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General procedure for solution of
contact problems under dynamic
normal and tangential loading based on
the known solution of normal contact
problem
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Abstract

In this article, we show that the normal contact problem between two elastic bodies in the half-space approximation can
always be transformed to an equivalent problem of the indentation of a profile into an elastic Winkler foundation. Once

determined, the equivalent profile can also be used for tangential contact problems and arbitrary superimposed normal

and tangential loading histories as well as for treating of contact problems with linearly viscoelastic bodies. In the case of
axis-symmetric shapes, the equivalent profile is given by the method of dimensionality reduction integral transformation.

For all other shapes, the profile is deduced from the solution of the elastic contact normal problem, which can be

obtained numerically or experimentally.
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Introduction

Contact mechanics and friction play a key role in many

technological and biological systems. Due to the multi-

scale roughness of the contacting surfaces, the treat-

ment of the associated contact problems proves to be

difficult. Even the simple case of a non-adhesive, fric-

tionless normal contact problem between two linear

elastic solids with randomly rough surfaces is still a con-

troversial scientific issue. Several analytical and numeri-

cal methods were developed to deal with the normal

contact problem. Usually, numerical calculations are

based on finite element method,1 boundary element

method2 or Green’s function molecular dynamics,3 each

of which has certain advantages over the other meth-

ods. A broad overview with discussion of the existing

numerical and analytical methods can be found in

Yastrebov et al.4

It is self-explanatory that the presence of friction

makes the contact problem more complicated. In the

classical uncoupled tangential contact problem between

two linear elastic spheres, Cattaneo5 and Mindlin6

assumed a constant normal force FN and a subse-

quently applied, increasing tangential force Fx. It is

well-known that this kind of loading results in the for-

mation of a slip domain near the boundary of the con-

tact area, while the inner domain remains in stick.

However, this tangential contact problem becomes

more complex for arbitrary loading scenarios since the

state of stress depends not only upon the initial state of

loading but also upon the complete loading history.7

One could assume that considering the tangential

contact of nominally flat rough surfaces under arbi-

trary varying loads will increase the difficulty of the

contact problem even further. However, this is not the

case, due to the Ciavarella–Jäger theorem. Jäger8,9 and

Ciavarella10,11 independently showed that the tangen-

tial stresses in the tangential contact problem are equiv-

alent to the difference between the actual normal

stresses and those that correspond to a smaller contact

area (the stick area), both multiplied with the
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coefficient of friction. The Ciavarella–Jäger theorem

holds for all two-dimensional contact problems

between solids of elastic similar materials irrespective

of whether the contact area is simply connected or even

spread over multiple spots. For all three-dimensional

(3D) contact problems of elastic similar bodies includ-

ing the classical problem of Cattaneo and Mindlin, it

only applies in an approximate sense. The classical

problem states that the frictional stresses in the slip

domain are all directed in the direction of the applied

tangential force. With the exception of the unrealistic

case of n1 = n2 =0, this assumption violates the condi-

tion that at every point in the slip domain, the slip

opposes the direction of tangential stress. The reason

for this is the presence of an additional deformation

perpendicular to the direction of the applied force. For

the classical contact of parabolic bodies, however, it

could be proven that this component may be

neglected.12,13 We assume that this approximation is

also valid for the generalization of the Cattaneo–

Mindlin theory for arbitrary contacts including contact

between bodies with randomly rough surfaces. For the

latter case, a series of articles14–16 investigated the fric-

tional energy dissipation generated by varying normal

and tangential forces by use of the theorem.

A further immediate consequence of the Ciavarella–

Jäger theorem is the possibility of replacing the contact

problem of an approximately isotropic surface shape by

an equivalent axis-symmetric contact problem. Provided

that the elastic normal contact problem has been solved,

the equivalent profile can be deduced starting from the

Galin–Sneddon integral equation.17,18 Aleshin et al.19

followed this way and studied the tangential contact of

the equivalent axis-symmetric profile for arbitrary load-

ing scenarios by the method of memory diagrams

(MMDs). In contrast to the work of Mindlin and

Deresiewicz,7 the MMD replaces the complex traction

distribution inside the contact area by a simple internal

function containing the same memory information.

Therefore, the MMD is a powerful tool to calculate the

hysteretic tangential force–displacement curves resulting

from an arbitrary loading scenario of frictional contact

problems. In 2006, Borri-Brunetto et al.20 used the

Ciavarella–Jäger theorem to show how the Mindlin–

Deresiewicz procedure can be generalized for cases when

the tangential load is reversed. After each reversing of

the force direction, they give the dependencies of force

and displacement. Using this approach, the energy dissi-

pation for oscillating load is calculated.

For the case of axis-symmetric profiles, the method

of dimensionality reduction (MDR)21–23 is an elegant

and powerful procedure for evaluating both normal

and tangential contact. It starts by generating a one-

dimensional (1D) profile which corresponds to the

axis-symmetric shape. Following the ideas of Lee and

Radok,24 the MDR can also be used for solving normal

contact problems that involve linear viscoelastic media.

We thus know that for every arbitrary 3D contact,

there is an equivalent axis-symmetric problem and that

for any axis-symmetric shape there is an equivalent 1D

profile.

In this article, we will show a generalized rule for

obtaining the equivalent 1D profile which only depends

on the original 3D geometry. Once the 1D equivalent

profile is found, the numerical procedures of MDR can

be applied for both normal and tangential contact.

These procedures consist of only linear equations with

independent degrees of freedom. In the first section, we

will show how a general 1D profile is obtained from a

known solution of the frictionless elastic indentation

problem. In the following section, it will be displayed

why and how this equivalent profile can be used in

order to simulate the dynamic tangential contact. The

principle used is closely related to the procedure of

Borri-Brunetto et al.20 We will then focus on how to

obtain the equivalent profile for different geometries.

Finally, we will show some numerical examples.

Equivalent elastic foundation and

equivalent profile

Consider a contact between an elastic indenter of arbi-

trary shape z= f(x, y) with an elastic half-space. From

the contacting bodies’ Young’s moduli E1 and E2,

Poisson’s ratios n1 and n2 and moduli of shear G1 and

G2, we define the reduced moduli

E� =
1� n21
E1

+
1� n22
E2

� ��1

and G� =
2� n1

4G1

+
2� n2

4G2

� ��1
ð1Þ

During the indentation, the normal force FN is a

continuous, monotonically increasing function of the

indentation depth d. Therefore, we can define unam-

biguously an incremental stiffness

k=
dFN

dd
ð2Þ

which can also be expressed as a unique function of the

indentation depth

k=k(d) ð3Þ

Let us introduce formally the ‘‘contact length,’’

sometimes called ‘‘Holm radius’’ in the literature

l=
k

2E� ð4Þ

The indentation depth is a unique function of the

contact stiffness and thus of the contact length l

d=g(l) ð5Þ

Note that l has the unit length and depends only on

the topography and the indentation depth (also in unit

length). Equation (5) thus links only geometrical quan-

tities, independently on the material properties.
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Let us consider the process of indentation from its

very first moment until the final indentation depth d,

the current values of the normal force and indentation

depth being given by ~FN, ~d. During the indentation,

the indentation depth changes from ~d=0 to ~d=d, the

normal force changes from ~FN =0 to ~FN =FN and

the contact length from �l=0 to �l= l. The final normal

force can be written as

FN =

ð

FN

0

d~FN =

ð

l

0

d~FN

d~d

d~d

d�l
d�l

=

ð

l

0

�k
d~d

d�l
d�l=2E�

ð

l

0

�l
dg(�l)

d�l
d�l

ð6Þ

which gives after partial integration

FN =2E� l � g(l)�
ð

l

0

g(�l)d�l

2

4

3

5=2E�
ð

l

0

d� g(�l)
� �

d�l ð7Þ

This equation can be easily interpreted as a force

resulting from the indentation of the profile (5) into an

elastic foundation as defined by the MDR.22

Indeed, consider an elastic foundation of indepen-

dent springs with equal distance Dx, each having the

normal stiffness

Dkz =E�Dx ð8Þ

as depicted in Figure 1. The tangential stiffness of each

spring is given by

Dkx =G�Dx ð9Þ

If the profile g(x) is pressed into the elastic founda-

tion defined by equation (8), the surface displacement

in the normal direction at any point x will be given by

the difference of the indentation depth d and the profile

shape g(x)

u1Dz (x)=d� g(x) ð10Þ

For contacts without adhesion, the displacement

vanishes at the edge of the contact

u1Dz (l)=d� g(l)=0 ð11Þ

The normal force in a single spring is given by

DFN(x)=Dkz d� g(x)ð Þ=E� d� g(x)ð ÞDx ð12Þ

from which the total normal force in the equilibrium

state can be calculated by summation over all springs.

In the limiting case Dx ! 0, the sum will be the integral

FN =E�
ð

l

�l

u1Dz (x)dx=2E�
ð

l

0

d� g(x)ð Þdx ð13Þ

It can be seen easily that equations (11) and (13)

reproduce equations (5) and (7). Therefore, the profile

g(x) is the geometrical interpretation of the dependence

d=g(l) for the given 3D profile shape.

In order to generate the equivalent profile for a given

3D topography, three different procedures are at our

disposal.

When the original indenting shape is an axis-

symmetric profile f(r) which depends only the radial

coordinate r and has a compact (circular) contact area,

then the equivalent profile g(x) is given by the MDR

transformation

g(x)= xj j
ð

xj j

0

f9(r)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � r2
p dr ð14Þ

stemming from the well-known solution of Galin–

Sneddon for the normal contact problem of axis-

symmetric profiles. One can either evaluate equation

(14) or compose the equivalent profile using a Taylor

series of f(r). For more details, see Popov and Heß22

(Chapter 3).

In the case of non-axisymmetric profiles, the equiva-

lent profile also does always exist, but the transforma-

tion rule is generally not known. In some special cases,

an equivalent profile can also be found for complicated,

non-axisymmetric surface geometries. This is the case

when an analytical solution of the normal indentation

is available. Consider for instance fractal rough sur-

faces with given Hurst exponent H. It has been shown

in Pohrt et al.25 that here (with some statistical devia-

tion stemming from the randomness) the normal force

depends on the indentation depth as

F(d)} d
H+1
H l} d

1
H ð15Þ

We can thus derive the equivalent profile in the form

of g(x)=const � xH.
In all other cases, the dependency between the Holm

radius and the indentation depth can be obtained

experimentally or numerically. The boundary element

method is suitable for the later and some examples of

such simulations and their respective equivalent profiles

can be found in section ‘‘Examples of equivalent

profiles.’’

For the experimental approach, the dependency can

be found by indenting the original shape into a soft lin-

ear elastic counterpart such as a silicon rubber and

recording both the penetration depth and the resulting

normal force. The derivative of the normal forceFigure 1. Equivalent elastic foundation.
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normalized by the effective Young’s modulus then gives

the Holm radius.

Solution of tangential contact using

equivalent profiles

As shown in Popov and Heß,22 the tangential contact

can be described in the frame of the MDR by assuming

for the interaction of springs in the equivalent MDR

model Coulomb’s law of friction with the same coeffi-

cient of friction as in the original 3D contact problem.

That is, it is assumed that a spring sticks to the profile

if the tangential force caused by the tangential displace-

ment of the profile does not exceed the normal force

acting in this spring multiplied by the coefficient of fric-

tion, and it is equal to the normal force multiplied to

the coefficient of friction in the sliding region; see

Figure 2.

It was proven in Popov and Heß22 for arbitrary axis-

symmetrical profiles that application of this rule repro-

duces the solution of Cattaneo/Mindlin and satisfies the

Ciavarella–Jäger superposition principle. Below we will

show that this procedure is valid also in the general case

of arbitrary topographies using the equivalent profile

obtained according to equation (5).

The simplest way to show this is to go from the

Ciavarella–Jäger principle, which states that the tan-

gential stress in a tangential contact with partial sliding

can be expressed as

t(x,y)=

mpl(x,y) where sliding occurs

m � pl(x,y)�pc(x,y)ð Þ where sticking occurs

� ð16Þ

where pl(x, y) is the pressure distribution in the current

state which we can unambiguously characterize by the

Holm radius l (hence the index ‘‘1’’). pc(x, y) is a correc-

tive pressure distribution which is also a solution of the

normal contact problem with the same geometry but a

different indentation depth and thus corresponding to

a different Holm radius, which we denote c. Integrating

over the whole contact region, we get for the total tan-

gential force

Fx =m FN(l)� FN(c)ð Þ ð17Þ

where FN(l) is the normal contact force in the current

state (corresponding to the Holm radius 1, and FN(c) is

the normal contact force corresponding to the Holm

radius c of the stick region.

In the equivalent MDR system, the very same princi-

ple is true. When a tangential deflection u(0)x is imposed,

all springs whose the tangential force is smaller than the

normal force multiplied with the coefficient of friction

will stick. The boundary of the stick region is given by

the equality of the tangential force to the normal force

times coefficient of friction: G�u(0)x =mE�uz(c). The tan-
gential deflections outside the stick region are given by

the condition G�ux(x)=mE�uz(x). With Cm =E�=G�,
the tangential force thus can be written as

Fx =2

ð

l

0

G�ux(x)dx=2G�
ð

c

0

ux(x)dx+

ð

l

c

ux(x)dx

0

@

1

A

=2G�
ð

c

0

mCmuz(c)dx+

ð

l

c

mCmuz(x)dx

0

@

1

A

=2E�m

ð

c

0

uz(c)� uz(x)ð Þdx+
ð

l

0

uz(x)dx

0

@

1

A

=m FN(l)� FN(c)ð Þ ð18Þ

which coincides with the Ciavarella and Jäger result,

equation (17). A more detailed derivation of this result

including the Ciavarella and Jäger superposition princi-

ple is given in the supplemental material to this article

(available at: http://sdj.sagepub.com/).

Examples of equivalent profiles

In the previous section, we discussed how to find equiv-

alent profiles for different original topographies. Here,

we generate and discuss the equivalent profiles for

selected cases which are not covered by the MDR

transformation. All solutions are obtained using the

boundary elements method as described in Pohrt and

Li.2 It iteratively finds a subset of discrete grid points

in contact which satisfies the boundary conditions of

having zero gap width inside and vanishing pressure

outside the contact zone. Every subset of grid points

defines an (not necessarily connected) area of contact

from which one calculates the current Holm radius. In

principle, one might as well record the normal force as

Figure 2. (a) MDR model for the normal and tangential

contact. The transformed shape g(l) is pressed into the

foundation of independent springs, shown as lines. The

deflection uz(l) depends on the global indentation depth d and

the local value of g(l). When a tangential motion is imposed,

some springs stick (full circles) and some slip (open circles). (b)

Local tangential deflection ux(l) for the above contact. Springs in

the stick zone take the value of u(0)x . All other springs are in

sliding state, and their tangential displacement is equal to

ux(l) = uz(l)(mE
�=G�).
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the integral over the surface pressure and use its deriva-

tive with respect to d. In the following figures, we show

the indentation depth over the contact length (Holm

radius) for different topographies as well as a plot of

�z(x, y) for y=0 and x= ½0 . . .L=2� for comparison.

In Figure 3, we have chosen an axis-symmetric,

shifted profile (see thin line in Figure 3(b)) which can-

not be transformed using equation (14) because the

resulting contact area at low loads is ring-shaped and

thus not compact. In the equivalent profile, one can see

that the Holm radius very quickly takes the value of flat

torus radius (0.53 in the scaling). This is to be expected

as the Holm radius is very much dominated by the

maximum spatial spread of the contact region.

In Figure 4, we have generated a sinusoidal profile

consisting of nine peaks that first enter into contact at

isolated spots and later merge into a bigger contact

area. This transition is indeed visible in the equivalent

profile near l=1. The maximum Holm radius that can

be reached is given by the square comprising all peaks

(l=1:1530L where L=1 is the edge of the square, not

in plot).

The topography shown in Figure 5 is randomly

rough and self-affine with Hurst exponent H=1. As

expected from equation (15), the resulting equivalent

profile is approximately linear and only transitions to

the saturation value of l=L at large d.

Figure 6 shows a similar case where the roughness is

applied onto a parabolic shape. There is a general

semi-analytical solution available for particular cases

of this scenario26 with fractal roughness in the absence

of a long-wavelength cutoff in the power spectrum.

However, in the current example, there is such a cutoff

which makes the roughness appear nominally flat.

Therefore, no analytical solution for the normal con-

tact is available. The equivalent profile is instead

obtained through direct simulation. The curve shows a

transition to a d}l2 dependency when the parabolic

shape dominates the indentation behavior at high d.

Ultimately, a saturation in l is reached due to the finite

shape.

Numerical sample simulation

In order to show the applicability of the proposed

method, we now show an example for the tangential

contact including loading history. The sample surface

is the one depicted in Figure 6. All movements take

Figure 4. (a) Three-dimensional representation of an example of an ondulated shape. (b) Original profile as section of the body

(thin line, negative sign) and equivalent MDR profile according to equation (5) (bold line).

Figure 3. (a) Three-dimensional representation of an example of an axis-symmetric indenter shape. (b) Original profile as section

of the body (thin line, negative sign) and equivalent MDR profile according to equation (5) (bold line).
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place at a constant indentation depth. The resulting

contact area is constant and can be seen in the red and

green spots in the right column of Figure 7.

This indented surface is subjected to an oscillating

tangential movement with growing amplitude. We have

simulated this case using boundary element methods

with Cattaneo/Mindlin principle. For every time step,

we have recorded the distribution of stick and slip area

and the resulting tangential force, which is shown in

Figure 8.

We then used the equivalent profile in order to simu-

late the same tangential movements according to the

rules of the MDR (see above). In Figure 7, the evolu-

tion of the spring deflections is easily interpreted.

Because Coulomb friction is assumed, all deflections

cannot exceed uxj j4uzmCm. During tangential motion,

the curve is simply shifted upward or downward,

restricted by this boundary. The tangential force is

obtained by evaluating the gray area. Points A and B

show states shortly before and after the direction of

motion is changed. In A, most of the contact zone slips.

After the direction is changed (B), most points deliber-

ately follow the external movement (they stick) with

the exception of very lightly loaded points in the

contact zone boundary. Please note that the same can be

observed in the 1D model. Only a small fraction of the

springs is quickly limited by the uxj j4uzmCm condition

(red circle). In state C, the curve of ux lowers again and

conforms to �uzmCm but still has the shape of the upper

bound in all springs that are still in sticking state (left).

Figure 8 also shows the force–displacement depen-

dency of the MDR calculation. Both curves are hardly

distinguishable. However, the MDR procedure is dra-

matically simpler and requires only negligible comput-

ing time. The tangential force Ft is normalized by the

maximum value it can attain (coefficient of friction

(COF) times normal force). The tangential bulk displa-

cement ux, 0 is normalized by its maximum value prior

to macroscopic slip ux,max. For isotropic, elastic

contact, this is given by ux,max=dmCm (see Grzemba

et al.27 for details).

Discussion

The MDR is an easy and effective method for treating

various classes of contact problems by mapping them

to the contact of a modified profile with a linear elastic

(or viscoelastic) foundation. Often, it is erroneously

Figure 5. (a) Three-dimensional representation of an example of a randomly rough indenter shape. (b) Sample section of the body

(thin line, negative sign) and equivalent MDR profile according to equation (5) (bold line).

Figure 6. (a) Three-dimensional representation of an example of a rough parabolic indenter shape. (b) Original profile as sample

section of the body (thin line, negative sign) and equivalent MDR profile according to equation (5) (bold line).
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believed that the MDR is only applicable to axis-

symmetric profiles. This is not correct. In this article,

we have shown that the ‘‘equivalent 1D profile’’ does

exist for absolutely every arbitrary surface shape. We

have shown that this profile can be found from the

known solution of the normal contact problem. The 1D

profile is obtained directly by plotting the indentation

depth over the contact length, when the dependency is

known from analytical, numerical or experimental find-

ings. Following Borri-Brunetto et al.,20 the normal

contact–based profile can then be used also for the

simulation of the tangential contact problem with a

constant coefficient of friction under arbitrary loading

history. Here, we show a numerical example comparing

3D BEM and MDR results. Another application is the

normal contact problem of any profile with an elasto-

mer having arbitrary linear rheology. Also in this case,

the MDR provides a powerful method which is easy to

implement.

All the presented results are correct within the usual

assumptions of linear contact mechanics (half-space

approximation, geometrical linearity, Mindlin/

Cattaneo approximation and assumption of uncou-

pling of normal and tangential problems as well as

neglecting the orthogonal slip).

It would be interesting to further investigate the

applicability for wear prediction, currently shown only

for axis-symmetric 3D shapes.28,29

Figure 7. (Right column) Plot of the contact region of the surface shown in Figure 6. Green points are in sticking state, red points

slide. We also show the tangential deflection of the outer surface by the horizontal lines. The states A-C correspond to the points

marked in Figure 8. (Left column) Plot of the tangential deflection of the independent springs in the one-dimensional model.
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mensionaler Kontakte auf Systeme mit niedrigerer räumli-
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