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Abstract

Protein structure prediction from amino acid sequence has been one of the most
challenging aspects in computational structural biology despite significant progress
in recent years showed by critical assessment of protein structure prediction (CASP)
experiments. When experimentally determined structures are unavailable, the
predictive structures may serve as starting points to study a protein. If the target
protein consists of homologous region, high-resolution (typically <1.5 Å) model can
be built via comparative modelling. However, when confronted with low sequence
similarity of the target protein (also known as twilight-zone protein, sequence
identity with available templates is less than 30 %), the protein structure prediction
has to be initiated from scratch. Traditionally, twilight-zone proteins can be predicted
via threading or ab initio method. Based on the current trend, combination of
different methods brings an improved success in the prediction of twilight-zone
proteins. In this mini review, the methods, progresses and challenges for the
prediction of twilight-zone proteins were discussed.

Introduction
Specific function and mechanism of a protein can be elucidated from the three dimen-

sional (3D) structure of a protein. The most accurate way to determine a high resolution

protein structure is through experimental methods such as X-ray crystallography or

nuclear magnetic resonance (NMR) spectroscopy [1, 2]. As of January 2015, the Protein

Data Bank (PDB) has over 100,000 deposited protein structures (www.rcsb.org) [3]. With

the increasing number of deposited protein structure in PDB, the data is highly beneficial

to the computational approach that utilized information from these experimentally-

determined structures. Although the number of experimentally-determined protein

structures is increasing at an accelerated rate, at the same time, numbers of known pro-

tein sequences from genome sequencing projects are increasing. To bridge the protein

sequence-structure gap, computational protein 3D structure predictions from its amino

acid sequence provide potential solution [4]. Computational protein structure prediction

may not be as accurate as experimental method but they often reveal the molecular

insight from the predicted structure and could generate hypotheses which are useful to

complement the experimental approach and provide fundamental understanding of a

protein [5, 6]. Therefore, when the experimentally-determined structures are unavailable,

these predictive structures may serve as the starting points to study the protein.

© 2015 Khor et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Khor et al. Theoretical Biology and Medical Modelling  (2015) 12:15 
DOI 10.1186/s12976-015-0014-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s12976-015-0014-1&domain=pdf
mailto:yeesiew@usm.my
mailto:yeesiew@usm.my
http://www.rcsb.org/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Protein structure prediction is a method of translating the protein sequence into 3D

structure through computational algorithms. Computational approaches for prediction

protein 3D structures can be generally divided into three categories (comparative mod-

elling, threading and ab initio approach). It can also be categorized into template-based

(TBM) and template-free (FM) modelling [7, 8]. Comparative modelling and threading

method are categorized into TBM as they depend on the availability of a template from

solved protein structures [9]. FM (also known as ab initio or de novo method) is poten-

tially able to predict protein structures without any template [8, 10]. To date, compara-

tive modelling is the most successful and accurate method to produce a reliable

structure. However, structure accuracy highly depends on how strong the relationship

between target and template (sequence identity >30 %). For closely related protein se-

quence, sequence similarity usually falls above 30 % [4, 10, 11]. Over 95 % of protein

chains with low sequence identity have different structures and this reduced the accur-

acy of the predictions [12]. As the sequence identity decreases, it leads to the probabil-

ity of identifying incorrect templates and generating less accurate models with errors in

predicted models, such as errors in side-chain packing, distortions and shifts in cor-

rectly aligned regions, errors in regions without a template and errors due to template

misalignment [13, 14]. In addition, searching for homologous proteins is difficult when

the sequence identity is low (also known as the “twilight-zone”), where the sequence

identity falls between 10 and 30 % [15]. Thus, when the value is low, sequence identity

is generally not a statistical reliable predictor to generate accurate model. Therefore, in

such situation threading and ab initio method offer an alternative way for protein

structure prediction. Previously, twilight zone protein structure prediction focused on

the sequence alignment [16–20], the secondary structure prediction [21, 22] as well as

the physiochemical properties of amino acids [23–25] to improve the quality of the

built model. The scoring function e.g. position specific scoring matrices (PSSMs),

Levitt-Gerstein (LG) score [26], LiveBench [27], MaxSub [28], S-score [29], C-score

[30] where then used to rank the built models. Besides, obtaining an accurate structure

for twilight-zone protein is challenging [31]. For this reason, this review will be empha-

sized on methods for prediction twilight-zone protein from scratch. Focus will be put

on threading, ab initio and the current trend in protein structure prediction for

twilight-zone proteins.

Threading method
Threading, also known as fold recognition, is used to identify protein templates in PDB

bank for similar fold or similar structural motif to the target protein [32]. The concept

for threading is similar to comparative modelling but comparative modelling only con-

siders sequence similarity between target protein and template, while protein threading

considers the structural information in the template [33]. The critical step of threading

is to identify correct template proteins with similar folds to the target protein and make

correct alignment [34]. Protein threading compares a target sequence against one or

more protein structures to detect and obtain the best compatibility of sequence-

structure template pair [1, 33]. They identify best fits of target sequence with the fold

template based on the generated alignments and each template is calculated accord-

ing to different scoring function. Commonly used alignment scores to identify precise

target-template alignments include sequence profile-profile alignments (PPA), sequence-
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structural profile alignments, secondary structure match, hidden-Markov models (HMM)

and residue-residue contact [1]. The alignment algorithms are able to search for remotely

homologous sequences in the databases. Therefore, even if sequence similarity is low

(<30 %), threading method can be used to obtain similar folds or structural motifs for the

target sequence. Traditionally, pair-wise comparison is used for matching of single

sequences of target and template in the database. PPA, which can be used to detect weak

similarities between protein families, is most often used and popular threading approach

(successfully used in CASP7 for I-TASSER) [35, 36]. The new threading algorithm MUS-

TER (Multi-Source ThreadER) showed that accuracy of PPA can be further improved by

incorporating various sequence and structure information (e.g. sequence profiles, second-

ary structure prediction, torsion angles, solvent accessibility and hydrophobic scoring

matrix). MUSTER showed a better performance with TM-score 5–6 % higher than PPA

in the testing proteins [34].

The overall procedure for I-TASSER is illustrated in Fig. 1. In general, I-TASSER

divided the protein structure prediction into four steps: i) template identification, ii)

structural reassembly, iii) model construction and, iv) final model selection. In the first

step, the query sequence is threaded through PDB library to identify appropriate

fragment using LOMETS algorithm [37]. This will be followed by continuous fragments

Fig. 1 General workflow of I-TASSER for protein structure prediction [30]
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from the threading alignments are used to assemble full-length models that aligned

well, with the unaligned regions (loops/tails) built by ab initio modelling [38]. The

structure assembly simulations are guided by a knowledge-based force field, including: i)

general knowledge-based statistics terms from the PDB, ii) spatial restraints from treading

templates, iii) sequence-based contact predictions from SVMSEQ (a support vector ma-

chine based residue-residue contact predictor) [37]. After that, fragment assemble simula-

tion is performed again and are clustered by SPICKER [39]. After superposition, all the

clustered structures are averaged to obtain the cluster centroids. The final full atomic

models are obtained by REMO which builds the full-atomic models from the selected I-

TASSER decoys through the optimization of the hydrogen-bonding networks [40]. The

forces in REMO protocol include H-bonding, clash/break-amendment, I-TASSER

restraints and CHARMM22 potential [37]. For the final top 5 models selection, I-TASSER

uses SPICKER to cluster and report up to five models corresponding to the five largest

structure clusters. These steps are the essential advantage of TASSER for is its ability to

drive the template structures closer to the native than the input templates by ~2–3 Å

[41–43]. The confidence level of the predicted model was estimated by C-score (Eq. 1).

C−score ¼ ln
M
Mtot

� 1
RMSD

� 1
7

X 7
i¼1

Z ið Þ
Z0 ið ÞÞ

�
ðEq:1Þ

TASSER has been tested in CASP6 experiment and emerged as one of the most suc-

cessful structure prediction methods. It is however, TASSER failed to correctly predict

the relative orientation of multiple domain proteins. TASSER’s performance for free

modelling targets is yet to be satisfactory as the success rate for non-homologous

single-domain proteins is around two thirds [20, 44].

Since no single program has been reported to be outperformed others (within

all threading approach), the consensus structure prediction method (meta-server

approach) is therefore developed. With this approach, a number of models by multiple

threading programs are generated. The idea behind this approach is the models that

are generated by different programs are closest to native and less likely to make a com-

mon inaccurate prediction [31]. Available meta threading servers include 3D-Jury [45],

and LOMETS [46]. 3D-Jury is a meta-server that collects and compares models from

various remote protein structure prediction servers [45]. Therefore, the final perform-

ance is highly dependent on the inputs from the servers [46]. On the other hand,

LOMETS locally installed all threading alignments programs, including PPA, HMM,

structural profile and contact-based alignment. This will allow the users to obtain the

predictions of all servers quickly compare with 3D-Jury [46]. The meta-server ap-

proaches have previously dominated the server prediction in CASP6 experiments.

However, in CASP7 experiment, Zhang-Server (I-TASSER) showed better performance

than all available meta-server (will be discussed in section ‘Current trend in protein

structure prediction’) [47].

Ab initio method
When there is no homologous structure in PDB or the relationship is so distant until it

could not be detected by threading, ab initio folding is the alternative way to generate

protein structure from scratch [1]. This method is termed template-free modelling (FM)
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(also known as ab initio or de novo modelling) as it originally referred to methods that

based on the first principle laws of physics and chemistry. The idea is also based on

Anfinsen’s thermodynamic hypothesis [48]. As above-mentioned, Anfinsen’s hypothesis

stated that protein structure prediction depends solely on amino acid sequence [49]. The

prerequisite of these modelling methods is that the native structure has the global mini-

mum free energy among all available conformations [32]. Therefore, efficient and reliable

algorithm is in need to limit the conformational space in order to minimize the energy

function so that the protein is tend to be in its native state [50, 51].

There have been a variety of methods developed for ab initio protein structure gener-

ation. The leading approach is the fragment-based assembly method, an idea of Bowie

and Eisenberg [11, 51, 52]. Based on this idea, Rosetta [53] was developed and was ex-

ceedingly successful in FM as Rosetta is able to produce accurate models nearer to its

native structures [54, 55]. Fig. 2 shows the general workflow of Rosetta in protein struc-

ture prediction. The idea of fragment-based assembly is that the smaller fragments are

restricted to the local structures by most closely related sequence in protein structure

database [51, 54]. The lengths of the fragments vary by different programs and the frag-

ment libraries comprise fragments from high-resolution known PDB structures. In

Rosetta, fragment libraries of three- and nine- residue were exploited [53]. The original

fragment insertion method by Rosetta showed consistent and accurate result compared

to other ab initio structure predictions in CASP7 [53]. Generation of fragments is im-

portant in Rosetta after the completion of secondary structure prediction and it can be

done through Robetta server [56, 57]. The program iterates over three- and nine-

residue of the sequence and looks for similar sequences from the fragment libraries that

Rosetta uses to guide the search of conformational space in predicting protein struc-

tures [58]. In Rosetta, method is done by Monte-Carlo algorithm to obtain native con-

dition of protein conformations [53, 59]. Monte-Carlo algorithm generates a structure

prediction by randomly inserting fragment predictions into the structure and the en-

ergy function is defined as the Bayesian probability of structure/sequence [54]. Bayes

statistical theorem is exploited as a scoring function (Eq. 2) [59, 60]:

P structureð jsequenceÞ ¼ P structureð Þ � P sequenceð jstructureÞ
P sequenceð Þ ðEq:2Þ

Rosetta energy functions are classified into two: knowledge-based centroid energy

function that uses coarse-grained or low-resolution energy function to treat the side

chains as centroids, and the knowledge-based all atom energy function that combines

Lennard-Jones potential and a knowledge-based conformation-dependent amino acid

internal free energy term [61]. The all atom energy function is more accurate but it is

slower comparing with the centroid energy function as the side-chain atoms, van der

Waals interaction, hydrogen bonds and pair wise solvation free energy is taking into

consideration in all atom energy function. Both coarse-grained and all-atom energy

function has been successfully used to predict high resolution protein structures from

their sequences.

A newer method, QUARK by Yang Zhang group, successfully predicted models of

correct folds for 8 out of 18 proteins with length less than 150 residues in CASP9 [62].

QUARK fragment assembly starts from random conformation that enable it to construct
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new protein folds from scratch [63]. In QUARK, the models are assembled from small

continuous fragments ranged from 1 to 20 residues excised from unrelated proteins by

Monte-Carlo simulation [11, 63]. Both Rosetta and QUARK showed the importance of

assembling structural models using small fragments by their significant performance in

CASP9 [64]. In CASP10, QUARK successfully predicted model with larger size range in

FM modelling (>150 residues) [62].

Current trend in protein structure prediction
In order to improve the performance of in silico approaches, the boundaries between

the protein structure prediction methods have overlapped due to the integration of the

strength of different approaches [31]. Recent CASP experiments demonstrated that

composite approaches can achieve additional advantages in structure prediction. Since

no single approach can perform better than others for all protein prediction, the emer-

gence of new trend is the combination/hybrid of different protein structure prediction

approaches [32, 63].

Fig. 2 General workflow of Rosetta for protein structure prediction [53]
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I-TASSER (Iterative Threading ASSEmbly Refinement) is one notable successful com-

posite approach in the CASP experiments [30]. I-TASSER method is based on the second-

ary structure enhanced profile-profile threading alignment extended from TASSER

algorithm for iterative structure assembly and refinement of protein molecules

[43, 65]. I-TASSER retrieves structural template from PDB library through a meta-

threading server, termed LOMETS. By year 2010, the online I-TASSER server has gener-

ated more than 30,000 full-length structure and function predictions for more than 6000

registered users [30]. I-TASSER can consistently predict correct folds and also high-

resolution for small single-domain protein (<120 residues) with a lower computational

time (5 CPU hours for I-TASSER and 150 CPU days per target for Rosetta). In CASP7,

CASP8, CASP9 and CASP10, I-TASSER was ranked as the best server for protein struc-

ture prediction [66].

Butterfoss et al. presented blind-structure prediction for three peptoids using the

hierarchical combination of Replica Exchange Molecular Dynamics (REMD) simula-

tion and Quantum Mechanical (QM) refinement [67]. They have managed to predict

a N-acryl peptoid trimer and a cyclic peptoid nonamer with backbone RMSD of only

0.2 and 1.0 Å, respectively. Their findings showed that physical modeling is able to

performed de novo structure prediction for small peptoid molecules.

In 2013, Bhageerath-H Strgen, another homology/ab initio hybrid algorithm was de-

veloped. The method was tested in CASP9 experiments and showed 93 % of the targets

were in the pool of decoys. The results showed that Bhageerath-H Strgen is capable of

searching the protein fold for near-native conformation. Strategy in Bhageerath-H

Strgen involved secondary structure prediction, database search for sequence based on

the input amino acid sequence, fold recognition, template-target alignment, and

template-based modelling by MODELLER [4]. The missing residues with no fragments

are modelled using Bhageerath ab initio modelling. In their study, they showed that

Bhageerath-H Strgen performs better than Rosetta and I-TASSER [68].

The Robetta server (http://robetta.bakerlab.org) is an automated server for protein

structure and analysis. Protein structures can be generated in the presence or absence of

similarity to homologous proteins of known structure. BLAST, PSI-BLAST, FFAS03 or

3D-Jury is used to search for a match to the solved protein structure. When there is a

confident match, comparative modelling is used for protein structure prediction. If no

match is found, ab initio Rosetta fragment insertion method will be used for prediction

[58]. In CASP8 experiment, Robetta is ranked as the top 4 best performing groups [69].

Successes and challenges for twilight-zone protein modelling
The successful rates for twilight-zone protein modelling are increasing over the years

with numerous successful examples have been reported. In year 2008, Leucosporidium

antarcticum antifreeze protein was predicted by comparative modelling, threading and

ab initio approaches due to low sequence identity. Their study suggests that I-TASSER

(ab initio approach) is useful for low resolution protein structure prediction for

twilight-zone protein.

In 2011, Chlamydia trachomatis protein CT296 was determined using both computa-

tional method (I-TASSER) and X-ray crystallography method. Despite having no homo-

logs, the result showed that the structure of CT296 predicted by ab initio I-TASSER

has overall structural similarity (root mean square, RMSD of 2.72 Å for 101/137 residues)
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to the high-resolution X-ray crystallography structure (1.8 Å). The result showed that I-

TASSER is effective to predict accurately twilight-zone protein structures that have no pri-

mary sequence homolog with any known proteins [70]. This is an encouraging study for

the most challenging twilight-zone protein modelling in protein structure prediction.

Successes in the structure prediction for gas vesicle protein GvpA from haloarchaeon

Haloferax mediterranei have also been reported. The protein structure was predicted

by Strunk et al., and Ezzeldin et al., in year 2011 and 2012 respectively [71, 72]. The

structure prediction was first carried out by Strunk and colleague via ab initio approach

(Rosetta). The predicted structure suggested that GvpA possessed two α-helices and

two β-strands. The secondary structure elements (α- β- β- α) is similar with the NMR

structures obtained for GvpA protein from cyanobacterium Anabaena flos-aquae [73].

Mutation in α-helix and β-turn affected the ability to form gas vesicle. This in vivo data

on GvpA mutants support the major structural features from the proposed structures.

In the subsequent year, Ezzeldin and colleagues predicted GvpA protein from

Halobacterium sp. NRC-1 with computational comparative modelling (by MODELLER

and SCRATCH), threading (by I-TASSER) and ab initio modelling (by Rosetta) [72].

All the predicted structures were equilibrated through molecular dynamics (MD) simu-

lation. Average MM-PBSA energy and standard deviation were calculated and ranked.

From the comparison of the top ranked predicted structures and an earlier model pro-

posed by Strunk et al., it showed that two sequences possess 93 % identity despite of

belonging to different organisms [71]. Furthermore, the structures possessed an α- β- β-

α secondary structure, in agreement with previous experimental data and their secondary

structure prediction [72]. The predicted model thus support the hypothesis that homolo-

gous sequences synthesized by different organisms should exhibit similar structures [72].

Another research in year 2014 was the structure prediction of BmR1 protein from

Brugia malayi. In the study, the BmR1 protein (206 residues) was modelled via com-

parative modelling, threading and ab initio approaches. The predicted models were

evaluated and compared. Based on the model evaluation, the ab initio approaches by

Rosetta outperformed others method with a quality and reliable structure from struc-

ture validation and evaluations [74].

Despite the rapid progress in structure prediction, there are still significant challenges

in the current method [32]. As demonstrated in the CASP experiments, the successful

of twilight-zone protein modelling via FM is only limited to small protein below 100

residues [63]. With increasing protein size, the conformational space will also increase

proportionally. As mention earlier, it is important to limit conformational space in

order to obtain lowest free energy. In CASP 10, QUARK successfully predicted two FM

targets with length >150 residues [62]. Although there are successful predictions for

twilight-zone protein, there is still a need for a consistent successful rate. For example,

in spite of the reported successful cases, the QUARK program has difficulty to consist-

ently assemble the correct protein structures with length >100–120 residues from

scratch [63, 75].

Another challenge in twilight-zone protein is to distinguish the correct distantly related

proteins from unrelated proteins. The accuracy of comparative modelling is highly

dependent on the sequence similarity between the target sequence and template. For

closely related protein, sequence similarity usually above 30 % [4, 10]. When the sequence

similarity decreases, probability of getting a reliable structure decreases. For this reason,
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the algorithms and programs to identify correct templates from related proteins play a sig-

nificant role. Although various template searching algorithms are available online, efficient

and consistent template detection is still essential especially for distantly related protein

sequences.

Conclusion and future direction
The elucidation of a protein structure is vital in order to aid the understanding of the bio-

logical roles of it in living cells. Comparative modelling can generate high resolution

model when evolutionary related homologous templates are identified. The structure of a

query protein from different evolutionary origin can be predicted by threading method to

recognize folds similar to query. A query must be built from scratch by ab initio model-

ling when no structurally related proteins were found in the template database. Here, we

have presented a general review on twilight-zone protein structure prediction from the

point of view in both threading and ab initio approaches. Although each method reported

successful predictions, the composite approaches from threading, ab initio and other vari-

ous methods have showed marked improvement compared to the single method alone.

The bottleneck of the twilight zone protein modelling is that the success/accuracy rate is

decreased when the protein size is increased. Significant challenges remain in distant-

homology identification and refinement. Compounded by the complexity of structure pre-

diction is that about one tenth of proteins are disordered for their physiochemical roles.

Therefore, the development of a reliable, efficient and consistent algorithm in fold-

recognition and refinement would influence for accuracy in the prediction of twilight-

zone proteins.

Competing interests
The authors declare that they have no competing interest.

Authors’ contributions
BYK drafted the manuscript. GJT, TSL and YSC revised the manuscript. All authors read and approved the final
manuscript.

Acknowledgements
This work was supported by Science Fund (305/CIPPM/613232) from Malaysian Ministry of Science, Technology and
Innovations.

Received: 8 June 2015 Accepted: 27 August 2015

References
1. Wu S, Zhang Y. Protein structure prediction. In: Edwards D, Stajich J, Hansen D, editors. Bioinformatics. New York:

Springer; 2009. p. 225–42.
2. Nguyen MN, Madhusudhan MS. Biological insights from topology independent comparison of protein 3D

structures. Nucleic Acids Res. 2011;39, e94.
3. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. Nucleic Acids Res.

2000;28:235–42.
4. Webb B, Sali A. Protein structure modeling with MODELLER. Methods Mol Biol. 2014;1137:1–15.
5. Petrey D, Honig B. Protein structure prediction: inroads to biology. Mol Cell. 2005;20:811–9.
6. Wooley JC, Ye Y. A historical perspective and overview of protein structure prediction. In: Xu Y, Xu D, Liang J,

editors. Computational methods for protein structure prediction and modeling. New York: Springer; 2007. p. 1–43.
7. Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, et al. Template-based protein structure modeling using the

RaptorX web server. Nat Protoc. 2012;7:1511–22.
8. Maurice KJ. SS Thread: template-free protein structure prediction by threading pairs of contacting secondary

structures followed by assembly of overlapping pairs. J Comput Chem. 2014;35:644–56.
9. Fiser A. Template-based protein structure modeling. Methods Mol Biol. 2010;673:73–94.
10. Moult J, Fidelis K, Kryshtafovych A, Tramontano A. Critical assessment of methods of protein structure prediction

(CASP)-round IX. Proteins. 2011;79:1–5.
11. Xu D, Zhang Y. Toward optimal fragment generations for ab initio protein structure assembly. Proteins.

2013;81:229–39.

Khor et al. Theoretical Biology and Medical Modelling  (2015) 12:15 Page 9 of 11



12. Mizianty M, Kurgan L. Modular prediction of protein structural classes from sequences of twilight-zone identity
with predicting sequences. BMC Bioinformatics. 2009;10:414.

13. Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Šali A. Comparative protein structure modeling of genes
and genomes. Annu Rev Biophys Biomol Struct. 2000;29:291–325.

14. Eswar N, Webb B, Marti-Renom MA, Madhusudhan M, Eramian D, Shen M-y, et al. Comparative protein structure
modeling using modeller. In: Bateman A, Pearson WR, Stein LD, Stormo GD, Yates III JR, editors. Current protocols
in bioinformatics. New York: Wiley; 2006. p. 5.6.1–5.6.30.

15. Hansen SF, Bettler E, Wimmerová M, Imberty A, Lerouxel O, Breton C. Combination of several bioinformatics
approaches for the identification of new putative glycosyltransferases in Arabidopsis. J Proteome Res. 2008;8:743–53.

16. Blake JD, Cohen FE. Pairwise sequence alignment below the twilight zone. J Mol Biol. 2001;307:721–35.
17. Huang YM, Bystroff C. Improved pairwise alignments of proteins in the Twilight Zone using local structure

predictions. Bioinformatics. 2006;22:413–22.
18. Rost B. Twilight zone of protein sequence alignments. Protein Eng. 1999;12:85–94.
19. Vogt G, Etzold T, Argos P. An assessment of amino acid exchange matrices in aligning protein sequences: the

twilight zone revisited. J Mol Biol. 1995;249:816–31.
20. Zhang Y, Arakaki AK, Skolnick J. TASSER: an automated method for the prediction of protein tertiary structures in

CASP6. Proteins. 2005;61:91–8.
21. Homaeian L, Kurgan LA, Ruan J, Cios KJ, Chen K. Prediction of protein secondary structure content for the twilight

zone sequences. Proteins. 2007;69:486–98.
22. Kurgan L, Chen K. Prediction of protein structural class for the twilight zone sequences. Biochem Biophys Res

Commun. 2007;357:453–60.
23. Gruber M, Soding J, Lupas AN. Comparative analysis of coiled-coil prediction methods. J Struct Biol. 2006;155:140–5.
24. Szilagyi A, Gyorffy D, Zavodszky P. The twilight zone between protein order and disorder. Biophys J. 2008;95:1612–26.
25. Uversky VN, Gillespie JR, Fink AL. Why are “natively unfolded” proteins unstructured under physiologic conditions?

Proteins. 2000;41:415–27.
26. Levitt M, Gerstein M. A unified statistical framework for sequence comparison and structure comparison. Proc Natl

Acad Sci U S A. 1998;95:5913–20.
27. Rychlewski L, Fischer D, Elofsson A. LiveBench-6: large-scale automated evaluation of protein structure prediction

servers. Proteins. 2003;53 Suppl 6:542–7.
28. Siew N, Elofsson A, Rychlewski L, Fischer D. MaxSub: an automated measure for the assessment of protein

structure prediction quality. Bioinformatics. 2000;16:776–85.
29. Cristobal S, Zemla A, Fischer D, Rychlewski L, Elofsson A. A study of quality measures for protein threading

models. BMC Bioinformatics. 2001;2:5.
30. Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction.

Nat Protoc. 2010;5:725–38.
31. Mihăşan M. Basic protein structure prediction for the biologist: a review. Arch Biol Sci. 2010;62:857–71.
32. Roy A, Zhang Y. Protein structure prediction. Chichester: Wiley; 2012.
33. Xu J, Jiao F, Yu L. Protein structure prediction using threading. Methods Mol Biol. 2008;413:91–121.
34. Wu S, Zhang Y. MUSTER: improving protein sequence profile-profile alignments by using multiple sources of

structure information. Proteins. 2008;72:547–56.
35. Yona G, Levitt M. Within the twilight zone: a sensitive profile-profile comparison tool based on information theory.

J Mol Biol. 2002;315:1257–75.
36. Yan R, Xu D, Yang J, Walker S, Zhang Y. A comparative assessment and analysis of 20 representative sequence

alignment methods for protein structure prediction. Sci Rep. 2013;3:2691.
37. Zhang Y. I-TASSER: fully automated protein structure prediction in CASP8. Proteins. 2009;77 Suppl 9:100–13.
38. Wu S, Skolnick J, Zhang Y. Ab initiomodeling of small proteins by iterative TASSER simulations. BMC Biol. 2007;5:17.
39. Zhang Y, Skolnick J. Automated structure prediction of weakly homologous proteins on a genomic scale. Proc

Natl Acad Sci U S A. 2004;101:7594–9.
40. Li Y, Zhang Y. REMO: a new protocol to refine full atomic protein models from C-alpha traces by optimizing

hydrogen-bonding networks. Proteins. 2009;76:665–76.
41. Zhang Y. Template-based modeling and free modeling by I-TASSER in CASP7. Proteins. 2007;69:108–17.
42. Pandit SB, Zhou H, Skolnick J. Tasser-based protein structure prediction. In: Rangwala H, Karypis G, editors.

Introduction to protein structure prediction. New Jersey: Wiley; 2010. p. 219–42.
43. Zhang Y, Skolnick J. Segment assembly, structure alignment and iterative simulation in protein structure

prediction. BMC Biol. 2013;11:44.
44. Zhou H, Pandit SB, Lee SY, Borreguero J, Chen H, Wroblewska L, et al. Analysis of TASSER-based CASP7 protein

structure prediction results. Proteins. 2007;69:90–7.
45. Ginalski K, Elofsson A, Fischer D, Rychlewski L. 3D-Jury: a simple approach to improve protein structure

predictions. Bioinformatics. 2003;19:1015–8.
46. Wu S, Zhang Y. LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res.

2007;35:3375–82.
47. Zhang Y. Progress and challenges in protein structure prediction. Curr Opin Struct Biol. 2008;18:342–8.
48. Anfinsen CB. Principles that govern the folding of protein chains. Science. 1973;181:223–30.
49. Hoque MT, Chetty M, Sattar A. Genetic Algorithm in ab Initio protein ptructure prediction using low resolution model:

a review. In: Sidhu AS, Dillon TS, editors. Biomedical data and applications. Heidelberg: Springer; 2009. p. 317–42.
50. Bonneau R, Baker D. Ab initio protein structure prediction: progress and prospects. Annu Rev Biophys Biomol

Struct. 2001;30:173–89.
51. Ishida T, Nishimura T, Nozaki M, Inoue T, Terada T, Nakamura S, et al. Development of an ab initio protein

structure prediction system ABLE. Genome Inform. 2003;14:228–37.
52. Bowie JU, Eisenberg D. An evolutionary approach to folding small alpha-helical proteins that uses sequence

information and an empirical guiding fitness function. Proc Natl Acad Sci U S A. 1994;91:4436–40.

Khor et al. Theoretical Biology and Medical Modelling  (2015) 12:15 Page 10 of 11



53. Bonneau R, Tsai J, Ruczinski I, Chivian D, Rohl C, Strauss CEM, et al. Rosetta in CASP4: progress in ab initio protein
structure prediction. Proteins. 2001;45:119–26.

54. Simons KT, Kooperberg C, Huang E, Baker D. Assembly of protein tertiary structures from fragments with similar
local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol. 1997;268:209–25.

55. Simoncini D, Zhang KYJ. Efficient sampling in fragment-based protein structure prediction using an estimation of
distribution algorithm. PLoS ONE. 2013;8, e68954.

56. Chivian D, Kim DE, Malmström L, Bradley P, Robertson T, Murphy P, et al. Automated prediction of CASP-5
structures using the Robetta server. Proteins. 2003;53:524–33.

57. Chivian D, Kim DE, Malmström L, Schonbrun J, Rohl CA, Baker D. Prediction of CASP6 structures using automated
robetta protocols. Proteins. 2005;61:157–66.

58. Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res.
2004;32:W526–W31.

59. Rohl CA, Strauss CEM, Misura KMS, Baker D. Protein structure prediction using Rosetta. Methods Enzymol.
2004;383:66–93.

60. Holzinger A, Dehmer M, Jurisica I. Knowledge discovery and interactive data mining in bioinformatics–state-of-
the-art, future challenges and research directions. BMC Bioinformatics. 2014;15 Suppl 6:I1.

61. Kaufmann KW, Lemmon GH, Deluca SL, Sheehan JH, Meiler J. Practically useful: what the Rosetta protein
modeling suite can do for you. Biochemistry. 2010;49:2987–98.

62. Xu D, Zhang Y. Ab Initio structure prediction for Escherichia coli: towards genome-wide protein structure modeling
and fold assignment. Sci Rep. 2013;3:1895.

63. Zhang Y. Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in
CASP10. Proteins. 2013;82:175–87.

64. Kinch L, Shi SY, Cong Q, Cheng H, Liao Y, Grishin NV. CASP9 assessment of free modeling target predictions.
Proteins. 2011;79:59–73.

65. Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008;9:40.
66. Nahar N, Rahman A, Moś M, Warzecha T, Ghosh S, Hossain K, et al. In silico and in vivo studies of molecular

structures and mechanisms of AtPCS1 protein involved in binding arsenite and/or cadmium in plant cells. J Mol
Model. 2014;20:1–16.

67. Butterfoss GL, Yoo B, Jaworski JN, Chorny I, Dill KA, Zuckermann RN, et al. De novo structure prediction and
experimental characterization of folded peptoid oligomers. Proc Natl Acad Sci U S A. 2012;109:14320–5.

68. Dhingra P, Jayaram B. A homology/ab initio hybrid algorithm for sampling near-native protein conformations. J
Comput Chem. 2013;34:1925–36.

69. Ben-David M, Noivirt-Brik O, Paz A, Prilusky J, Sussman JL, Levy Y. Assessment of CASP8 structure predictions for
template free targets. Proteins. 2009;77:50–65.

70. Kemege KE, Hickey JM, Lovell S, Battaile KP, Zhang Y, Hefty PS. Ab initio structural modeling of and experimental
validation for Chlamydia trachomatis protein CT296 reveal structural similarity to Fe(II) 2-oxoglutarate-dependent
enzymes. J Bacteriol. 2011;193:6517–28.

71. Strunk T, Hamacher K, Hoffgaard F, Engelhardt H, Zillig MD, Faist K, et al. Structural model of the gas vesicle
protein GvpA and analysis of GvpA mutants in vivo. Mol Microbiol. 2011;81:56–68.

72. Ezzeldin HM, Klauda JB, Solares SD. Modeling of the major gas vesicle protein, GvpA: from protein sequence to
vesicle wall structure. J Struct Biol. 2012;179:18–28.

73. Sivertsen AC, Bayro MJ, Belenky M, Griffin RG, Herzfeld J. Solid-state NMR characterization of gas vesicle structure.
Biophys J. 2010;99:1932–9.

74. Khor BY, Tye GJ, Lim TS, Noordin R, Choong YS. The structure and dynamics of BmR1 protein from Brugia malayi:
In silico approaches. Int J Mol Sci. 2014;15:11082–99.

75. Xu D, Zhang Y. Ab initio protein structure assembly using continuous structure fragments and optimized
knowledge-based force field. Proteins. 2012;80:1715–35.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Khor et al. Theoretical Biology and Medical Modelling  (2015) 12:15 Page 11 of 11


	Abstract
	Introduction
	Threading method
	Ab initio method
	Current trend in protein structure prediction
	Successes and challenges for twilight-zone protein modelling
	Conclusion and future direction
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

