Markovian dynamics. The
solutions of these examples can further be written in general
as uðt� t0Þ ¼

R1
�1

d!
2�Dð!Þ expf�i!ðt� t0Þg with

Dð!Þ¼2�
X
j

Zj�ð!�!0
jÞþ

Jð!Þ
½!�"s��ð!Þ�2þJ2ð!Þ=4:

(18)

Equation (18) shows that the environment modifies the
system spectrum as a combination of localized modes (dis-
sipationless process) plus a continuum spectrum part (non-
exponential decays). Remarkably, the result obtained from
these simple examples gives indeed the underlying structure
of two-point correlation functions in arbitrary complicated
systems [29]. This indicates that alternatively, non-
Markovian dynamics can be fully characterized by the
environmental-modified spectrum of the system. If the spec-
trum of an open system can be measured, its non-Markovian
dynamics can be extracted from its Fourier transform. This
largely simplifies the exploration of the general properties of
non-Markovian’’ dynamics for more complicated open
systems.
Conclusion.—By connecting the exact master equation

with the nonequilibrium Green’s functions, we derive a
general analytical solution of the non-Markovian dynamics
for open systems of noninteracting fermions (bosons) lin-
early coupled to thermal environments of noninteracting
fermions (bosons), i.e., Eq. (10) or (18). From the

FIG. 2 (color online). The time evolution of the Green’s func-
tion uðtÞ, the dissipation and the fluctuation coefficients, �ðtÞ and
~�ðtÞ, in a sub-Ohmic bath, for several different values of the
coupling constant 
. Here we take other parameters !c ¼ "s,
and kBT ¼ "s.
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analytical solution, we show that the underlying non-
Markovian dynamics consist of nonexponential decays
and dissipationless oscillations. The dissipationless pro-
cesses arise from band gaps or finite band structures of
the environmental spectral densities. The nonexponential
decays are induced by the discontinuity in the imaginary
part of the self-energy corrections from the environment.
The exponential decays observed in the Markovian limit
are a special case in the weak coupling limit. Since the
nonequilibrium Green’s functions are well defined for
arbitrary quantum systems, this theory may also provide
a new approach to explore non-Markovian dynamics for
more complicated open systems whose exact master equa-
tion may be unknown.
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