
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

This paper might be a pre-copy-editing or a post-print author-produced .pdf of an article accepted for publication. For the

definitive publisher-authenticated version, please refer directly to publishing house’s archive system.

A General Optimization Technique for High

Quality Community Detection in Complex

Networks

Stanislav Sobolevsky ∗† Riccardo Campari†

Alexander Belyi‡ Carlo Ratti†

August 19, 2013

Abstract

Recent years have witnessed the development of a large body

of algorithms for community detection in complex networks.

Most of them are based upon the optimization of objective

functions, among which modularity is the most common, though

a number of alternatives have been suggested in the scientific

literature.

We present here an effective general search strategy for the

optimization of various objective functions for community detec-

tion purposes. When applied to modularity, on both real-world

and synthetic networks, our search strategy substantially out-

performs the best existing algorithms in terms of final scores of

the objective function; for description length, its performance

is on par with the original Infomap algorithm.

The execution time of our algorithm is on par with non-

greedy alternatives present in literature, and networks of up

to 10,000 nodes can be analyzed in time spans ranging from

minutes to a few hours on average workstations, making our

approach readily applicable to tasks which require the quality

of partitioning to be as high as possible, and are not limited by

strict time constraints.

Finally, based on the most effective of the available optimiza-

tion techniques, we compare the performance of modularity and

code length as objective functions, in terms of the quality of the

partitions one can achieve by optimizing them. To this end, we

evaluated the ability of each objective function to reconstruct

∗To whom correspondence should be addressed. E-mail: stanly@mit.edu
†SENSEable City Laboratory,Massachusetts Institute of Technology, 77 Massachusetts Av-

enue, Cambridge, MA 02139, USA,
‡Institute of Mathematics, National Academy of Sciences of Belarus Republic, 11

Surganova str., Minsk, Belarus

1

ar
X

iv
:1

3
0
8
.3

5
0
8
v
1

[c

s.
S

I]

1
5
 A

u
g
 2

0
1
3

the underlying structure of a large set of synthetic and real-

world networks.

Complex networks — Community detection — Network science

The increasing availability of big data has motivated an enormous general
interest in the burgeoning field of network science.

In particular, the broad penetration of digital technologies in different spheres
of human life provides substantial sources of data sets which explore the intri-
cacies of manifold aspects of human activity. The topics they cover range from
personal relationships among individuals to professional collaborations, from
telephone communication to data exchange, from mobility and transportation
to economical transactions and interactions in social media. Analyzing such
data sets often leads to the construction of complex networks describing rela-
tions among individuals, enterprises, locations, or more abstract entities, such
as the buzzwords and hashtags employed in social media; whenever the result-
ing structures are geographically located, they can then be studied at different
scales, including global, countrywide, regional, and local levels. Furthermore,
complex networks can arise from the study of biological phenomena, including
neural, metabolic, and genetic interactions.

Community detection is one of the pivotal tools for understanding the un-
derlying structure of complex networks and extracting useful information from
them; it has been used in fields as diverse as biology [1], economics - the World
Trade Net is analyzed in [2] - human mobility [3–5], and scientific collabora-
tions [6].

Many algorithms were devised in the field of community detection, ranging
from straightforward partitioning approaches, such as hierarchical clustering
[7] or the Girvan-Newman [8] algorithm, to more sophisticated optimization
techniques based on the maximization of various objective functions.

The most widely used objective function for partitioning is modularity [9,10]:
it relies on comparing the strength of inter- and intra-community connections
with a null-model in which edges are randomly re-wired.

In order to obtain partitions yielding optimal values for modularity, re-
searchers have suggested a large number of optimization strategies: well-known
algorithms include the simple greedy agglomerative optimization by Newman
[11] and faster Clauset-Newman-Moore heuristic [12], Newman’s spectral divi-
sion method [9] and its improvements (which employ an additional Kernigan-
Lin-style [13] step), [10], the aggregation technique commonly referred to as
Louvain method, extremely fast even on large-scale networks [14], simulated
annealing [15,16], extremal optimization [17] and many others [18].

In the last few years, researchers have shown that modularity suffers from
certain drawbacks, including a resolution limit [16, 19] which prevents it from
recognizing smaller communities (a proposed multi-scale workaround which in-
volves modifying the network can be found in [20]).

At least three of the several alternative objective functions deserve to be
mentioned: description length, block model likelihood measure, and surprise.

2

The description length of a random walk on a network, upon which the
Infomap algorithm [21,22] by Rosvall and Bergstrom is based, is an well-known
information-theoretical measure, reputed to be among the best available [23]; it
appears, however, that code length optimization also suffers from a resolution
limit, as discussed in [24], where a workaround is proposed.

The second approach is based on the likelihood measure for the stochastic
block model suggested in [25–27].

Finally, Surprise [28] compares the distribution of inter-community links to
that emerging from a random network with the same distribution of nodes per
community.

For a detailed, if not up-to-date, review of existing community detection
methods, the reader can refer to Ref. [18].

A few more strategies for community detection follow: the replica correla-
tion method introduced in [29], which is also an information-based measure;
two recently proposed algorithms, which infer community structures by using
generalized Erdős Numbers [30] and by focusing on the statistical significance
of communities [31]; a recent approach for modularity optimization - confor-
mational space annealing [32] - which delivers acceptable results very quickly,
and is scalable to larger networks, as is the modification to the algorithm by
Clauset, Newman, and Moore [33] proposed in [34].

A key point in the evaluation of algorithms for community detection is the
choice of meaningful benchmarks. Benchmarks can be roughly divided into two
groups.

In the first, one compares the final scores achieved by different algorithms
for the optimization of the same objective function on a variety of networks.

In the second type of benchmark, resulting partitions are checked against im-
posed or well-known structures in synthetic or real-world networks; this kind of
benchmark is fundamental for the evaluation of different partitioning techniques
not necessarily based on the optimization of the same objective function.

Other methods to obtain independent evaluations of the reliability of commu-
nities found, without relying on the known community structure nor objective
function scores, focus - among other parameters - on recurrence of communi-
ties under random walks [35,36], and their resilience under perturbations of the
network edges [37].

In the present work we suggest a novel universal optimization technique for
community detection, which we apply to two of the aforementioned objective
functions: modularity and description length.

We also present the results of a two-stages benchmark. First, we compare
the performance of our algorithm, in terms of the resulting values for objective
functions, with a host of existing optimization strategies, separately for modu-
larity and description length; we show in this way that we consistently provide
the best modularity scores, and results on par with Infomap when optimizing
description length.

Next, by employing in each case the best available algorithm, we compare
the performances of modularity and description length as objective functions

3

in reconstructing underlying structures on a large set of synthetic networks, as
well as the known structures on a set of real-world networks.

1. The algorithm
The vast majority of search strategies take one of the following steps to evolve
starting partitions: merging two communities, splitting a community into two,
moving nodes between two distinct communities.

The suggested algorithm involves all three possibilities. After selecting an
initial partition made of a single community, the following steps are iterated as
long as any gain in terms of the objective function score can be obtained: (1) for
each source community, the best possible redistribution of every source nodes
into each destination community (either existing or new) is calculated; this
also allows for the possibility that the source community entirely merges with
the destination; (2) the best merger/split/recombination is performed. As the
proposed technique combines all three possible types of steps, in the following
we’ll refer to it as Combo.

The fulcrum of the algorithm is the choice of the best recombination of ver-
tices between two communities, as splits and mergers are particular cases of
this operation: for each pair of source and (possibly empty) destination com-
munities, we perform a shift of all the vertices fashioned after Kernigan and
Lin’s algorithm [13]. Specifically, first we initialize the list of available nodes,
including all the nodes currently in the source community, then we iterate the
following steps until no further improvement of the objective function can be
obtained: (a) find the node i from the list for which switching community en-
tails the largest gain or the lowest loss (if no gains are available); (b) switch i

to the other community removing i from the list of available nodes and saving
the intermediate result. When no further gain is possible, the best intermediate
result is selected as the output of the series.

Experimental tests show a striking regularity in the dependence of the ex-
ecution time of Combo on the number of nodes of the network; as shown in
Fig.1, this behaviour is compatible with a power law with exponent 2.

As the sequence of operations in Combo is strongly dependent on the spe-
cific network, sharp evaluations of its computational complexity are difficult to
obtain; the striking regularity of the dependence observed in Fig.1 - however -
hints at some robust mechanism acting under the hood. In the Supplementary
Material, we justify an upper bound to the execution time of O

�

N2 log (C)
�

,
where N is the number of nodes, and C the number of communities in the
network.

4

Figure 1: For Combo, the variation of convergence time with the size of the
network is compatible with a square power law.

Figure 2: We plot here the average normalized rank per algorithm: values
ranging from 0 (worst performance) to 1 (best) are attributed to each algorithm,
and their average computed. Standard deviations are also plotted.

5

2. Modularity optimization benchmarks
We first evaluated the performance of Combo for modularity optimization. We
selected six algorithms for the comparison: a) Louvain method [14]; b) Le
Martelot [36]; c) Newman’s greedy algorithm (NGA) [11]; d) Newman’s spec-
tral algorithm with refinement [10]; e) Simulated annealing [15], in the imple-
mentation by Good, Montjoye, and Clauset [16]; f) Extremal optimization [17].

The set of algorithms we have chosen offers a good sample of the current
state of the art. Simulated annealing is reputed to be capable of getting very
close to real maxima, and extremal optimization offers a good tradeoff between
speed and performance [18,38,39]; they resulted the best-performing algorithms
in at least one benchmark [40]. The recursive Louvain method is fast and
relatively effective [23] and has therefore been applied in various real-world
network analyses [41,42]. Newman’s greedy algorithm and Spectral Algorithms
can be considered classical approaches, since they were suggested right after
modularity was introduced about 10 years ago, and were therefore used in a
number of previous benchmarks [14, 18, 23, 39]. The technique by Le Martelot
is a more recent approach, for which a benchmark already exists [43].

We ran each algorithm on three sets of networks: (1) widely available data
sets found in literature; (2) five graphs - obtained from NDA-protected telecom
data - in which the weight of each edge corresponds to the total duration of tele-
phone calls between two locations; (3) five synthetic networks generated using
the Lancichinetti-Fortunato-Radicchi approach [44, 45]. Detailed descriptions
and references can be found in the Supplementary Material.

As a measure of the comparative quality of partitioning, we computed the
average rank of each algorithm over all the networks on which it has been tested.
When multiple algorithms yielded the same modularity, we equated their rank
to the best among them (1 for the highest modularity score).

As summarized in Fig.2, Combo significantly outperforms other algorithms,
with an average score of 0.96; the next best placements are Extremal Optimiza-
tion (0.76), Le Martelot (0.60), and Good and Clauset’s Simulated Annealing
implementation (0.53); however, the two previous algorithms only work for sym-
metric matrices. Other algorithms show considerably less consistent outcomes.

The quality improvements obtained often come at the price of execution
times, which - as presented in details in the Supplementary Material - show
that Combo, which is currently implemented as a Matlab script, is not as fast
as the greedy algorithms (Louvain, Spectral), but results on several occasions
faster than other algorithms, both complex, such as Simulated Annealing, and
simple, as NGA (for which we are however using a Matlab implementation).
In the worst cases (usually when the resulting number of communities is big
enough), Combo finalizes computation in a matter of hours for the considered
networks of the scale of thousands of nodes. Detailed execution times for all the
algorithms are reported in the Supplementary Material. It’s also noteworthy
that a considerable speedup may be obtained by porting Combo to a compiled
language.

In cases where the network is big enough, the computational time is crucial,
while the resulting partitioning quality is not, using the faster approaches might

6

Figure 3: We present here a comparison between optimization of modularity and
code length. The x coordinate represents the mixing factor µw; the y coordinate
is the normalized mutual information. The topological mixing factor µt is set
to 0.5. Light gray lines are realizations of networks with 15, 20, 25 neighbours,
while their averages are represented by color lines.

Figure 4: The topological mixing factor µt is equal to µw.

be the better choice.
Often, however, the reliability of the final community structure is of paramount

importance: in such cases, we’ll want to aim at the highest possible value of the
objective function, as even even small differences in the resulting modularity
score can translate into macroscopic variations in the quality of partitioning.
In the Supplementary Material, we show that a variation as small as 0.5% can
have a sizable impact on the community structure of a network. While at the
moment it’s impossible to guarantee that an achieved partition is a global max-
imum, we can assume that choosing the one sporting the highest score is the
best option.

3. Minimum description length benchmarks
In our second benchmark, we use the combo algorithm to optimize description

7

length compression, and compare the results to those obtained using the original
Infomap implementation by Rosvall and Bergstrom [21,22].

We ran the comparison on the same set of networks as in the previous bench-
mark. Since Infomap is a greedy algorithm and results are dependent on a
random seed, we ran it 10 times for each network and picked the best result.

Unlike for modularity, final values for code length are very close, with a
single network in which their difference is about 5%, and less than 3% in all
other cases; Combo yields a better code length in 8 networks, Infomap in 9, the
results being the same in all other cases. Detailed results are reported in the
Supplementary Material.

Combo thus results a valid alternative and an ideal complement to Infomap,
as in several cases it’s proved capable of finding better solutions.

4. Synthetic and Real World Networks Benchmark

After validating that the performance of Combo is optimal for modularity op-
timization purposes and on par with Infomap for code length, let us use these
techniques to compare the performance of modularity and code length as ob-
jective functions, i.e. as to how each of them reproduces preimposed structures
in random networks; here we generated them following Lancichinetti, Fortunato
and Radicchi [44, 45] benchmark approach. Some attempts at comparing mul-
tiple partitioning algorithms are already present in literature [46]; here, we spe-
cialize the comparison to code length and modularity, using the top-performing
algorithms for each; this is a key step, as we wish to compare the efficiency of the
objective functions themselves, rather then the performance of each particular
optimization technique.

Our implementation of this benchmark consists of two main sets of networks:
in the first, we set the mixing parameter for links topology (which governs
how many inter-community links are generated), µt, to 0.5 (see Supplementary
Material); in the second, we chose µt = µw, where µw is the varying mixing
parameter for network weights (likewise, it decides how strong inter-community
links are). In each set, we varied the size of the network (250, 500, 1000) and
the average degree of the nodes (15, 20, 25). For each chosen set of parameters,
we generated ten networks, and on each of them we ran community detection
for modularity (via Combo) and description length (via Infomap).

To quantitatively compare resulting communities with the original partition,
we employed normalized mutual information (NMI) [40], the definition of which
is given in the Supplementary Material.

Results are reported in Figs. 3-4: code length does a slightly better job re-
constructing the original communities for lower values of network weight mixing
parameter, in particular for higher node counts; on the other hand, its perfor-
mance drops extremely fast above µw ' 0.5, while modularity performance
decays more slowly, in accordance with similar findings in Ref. [23, 31].

Based on that, one could recommend using modularity for discovering the
community structure in networks with weaker clustering effect, while code length
might be a better choice for larger networks with relatively strong communi-

8

Table 1: Comparison between original (Or) communities and those resulting
from the optimization of modularity (Mod) and code length (CL) on real-world
networks, including number of communities (NC) and Normalized Mutual In-
formation (NMI) (with respect to the original community structure).

NC NC NC NMI NMI
Network Size Or Mod CL Mod CL
football 115 12 12 10 0.890317 0.924195
karate 34 2 3 4 0.687263 0.825518

macaque 45 2 3 3 0.639544 0.753089
UKfaculty 81 4 10 5 0.788002 0.660034
polbooks 105 3 6 5 0.560263 0.493454

polblogs1222 1222 2 45 7 0.616725 0.433617

ties. Further benchmarks, conducted for less well-known classes of synthetic
networks and described in the Supplementary Material, yield similar results. It
is important to note that the scope of these results is limited to this specific
types of random network studied.

While real networks seldom have any kind of true or a priori structure with
which we can compare the quality of community reconstruction, we were able
to identify six such networks – thoroughly described in the Supplementary
Material – in the scientific literature, and compare their underlying structure
with the communities obtained by optimizing modularity and description length.

The results are summarized in table 1: it is apparent that none of the two
objective functions is consistently better at reconstructing the known structure
of the network. Although it could be argued that modularity performs better in
more complex cases when the number of nodes is larger, the number of networks
is far too small for reliable generalizations.

We should also stress that, when dealing with real networks, one has to
keep in mind that the background communities, defined on the basis of non-
structural information, are not necessarily reflected by the actual connections
between nodes.

Thus, communities detected by methods based only on the graph structure
don’t necessary have to coincide with “natural” divisions, as our information
measures combine complexity – realized as the mechanism through which the
underlying structure is translated into inter-node relationships (which is essen-
tially unknown) – random noise, and individual quirks of the the objective
functions.

5. Conclusions

We have presented Combo, an optimization algorithm for community detection
capable of handling various objective functions, and we have applied it to the
optimization of the two most popular partitioning quality measures: modularity

9

and description code length. With regard to modularity, Combo consistently
outperforms all the other algorithms with which we have compared it, including
the current state of the art. For what concerns the optimization of code length,
Combo provides results on par with those of Infomap, which is the defining
algorithm for this objective function.

Running times of Combo are longer than with greedy algorithms, such as
the Louvain method, and on par with more complex ones; often, they are con-
siderably shorter than for extremal optimization or simulated annealing. Even
for networks consisting of several thousands of nodes, the algorithm converges in
under an hour on consumer-level workstations. Combo is thus an optimal choice
when the quality of the resulting community is of paramount importance, and
no strict limits are imposed on computation time. Due to memory limitations,
the current algorithm implementation is not widely scalable, and its application
limit is of the order of ten thousand nodes. Alternative implementations may
overcome the current limit.

Combo is also flexible, in that it can be adapted to different objective func-
tions; possible extensions include stochastic block model likelihood [25] and
surprise [28]. Additional advantages include the possibility of limiting the num-
ber of resulting communities (e.g. to obtain the optimal bi-partitioning of a
network) and the applicability of the algorithm to fine-tune the outcomes of
other algorithms.

Finally, by studying how well the most efficient optimization techniques for
modularity and code length reproduce the underlying community structure of
the network, we have provided as fair as possible a comparison between the two
objective functions.

On the sample of random graphs generated according to the Lancichinetti-
Fortunato-Radicchi approach, description length initially achieves a slightly bet-
ter fidelity in reconstructing the stronger network structure; however, above a
certain threshold value of the weight mixing parameter, resulting partitions
quickly deteriorate, while modularity results substantially more resilient to the
introduction of noise, in accordance with existing results in literature [23, 31].
We also compared, for the first time, the results of the optimization of mod-
ularity and code length for a small set of real world networks with a known
underlying structure: although modularity yielded better results for more com-
plex networks, neither emerged as the better approach.

Acknowledgements

Thanks to the National Science Foundation, the AT&T Foundation, the MIT
SMART program, the MIT CCES program, Audi Volkswagen, BBVA, The Coca
Cola Company, Ericsson, Expo 2015, Ferrovial, GE and all the members of the
MIT Senseable City Lab Consortium for supporting the research.

The authors also want to thank Paolo Santi for helpful discussions.

10

References

[1] Roger Guimera and Luis A. Nunes Amaral. Functional cartography of
complex metabolic networks. Nature, 433(7028):895–900, Feb 2005.

[2] Carlo Piccardi and Lucia Tajoli. Existence and significance of communities
in the world trade web. Phys. Rev. E, 85:066119, Jun 2012.

[3] Christian Thiemann, Fabian Theis, Daniel Grady, Rafael Brune, and Dirk
Brockmann. The structure of borders in a small world. PLoS ONE,
5(11):e15422, 11 2010.

[4] T. Hossmann, T. Spyropoulos, and F. Legendre. A complex network anal-
ysis of human mobility. In Computer Communications Workshops (INFO-
COM WKSHPS), 2011 IEEE Conference on, pages 876 –881, april 2011.

[5] Carlo Ratti, Stanislav Sobolevsky, Francesco Calabrese, Clio Andris,
Jonathan Reades, Mauro Martino, Rob Claxton, and Steven H. Strogatz.
Redrawing the map of great britain from a network of human interactions.
PLoS ONE, 5(12):e14248, 12 2010.

[6] Gergely Palla, Imre Derenyi, Illes Farkas, and Tamas Vicsek. Uncovering
the overlapping community structure of complex networks in nature and
society. Nature, 435(7043):814–818, Jun 2005.

[7] Trevor Hastie. The elements of statistical learning : data mining, inference,
and prediction : with 200 full-color illustrations. Springer, New York, 2001.

[8] M. Girvan and M.E.J. Newman. Community structure in social and bio-
logical networks. Proc. Natl. Acad. Sci. USA, 99 (12):7821–7826, 2002.

[9] M.E.J. Newman and M. Girvan. Finding and evaluating community struc-
ture in networks. Phys. Rev. E, 69 (2):026113, 2004.

[10] M.E.J. Newman. Modularity and community structure in networks. Pro-
ceedings of the National Academy of Sciences, 103(23):8577–8582, 2006.

[11] M. E. J. Newman. Fast algorithm for detecting community structure in
networks. Phys. Rev. E, 69:066133, Jun 2004.

[12] A. Clauset, M.E.J. Newman, and C. Moore. Finding community structure
in very large networks. Phys. Rev., E70 (6):066111, 2004.

[13] B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Parti-
tioning Graphs. The Bell system technical journal, 49(1):291–307, 1970.

[14] V.D. Blondel, J.L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfold-
ing of communities in large networks. J. Stat. Mech, 10008, 2008.

[15] L.A.N. Amaral R. Guimerà, M. Sales-Pardo. Modularity from fluctuations
in random graphs and complex networks. Phys, Rev., E70(2):025101, 2004.

11

[16] Benjamin H. Good, Yves-Alexandre de Montjoye, and Aaron Clauset. Per-
formance of modularity maximization in practical contexts. Phys. Rev. E,
81:046106, Apr 2010.

[17] Jordi Duch and Alex Arenas. Community detection in complex networks
using extremal optimization. Phys. Rev. E, 72:027104, Aug 2005.

[18] S. Fortunato. Community detection in graphs. Physics Report, 486:75–174,
2010.

[19] Santo Fortunato and Marc Barthlemy. Resolution limit in community de-
tection. Proceedings of the National Academy of Sciences, 104(1):36–41,
2007.

[20] A Arenas, A Fernndez, and S Gmez. Analysis of the structure of com-
plex networks at different resolution levels. New Journal of Physics,
10(5):053039, 2008.

[21] Martin Rosvall and Carl T. Bergstrom. An information-theoretic frame-
work for resolving community structure in complex networks. Proceedings
of the National Academy of Sciences, 104(18):7327–7331, 2007.

[22] M. Rosvall and C.T. Bergstrom. Maps of random walks on complex net-
works reveal community structure. Proc. Natl. Acad. Sci. USA, 105:1118–
1123, 2008.

[23] Andrea Lancichinetti and Santo Fortunato. Community detection algo-
rithms: A comparative analysis. Phys. Rev. E, 80:056117, Nov 2009.

[24] L. Karl Branting. Information theoretic criteria for community detection.
In Proceedings of the Second international conference on Advances in social
network mining and analysis, SNAKDD’08, pages 114–130, Berlin, Heidel-
berg, 2010. Springer-Verlag.

[25] Peter J. Bickel and Aiyou Chen. A nonparametric view of network models
and newmangirvan and other modularities. Proceedings of the National
Academy of Sciences, 2009.

[26] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zde-
borová. Inference and phase transitions in the detection of modules in
sparse networks. Phys. Rev. Lett., 107:065701, Aug 2011.

[27] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zde-
borová. Asymptotic analysis of the stochastic block model for modular
networks and its algorithmic applications. Phys. Rev. E, 84:066106, Dec
2011.

[28] Rodrigo Aldecoa and Ignacio Marn. Deciphering network community struc-
ture by surprise. PLoS ONE, 6(9):e24195, 09 2011.

12

[29] Peter Ronhovde and Zohar Nussinov. Multiresolution community detection
for megascale networks by information-based replica correlations. Phys.
Rev. E, 80:016109, Jul 2009.

[30] Greg Morrison and L. Mahadevan. Discovering communities through
friendship. PLoS ONE, 7(7):e38704, 07 2012.

[31] Andrea Lancichinetti, Filippo Radicchi, Jos J. Ramasco, and Santo For-
tunato. Finding statistically significant communities in networks. PLoS
ONE, 6(4):e18961, 04 2011.

[32] Juyong Lee, Steven P. Gross, and Jooyoung Lee. Modularity optimization
by conformational space annealing. Phys. Rev. E, 85:056702, May 2012.

[33] Aaron Clauset, M. E. J. Newman, and Cristopher Moore. Finding com-
munity structure in very large networks. Phys. Rev. E, 70:066111, Dec
2004.

[34] Ken Wakita and Toshiyuki Tsurumi. Finding community structure in
mega-scale social networks: [extended abstract]. In Proceedings of the 16th
international conference on World Wide Web, WWW ’07, pages 1275–1276,
New York, NY, USA, 2007. ACM.

[35] J.-C. Delvenne, S. N. Yaliraki, and M. Barahona. Stability of graph commu-
nities across time scales. Proceedings of the National Academy of Sciences,
107(29):12755–12760, 2010.

[36] Erwan Le Martelot and Chris Hankin. Multi-scale community detection
using stability as optimisation criterion in a greedy algorithm. In Proceed-
ings of the 2011 International Conference on Knowledge Discovery and
Information Retrieval (KDIR 2011), pages 216–225, Paris, October 2011.
SciTePress.

[37] Atieh Mirshahvalad, Johan Lindholm, Mattias Derln, and Martin Rosvall.
Significant communities in large sparse networks. PLoS ONE, 7(3):e33721,
03 2012.

[38] Jian Liu and Tingzhan Liu. Detecting community structure in complex
networks using simulated annealing with -means algorithms. Physica A:
Statistical Mechanics and its Applications, 389(11):2300 – 2309, 2010.

[39] Rodrigo Aldecoa and Ignacio Mar̀ın. Surprise maximization reveals the
community structure of complex networks. Sci. Rep., 3, Jan 2013.

[40] Leon Danon, Albert Daz-Guilera, Jordi Duch, and Alex Arenas. Compar-
ing community structure identification. Journal of Statistical Mechanics:
Theory and Experiment, 2005(09):P09008, 2005.

[41] David Meunier, Renaud Lambiotte, Alex Fornito, Karen Ersche, and Ed-
ward T Bullmore. Hierarchical modularity in human brain functional net-
works. Frontiers in Neuroinformatics, 3(37), 2009.

13

[42] Lin Zhang, Xinhai Liu, Frizo Janssens, Liming Liang, and Wolfgang Gl˙
Subject clustering analysis based on {ISI} category classification. Journal
of Informetrics, 4(2):185 – 193, 2010.

[43] Erwan Le Martelot and Chris Hankin. Multi-scale community detection us-
ing stability optimisation within greedy algorithms. CoRR, abs/1201.3307,
2012.

[44] A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark graphs for
testing community detection algorithms. Phys. Rev. E, 78 (4):046110, 2008.

[45] A. Lancichinetti and S. Fortunato. Benchmarks for testing community
detection algorithms on directed and weighted graphs with overlapping
communities. Phys. Rev. E., 80(1):016118, 2009.

[46] Twan van Laarhoven and Elena Marchiori. Graph clustering with local
search optimization: The resolution bias of the objective function matters
most. Phys. Rev. E, 87:012812, Jan 2013.

14

A General Optimization Technique for High

Quality Community Detection in Complex

Networks - Supplementary Material

Stanislav Sobolevsky ∗† Riccardo Campari†

Alexander Belyi‡ Carlo Ratti†

August 19, 2013

1 The Objective Functions

1.1 Modularity

Modularity [1] is probably the best known and most used among objective
functions for community detection. It is defined as

Q =
X

i,j

Qijδ (Ci, Cj) , (1)

where

Qij =
1

2m

✓

Wij −
SiTj

2m

◆

; (2)

i, j are nodes, Ci, Cj the communities they belong to, Wij is the weight matrix,
Si =

P

j Wij , Tj =
P

i Wij , m = 1
2

P

ij Wij ; δ(x, y) = 1 if x = y, 0 otherwise.
The idea behind Modularity is to compare the partition to a null model

where the network undergoes a node weight-preserving rewiring; modularity
scores reflect the simple idea that in good community structures links between
nodes of the same community should be generally stronger than null model
expectations, while links between different communities should be weaker.

More in detail, the null model is formed by

1. preserving the total out-weight (Si) and in-weight (Tj) for each node;

∗To whom correspondence should be addressed. E-mail: stanly@mit.edu
†SENSEable City Laboratory,Massachusetts Institute of Technology, 77 Massachusetts Av-

enue, Cambridge, MA 02139, USA,
‡Institute of Mathematics, National Academy of Sciences of Belarus Republic, 11

Surganova str., Minsk, Belarus

1

ar
X

iv
:1

3
0
8
.3

5
0
8
v
1

[c

s.
S

I]

1
5
 A

u
g
 2

0
1
3

2. redirecting links from each source node to all nodes, proportionally to the
quota, at each destination, of the total in-weight of the network.

Modularity is then naturally bounded by [−1, 1]; a slightly more refined upper
bound is given by summing only over the positive elements of the modularity
matrix Qij .

1.2 Description Length

In this approach [2], one evaluates the fitness of a given partition of nodes to
describe infinitely long random walks happening on the network. The fitness is
quantified as the maximum compression one can achieve by assigning a hierar-
chical structure of code to communities, and considering how frequently each
node will be visited.

Mathematically, the objective function is the average number of bits per step
that is required to describe an infinite random walk on a network upon which a
partition M is imposed:

L(M) = qoutH
out +

X

C∈M

pCinH
in
C ; (3)

the first term of the RHS gives the average description length for movement
between different modules, the second term for movement within modules. In
particular, qout is the asymptotic probability of exiting from the current commu-
nity, Hout the entropy of inter-module movement, pCin the asymptotic probability
of remaining in community C, and Hin

C the corresponding entropy.
For a complete description, the reader is directed to Ref. [2].

2 Benchmark Networks

For our benchmark, we have a wide selection of networks, detailedly reported
in Tab.2, which are divided into three groups:

• Networks 1-10 and 16-18 were previously used in papers ranging from bi-
ology to psychology, from human mobility to network science; they are all
freely available. Relevant citations can be found alongside their descrip-
tion;

• Networks 11-15 result from telecom data we possess; the sources are under
an NDA, and will thus remain private;

• Networks 19-23 are artificial structures with built-in communities; we
obtained them using Lancichinecchi-Fortunato-Radicchi’s algorithm [3],
which is freely available at Fortunato’s website1. The networks were cre-
ated with average degree 8, maximum degree 16, mixing parameter 0.1,
minimum and maximum community sizes 5 and 50, and β 1.

1https://sites.google.com/site/santofortunato/inthepress2

2

Figure 1: Variation of the execution time of a Kernigan’s shift with the size of
the source community.

3 Complexity Analysis for Combo

As Combo performs iterative optimizations at each step, its computational com-
plexity cannot be sharply computed. Furthermore, the number of operations
performed depends on the specific optimization allowed by the objective func-
tion used: in the following we’ll discuss Combo for modularity, and denote by
N the number of nodes in the network, by S and D the number of nodes in the
source and destination communities currently considered, and by c the number
of communities at a given iteration of the main Combo loop.

The fundamental unit of Combo is Kernigan’s shift, in which all the nodes
from a source community are sequentially switched to a destination commu-
nity, with the best moves performed first. The computational complexity of
each Kernigan’s shift scales as the square of the number of nodes in the source
community, although in actual computations a sizable overhead is present (see
Fig.1).

Kernigan’s shifts are iterated until no further improvement can be achieved;
while the number of iterations cannot be anticipated, experimental observations
show that its dependence on the size of the source community is present but
weak, as shown in Fig.2.

Computing the best split between source and destination communities re-
quires the calculation of a vector of weights (which account for the destination
community) and the iteration of Kernigan’s shifts until no gain is possible. The
former step requires O (NS) operations, the latter O

�

S2k
�

, where k is the
number of iterations of the Kernigan’s shift; as the number of communities,

3

Figure 2: Variation with community size of the execution time of a Kernigan’s
shift. A power law with a low exponent is shown for comparison purposes.

on average, increases with network size faster than the iterations of Kernigan’s
shift, the computation of weight vectors would asymptotically dominate split
operations. Profiling actually revealed that the vast majority of computation
time is spent in Kernigan’s shifts, probably because of fixed cost and function
call overhead, thus we’ll consider each split as O

�

S2k
�

for the range of explored
network sizes.

In its main loop, Combo first selects the best possible split of a source into
a destination community, then updates all the modularity gains. The latter
operation requires the computation of about four times as many splits as the
current number of communities; the exact cost of each operation depends on
the size of the source community involved.

To a first approximation, we consider that the average number of nodes in
the source community scales as N/c, where c is the number of communities
at the current iteration, and a straightforward analysis of Combo’s behaviour
shows that the number of iterations of the main loop is roughly linear in the
final number of communities (see Fig.3)

This entails that the computation time of each main loop scales as N2/c;
experimental observations show that the number of communities approximately
increases at each loop until it gets very close to the final value, then slowly
converges to the final result with almost no change in the number of communi-
ties. Keeping into account that the fraction of loops at which no change in the
number of communities happens is approximately constant as the final number
of communities C varies, the two phases take respectively O

�

N2 log (C)
�

and

O
�

N2
�

, thus Combo as a whole scales at worst as N2 log C.

4

Figure 3: The number of iterations of the main loop is roughly linear in the
final number of communities; their ratio varies from 1 to about 5.

This hypothesis is compatible with experimental data, which show that ex-
ecution times increase more slowly than N2 log C, while they are well described
by a N2 law, as shown, respectively, at the top and bottom of Fig.4.

4 Objective Function Optimization Results

The complete list of results from modularity and codelength benchmarks are
reported in Tabs.3 and 5, respectively.

A summary of the modularity benchmark is reported in Tab.4. To obtain
it, we first ranked the results of each algorithm based on modularity scores;
when multiple algorithms achieved the same results, we attributed to each the
best possible rank (e.g., if the third and fourth best modularities were the same,
we would rank each algorithm as 3). Next, we normalized the rank on a [0, 1]
scale, with 1 corresponding to the best rank, 0 to the worst. Finally, for each
algorithm we computed average and standard deviation of the normalized rank.

It’s worthwhile to explicitly note that the second and third best algorithms,
Le Martelot and Extremal Optimization, only work on undirected networks.

The execution times for each pair of network and algorithm is reported Fig.5.

5 LFR Benchmark - Description

Comparing the computed communities to the underlying structure of a network
is the best way to evaluate the performance of different algorithms. However,

5

Figure 4: Top Elapsed time is shown together with N2 log(C); the red line shows
how the data would line up if it behaved according to the previous formula.
Bottom Elapsed time is shown together with N2. Green lines are the results
of fitting a power law to the experimental data.

6

Figure 5: Execution times by network size and algorithm.

7

since there are few examples of such real-world networks in literature, the sci-
entific community has mostly had to resort to artificially generated structures.

Several algorithms have been proposed for their creation; they mostly rely
on glueing together densely inter-connected cliques.

One of the most popular of these methods - proposed by Girvan and Newman
[4] - constructs simple networks made of equally sized communities with constant
in- and outdegrees.

However, Girvan-Newman and other methods don’t take into account some
of the key properties of real-world networks, such as power-law distributions for
vertex degrees and community size.

In 2008, Lancichinetti, Fortunato, and Radicchi proposed a method which
overcomes these limitations [3], later extending it to cover weighted and directed
networks [5]; since their benchmark has become increasingly popular in recent
years, we decided to adopt it for the present work.

The main characteristics of the Lancichinetti-Fortunato-Radicchi method
are: 1) vertex degrees and community sizes are chosen from power law distribu-
tions; 2) the number of links connecting different communities (outdegree) is a
fixed fraction of the total number of links; 3) the same is true for link weights.

More specifically, in the implementation of the algorithm proposed by the
authors, the in-degree sequence yi is sampled from a power law, and the outde-
gree sequence zi from a δ-distribution. Community sizes {Sξ} are also sampled
from a power law. Afterwards, vertices are assigned to communities satisfying

(Sξ)i∈ξ > y
(in)
i

(Sξ)i∈ξ > z
(in)
i

)

∀i

Each community is generated as a separate subgraph, in which multiple links

are eliminated by rewiring. Then external links are added so that y
(ext)
i =

yi − y
(in)
i = µt yi and z

(ext)
i = zi − z

(in)
i = µt zi as the topological mixing

parameter µt is kept constant for in- and outdegree. At this stage we already
have directed unweighted graphs with community structure and the desired
distribution of vertex degrees and community sizes.

Next, the strength of each node is calculated as si = (yi + zi)
β . As pointed

in [6], such a relation is frequently observed in real world networks. Internal
and external strength are calculated using the weight mixing parameter µw:

s
(in)
i = (1 − µw)si, s

(ext)
i = µw si. To assign weights to links with respect to

these strengths, the following steps are taken.
How close current weights are to the desired one is measured as

V ar({wij}) =
X

i

((si − pi)
2 + (s

(in)
i − p

(in)
i)2 + (s

(ext)
i − p

(ext)
i)2).

Here pi =
P

j(wij), p
(in)
i =

P

j wij C(i, j), p
(in)
i =

P

j wij(1− C(i, j)), and
C(i, j) indicates (i. e. C(i, j) = 1) that i and j belong to one community (and
C(i, j) = 0 otherwise). A fast and simple greedy algorithm used to minimize it:

8

1. At the beginning all weights are set to zero, so wij = 0, ∀i, j, pi = 0. Then,
for all nodes i the next two steps are repeated:

2. Vertex i is chosen and all its link weights are increased by ∆w = si−pi

ki
.

After that for each vertex i we have pi = si, and we update values {pi}.

3. For a given vertex i all the link weights wij are increased by an amount
s
(in)
i −p

(in)
i

k
(in)
i

if C(i, j) = 1 and decreased by
s
(in)
i −p

(in)
i

k
(ext)
i

if C(i, j) = 0 and

wij >
s
(in)
i −p

(in)
i

k
(ext)
i

.

4. This process is repeated several times until a steady state or a certain
value is reached.

6 LFR Benchmark - Results

To compare different partitions of the same network, we computed their Nor-
malized Mutual Information (NMI) [7]: NMI measures the information-theoretic
content of a pseudo-confusion matrix, whose entries Nij are the number of nodes
which are in community i for the first partition (A) and j for the second one
(B). It is defined as

NMI =
−2

PCA

i=1

PCB

j=1 Nij log
⇣

NijN

NA
i NB

j

⌘

PCA

i=1 N
A
i log

⇣

NA
i

N

⌘

+
PCB

j=1 N
B
j log

⇣

NB
j

N

⌘ ,

where CA and CB are the number of communities, NA
i and NB

j the cardinality
of each community, N the number of vertices.

The comparison of extracted communities with the underlying structures in
random networks was analyzed in the main text; detailed results are shown in
Fig.6 and Fig.7.

7 Real Networks Benchmark

Networks with “known” community structure constitute a second type of bench-
mark. Such networks are however very limited in number. Most of the networks
with known community structures were previously considered in the scientific
literature, and bear precise information about vertices and their properties.

To compare different objective functions for the reconstruction of the com-
munity structure of real-world networks, we chose six networks previously con-
sidered in literature, whose underlying community structure is commonly agreed
upon as known.

1. (karate) Network of friendship relations between members of a US uni-
versity karate club, known in literature as Zachary karate club [8]. This

9

graph is well known and often used as a benchmark for community de-
tection algorithms. The club consisted of 34 members and after internal
disagreements it broke up in two groups.

2. (football) Network of American football games between Division IA col-
leges during regular season Fall 2000 [4]. There are 115 teams, correspond-
ing to vertices, pairs of which are connected by an edge if they played each
other. All teams are separated into 12 conferences. Conferences offer a
natural community structure, as teams from one conference play more
often one another than teams from a different conference.

3. (UKfaculty) The personal friendship network of the faculty of a UK
university consisting of three separate schools [9]. The network consists of
81 vertices (individuals) and 817 directed and weighted connections. This
dataset contained explicit information regarding the expected community
structure, since we know which school each node belongs to (with the
exception of two nodes, that do not belong to any).

4. (macaque) Graph model of the visuo-tactile brain areas and connections
of the macaque monkey [10]. The graph consists of 45 vertices representing
brain areas, and 463 directed connections representing neuronal pathways
between the areas. Two distinct and mostly non-overlapping communities
correspond to the visual and the somatosensory cortex.

5. (polbooks) A network of books on politics, compiled by V. Krebs (un-
published, see http://www.orgnet.com). In this network, the vertices rep-
resent 105 recent books on American politics sold by the online bookseller
Amazon.com, and edges join pairs of books that have been purchased to-
gether by many users. Books were divided according to their stated or
apparent political alignment – liberal or conservative – except for a small
number of books that were explicitly bipartisan or centrist, or had no clear
affiliation.

6. (polblogs1222) A network of political blogs assembled by Adamic and
Glance [11]. The network is composed of blogs about US politics and the
web links between them, as captured on a single day in 2005. The blogs
have known political leanings and were labeled by Adamic and Glance as
either liberal or conservative; directed edges connect vertices if one of the
corresponding blogs contained a hyperlink to the other on its front page.
We only considered the network’s largest connected component, which has
1222 vertices.

8 The Effect of Small Changes of Objective Func-

tions on Partitions

As discussed in the main text, small changes in the value of the objective func-
tion can be reflected by macroscopic variation of the communities involved.

10

Table 1: The partition sporting the best modularity score (incidentally for all
six networks it is the one obtained by using Combo) is compared to a close
runner up, chosen to show that even small variations can lead to substantial
differences in the resulting community structure.

network Mod Best Mod Alt NMI
1 0.57524 0.56723 0.93654
2 0.6058 0.6057 0.9345
3 0.4449 0.4345 0.8538
4 0.3840 0.3821 0.9255
5 0.4414 0.4337 0.5564
6 0.5272 0.5244 0.9166

To illustrate this point, for each of the six networks we used in the previous
benchmark, we compared the partition with the highest modularity score with
hand picked close runner-ups: as shown in Tab.1, very low differences in mod-
ularity can correspond to large variations of normalized mutual information.

9 Relaxed Caveman, I-Partition, and Gaussian

Random Graph Benchmark

We also compared the relative effectiveness of modularity and code length op-
timization in three other types of graphs:

1. The class of relaxed caveman graphs. A relaxed caveman graph starts
with separeted cliques of given size. Edges are then randomly rewired
with probability p to link different cliques [24].

2. Graphs generated with the so-called planted l-partition model. The model
partitions a graph with n = gl vertices in l groups with g vertices each.
Vertices of the same group are linked with a probability pin, and vertices
of different groups are linked with a probability pout [24,25]. For our tests
we set pin = 0.6 and chose pout as pout =

scale∗50
n

, where n is number of
nodes in the graph.

3. Graphs generated via a Gaussian random partition generator – a modified
version of the planted l-partition model where cluster sizes have a Gaussian
distribution with given mean and variance [26]. We changed pout in the
same way as for the planted l-partition model.

For each benchmark we generated networks of sizes 250, 500 and 1000 nodes
and communities of sizes 15, 20 and 25 nodes. We used the NetworkX library [27]
to generate this graph.

11

Table 2: List, with sources, of the networks we used in our benchmark.

Network Nodes Description
1 34 Zachary’s Karate network [8]
2 62 Dolphins’ Social Network [12]
3 77 Coappeareance of characters in Les Miserable [13]
4 105 Amazon.com Co-purchases of political books 2

5 112 Common adjective and noun adjacencies in David Copperfield [14]
6 115 American College Football games in year 2000 [15]
7 297 Neural network of C. Elegans [16]
8 1490 Connections among political blogs [17]
9 1589 Coauthorship in network science [14]
10 2114 Protein interaction network for Saccharomyces Cerevisiae [18]
11 2163 Portugal mobile phone network
12 4761 UK mobile phone network
13 3296 Portugal network from radiation model
14 1479 UK network from radiation model
15 1579 France network from radiation model
16 8297 Wiki vote network [19]
17 1858 Complete network of US airports in 2010 3

18 410 Network extracted from the Infectious: STAY AWAY exhibition [20]
19 50 Synthetic network of 50 nodes [3]
20 250 Synthetic network of 250 nodes
21 500 Synthetic network of 500 nodes
22 1000 Synthetic network of 1000 nodes
23 4000 Synthetic network of 4000 nodes
24 1133 Email Networks University of Tarragona [21]
25 198 Network of Jazz Musicians [22]
26 453 Metabolic Network of C. Elegans [23]

2. Valdis Krebs, unpublished
3. data from the Bureau of Transportation Statistics - details at

http://toreopsahl.com/datasets/#usairports

12

Table 3: Performance comparison of Louvain method, Le Martelot algorithm,
Newman’s greedy algorithm (NGA), Newman’s spectral method with refine-
ment, Simulated Annealing, Extremal Optimization, and our new method (ab-
breviated as ”Combo”).

Network Size Louvain Le Mar NGA Sp+Ref G-C SA Ext Opt Combo
1 34 0.4188 0.4198 0.3807 0.4188 0.4198 0.4198 0.4198
2 62 0.5188 0.5233 0.4955 0.5265 0.5276 0.5265 0.5268
3 77 0.5654 0.5667 0.5472 0.5658 0.5656 0.5658 0.5667
4 105 0.4986 0.5268 0.5020 0.5244 0.5272 0.5272 0.5272
5 112 0.2906 0.2993 0.2947 0.2985 0.3028 0.3006 0.3051
6 115 0.6021 0.6053 0.5720 0.6018 0.6054 0.6054 0.6054
7 297 0.5048 0.3485 0.5155 0.5024 0.5178
8 1490 0.4311 0.4318 0.4316 0.4318
9 1589 0.9451 0.9546 0.9543 0.9467 0.9485 0.9550 0.9550

10 2114 0.7841 0.8401 0.8458 0.8142 0.8317 0.8442 0.8512
11 2163 0.4448 0.4689 0.4857 0.4888
12 4761 0.6312 0.6535 0.6528 0.6500 0.5753 0.6577
13 3296 0.8374 0.8669 0.8706 0.8761
14 1479 0.8253 0.8483 0.8527 0.8580
15 1579 0.8196 0.8448 0.8435 0.8520
16 8297 0.4214 0.3353 0.4271 0.4297
17 1858 0.2739 0.2542 0.2610 0.2756
18 410 0.8505 0.8607 0.8500 0.8610
19 50 0.6419 0.6419 0.6419 0.6419
20 250 0.8014 0.7760 0.8014 0.8014
21 500 0.8530 0.8318 0.8530 0.8530
22 1000 0.8756 0.8577 0.8752 0.8756
23 4000 0.8974 0.8821 0.8949 0.8974
24 1133 0.5406 0.5741 0.5036 0.5627 0.4852 0.5740 0.5825
25 198 0.4349 0.4386 0.4370 0.4454
26 453 0.4429 0.4237 0.4336 0.4522

13

Table 4: Summary of the results. To each algorithm we associated its average
rank (normalized to the interval (0, 1), where 0 is the worst result, 1 the best)
in the 26 (10 in the case of Le Martelot and Extremal Optimization) networks
it has been run on, and the corresponding standard deviation.

Algorithm avg score std dev
Louvain 0.371 0.356
Le Martelot 0.593 0.248
Newman’s greedy 0.377 0.333
Spectral + Refinement 0.475 0.219
Combo 0.957 0.092
Good-Clauset SA 0.529 0.378
Extremal Optimization 0.762 0.117

Table 5: Optimal compression length achieved by Infomap and Combo. Lower
scores correspond to better compression.

Network Size Infomap Combo
1 34 4.6061 4.6061
2 62 5.302 5.3026
3 77 4.8384 4.8384
4 105 5.923 5.923
5 112 6.481 6.481
6 115 5.9442 5.9442
7 297 7.0105 7.0887
8 1490 9.1169 9.0380
9 1589 4.6877 4.6861

10 2114 6.0164 6.111
11 2163 10.438 10.2478
12 4761 10.611 10.0253
13 3296 7.7975 7.8340
14 1479 7.0998 7.0914
15 1579 7.1834 7.1786
16 8297 11.752 11.9133
17 1858 7.827 7.7909
18 410 6.7632 6.7668
19 50 4.7611 4.7611
20 250 6.034 6.0340
21 500 6.1011 6.1011
22 1000 6.3542 6.3542
23 4000 6.9161 6.9763
24 1133 8.6073 8.6076
25 198 6.717 6.7158
26 453 7.5107 7.7039

14

Figure 6: We present here a comparison between optimization of modularity and
code length. The x coordinate represents the mixing factor µw; the y coordinate
is normalized the mutual information. The topological mixing factor µt is set
to 0.5.

15

Figure 7: The topological mixing factor µt is equal to µw.

Results from this benchmarks are reported in Fig.8: as in the results of the
LFR benchmark, modularity yields more reliable community reconstruction as
the level of noise increases; code length performs surprisingly poorly for smaller
networks.

References

[1] A. Clauset, M.E.J. Newman, and C. Moore. Finding community structure
in very large networks. Phys. Rev., E70 (6):066111, 2004.

[2] M. Rosvall and C.T. Bergstrom. Maps of random walks on complex net-
works reveal community structure. Proc. Natl. Acad. Sci. USA, 105:1118–
1123, 2008.

[3] A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark graphs for
testing community detection algorithms. Phys. Rev. E, 78 (4):046110, 2008.

[4] M. Girvan and M.E.J. Newman. Community structure in social and bio-
logical networks. Proc. Natl. Acad. Sci. USA, 99 (12):7821–7826, 2002.

[5] A. Lancichinetti and S. Fortunato. Benchmarks for testing community
detection algorithms on directed and weighted graphs with overlapping
communities. Phys. Rev. E., 80(1):016118, 2009.

16

Figure 8: Relaxed Caveman, I-Partition and Gaussian Random Graph bench-
marks. Colored markers result from the average of shaded ones. Modularity
was computed using Combo.

17

[6] A. Barrat, M. Barthlemy, R. Pastor-Satorras, and A. Vespignani. The
architecture of complex weighted networks. Proceedings of the National
Academy of Sciences of the United States of America, 101(11):3747–3752,
2004.

[7] Leon Danon, Albert Daz-Guilera, Jordi Duch, and Alex Arenas. Compar-
ing community structure identification. Journal of Statistical Mechanics:
Theory and Experiment, 2005(09):P09008, 2005.

[8] W. W. Zachary. An information flow model for conflict and fission in small
groups. Journal of Anthropological Research, 33:452–473, 1977.

[9] T. Nepusz, A. Petroczi, L. Negyessy, and F. Bazso. Fuzzy communities and
the concept of bridgeness in complex networks. Phys. Rev. E, 77:016107,
2008.

[10] L. Negyessy, T. Nepusz, L. Kocsis, and F. Bazso. Prediction of the main
cortical areas and connections involved in the tactile function of the visual
cortex by network analysis. European Journal of Neuroscience, 23(7):1919–
1930, 2006.

[11] L.A. Adamic and N. Glance. The political blogosphere and the 2004 US
Election. Proceedings of the WWW-2005 Workshop on the Weblogging
Ecosystem, 2005.

[12] David Lusseau, Karsten Schneider, Oliver J. Boisseau, Patti Haase, Elisa-
beth Slooten, and Steve M. Dawson. The bottlenose dolphin community
of Doubtful Sound features a large proportion of long-lasting associations.
Behavioral Ecology and Sociobiology, 54(4):396–405, 2003.

[13] D. E. Knuth. The Stanford GraphBase: a platform for combinatorial com-
puting. Addison-Wesley, 1993.

[14] M. E. J. Newman. Finding community structure in networks using the
eigenvectors of matrices. Phys. Rev. E, 74:036104, Sep 2006.

[15] M. Girvan and M. E. J. Newman. Community structure in social and
biological networks. Proceedings of the National Academy of Sciences,
99(12):7821–7826, 2002.

[16] J. G. White, E. Southgate, J. N. Thomson, and S. Brenner. The structure
of the nervous system of the nematode caenorhabditis elegans. Philosoph-
ical Transactions of the Royal Society of London. B, Biological Sciences,
314(1165):1–340, 1986.

[17] Lada A. Adamic and Natalie Glance. The political blogosphere and the
2004 u.s. election: divided they blog. In Proceedings of the 3rd international
workshop on Link discovery, LinkKDD ’05, pages 36–43, New York, NY,
USA, 2005. ACM.

18

[18] H. Jeong, S. P. Mason, A.-L. Barabasi, and Z. N. Oltvai. Lethality and
centrality in protein networks. Nature, 411(6833):41–42, May 2001.

[19] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Signed networks in
social media. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’10, pages 1361–1370, New York, NY, USA,
2010. ACM.

[20] Lorenzo Isella, Juliette Stehl, Alain Barrat, Ciro Cattuto, Jean-Franois
Pinton, and Wouter Van den Broeck. What’s in a crowd? analysis of face-
to-face behavioral networks. Journal of Theoretical Biology, 271(1):166 –
180, 2011.

[21] R. Guimerà, L. Danon, A. Dı́az-Guilera, F. Giralt, and A. Arenas. Self-
similar community structure in a network of human interactions. Phys.
Rev. E, 68:065103, Dec 2003.

[22] Pablo M. Gleiser and Leon Danon. Community structure in jazz. Advances
in Complex Systems, 06(04):565–573, 2003.

[23] Jordi Duch and Alex Arenas. Community detection in complex networks
using extremal optimization. Phys. Rev. E, 72:027104, Aug 2005.

[24] S. Fortunato. Community detection in graphs. Physics Report, 486:75–174,
2010.

[25] Anne Condon and Richard M Karp. Algorithms for graph partition-
ing on the planted partition model. Random Structures and Algorithms,
18(2):116–140, 2001.

[26] Ulrik Brandes, Marco Gaertler, and Dorothea Wagner. Experiments on
graph clustering algorithms. Springer, 2003.

[27] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network
structure, dynamics, and function using NetworkX. In Proceedings of the
7th Python in Science Conference (SciPy2008), pages 11–15, Pasadena, CA
USA, August 2008.

19

