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Abstract—Interest in parameterized time-frequency analysis for
non-stationary signal processing is increasing steadily. An impor-
tant advantage of such analysis is to provide highly concentrated
time-frequency representation with signal-dependent resolution.
In this paper, a general scheme, named as general parameterized
time-frequency transform (GPTF transform), is proposed for
carrying out parameterized time-frequency analysis. The GPTF
transform is defined by applying generalized kernel based rotation
operator and shift operator. It provides the availability of a single
generalized time-frequency transform for applications on signals
of different natures. Furthermore, by replacing kernel function,
it facilitates the implementation of various parameterized time –
frequency transforms from the same standpoint. The desirable
properties and the dual definition in the frequency domain of
GPTF transform are also described in this paper. One of the
advantages of the GPTF transform is that the generalized kernel
can be customized to characterize the time – frequency signature
of non-stationary signal. As different kernel formulation has
bias toward the signal to be analyzed, a proper kernel is vital
to the GPTF. Thus, several potential kernels are provided and
discussed in this paper to develop the desired parameterized
time – frequency transforms. In real applications, it is desired to
identify proper kernel with respect to the considered signal. This
motivates us to propose an effective method to identify the kernel
for the GPTF.

Index Terms—General parameterized time-frequency trans-

form, kernel formulation, time frequency analysis, time-frequency

concentration.

I. INTRODUCTION

I N signal processing discipline, Fourier transform is known

as a powerful tool of revealing the overall spectral contents

by assuming the given signal is a stationary time series. How-

ever, it has been well recognized that the concept of stationary

time series is an ideal assumption and not particularly useful in

practice. For instance, when a rotary machine, i.e., helicopter

rotor, wind turbine, hydraulic turbine, is operating under time

– varying rotational speed, the frequency components of vibra-

tion signal are strongly dependent on time. Another example
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from speech recognition is that the frequencies of human speech

evolve over time depending on the pronounced words or syl-

lables. Clearly, for these non-stationary signals, Fourier trans-

form is insufficient. Thus, it is desirable to resort to time – fre-

quency representation (TFR) that represents the energy density

of a signal simultaneously in time–frequency plane. A better

concentrated TFR is expected to be able to characterize the

time-frequency signature of the considered signal more accu-

rately. Usually, two parameters are used to quantify the time –

frequency signature of mono-component non-stationary signal,

i.e., instantaneous frequency and localized frequency delay [1],

[2]. Mathematically, the former is a function of time while the

latter is a function of frequency.

Traditional techniques of obtaining TFR include short-time

Fourier transform (STFT), wavelet transform (WT), and

Wigner-Ville distribution (WVD). Specifically, STFT divides

a non-stationary signal into blocks of short, pseudo-stationary

segments, with fixed Gaussian window. The window width

controls the tradeoff of bias and variance. Shorter window leads

to poor frequency resolution, while longer window improves

the frequency resolution but compromises the stationary as-

sumption within this window. To deal with the local resolution

requirement, various adaptive methods have been designed for

STFT. For example, the window width is adjusted depending

on the given signal instead of constant-width (e.g., see [3]–[8]).

From an approximation point of view, the STFT is a piece-wise

zero-order fitting of signal in the time-frequency plane. It is not

a good choice to analyze the non-stationary signal whose spec-

tral component varies over time. Alternatively, WT projects

signal into a class of wavelets that is generated by a “mother

wavelet”. As long as one class of wavelet function is developed,

a new WT is proposed (e.g., see [9]–[11]). From a point view

of window – based analysis, WT is adaptive due to the usage of

scale factor (corresponding to wavelet width) that is inversely

proportional to the frequency of the given signal. The Heisen-

berg uncertainty principle states that the time and the frequency

resolution of a time-frequency transform cannot reach the best

at the same time. In the case of WT, its results have higher

frequency resolution and lower time resolution for lower fre-

quency components while have lower frequency resolution and

higher time resolution for higher frequency components. How-

ever, the frequency resolution at the same scale level cannot be

adaptively adjusted. Although STFT and WT are different in

the usage of transform basis, they all essentially use horizontal

lines to approximate the instantaneous frequency (IF) trajectory

of the given signal in the time-frequency plane. Thus, the TFR

concentration cannot be significantly improved for non-sta-

tionary signal with rapidly time-varying frequency component.

In comparison, WVD, basically the Fourier transform of instan-

taneous autocorrelation function of a signal, is a representative

1053-587X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



2752 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 11, JUNE 1, 2014

of bilinear time-frequency analysis. An advantage of WVD is

that it could generate TFR with the high concentration, though

it inevitably introduces plenty of cross-terms. To suppress the

cross-terms, various methods have been proposed (e.g., see

[12]–[14]). The dominant question focuses on how to carefully

balance the tradeoff between cross-terms suppression and TFR

concentration. The aforementioned methods are referred to as

non-parameterized time-frequency analysis as they all use the

signal-independent parameter, i.e., window length or lag (used

to calculate instantaneous autocorrelation in WVD). In general,

these non-parameterized time-frequency methods cannot pro-

vide high-quality TFR for non-stationary signal. From a point

view of post-processing, reassignment method was put forward

by Auger and Flandrin to improve the readability of TFR [15],

[16]. The reassignment is realized by assigning the average

of energy in a domain to the gravity center of these energy

contributions. It reduces energy spread of TFR at the cost of

greater computational complexity. In the case of noise, the re-

assignment technique inevitably introduces interference terms

since the computed gravity center unnecessarily represents the

real energy distribution of the interested signal.

The time-frequency methods, which use extra signal- de-

pendent parameters, are referred to as parameterized time-fre-

quency analysis. It attracts considerable attention because

of the signal-dependent resolution and highly concentrated

TFR. The best-known example is “chirplet transform”, which

was proposed by Mann and Haykin [17], Milhovilovic and

Bracewell [18] almost at the same time. It projects a signal

into a family of chirplets that is obtained through translating,

scaling, and shearing a “mother chirplet”. The chirplet is an

atom which is specially designed for linear modulated signal

analysis. By using an extra parameter, chirp rate, the chirplet

transform is able to obtain a well concentrated TFR. For the

sake of argument, we denote the standard chirplet transform as

a transform that uses a unified chirp rate, and chirplet decom-

position as a method that selects a group of optimal chirplets

from a pre-defined atom dictionary. The former represents the

IF of signal with a line of arbitrary slope in the time-frequency

plane, while the latter uses a group of lines. Specially, the

chirplet decomposition is usually realized by using matching

pursuit algorithm (e.g., see [19], [20]). Nevertheless, due to the

nature of linear approximation, neither of them is suitable to

analyze nonlinear frequency-modulated signal.

To deal with such signals, an intuitive solution is to adap-

tively approximate the local signal with chirplets (e.g., see

[21]–[25]). Cui and Wong [26] developed an adaptive win-

dowed chirplet decomposition method. It divides signal into

blocks of short that can be approximated by different chirplets.

They further proposed a scheme to determine the optimal

division [27]. Chassande-Mottin and Pai [28] proposed an

algorithm to search the best chirplet chain according to the

time-frequency signature of the signal. Dugnol et al. [29]

proposed another adaptive method that is required to determine

whether the consecutive optimal chirplets belong to the same

component. Candes et al. [30] proposed chirplet path pursuit

method to detect highly oscillatory signals. It applies locally

well correlated chirplets of compact supported for the approx-

imation purpose. Since the search process requires expensive

computation, Gribonval [31] proposed modified matching pur-

suit algorithm, named fast ridge pursuit, to get a fairly “good”

chirplet. Its acceleration dependents on the sub-dictionary of

Gabor atom selected at the first stage. In the case of signals

with strong nonlinear time-frequency signature, a large amount

of chirplets is required to accurately approximate the signal.

The computation complexity of such requirement would make

these methods suffer.

In order to accurately characterize the nonlinear instan-

taneous frequency of a signal, some attempts focus on

constructing well localized atoms through modifying the

chirplet. For example, Angrisani and D’Arco [32] proposed

a modified version of chirplet with additional bending factor.

Papandreou-Suppappola and Suppappola [33] constructed a

dictionary consisted of nonlinear frequency modulated chirplet.

To deal with signals with strong local nonlinear time-frequency

pattern, Dopplerlet transform [34] and transform [35]

have been proposed. They are all implemented by matching

pursuit algorithm. The former uses Doppler function as the

mother function, named Dopperlet, and the latter introduces an

exponent into the chirplet, named . Despite this, most

of these methods are based on maximum likelihood criterion

and realized by greedy search, which is sensitive to noise and

time-consuming.

To efficiently implement parameterized time-frequency

transform, alternative schemes have been proposed recently.

For instance, Katkovnik [36] proposed local polynomial Fourier

transform (LPFT), which is generalized STFT. Particularly,

LPFT uses polynomial to fit local nonlinearly time-varying

instantaneous frequency. It generates TFR over a space of time

versus the instantaneous frequency and its derivatives. Later,

we proposed polynomial chirplet transform (PCT) [37] imple-

mented by a polynomial kernel-based scheme, which is derived

from standard chirplet transform. Essentially, it approximates

the IF trajectory of the given signal with a polynomial function.

However, the polynomial is not always a perfect approxima-

tion. In the case of highly oscillating instantaneous frequency,

lower order polynomial is too smooth to fit accurately, while

higher order polynomial approximation suffers from “Runge”

phenomenon, which is a problem of oscillation at the edges

of an approximation interval. To analyze the signal whose IF

trajectory cannot be approximated by a polynomial, we then

proposed spline chirplet transform (SCT) [38]. It is different

from the PCT in using spline kernel function. For a special

class of signals with periodical time-varying instantaneous

frequency, Angrisani et al. [39] proposed warblet transform in

which a set of basis with modulated by trigonometric function

of time is adopted. However, it is not suitable to analyze signals

with non-periodical time-varying instantaneous frequency. To

expand applications of the warblet transform, we proposed

generalized warblet transform (GWT) [40] by using Fourier

series kernel.

At this point, several interesting questions may arise:

1) Are the PCT, SCT and GWT included by a general trans-

form, which is available to analyze signals of different

natures?

2) What is the foundation of such a transform and how can it

be constructed?
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3) If such a transform exists, does it include other existing

time-frequency transforms as special cases, or is there

a general scheme to develop new parameterized time-

frequency transforms? If so, how to formulate a desired

time-frequency transform?

The above questions imply the main purpose of our paper: to

lay down the general scheme for parameterized time-frequency

transform. It is promising to become a general framework that

can implement various time-frequency transforms, i.e., STFT,

chirplet transform, transform, warblet transform, PCT,

SCT, GWT and so on, from a unified standpoint.

Towards this goal, we introduce general parameterized time-

frequency transform (GPTF transform). The remainder of this

paper includes five sections totally.

Sections II and III mainly focus on the definition of the GPTF

transform. Specifically, as the main components to construct

the GPTF are kernel-based rotation operator and shift operator,

Section II emphasize on the development of these two operators

by rewriting a standard chirplet transform. Most details of the

GPTF transform are further provided in Section III: 1) in Part

A, the GPTF transform is defined through integrating an arbi-

trary integrable kernel function into the two operators; 2) in Part

B, several important properties of the defined GPTF transform

are discussed, i.e., linearity, scaling, time shifting and frequency

shifting properties; 3) in Part C, the dual definition of the GPTF

transform in frequency domain, a counterpart of the GPTF trans-

form in time domain, is provided.

Sections IV and V are assigned to discuss the formulation and

identification problem for the kernel of the GPTF transform. As

different kernel formulation has bias toward the signal to be an-

alyzed, a proper kernel is vital to the GPTF. In order to develop a

desired parameterized time – frequency transform, several po-

tential kernels are provided and discussed in Section IV. Fur-

thermore, it is important to identify the kernel with respect to the

considered signal in real applications. Thus, an effective method

is needed to identify the proper kernel for a GPTF transform. To

fulfill this task, a recursive IF approximation based kernel iden-

tification method is addressed in Section V. Finally, Section VI

concludes the paper.

II. ROTATION AND SHIFT OPERATORS

Chirplet transform is widely used to analyze linear frequency

modulated signal. For a signal , the chirplet trans-

form is defined as [17], [29]

(1)

where is the analytical signal of , generated by Hilbert

transform, , i.e., , and is

a complex window.

(2)

in which parameters , stand for time and chirp rate re-

spectively; denotes a non-negative, symmetric and

normalized real window. If it is taken as a Gaussian function,

(3)

Fig. 1. An illustration of rotation operator and shift operator ( — the IF law

of the object signal; - — after frequency rotation; -. — after frequency shift).

where is window length, (2) will be referred to Gaussian

chirplet transform.

According to(1), the chirplet transform is essentially STFT

of the analytical signal multiplied by the complex window

. By manipulating (1), chirplet transform can also

be written as

(4)

with

where ; is the chirp rate. Here, we define

and are rotation operator and shift operator,

respectively.

For a linear modulated signal which is given by

(5)

where denotes initial frequency; is chirp rate. Its in-

stantaneous frequency (IF) law is . The

functionality of these two operators is illustrated in Fig. 1. In

this figure, rotates the analytical signal by an angle

with in time-frequency plane; relocates a

frequency component of at to . Therefore, chirplet

transform can be reinterpreted as three operations: 1) rotating

a signal by a degree in time-frequency plane;

2) shifting the signal by a frequency increment of ; 3) doing

standard STFT with window .

The signal-dependent frequency resolution of chirplet

transform can be easily determined from Fig. 1. It can be

seen that the frequency bandwidth of the windowed signal

segment is and the time bandwidth is

. When , the frequency resolution will reach the

minimum, . As a result, achieves the

global maximum at . It implies that

chirplet transform could generate a best concentrated TFR

with proper chirp rate.
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Fig. 2. Principle of parameterized time-frequency analysis.

III. GENERAL PARAMETERIZED

TIME-FREQUENCY TRANSFORM

Definition

According to (4), the chirplet transform can be implemented

with a scheme based on the rotation operator and shift op-

erator. Basically, the rotation/shift operator rotates/shifts the

signal of any time with subtracting/adding the same amount, ,

in time-frequency plane. It implies that these operators can be

constructed with the same kernel. With the help of chirp rate,

chirplet transform is able to characterize the linear IF of linear

modulated signal. However, it is not always applicable.

For any signal, such as

(6)

whose time-frequency signature is characterized by any arbi-

trary IF, .Therefore, to deal with such signal, we define

general parameterized time-frequency transform (GPTF trans-

form) as

(7)

with

In (7), and denote the kernel-based rotation

operator and shift operator in GPTF transform, respectively;

is an integrable kernel function; denotes parameter set.

Similarly, GPTF transform contains three operators. Fig. 2

illustrates the procedure of GPTF transform. In time-frequency

plane, the signal with instantaneous frequency of is first

rotated by subtracting at any time, then it is shifted by

at each time of and STFT is finally performed with

the window of . Clearly, the GPTF transform provides the

availability of a single generalized time-frequency transform for

applications on signals of different natures. Particularly, when

, the GPTF transform will equal to standard STFT;

when , the GPTF transform will be equivalent to

chirplet transform.

The contributions of kernel function, , to frequency res-

olution can be analyzed according to Fig. 2. From another point

Fig. 3. Window size effect on GPTF. (a) window size: 128. (b) window size:

2048.

of view, the GPTF transform has time-frequency plane tiled in a

fashion of enclosed area, i.e., rectangular in the case of

. Each enclosed area is called time-frequency cell, whose length

and width are time resolution and frequency resolution, respec-

tively. The frequency resolution of the GPTF transform depends

on two ingredients: 1) the bandwidth of the windowed signal

after rotation and shift, denoted as ; 2) the band-

width of analysis window, which will be when Gaussian

window is adopted. To sumup, the frequency resolution ofGPTF

transformequals the .When theparameter set

is properly determined, kernel function will be closely approxi-

mated to real IF. In this case, equals the zero and the

frequency resolution reaches the minimum of . Therefore,

GPTF transform is able to provide signal-dependent frequency

resolution.

From the energy point of view, When the kernel has been

properly determined, the IF of signal will be rotated to be a con-

stant, , at any time instance using the rotation operator. As a

result, the energy of the windowed signal will focus at the center

of time-frequency cell. Then, the shift operator is only respon-

sible for moving the energy of the rotated signal to the real IF

trajectory controlled by the kernel function in time-frequency

plane. It implies that the overall concentration of GPTF trans-

form is essentially determined by the concentration of rotated

signal. It can be explained from Fig. 2.

For the signal with continuous IF, the signal rotated with

the matched kernel can be considered to be stationary. At this

point, the ultimate performance of the GPTF is the samewith the

resolution of the STFT on the rotated signal, which prefers the

longer observation duration (longer window) to attain the better

frequency resolution. In other words, the better TFR can be

achieved by the GPTFwith the longer window. Fig. 3 provides a

simple example with the linear modulated signal. The sampling

frequency is 500 Hz, and the window size is set to 128 and 2048

respectively. Here, theGPTF transform applies a linear kernel. It

can be seen that the short window results in the energy smeared

along the frequency axis, while the long window achieves the

better concentration. On the other hand, for the signal with

discontinuous IF, the window length has to be limited to balance

the tradeoff between the time and frequency resolutions.

The paper is innovative in two aspects: 1) providing a single

generalized TFR for applications on signals of different na-

tures; 2) using an arbitrary integrable kernel function that can be

replaced to implement diverse parameterized time-frequency

transforms.
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A. Properties

Through the GPTF transform, any analytical signal of

can be represented in its parameterized TFR, i.e.,

(8)

Here, we investigate how the operation of signal in the time

domain affects its parameterized TFR. Based on the GPTF

transform defined in (7), several properties can be derived as

follows.

1) Linearity Property: Assuming there are two signals

and , as well as two arbitrary constants of and , their

GPTF transforms are given by

Then the GPTF transform of signal is given

by

(9)

The linearity property can be straightforwardly proved by the

linearity property of inner product. It implies the linear nature

of GPTF transform.

2) Scaling Property: Assuming , then

(10)

Proof:

The scaling property indicates that when the signal is com-

pressed in time domain by times, its parameterized TFR

will be stretched along the frequency axis by times and the

corresponding amplitude will be reduced by times.

3) Time Shifting Property: Assuming , then

(11)

Proof:

The time shifting property indicates that when the signal is

shifted by ( ) in the time domain, its frequency contents

in parameterized TFR will be delayed by the amount that is

proportional to , i.e., , and remain the same amplitude.

4) Frequency Shifting Property: Assuming , then

(12)

Proof:

The frequency shifting property indicates that multiplying

to the time-domain signal is equivalent to shift it in pa-

rameterized TFR along the frequency axis by .

B. Dual Definition in Frequency Domain

Non-destructive evaluation based on guided wave arises

more attentions recently. The guided wave is a typical disper-

sive signal, whose group velocity changes with wave frequency.

Effective applications of the guided wave depend on group

velocity dispersion feature, which is convertible with localized

frequency delay (LFD) in TFR. The LFD indicates the time

delay of the received wave depending on its frequency.

In order to deal with such signal effectively, the dual defini-

tion of GPTF transform in frequency domain is given by

(13)
with

Here, the symbol of “ ” denotes Fourier transform;

and represent LFD rotation operator and shift op-

erator, respectively; is an integrable kernel function of

frequency.

Similar to its definition in the time domain, the dual defini-

tion of the GPTF transform is consisted of three ingredients. The

difference is that the latter uses the kernel function of frequency

to construct the rotation operator and shift operator, and does

short-frequency Fourier transform instead. The contributions of

kernel, , to time/frequency resolution can be also ana-

lyzed according to Fig. 2. In this case, the time and frequency

axes need to be exchanged. The detail of this analysis is unani-

mous to its counterpart in Section III-A.

IV. KERNEL FORMULATION

One of interesting merits of GPTF transform is the general-

ized platform provided to obtain TFR for signals with different

natures. Thus, it is expected to develop diverse time-frequency

transforms by replacing the kernel function for various signal

processing tasks. A proper kernel could fulfill the concentra-

tion requirement of TFR. In contrary, an inappropriate kernel
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TABLE I

COMMONLY USED KERNEL FUNCTION

would jeopardize the TFR. Generally, a proper kernel means

that it could approximately characterize the time-frequency sig-

nature of the interested signal. However, different kernel forms

have bias towards the signal to be analyzed. For instance, linear

kernel function is not suitable to analyze nonlinear modulated

signal. Sometimes, no matter how to select the parameters, the

kernel still cannot closely fit the time-frequency signature of the

given signal. Therefore, the kernel formulation is a key step to

develop a promising parameterized time-frequency transform.

On the one hand, several common time-frequency transforms

can be viewed as special cases of GPTF transform with dif-

ferent kernel function. The kernel functions of these time-fre-

quency transforms are listed in Table I, in which denotes the

frequency modulation parameter of the warblet transform;

represents the exponent that is used to construct .

On the other hand, potential kernels can also be formulated

based on the condition of curve fitting and prior knowledge

about the signal in practice. In the same way, the developed

transform is limited by the fitting condition of kernel function.

To demonstrate this concept, through defining different kernel

formulations, we have developed several parameterized time-

frequency transforms based on the GPTF transform for different

signal processing tasks. As for the topic of kernel identification,

interested reader can refer to the sequel.

A. Polynomial Chirplet Transform [37]

The Weierstrass approximation theorem, in mathematics,

guarantees that any continuous function on a bounded interval

can be uniformly approximated by a polynomial to any degree

of accuracy [41]. Thus, the polynomial kernel is optional for a

wide range of signals with IF trajectories being any continuous

functions of time. In order to deal with such signal, we replace

the kernel with a polynomial function as

(14)

where denotes the polynomial coefficients. Substi-

tuting (14) into (7), we can obtain

(15)

which is named polynomial chirplet transform (PCT).

Fig. 4. TFRs of the signal in (16). (a) STFT. (b) wavelet transform. (c) WVD.

(d) ASTFT. (e) reassigned spectrogram. (f) reassigned pseudo WVD. (g)

chirplet transform. (h) PCT.

To demonstrate the advantage of PCT in improving the TFR

concentration, a nonlinear modulated signal is taken as an ex-

ample, i.e.,

(16)

which has exponential decay amplitude and IF law of

. The sampling frequency is set to 100 Hz. The

signal is contaminated by the white Gaussian noise. The SNR is

of . The TFR obtained by STFT, wavelet transform (WT),

WVD, adaptive STFT (ASTFT) [4], reassigned spectrogram, re-

assigned pseudo WVD, chirplet transform, and PCT are shown

in Fig. 4. Hereinafter, without special note, the window length is
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set to 1024. ASTFT applies an adaptation rule of maximum cor-

relation criterion. The reassigned spectrogram and reassigned

pseudo WVD refers to [42].The chirp rate of chirplet transform

is 5 Hz/s and the parameters applied by PCT is .

It can be seen that the STFT and WT cannot provide concen-

trated TFR because of the signal-independent time- frequency

resolution (see Fig. 4(a) and (b)). The WVD is sensitive to

noise, and the undesired cross-terms are troublesome for the

better interpretation of TFR (see Fig. 4(c)). The ASTFT applies

signal-driven window size, i.e., the shorter window is used

when IF varies quickly with time, while longer window when

frequency content slowly changes. Despite of this, the concen-

tration of the obtained TFR is still not satisfying. Moreover, it is

difficult to select properwindow length after 17 swhen the signal

attenuates significantly (see Fig. 4(d)). The reassigned technique

assigns the average of energy in a domain to the nearby sampling

point of the gravity center of these energy contributions. (see

Fig. 4(e) and (f)). However, the concentration of the reassigned

spectrogram is fairly improved as shown in Fig. 4(e) due to the

poor concentration of the pre-reassigned spectrogram. More-

over, the reassigned technique introduces spurious points that are

not likely tobeassociated to thegiven signalwith the interference

of noise. Fig. 4(g) shows that the chirplet transform,with a single

chirp rate, could only characterize the time-frequency signature

locally. Meanwhile, the energies of other frequency contents are

smeared both in time and frequency. Themost concentrated TFR

is generated by the PCT, as shown in Fig. 4(h). This example

proves that PCT is not only capable of characterizing accurate

nonlinear IF of signal but also preserving the real energy

distribution even when the signal has obvious attenuation.

B. Spline Chirplet Transform [38]

Although the polynomial chirplet transform shows advantage

in analyzing nonlinear modulated signal, it is not suitable to ana-

lyze signals with complex IF in long interval. Such signals might

require polynomial of high degree to characterize its IF. How-

ever, polynomial approximation suffers “Runge” phenomenon

when polynomials of high degree are used. To avoid “Runge”

phenomenon, an attractive solution is to use piece-wise polyno-

mial of low degree, i.e., spline function. When kernel function,

, is replaced with a spline function, and substituted into

(7), we can obtain

(17)

where denotes the th knot of spline function, and

, is the total number of

spline knots; is parameter matrix; is integration

constant given by

(18)

Fig. 5. TFRs of the signal in (19). (a) ASTFT. (b) reassigned pseudo WVD.

(c) PCT. (d) SCT.

Equation (17) is named spline chirplet transform (SCT). To

illustrate the advantage of SCT using spline kernel, a non-sta-

tionary signal is taken as an example, i.e.,

(19)

whose IF law is . The sampling fre-

quency is set to 100 Hz. The SNR is .

The TFRs obtained by ASTFT, reassigned pseudo WVD,

PCT and SCT are shown in Fig. 5. The PCT uses a polynomial

kernel of 24 degree, while the SCT applies 4 degree spline

kernel with 24 breaks. The parameters of the two kernels can

be obtained by approximating the real IF with polynomial

and spline respectively. For the sake of saving space, these

parameters applied are not listed.

In Fig. 5(a), it can be seen that although the ASTFT ap-

plies signal-dependent window length, the obtained TFR is still

not well concentrated. Reassigned pseudo WVD suppresses the

cross-term introduced by WVD, though the reassignment intro-

duces pseudo term since the computed gravity center interfered

by noise and adjacent frequency contents, especially between 4

s and 6 s (see Fig. 5(b)). For this signal, PCT suffers “Runge”

phenomenon so that the obtained TFR cannot describe the cor-

rect IF of the signal (see Fig. 5(c)). In fact, there is no available

parameters that can make PCT characterize the real IF accu-

rately in this case. On the other hand, the best TFR is generated

by the SCT, as shown in Fig. 5(d).

The example implies that SCT could avoid “Runge” phe-

nomenon by using piece-wise polynomial with low degree. The

spline kernel formulation enables SCT to deal with the signal

whose IF cannot be approximated by a polynomial. Therefore,

the SCT is suitable to analyze non-stationary signals with com-

plex IF in long interval.
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C. Generalized Warblet Transform [40]

The warblet transform has been proposed to deal with sig-

nals with periodic IF [38]. However, it is not suitable to analyze

signals with non-periodic IF. To overcome such a deficiency,

kernel function, , is replaced with Fourier series, so that

we can obtain

(20)

with

where denotes the order of Fourier series;

, and

denote coefficients of sine series, cosine

series, as well as the frequencies of harmonics, respectively.

Equation (20) is named generalized warblet transform

(GWT). Here, a non-stationary signal is taken as an example,

i.e., see equation (21) at the bottom of the page.

The IF law of the signal is

The sampling frequency is set to 100 Hz and the SNR is

. The obtained TFRs are shown in Fig. 6. The pa-

rameters of the GWT is set to

, and

.

The parameters of the SCT can be obtained by approximating

the real IF with Fourier series, which are not listed for saving

space.

From Fig. 6(a) and (b), it can be seen that both ASTFT and

reassigned pseudo WVD cannot provide accurate TFR for the

signal. On contrast, the SCT and the GWT could achieve the

most concentrated TFR as shown in Fig. 6(c) and (d). In par-

ticular, the GWT manages to use fewer parameters to reach the

same performance as the SCT.

Another example is the signal in (16). The TFR obtained by

the GWT is the same as Fig. 4(h). Although a great number of

terms are required to approximate the non-periodic IF, the GWT

still provides a well concentrated TFR in this case. This is be-

cause any continuous function can be decomposed into Fourier

Fig. 6. TFRs of the signal in (21). (a) ASTFT. (b) reassigned pseudo WVD.

(c) SCT. (d) WCT.

series. The examples imply that GWT is also able to analyze

signals with periodic or non-periodic IF.

D. Polynomial Localized Frequency Delay Transform

As a counterpart of the PCT, we replace kernel function in the

dual definition of the GPTF transform, , with polynomial

function of frequency. Therefore, we can obtain

(22)

with

where denotes polynomial coefficients. Equa-

tion (22) is named polynomial localized frequency delay trans-

form (PLFDT). Similar to the PCT, PLFDT is able to analyze

signals with any continuous localized frequency delay, yet still

suffers “Runge” phenomenon.

(21)
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Fig. 7. S0 mode Lamb wave. (a) Time domain signal. (b) group velocity.

E. Fourier Series Localized Frequency Delay Transform

As a counterpart of the GWT, we replace the kernel func-

tion in the dual definition of the GPTF transform, , with

Fourier series. Thus, we can obtain

(23)

with

Equation (23) is named localized frequency delay transform

(FLFDT).

To illustrate the performance of PLFDT and FLFDT, Lamb

wave signal is adopted as an example. Lamb wave signal is a

classical guided wave, each mode of which processes nonlinear

group velocity. For example, the waveform of S0 mode lamb

wave is shown in Fig. 7(a), whose group delay curve is shown

in Fig. 7(b). The simulated signal was add withWhite Gauss ion

noise and the SNR is of .

The TFRs obtained by ASTFT, reassigned pseudo WVD,

PLFDT and FLFDT are shown in Fig. 8. The PCT uses poly-

nomial of 26 degree. Parameters of the PCT and the GWT can

be obtained by approximating the real LFD with polynomial,

and applying Fourier transform on real LFD respectively, both

of which are not listed for saving space. It can be seen that the

ASTFT and the reassigned pseudo WVD fail to characterize

the real localized frequency delay of the signal for poor concen-

tration and pseudo terms respectively (see Fig. 8(a) and (b)). In

Fig. 8(c), it is clear to see that the PLFDT suffers “Runge” phe-

nomenon. On the other hand, the FLFDT avoids this problem

and is more powerful to characterize the time-frequency signa-

ture of S0 mode wave signal as shown in Fig. 8(d).

To sum up, three promising kernels have been detailed dis-

cussed. The pros and coms of these parameterized kernel for-

mulations are summarized in Table II.

Fig. 8. TFR of the S0 mode Lamb wave signal. (a) ASTFT. (b) reassigned

pseudo WVD. (a) PLFDT. (b) FLFDT.

TABLE II

SUMMARY OF THREE KERNEL FORMULATIONS

V. KERNEL IDENTIFICATION

According to the characteristic of GPTF transform, a TFR of

better concentration can be generated by using better matched

kernel. Highly concentrated TFR is able to characterize accurate

time-frequency signature of signal. The TFR peak is an estima-

tion of the time-frequency signature. Therefore, we develop a

kernel identification method based on recursive approximation

of the TFR ridge. Specifically, in the each iteration, the kernel is

identified by approximating the extracted TFR ridge. Then, the

identified kernel is fed into GPTF transform to generate an im-

provedTFR.Thedetailed procedure is illustrated inFig. 9,where

denotes the parameter settings in the th iteration.

stands for estimated IF in the th iteration, which is the extracted

TFR ridge. is the fitting curve in the th iteration. is

the estimated parameters. The terminating condition is given by

(24)

where is a minor constant, and .
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Fig. 9. Kernel identification based on recursive approximation of TFR ridge.

Compared to extracting TFR ridge in one trail, the recursive

approximation of the TFR ridge (RA-TFR) is expected to be

more effective for kernel identification. In particular, two ques-

tions are dominant during the recursive approximation: 1) se-

lecting proper initial TFR; 2) curve fitting subject to desired con-

straints. First, the initial TFR is required to have less cross-term

and acceptable concentration. The better initial TFR can cat-

alyze the kernel identification. Here, we apply so

that the initial GPTF transform equals to the short-time Fourier

transform (STFT). It is probably not the best choice in every

case, but is reasonable to automatically implement the GPTF

transform. Second, since poor concentration and noise may dis-

tort the extraction of the TFR ridge, the curve fitting needs to

balance the tradeoff between bias and variance.

In the kernel identification procedure, the IF estimation is of

paramount importance to be considered. And the convergence

criteria can be determined whether the bias of the IF estima-

tion error is becoming smaller after each iteration. Assuming

the phase of the original signal can be modeled by the function

with determined parameter , denoting to , the es-

timated phase function in the th iteration is .

The bias of the estimated IF error from detecting the

ridge of the TFR is given by [43]

(25)

where

If the following conditions are satisfied for , see equation

(26) at the bottom of the page, then the bias of the IF estimation

error based on the TFR of the th GPTF transform iteration,

will be smaller than the bias of from the initialized

step [43]. Thus, the estimated IF is closer to the true IF than the

initial estimated IF for . Meanwhile,

the estimated parameters is closer to the actual parameters

. The above conditions are further satisfied for , and

the bias of the corresponding IF estimation error

is further smaller than the bias of . In this case, the

implementation of the iterative procedure will finally converge

to true IF.

To illustrate the effectiveness of RA-TFR based method, we

use PCT, one instance of the GPTF transform, as an example.

The PCT is the GPTF transform that applies a polynomial

kernel. For example, a signal is given by

(27)

whose IF law is . The sampling

frequency is set to 100 Hz. In this case, the signal is seriously

contaminated by a white noise with SNR of . In each ap-

proximation step, least square method and polynomial function

of order 4 are used, such that

(28)

The window size is set to 512 and the terminating condition

is set to 0.05. Before reaching the criterion, 4 cycles are con-

ducted. Figs. 10–12 show the TFR, the extracted ridge and its

polynomial fitting after the first, second and last time PCT. It can

be seen that as the concentration of TFR improves, polynomial

approximation of the extracted ridge becomes closer to the real

IF of the signal. It can be also noticed that the distortion in the

extracted ridge caused by noise is removed during the recursive

approximation. The computed terminating conditions are listed

in Table III. Relative error between the real and estimated IF

is used to evaluate the accuracy of IF estimation. Table IV lists

relative error in each step. The identified kernel parameters in

the each iteration are listed in Table V. It can be seen that the

estimated parameters are approaching the real value during the

recursive approximation.

(29)

(26)
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Fig. 10. After 1st time PCT(STFT). (a) TFR. (b) extracted ridge and polyno-

mial fitting.

Fig. 11. After 2nd time PCT. (a) TFR. (b) extracted ridge and polynomial fit-

ting.

Fig. 12. After the last time PCT. (a) TFR. (b) extracted ridge and polynomial

fitting.

TABLE III

TERMINATING CONDITIONS OF KERNEL IDENTIFICATION BY USING PCT

TABLE IV

RELATIVE ERROR BETWEEN REAL AND ESTIMATED IF

It can be seen that the burst errors from the ridge detection as

shown in Fig. 10(b) cannot affect the kernel parameters. This ex-

ample verifies the effectiveness of the RA-TFR based method in

providing accurate kernel identification for signals with slowly

TABLE V

IDENTIFIED KERNEL PARAMETERS BY USING PCT

varying IF. If the signal has rapidly varying IF, high-order poly-

nomial or spline kernel is preferred. For example, a signal is

given as

(30)

The true IF law of the signal is .

The sampling frequency is set to 150 Hz. The SNR of the signal

is . Window size is set to 512 and the terminating con-

dition is set to 0.05. Before reaching the criterion, 6 cycles are

conducted. Figs. 13–15 show the results of the 1st, 3rd, and 6th

iteration for saving the space. In this case, the 17-order kernel

polynomial is applied and the estimated polynomial coefficients

after the 11th order are close to zero. It is noticed that using the

high-order polynomial for the signal with such rapidly varying

IF, the burst errors from ridge detection shown in Fig. 13(b) still

do not affect the estimation result of kernel parameters.

For the signal with discontinuous IF, the spline kernel could

be applied by treating the discontinuity points as an unconnected

knot. In this case, the smooth condition at such knot needs to

be redefined and the original spline is break into disconnected

pieces. The RA-TFR method is still effective for such signals,

while the SCI based method might need prior knowledge about

these discontinuity points. For the detail about the utilization of

the spline kernel, interested readers could refer to [44].

This method can be easily adopted by any kind of GPTF

transforms. The attention needs to be paid on the approximation

with the different kernel forms. For example, when the SCT is

considered, the B-spline is used to fit the extracted ridge. While

Fourier transform of the extracted ridge can be used to iden-

tify the parameters for the GWT. It is worth mentioning that the

polynomial function order can be determined by trial. Usually,

a relatively large order can be adopted for the polynomial func-

tion at beginning. If the extracted TFR peak data can be well

approximated with a polynomial function of relative low order,

then the estimated high order polynomial coefficients would be

close to zero.

Ideally, the finer resolution leads to the better concentration

of the TFR. The resolution of the initial TFR (STFT) is limited

by the uncertainty principle. Determining an optimal window

length is an open question in the application of the STFT. The

best window length for a particular signal depends on the signal

itself. In our study, the window length is recommended to be rel-

atively short in the initialized step in order to obtain the average

time and frequency resolution, yet it should not be so short that

substantially different frequency contents are included; while

the longer window is more suitable for the following recursive

transforms to achieve the better concentration.
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Fig. 13. After 1st time PCT(STFT). (a) TFR. (b) extracted ridge and polyno-

mial fitting.

Fig. 14. After 3rd time PCT. (a) TFR. (b) extracted ridge and polynomial fit-

ting.

Fig. 15. After 6rd time PCT. (a) TFR. (b) extracted ridge and polynomial fit-

ting.

Furthermore, in the case of multi- component signal whose

components have the same frequency modulation law and the

different amplitudes, only the ridge of the dominant component

is needed to identify the kernel. For example, based on signal in

(27), constructing a multi-component signal as

(31)

whose IF laws of the two components are

and , respec-

tively. The sampling frequency is set to 100 Hz and the SNR is

. Figs. 16 and 17 are the results of the 1st and 7th time

PCT. It can be seen that the kernel can be well estimated and

the final TFR achieves the satisfied concentration for the two

Fig. 16. After 1st time PCT. (a) TFR. (b) extracted ridge and polynomial fitting.

Fig. 17. After 7th time PCT. (a) TFR. (b) extracted ridge and polynomial fit-

ting.

components. At this point, the multi-component signal analysis

is equivalent to the analysis of the mono-component signal.

When the components have the same frequency modulation

law and amplitudes or have the different frequency modulation

laws, the ridges of all components have to be extracted from the

initial TFR respectively. It usually requires heuristic masking

techniques based on the prior knowledge [45]. On the other

hand, the non-TFR based signal parameter estimators are candi-

dates for identifying the kernel parameters and combining with

the GPTF to analyze multi-component signals, which is beyond

the scope of this paper. Interest readers please refer to [46], [47].

VI. CONCLUSION

In this paper, we defined a general parameterized time –

frequency transform (GPTF transform). It applies generalized

kernel based rotation operator and shift operator. The GPTF

transform is proved to have several properties, i.e., linearity,

scaling, time shifting and frequency shifting. Based on the

kernel base definition, its dual definition in frequency domain

is proposed as well. The usage of general kernel in GPTF

transform provides the availability of analyzing signal with

different time-frequency signature. Moreover, by adopting

promising kernel, more powerful time-frequency transform

can be constructed the same standpoint. Short-time Fourier

transform, short-frequency Fourier transform, chirplet trans-

form, warblet transform and transform are all special

instances of GPTF transform. In addition, five parameterized

time-frequency transforms are constructed, i.e., the polynomial

chirplet transform, the spline chirplet transform, the generalized

warblet transform, the polynomial localized frequency delay

transform and the Fourier series localized frequency delay
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transform. The analysis results show that the GPTF transform,

with properly formulated kernel function, is able to accurately

characterize the time-frequency signature of various non-sta-

tionary signals. In addition, we proposed an effective kernel

identification method for the desired GPTF. The results verify

that the proposed method is able to facilitate the determination

of the kernel for the GPTF in real practice.
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