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Abstract. The purpose of this paper is to provide a general information- 
theoretic framework extensible to arbitrary access structures and to es- 
tablish the correspondence between ideal SSS and matroids without in- 
voking the more restrictive combinatorial definition of ideal scheme. 

1 Introduction 

The history of secret sharing schemes (SSS) began in 1979 when this prob- 
lem was introduced and partially solved for the case of (n, r)-threshold schemes 
(see [l], [2]). R. McEliece and D. Sarwate pointed out [3] a relationship be- 
tween threshold schemes and codes in 1981. In 1983, E. Karnin, J. Greene, and 
M. Hellman [4] gave an information-theoretic (IT) approach to SSS. Later this 
approach was developed in [5]. In our opinion the most important step in the 
classification of ideal perfect SSS was taken by E. F. Brickell and D. M. Daven- 
port [6] by establishing the relationship between combinatorial ideal ( i e .  such 
that secret and shadows belong to the same alphabet) schemes and matroids. TO 
do this they used not only combinatorial techniques but also combinatorial def- 
initions. Recently K. Kurosawa el al. [ll], following the ideas of [6], have shown 
that this relationship is also true for the case of IT ideal perfect SSS, but only 
under the restrictive assumption of uniform distribution of secrets. 

In this paper we treat SSS by information-theoretic tools, in continuation of 
the approach of [4], [5]. We prove a new bound on the “cardinality” of a perfect 
SSS which shows, in particular, that such a scheme should have properties similar 
to the properties of a well-known combinatorial object-an orthogonal array. 
For ideal SSS we generalize the result of Brickell and Davenport under a general 
definition of ideal scheme based on information-theoretic notions. Our paper is 
self-contained and it seems to us that our proof is not only simpler than [6], [ll], 
but sheds a different light on this problem. 

2 Definitions 

The problem of SSS can be formulated in the following way. There is a secret so 
chosen from the set So of all possible secrets with probability p(s0 ) .  And there 
is a dealer who provides information to n participants in a such a way that some 
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sets of participants, called allowed coalitions, can recover the secret exactly, but 
participants forming any other set cannot get additional information beyond 
their a priori information about the value of the secret. To do this, the dealer 
uses some (finite) alphabets S1 , . . . , Sn, whose elements are called “shares” (or 
“shadows”). For a given 60, the dealer distributes shares sl,.. . , Sn (the i-th 
participant receives share sir and has no information about the values of other 
shares) chosen by him with probability P,,(sl , . . . , sn) .  We define the probability 
distribution P on a set S = So x . . . x S n  , where P ( s )  = P ( Q ,  s i r . .  . , s n )  = 
p(so)Pdo(s~ , . . . , s,,). Equivalently one can start from some distribution P on 
a set S = SO x . + - x Sn. Any such a pair (P ,  S)  can be considered to be an 
SSS. We call a point (so, s1 , . . . , s,,) a “sharing rule”. P is called the distribution 
of sharing rules. We regard the share values si as random variables with joint 
distribution P ,  and denote them S,. 

Let r be some access structure, a.e. let r be a set of subsets of { 1 , .  . ., n} 
with the monotonic property (A E r, A c B imply B E r) .  W.l.o.g. one can 
restrict consideration to r containing neither “negligible” participants (2 .  e. j 
such that j E A E r always implies A\{j} E r )  or “super” participants ( i e .  
j such that { j }  E r). We call a pair ( P , S )  a perfect SSS, realizing the access 
structure I-‘, if 

1. P(S0 = co 1 Si = ~ ; , i  E A )  E (0 , l )  if A E r 
2. P(S0 = co I Si = c;, i E A )  = P(S0 = co) if A 4 I‘ 

Following [4] we reformulate the above definition in the language of entropy, 
2.e. 

1. H(S0 I S,, i E A )  = 0 if A E r 
2. H(So I S,, i E A )  = H ( S o )  if A $ r 

Define a set, V = {s E S 1 P ( s )  > 0) and call it the “array” (or the “code”) 
of the SSS (PI S). Roughly speaking, combinatorial treatments of SSS deal with 
an array V whose rows are uniformly distributed, i .e .  only with a uniform distri- 
bution of sharing rules (or, if one allows repetitions of row, probabilities have t o  
be only rational numbers). Then the definition of the perfect SSS can be refor- 
mulated in “cardinality” language (see [a]). E. F. Brickell and D. M. Davenport 
gave [6] another definition of “perfect scheme” which is weaker than the usual 
one(s) given above. In fact, they replaced Property 2 by the following property. 
If the set of rows of V having given entries c; in positions belonging to a set A,  
A 4 r ,  is not empty then any value of SO ( i e .  ‘%‘’-entry) occurs among these 
rows. The usual combinatorial definition demands that all values of SO occur 
equally often. It is easy to see that the array of any perfect SSS is perfect ac- 
cording to the definition of [6], but there are examples of arrays which generate 
perfect SSS in  the sense defined in [6] and which do not give rise to any perfect 
SSS in the usual sense of “perfect”. Luckily, for the case of combinatorial ideal 
SSS, these notions coincide [6]. 

As we mentioned above, the combinatorial(C) definition of idealis that lSil = 
IS01 for all i = 1,.  . . , n. The information-theoretic (IT) definition is based on the 
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amount of information which the dealer should send through a channel to  the 
i-th participant. It equals H ( S i ) .  It is known (see [5]) that for any perfect SSS, 
H ( S i )  2 H ( & )  for all i = 1, . . . , n. Therefore we call a perfect SSS IT-ideal (or 
C-ideal) if H ( S i )  = H ( S 0 )  (or, lSil = ISol, correspondingly) for all i = 1,. . . , n. 

3 New bound for the cardinality of general perfect SSS 

Instead of considering a pair (P ,  S) we will consider only a pair (P,  V), because 
P(s )  = 0 for s $ V. We call IVI the cardinality of the SSS. We do not know to  
whom to attribute the following simple result. 

Lemma 1 If a pa i r  (P ,  V )  i s  a perfect SSS for some access siructure r and some  
probability distribution p on  the set  of secrets So then the pair  (P’, V) perfectly re- 
alizes ihe same  r and a distribuiionp’,  where f‘’(&, . . . , S n )  = $$JP(so,. . . , Sn). 

Denote by I‘m,n the set of minimal subsets of r. The following lemma (see 
[5 ] )  is very useful. 

Lemma 2 H ( S j  I Si, i E A\{j})  2 H ( S 0 )  f o r  any A E rmin and any j E A .  

Corollary 1 H(S i ,  i E A )  2 IAI * H ( S o )  for any A E r m i n .  

Denote by VA the minor of the array V whose columns belong to the set 
A (1,. . . , n) and by llV~ll the number of different rows of this minor. Consider 
any perfect SSS (P ,  V) with corresponding access structure r. According to 
Lemma 1, there is a perfect realization of the same access structure r with 
uniform distribution of secrets and with the same array V. Hence, for the new 
SSS, H ( S 0 )  = logq, where q = 1801 is the number of secrets. On the other hand, 
H(Si ,  i E A )  5 logllVAIl, with equality if and only if different rows of VA occur 
equally often. Therefore the following result is true: 

Theoreml. llV~ll 2 qIAI for any perfect SSS (P ,  V) and any A E rmin with 
equality only a f  different rows of VA occur equally oflen. 

Corollary 2 For any perfect SSS, the cardinalily of its array satisfies the in- 
equality 1V1 2 q?, where 7 = max{IA), A € rmjn} .  

4 Ideal schemes and matroids 

We will distinguish between two definitions of an ideal SSS. For the combinatorial 
definition, Theorem 1 guarantees that the array of any C-ideal perfect SSS has 
the property that all possible rows occur equally often within the “subarray” VA. 
Such a property (similar to  a corresponding property of an orthogonal array) 
already provides enough power to  give a new proof of the result of [6] for the 
particular case of perfect C-ideal SSS. But we will do more. We will prove it for 
the more general information-theoretic definition of an ideal SSS. 
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Let us recall the definition of matroid (see [lo]). A matroid is a finite set 
X and a collection Z of subsets of X (called independent sets) such that the 
following properties hold. 

1 . 0 E Z  
2. I f A E Z a n d  B E A t h e n  B E Z  
3. I f A , B E Z a n d I A J =  IB1+1thenthereexistsaEA\BsuchthataUBEZ 

There are other equivalent definitions of matroid. One is based on the rank 
function, and another on minimal dependent sets, called circuits. Let ( P ,  V )  be 
an IT-ideal SSS for the access structure r. Define a function h on subsets A 
of the set (0,.  . ., n} in the following way: h(A) = H ( S i ,  i E A). W.1.o. g. let 
h(0) = 1. Then well known properties of entropy m u r e  us that the following 
properties of a rank function of matroid hold (see [lo]): 

1. h ( 0 )  = 0 
2. h(A) 5 h(b U A) 2 h(A) + 1 
3. If h(A U b) = h(A U c )  = h(A) then h(A U b U c )  = h(A)  

The entropy is not always an integer-valued function, unfortunately. Other- 
wise we could immediately conclude that our definition produces a matroid. The 
main point of the proof of [6] was to prove that log, l V ~ l  is an integer-valued 
function. It is clear that, if one assigns uniform probability distribution to rows 
of V, then log, lV~ l  is exactly the above-defined function h(A).  K. Kurosawa et 
ad. [ll] applied this approach to IT-ideal SSS and proved that, under the as- 
sumption of uniformly distributed secrets, h(A) is an integer-valued function, 
and hence serves as the rank function of the matroid. We use another, simpler, 
way to provide a proof without appealing to a uniform distribution on secrets. 
We replace the desired “integer-valued” property by a weaker one, which is much 
simpler to prove for general IT-ideal perfect SSS. 

Lemma 3 If h(A) = lAl, then h(A U b )  equals either IAI or  IAI + 1 for any b .  

Based on this lemma, the following generalization of result of E. F. Brickell 
and D. M. Davenport [S] can be proved. 

Theorem2. For any IT-ideal perfect SSS the independent sets A such that 
h(A) = IAI define a matroid. All circuits of this matroid which contain the 
poiniO are of the  f o m O U A , A E r m i n .  

The second part of the statement of Theorem 2 is very important (see[9]), 
because all circuits of a matroid can be uniquely (and rather simply, see [lo]) 
determined by all its circuits containing a given point. Hence, a matroid’s struc- 
ture can be derived directly from the access structure r. This fact provides a 
tool for proving that some access structures cannot be realized by IT-ideal SSS. 
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