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SUMMARY

An extensive and detailed derivation of non-relativistic and relativistic

difference equations describing the motion of a single proton through an Alvarez structure
linac gap is given extending the difference equations given by P. Lapostolle at the Frascati
Conference (1965). Integral representations of the field in such a gap are derived and their
properties are discussed as well as those of the field amplitude which is proportional to the
transit time factor. Beam dynamics coefficients are defined which are Fourier transforms

of the fields. There are two types of them : T-coefficients which are known as soon as the
transit time factor is given and which occur in difference equations describing the change of
particle coordinates across the whole gap. In difference equations across the first half of

it enter in addition the S-coefficients which are much more complicated.

Beam dynamics equations are derived by first order perturbation theory regarding as
perturbation the influence of the radio frequency field (with angular frequency w) on free
particle motion. This is equivalent to solving the equations of motion by iteration starting
from free particle motion, but the present method is more definite. The magnitude of the
perturbation is described by the parameter k = (eEl/w)/(m%J,( < 0.1) the impulse transmitted
to the particle by the radio frequency RF field (with average strength Elacross the gap)
divided by the free particle momentum méo. Results can be interpreted as if the particle
interacts in the gap mainly with those waves travelling with its own velocity. Relativistic

corrections (due to the magnetic RF field and the mass variation) are of the order K B2.

There are some chapters of an introductory nature. One deals with the motion of a proton
in a uniform time-harmonic field. In another are described the methods of solving equations
of motion approximately and the thin lens approximation. At the end are given tables of beam

dynamics coefficients and of non-relativistic and relativistic beam dynamics difference

equations across the whole gap and across the first half of it.

Remarks on the Presentation of the Material

"Mine is a long and sad tale" said the Mouse, turning to Alice and sighing. "It is a
long tail, certainly" said Alice, looking down with wonder at the Mouse's tailj; "but why do
you call it sad?"

(Lewis Caroll, Alice's Adventures in Wonderland)

In the present report the author tried to reconcile two somewhat opposing aims, wishing
to give the detailed rigorous derivations of beam dynamics equations without burying the
technically useful equations among the haberdashery of mathematical proofs and lengthy
calculations. Therefore the treatment is explained and the whole work is reviewed in the
introduction (chapter 1); and tables for beam dynamics coefficients and beam dynamics aif-
ference equations are given at the end of the report. In addition, in chapters 2 to 5 the
more intricate discussions and lengthy calculations of each section have been deferred to the

end of it as appendices. It was intended to do this separation in such a way that the



section presenting the main train of thought is still understandable and readable without
Tn the latter the discussion goes into considerable

This philosophy made

the need of consulting the appendices.

detail in order to make the report as a whole rather self-contained.

more frequent repetitions and cross references unavoidable.
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Fig. 1.1.1. Schematic sketch of an Alvarez structure linac.




1. Introduction and Review

The Alvarez structure of linear accelerators (Fig. 1.1.1.) consists of a resonant
cylindrical cavity. Typical values of it are : characteristic frequency of the lowest mode
w/27 = 200 MHz (free space wave length»kO ~ 1.5 m),cavity radius ~ 0.5 m, length some meters.
Along the axis of this cavity passes the beam of particles to be accelerated. For this
purpose drift tubes are aligned along the axis whose length and distance is adjusted in
accordance with the particle velocity in a way to screen the particles from the radio fre-
quency field during about three quarters of a period. In the remaining quarter the particles
pass through the gaps between the drift tubes where they are accelerated by the microwave field.
The direction of the latter is favourable to acceleration during half a period, however, the

additional condition of phase stability restricts the useful time to a quarter.

For the detailed analysis of the electromagnetic field and of particle dynamics in such a
structure, the whole tank is firstly split up into single cells of length Ln by inserting
plates in the middle between gaps. This is done at those places vhere the transverse electrical
field is zero so that the field distribution is not changed by these septates. In practice, the
method of investigation is applied in reversed order. First the field in single cell cavities
is investigated theoretically and experimentally and all cells are tuned to the same resonant
frequency. Then the whole linac is designed by assembling cells (without faces) and matching

the current flowing along the cylindrical wall.

To these two steps correspond two levels of treating particle dynamics. Firstly, the
motion of a particle through a single field region is investigated. The ensuing results are
used to trace particles through the whole linac. Each linac comprises various regions where
different fields of force are acting upon the charged particle. In the interior of the drift
tubes magnetic quadrupoles are inserted to focus the beam. They may be separated from the
central region of the cell by some drift space. At the centre, between the drift tubes there
is the gap which is filled by the electromagnetic radio frequency field penetrating from the
main cavity. The present report is centered on the investigation of the motion of a single
heavy charged particle through such a gap. Interactions between particles, or space charge

forces, are neglected.

The theory presented here is applicable to protons or heavy particles only. The under=
lying basic assumption is that there is an accelerating time-harmonic electromagnetic field
along the beam direction, confined by gaps and drift tubes in which the field cannot penetrate.
Thus, though the theory is particularly applicable to the Alvarez structure, this assumption

is met in other accelerating structures.

has been extended,modified and applied by many other

)
,» R. TAYLOR 3), SWENSON h), RICH 5). PROME 6), LAPOSTOLLE

10)

. . 1

The pioneering work by PANOFSKY
authors. The works of J.S. BELL 2)
CARNE et al. 9)

7)8)

,CARNE and LAPOSTOLLE may be quoted. This list, of course, is by no

means complete.
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It is not possible to solve exactly the equations of motion of a particle moving in a
field as complicated as that of an accelerating gap, and it is necessary to employ approximate
methods. It is initially assumed that the field in the gap is exactly known and can be
described by Fourier integrals with respect to z (cf. eq(l)), the amplitude function being
the transit time factor To(kz) (ef.(2)). The equations of motion are solved by treating
the influence of the field upon the otherwise free particle as a perturbation. It then
turns out that if first order results are satisfactory, there is no need for complete inform-
ation about the field, but all beam dynamics equations integrated across the whole gap con-
tain the transit time factor for only one value k = w/éo (éo = longitudinal velocity of the

particle in the centre of the gap) of its argument kz .

It may be worthwhile to describe this point already here in more detail. The field

is given by :

=

E_(z,r,0t) = 5}[ \[ b(kz)[Io(krr)/Io(kra):l oKy ak_ cos(wt + ¢ ) (1.1.1)

k= [kg - (w/c>2]12

where a is the radius of the drift tubes terminating the gap and El the average field

strength across the gap. The amplitude function is proportional to the transit time factor :
b(kz) sin(kzp/2) 1
T (k) -~ ~ (1 +7Y) . (1.1.2)
o'z Io(kra) kzp/z Io(kra)

pP=g*t2R is roughly equal to the gap length (ef. Fig. 2.1.4). Y is in general small

compared to unity (|Y| << 1). The equations of motion, e.g.
mz = eEz(z,r,wt) (1.1.3)
are solved by interation: Free particle motion :
z =21t r =t t + 1.1.k4)
(o) (0) : (
is assumed as a zero order solution and inserted into the right hand side of (3).
Ez(z(o)(t), r(o)(t), wt) becomes a pure function of time t and the differential equation (3)

can be solved by quadratures. If this is done with the representations like that in (1),

this gives integral representations of the trajectories:

Zl(t) = éot + (1.1.5)
. ek, 1 J o ) Io(krr) o L el¢o e1t(kzzo+ w)+ e_i¢o -1t(kzzo-w)
mg 27 I (ka) z2 k + w/z k - w/z
) - r z 0 z o
C
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The path of integration C in the complex kZ -plane avoids the poles: kz =+k =4 w/io(see Fig.

Radial motion is neglected for the present and radius is assumed as constant, r

2.2.1). These singularities give the main(or even only) contribution if the above integral
is used to evaluate the change in velocity (for kinetic energy) across the whole gap (cf.
eq. (7)). This suggests the following physical interpretation : The integral (1) is a
superposition of partial waves and the particle mainly interacts with the waves moving

with its own velocity. This statement, however, should not be taken too literally.

From this it results that beam dynamics can be completely described to that order of
approximation if the transit time factor To(k) and its derivatives dTO(k)/dk,... are known

for the only value :
k = w/z (1.1.6)

These quantities depending on both the gap geometry and the field of the main cavity provide
sufficient information about the field acting upon the particle. The change of all particle
coordinates across the gap is expressed by To(k), dTo/dk,.. . For example, the gain in

kinetic energy is :
AW = eV To(k) Io(krr) cosg_ *+ ... (1.1.7)
V. = Elp is the peak voltage across the gap.

(o]

The transit time factor :

>

Ez(z,r = O,uwt) dz (1.1.8)

J
-0

To(k) = J Ez(z,r = 0,uwt) cos(kz)dz//

is & measure of the longitudinal distribution of the longitudinal electric field EZ along the
axis, and may be easily derived by numerical integration from solutions which have been obtained
by solving the field equations numerically (mesh calculations). To(k) is the Fourier trans-—
form of EZ and by this theorem the equivalence between the definition (8) and the statements

of egs.(1l) and (2) can be shown.

The magnitude of the influence of the electric field upon the motion of the particle

is determined by the parameter :
K = eEl/(mmzo) (1.1.9)
This is suggested from the factor eEl/(mio) preceeding the integral in eq. (5). The

factor l/w comes in if the derivative dz/dt is transformed into one with respect to phase,

¢ = wt 3 this means that time is measured in units of the period of the accelerating radio
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frequency field. «k = (eEl/w)/(méo) may be interpreted as the ratio of two momenta : The
numerator is a measure of the impact of the field whose force (~ eEl) is acting upon the
particle during the time of one period (~ l/w). This is divided by the momentum of the free
particle. The physical interpretation raises the hope that the effect of the field is even
smaller, say k/3 or so, since the particle sees the field only during a third or a quarter of
a period. The value of k is smaller than 0.1 at the entrance of a proton linac (0.5 MeV)
and decreases with increasing energy. By use of this perturbation parameter it is possible
to solve the equations of motion in a more systematic way. Perturbation series are assumed

for the solutions :
2(8) = 28901) + kP (1) + 222 (8) + ... (1.1.10)

and the equations of motion (3) are split into a system of equations. It is reasonable to
believe that the coefficients of the powers of k 1in (10) are of about the same order of
magnitude, so that the series (10) permits to estimate the accuracy attained. The order
of magnitude of relativistic effects (force due to the magnetic radio frequency field and
mass variation) is given by K(ioz/cz) = kB2 . The relative magnitude of these parameters

depending on the velocity, Bc = io, is shown in Fig. 4.1.1.

In Chapter 2 are discussed the properties of the field in the gap and the beam dynamics
coefficients. In Section 2.1 the field in the cavity and in the gap is described and
explained by a few drawings of field distributions. The parameters describing the gap
geometry are introduced and the concept of the effective gap length is mentioned. In Section

2.2 the field components Er’ EZ, H_are expressed by Fourier integrals with respect to the

€]
longitudinal (z-) direction (cf. eq. (1)). Their analytical properties can be discussed
(Section 2.3) by expanding in a Fourier series the longitudinal component of the electric

field applied along the circumference, r = a, of the gap, |z| < p/2 :

E (z) = E (z,r =a) =E2/2+ ] B cos(2ma/p) (1.1.11)

n=1

It is assumed that E: is continuous and symmetrical with respect to the centre, z = 0, and that
its derivative BEZ/BZ is only weakly singular (so that it is still integrable). Then the
series (11) is absolutely and uniformly convergent and operations of summation and integration
may be interchanged. By means of a Green 's function the field in the interior is related

to E:(z) and the field amplitude is found :

sin(kzp/Z) ® 0

= —2 | - 2x?pd - 2 - 2 1.1.12

b(k ) W3/ p - 22p3 ] B (-1) [(2nn) (k,p) ] ( )
n=1

p =g+ 2R, is gap length plus the radius of the drift tube rims. (See Fig. 2.1.hk). The

Fourier integrals representing Ez’ Er and HO are absolutely and uniformly convergent for r < a .
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Therefore they are analytical functions in z and r (< a). In Section 2.5 are given series
expansions of the fields in terms of the Fourier coefficients Bn . The series for U = -rH@
may be fitted to the values Um(r = a) found by mesh calculations to give numerical values
for a finite number of coefficients Bn. The quality of this method is discussed by com-
paring Um(r < a) with the calculated Uc . In Section 2.6 are defined the T-coefficients.

They are even Fourier transforms of the three field components (cf. (8))and can be simply

expressed as products of the transit time factor TO with modified Bessel functions. They
serve for expressing the change of particle coordinates across the whole gap. The
S-coefficients (Section 2.7) are odd Fourier integrals along the half-line O < z < < . They
serve for beam dynamics formulae across the first half of the gap. S-coefficients are

complicated functions of k and r and their expressions contain besides the T-coefficients

series of modified Bessel functions.

In Section 2.8 another approach of fitting fields to the mesh values U is described.
It starts from Fourier expansions of the magnetic field. This is used in Section 2.9 for

the derivation of new expressions for T- and S-coefficients.

Chapter 3 deals with the motion of a proton in a time-harmonic spatially homogeneous
field. This model for an accelerating gap is oversimplified but useful from the pedagogical
point of view, since all solutions can be worked out easily. In Section 3.1 this problem
is treated in the non-relativistic approximation. There the reasons appear for the intro-
duction of the perturbation parameter «k = eEl/(mwio) 3 and the transition from approximate
solutions found by interations to those arising from perturbation theory is described.

In Section 3.2 is explained the practical application of beam dynamics formulae and the use
of the longitudinal S-coefficient. Numerical examples given in Section 3.3 show that the
accuracy of approximate formulae for energy gain is somewhat better if mid-gap conditions
in place of input conditions are used to specify the solutions of the equations of motioms.
In Section 3.4 a method is demonstrated by which the relativistic mass variation can be

taken into account approximately.

In Chapter L are discussed approximation schemes used in the treatment of particle
dynamics. Two methods of solving equations of motion approximately, iterations and
perturbation theory, are explained and compared in Section 4.1.Section 4.2 contains general
comments on the thin lens approximation where real trajectories of the particles are

replaced by step functions, as if the gap were reduced to its median plane.

In Chapter 5 are derived non-relativistic expressions for the particle motion.  The
equations of motion are solved in section 5.1 by the method whose main features have been
described at the beginning of this introduction. The non-relativistic difference equations
for the change of kinetic energy, phase, transversal position and velocity across a gap and
across the first half of it are derived in Section 5.2 and 5.3, respectively. In Section
5.4 is considered a method where input values in place of mid-gap conditions are used to

specify the solutions. This permits to avoid the complicated S-coefficients.  But it is
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then necessary to change the present linac design procedure.

In Chapter 6 the relativistic equations of motion are solved approximately and the two

corresponding sets of difference equations are derived.

At the end of the report tables are given for the transit time factor To and its
derivatives (Table I), for T- and S-coefficients (Table II), non-relativistic difference
equations across the whole gap (Table III), across the first half of it (Table IV) and for
the two corresponding sets where relativistic corrections are included (Table V and V1,

respectively).

Applications of these (or similar) beam dynamics equations are described, for example,

in refs. 10) - 12).



2. General Properties of the Field. Beam Dynamics Coefficients

This chapter deals in considerable detail with the properties of the field
representations and of the amplitude functions b(k,) proportional to the transit time factor

To(kz) contained in them. For those who are mainly interested in the derivation of the beam

dynamics equations it may suffice to have a look upon the field representations (2.2.11) to
(2.2.13), the expression for the amplitude function b(kz), eq. (2.4.6) (cf. egs.(1.1.11) and

(1.1.12)),whose most important property is given in equations (2.4.9), and upon the definitions

of beam dynamics coefficients described in Sections 2.6 and 2.T.

. H'f’
- e O

NT

Fig. 2.1.1 Field Distribution of the basic TM-mode in a cylindrical cavity
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2.1. General Description of the Cavity, of the Gap and of the Field

Before describing gap geometry and its characteristic parameters, it may be worthwhile
to say a few words about the electromagnetic field in the whole cell. The lowest TM-mode

of an empty cylindrical cavity (radius R) is (Fig. 2.1.1.) :

Ez(z,r,t) = A Jo(jo,lr/R) cos(wt)
E _(z,r,t)=0 (2.1.1)
r

- He(z,r,t) =A Jl(JO,lr/R) sin(wt)

where jo 1 = 2,405 is the first zero of the Bessel function Jo(x). The corresponding eigen
t]

frequency w/2m is given by :

ko = w/c = Jo,l/R (2.1.2)

The field distribution is homogeneous in the z-direction but decreases radially.

In the real Alvarez cavity (Fig. 1.1.1) the drift tubes aligned along the axis, r = O,
disturb the field there, but in the outer regions, R > r > R/3, the field distribution is
not so different from that in the empty cavity. The longitudinal electrical field EZ is
displayed in Figs. 2.1.2 and 2.1.3. Figure 2.1.2 shows the field Ez(z=0,r,t=0) in the centre
plane for the instant t=0 (peak field). The field strength is considerably increased in
the region of the drift tubes. This may be discussed using the static approximation which
is valid for distances from the metallic boundaries which are small in comparison with the
free space wave length Ao =2m ko = 1.5 m. The potential [ Ez dz between opposite walls is
then constant. If the distance between metallic surfaces is decreased, as is the case for
the drift tube region, the field strength is increased. The same reasoning explains the
drop in the field strength within the drift tubes, r < a. Figure 2.1.3 gives the longitu-
dinal distribution of Ez(z,r?t=0) along various lines r = const. The field cannot penetrate
into the drift tube bores, the field distribution is roughly rectangular for r = a. The
decay is less steep along the axis, r = 0. (The longitudinal distribution of Ez within the
gap varies to a certain extent with increasing gap length. . This is discussed in Section
2.5.) Just between the cylinders of the drift tubes the field strength EZ is highest.
Outside of them it decreases with increasing radius; its homogeneity in the z-direction is
gradually restored, and is almost perfect for r > R/3. The eigen frequency of the cavity
is lowered by the insertion of the drift tubes, e.g. an empty cavity with the same outer
dimensions as that whose field is displayed in Fig. 2.1.2 and 2.1.3, has an eigen frequency

of 215 MHz while the real Alvarez cavity has 203 MHz.

Gap geometry and the parameters characterizing it are shown in Fig. 2.1.4. The rims
of the drift tubes are rounded to prevent sparking. Therefore the numerical value of the

gap length is a somewhat ambiguous quantity. In the present work the gap and the adjoining
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Fig. 2.1.3. Longitudinal electric field, E (z,r), along various lines r/R = const. versus

longitudinal coordinate z. The position of the lines r = const. chosen is indicated in the
upper part of the figure displaying cavity geometry. Cavity MARTINI 51415 : Energy = 2.395
MeV, transit time factor T = 0.762, w/21 = 202,99 MHz, normalization: average field strength
EO = 1 Mv/m. Radius R = 93.5 cm, cell length L = 10.53 cm. The cross section of the drift
tube is bounded by a circle (R. = 0.25 cm) in the lower part and (approximately) by an ellipse
(semi-axes 3.96 cm and 5.10 cm’)in the upper part. Radius of drift tube bore a = 1.31 cm.
Values of EZ have been found by interpolation starting from the potential U(z,r) ==rH, found
by & mesh calculation. For lines r < a the method described in section 2.5 has been used. For
other lines a rather rough approximation is introduced by replacing in eq. (2.3.4) differential
quotients by differences : E ~ (1/r) AU/Ar where AU is the potential difference between
adjoining mesh lines and Ar ~ 1.5 mm mesh line distance.
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arift tubes are described by an infinitely long circular wave guide of radius a (= radius

of the drift tube bore) with a circumferential slot at r = a, -p/2 < z < p/2, where

ko]
"

g+ 2R; (2.1.3)

is the real distance (wall to wall) at r = a. If it is assumed that the electrical field
is rather homogeneous, EZ = const. in that portion r > a of the gap where the distance of
the metallic surfaces is smallest (=g) and where they are straight and parallel, then the
roundening of the rims will introduce a certain distortion of the field EZ at r = a. Here
this is not taken into account by physical considerations, but it is implicitely contained

in the coefficients Bn of the Fourier series :

iz <p/2: Ez(z,r =a) =2E Bo/2 D) Bn cos(2mz/p) | (2.1.%4)

= n=1
into which the tangential electrical field is expanded (Section 2.4).
In earlier works 3), 10),13) some effective gap length has been introduced :

g'=g+o Ri (2.1.5)

g' is not a geometrical parameter, it is empirically adjusted in such a way that the transit

time factor found by numerical integration of the defining integral :

L/2 L/2
T = ‘[ E (z,r = 0) cos(2mz/L) dz I E (z,r = 0) dz (2.1.6)
o z z
-L/2 =L/2

where the real field on the axis is used, equals that (TOO) for a homogeneous field

EZ = const.applied along the slot r = a, -g'/2 <z <g'/2:

2 1
Too - sin(2mng'/L) 1 (2.1.7)
2ng'/L Io(a/(2ﬂ/L)2' (w/c)?)
. . 10 1
Various numerical values have been proposed for a, e.g. o = /2 3), =1 ), = 0.85 3).

However, this approximation is not used here. Its merits are discussed at the end of

Section 6.2.
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2.2. Field Equations and Field Representations.

Throughout this report practical MKSA units will be used. In general, instead of time
t time-angle (phase) :

¢ = wt (2.2.1)

is employed. (v = angular frequency of the accelerating radio frequency field.) Axially

symmetrical, source-free, time-harmonic electromagnetic field TM-fields will only be regarded :

EG=HI‘=HZ= 0 9/36 =0
Mo B W
9z ot 3¢
1 BEZ BEZ
7 3;(rHO) =e g = ew Sa— (2.2.2)
oE 3E oH oH
—r__z __, _°__ ,-2
3z or M %t ey
JE oH
o 13 —Z _ g1 8
v T roar (rEr) Y32 0O Y 0

The field components of E_, Ez, H

of such a field may be derived from an electric Hertz
b

€]

vector T = Zz V(z,r,0) where V is a solution of the scalar Helmholtz equation

13%v _3%2v 1 3V 3%V . .,
= + = — + + = =
cZ9t2 ~ar2 T r or T az2 TV SO (2.2.3)

k2 = ey w? = w?/c? (2.2.4)

Field components are given by :

_ 32y
By = Szor (2.2.5)
- =-532V=- cw 32V
) dtdr arde

Along the metallic wall (of infinite conductivity) of a wave guide or cavity (radius a)

the tangential electrical field Ez vanishes. This implies for V the boundary condition :

r=a: V=0 (2.2.6)
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Of course, this is not true along the circumferential slot (-p/2 <z < p/2) where the gap

leads to the main cavity.

In the applications considered here the frequency w/2m (= 202 MHz) lies far below the
lowest cut—off frequency wcl/2w of the wave guide (0 = w cl/50 to wcl/lOO, cf.(2.4.39) or
(2.5.1)) so that all modes are evanescent. At the infinitely remote faces of the wave

guide may therefore be prescribed :

|z] = = V=0 (2.2.7)
If, however, the wave guide is closed by plates perpendicular to the z-axis say at z = -ll
and at z = 22, the condition :
2= -al ot g. =3 S—Z =0 (2.2.8)
applies. It is also appropriate for the quasi-periodic field of an Alvarez structure

driven in the zero mode.

Imagine the field distribution (cf. Fig. 2.5.3) corresponding to an instant where
phase stable particles are crossing a gap. Er is then positive at the end of it and nega-
tive at the entrance of the next gap, and so on. It has to change sign somewhere between
these gaps, say at z = -21, and z = 22. The field is not altered if there plates are
inserted. In this way the whole linac tank may be split into Single cells, each containing one
gap and (roughly) a half of the anterior and of the posterior drift tube. Since the point
7z = 0 is defined by the electric gap centre, the coordinates of the planes Er = 0 differ

in sign and may have different distances from it.

In a closed cavity with boundary conditions (6) and (8) the spectrum of eigen frequencies
is discrete. In a wave guide where (6) and (7) apply, the spectrum is continuous and this
brings the advantage that the fields may be described by integral representations.*) Since
the field decreases fast within the drift tube bores the difference in the field distributions
(cf. Section 2.5) due to the difference in boundary conditions (7) or (8) is expected to be
negligible as far as beam dynamics is concerned. As the fields in the wave guide decay

1

exponentially (w << wcl.) for ]z] » o, it 1s appropriate to represent them by Fourier integrals:

*
) There arises the additional difficulty that the complete system of eigen functions of a

cavity contains such ones which cannot be generated by an electric or a magnetic Hertz vector
> _ > > . . . .
T = eZ \4 5), so that the Green 's function analogous to that used in Section 2.3, is more

complicated.
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V(z,r,¢) = V(z,r) cos (¢ + ¢ )

E bk, ) . (2.2.9)
1 Z k
[ Jo(yr) et 2” dkz cos(¢ +¢O)

Ton L y27_(ya)
C o

with

. . 1/2
= = = 2 - 2
Y=y, + iy, =ik (2 - k7 )7 v, 20 (2.2.10)

¢, is just a phase constant. The partial waves JO(Yr) eikzZ are solutions of (3) for any
(complex)kZ ; so is their superposition with an arbitrary amplitude function. The latter

has been written down in a fashion anticipating some of the results of Sect. 2.k, The path

of integration C (cf. Fig. 2.2.1) avoids the singularities kZ =tk (y = 0). Here it does

not matter whether the indentations go upwards or downwards, since the poles kZ = iko do not
contribute to the electromagnetic field. (ef. egs. (11) to (13)). - The choice is important
e.g. in the case where V represents the velocity potential of an acoustical field (. grad V).-
The poles Jo(Ya) = 0 lie off the real kz -—axis if o < W s i.e. ko < jo,l/a (ef.(2.4.39)).
b(kz) is continuous and bounded for any real k . The branch Y, 2 0 of the square root y (10)
is chosen. (cf. Fig. 2.2.1). This ensures convergence of the integrals (9), (11) to (13),

as discussed in Section 2.4.C. No integral contains an odd power of vy(e.g. JO(Yr)/(YzJO(Ya)),
Jl(Yr)/(YJO(Ya)),...); each is a single-valued function of kz' In the following representations
for the field components derived from (9) according to (5), integration may be performed along

the real kz—axis, where the integrands are regular :

Ez(z,n¢) = Ez(z,r) cos(¢ + ¢O) = Ez(z,r) cos(wt + ¢O)
E bk ) .
- 1 Z ik z
o 3;(;;) JO(Yr) e g dkZ cos(¢o + ¢0) (2.2.11)
Er(z,r,¢) = Er(z,r) cos(¢ + ¢0)
E. 7 k J_(yr)
PR | z 1 ik z-
= -1 _2TT J b(kz) —_—YJO(Ya) e 'z dkz cos (¢ + d)o) (2.2.12)

—c0

uHe(z,r,¢) = pH_(z,r) sin(¢ + ¢O) = epw  9V(z,r)/dr sin(¢ + ¢O)

)
E. k T J_(yr} .
= -+ © 1 ikyz .
ol J b(kz) ;3;{;;7 dkz sin(¢ + ¢O) (2.2.13)

7)=9)

The correspondence with analogous representations used in earlier treatments will be

established by Eq. (2.6.10).
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Fig. 2.2.1. The complex kz—plane and the contours C, C, CU, C

L
C and C follow the real kz—axis, except that they are indented at k.Z = :_ko(C) and at
k =+k (C) resp. Cy (CL) are semi-circles whose radii tend to infinity. The
integrals (2.2.9) till (2.2.13), (5.1.13) till (5.1.16), (5.2.11) and (5.2.15) have

simple poles for kZ = i_inv, since there is Jo(ya) = 0.
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2.3. The Potential U= -r H .
\v)

The electric Hertz vector Zz V has the disadvantage that the boundary condition :

>

0=% E
B tang

=h xE = (n x Zr)a2 V/3zdr + (n x Zz)(kg + 32/322)V (2.3.1)

assumes a form as simple as (2.2.6) or (2.2.8) only if the wall coincides with a coordinate
> - -

surface, (n = e, or er). In the general case the explicit expression for it is on the

contrary somewhat more complicated than that, eq. (7) below, the condition E ang = 0 assumes

) ) 16)  *) t
for the potential U(z,r) defined by :

U(z,r) = - r He(z,r) =-cor oV(z,r)/or (2.3.2)

For that reason this potential is preferred when the field in a complicated but still axially

symmetrical configuration (as for instance a cell for the Alvarez structure) is calculated by

numerical methods (mesh calculations) 4) 13) 17).
The field equation for U is :
LU + kgu =32U/dr2 - l/r U/5r + 32U/5z2 + kiU =0 (2.3.3)

It is obtained from the equation for V, AV + kiV = 0, by use of the definition (2) and
with the help of the relation r 8/0r(AV) = ZL(r 3V/dr) which can be derived by straight-

forward calculation.

From (2.2.5) and (2.2.11) to (2.2.13) Er and EZ are found :

B (2,r) = (eur)™ 3U(z,r)/or (2.3.4)
=1

Er(z,r) = =(ewr) ~ 3U(z,r)/dz (2.3.5)
which may be combined to

> -1

E(z,r) = - (ewr) éé x VU(z,r) (2.3.6)
g@ = (- sin®, cos0,0) is a unit vector tangential to the circles r = const.
From

> > > -1 > - -1 > >
0 = Etang =nxE=- (ewr) n x (ee x VU) = = (ewr) ee(n, vU)

*®)

The minus sign in this definition has been adopted so that simultaneously Ez(z,r) >0

for any z and U(z,r) > O for O < z <« , if the cavity is excited in the lowest mode.
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> >
((ee, n) = O by the supposed axial symmetry) follows the boundary condition :

along walls (or planes of symmetry): 3U/dn = (Z, VU) =0 (2.3.7)

E and EZ must be finite at r = 0, so (4) and (5) give the additional condition :
r=0:U=0 (2.3.8)

(more exactly : lim rU(z,r) < ®). By integration of (1) it is shown that U(z,r) is pro-

portional to ther_e)iectric flux through a tube with radius r :

r T
[ B (m0)e a0 = [ 20(a0)/30 e = Uir) - (2.3.9)
o o
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2.4, Analytical Properties of the Field Amplitude and of the Field Representations

As it is intended to evaluate integrals (2.2.9) to (2.2.13) and others derived
from them, by Cauchy's residue theorem, some insight into the analytical properties of the
amplitude b(kZ) regarded as a function of complex kz, is needed. The results of this
investigation will allow to state that the field representations mentioned above are analytic
in the variables r and z in the interior of the drift tube space r < a. Simultaneously
is prepared the ground for a method elaborated in the next section which permits to determine
b(kz) approximately from cavity fields found by mesh calculations. In order to achieve
these goals the fact is exploited that the accelerating gap is approximated by a wave guide
in which a field is excited by an "external" field Ez(z) applied along the circumferential
slot r = a, -p/2 < z < p/2 :

-p/2 < z < p/2: E,(z,8) = E (2) (2.4.1)

I
(@]

lp/2| > z: E (z,8) = (2.4.2)

The field in the interior r < a is related to that given by (1) and (2) along the

cylinder r = a , by means of a Green 's function as demonstrated in Appendix 2.4D, eq. (43):

) P/2 _
1 - a,-y -ik ik z
Ez(z,r) =30 \[ dk_ dz Ej(z) el Pt Jo(Yr)/JO(Ya) r<a (2.4.3)
-0 L —P/2

Comparison with (2.211) yields an expression for the amplitude function :

p/2 -

Eb(k ) = I az Eaz‘(E) e 1K, 2 (2.4.4)
“p/2

°(

Ez(z) which is assumed to be symmetrical, E:(-;) =E, z), is expanded into a Fourier series :

1/2 + ) B cos(2mz/p) | = E ) B cos@msz/p) (2.4.5)

n=1 S =

a- -
Ez(z) = 2B,

td
i
=
td
n
td
n
o]

. - . a,- . .
Performing in (4) the integration with respect to z for this Ez(z), eq. (5) gives :
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. sin(kzp/2) ) ® Bn(-l)n sin(kzp/Z)
b(kz) = b(”kz) =2 ] Bs(-l) kZ ~ 21s/p =- b kzp L 1+ Gno (2m)? - (kzp)2
§ = n=o

(2.4.6)

where 6no is the Kronecker symbol; it is unity if n equals zero, it vanishes otherwise.

As indicated below (Appendix A), the inequality

IBnl < const./nt * 0>0,n#0 (2.4.7)

holds if EZ(Z) fulfils some reasonable conditions - in essence : Ez(z) is continuous and
bounded in -p/2 < z < p/2, it is symmetrical (E:(-z) = Ez(z)) and BE:/BZ is continuous except
for z = * p/2 where it is not more singular than 5/9z((p/2)2 - 22)%, a> 0.(7) is a sufficient
condition that the function b(kz) is continuous and analytical for any finite (real or

complex) kz and that it is permitted to interchange integrations and summations as performed

above.

The behaviour of b(kz) at ]kz| = = is determined by the essential singularity of the

sine. Writing :
iy (2.4.8)

it can be stated that :

lb(kz) eikzzl ~ e_(Z‘P/2)R siny_ 0

if z>p/2, O<y < and R + « (2.4.9)
. + .
Ib(kz) elkzZ] 5 e(z p/2) siny o
if z < -p/2, 0> ¢ > =7 and R » =

These are the most important properties of the amplitude function b(kz) upon which the
greater part of the derivation of beam dynamics equations will be based. Ir [zl < p/2,

the above limits (9) no longer hold since one of t@e exponentials of sin(kzp/2) contained

in b(kz) tends stronger to infinity than elkzz, e-lkzZ go to zero. In this case b(kz) must

be decomposed:
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blk,) = b,(k) +b_(k )

= _ ik p/2 o _1\S _ -1 _
b, (k ) iez ) B_(-1)"(x, - 2ms/p) ~ = b_(-k ) (2.%.10)
S = oo
(k) =i e P2 ] B (<)% - 2ns/p)
S = 0o
., iy
Then it is for kZ= Re :
lim |b+(k ) elkzz| =0 vhere -p/2 < z < p/2 O<Pp<m
R+ 2
(2.4.11)
lim |b_(k ) elkzz| =0 where p/2 > z >-p/2 0>y >=m
R > z
b+(kz) and b_(kz) have simple poles at kz = 21s/p, s =0, +1, + 2, ... with residues :

"

Res(b+(kz),kZ = 2ns/p) = - Res(b_(kz),kz 2ns/p) = Bs/i (2.4.12)

The integral representations (2.2.11) to(2.2.13) and any one which may be deduced from
them by derivations with respect to =z and r are analytical functions of z and r in the

cylinder O < r < § <a, =» <z <o,

This follows from the fact that these integrals are absolutely convergent since their
integrands are bounded (they are non— singular on the finite part of the real kz-axis) and

vanish exponentially for kz + + o (see appendix C).
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2.4. A The asymptotic properties of the Fourier coefficients Bn.

The behaviour (for large n) of Fourier coefficients is intimately connected with the

periodicity and continuity properties of the function they represent 18) 19).

An interesting and useful example is provided by the expansion 20

L J (nm)
o _ V71 Iatl +1/2 %
glz) = (12 = 22)" = E~?%E:§%§T + V7 T'(o+l) Z 9;_1__31175 cos(nz) (2.&.13))
n =1 (nr/2)
= CO/2 + Z Cn cos(nz)
n=1
|z| <7, a>0 or |z| <m, a>-1
. 4 . 21)
By use of the asymptotic formula of the Bessel functions:
1
Jv(x) = (2/mx) /2 cos(x = (v + %)%) , X >> 1, |argx| < (2.h.1L)

it is concluded that the Fourier coefficients behave for great n as

+1 = n
_ r(at1) 2° 7 ] (-1) ¢
€ ® vl O (a+1) 3 o+l 2 P > 1, o] < o+l

(2.4.15)

If o > 0, then the function on the left hand side of (13) is continuous and the series on

the right hand side is absolutely and uniformly convergent. If a is an integer, then all

. . .. . . +
derivatives up to the a -th order are finite, g(u)(z = + ) = finite, g(a l)(z =+ 1) =,

If o is not an integer, put o = r + p where r is the greatest non-negative integer contained

in o and g(r)(z = + 7) = finite, g(r+l)(z =+ ) = ., This behaviour is exactly reflected

by the sum of the series at this point.

A general discussion about the relation between the continuity of the function developed
(1imited to even functions) and the asymptotic behaviour of its Fourier—coefficients may start
from the formula :

f(x) = AO/2 + 2 An cos(nz) , A = L f(z) cos(nz) dz (2.4.16)

n=1 n am =T

*)

For simplicity in this appendix A period m is assumed instead of p .
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Performing partial integrations, taking into account possible finite jumps of f(z) at

Zio), Z;O), ceee zéo) and of f' at zil), zél), cees zél), gives
_1 . g .
LN [(f(ﬂ) + f(-7)) sin(nw) + . Z l(f(zp +0) - f(zp—o)) 51n(nxp)]
v
- % JLf'(Z) sin(nz) dz
_ 1 . : .
o T h [“"“) © ) sia(an) ¢ ] (e, v o) - £lz,m0) s1n(nxp)] (2.2.17)

p

+ %2 {(f'(“) - £'(=71)) cos(nm) + f'(z + o) -f'(z_ = 0)) cos(nzp)
1

=

m
-= I f"(z) cos(nz) dz

If £(z) has only finite jumps and f'(z) is integrable then An will tend to zero at least as

n. If f(z) is continuous, f£(w) = f£(-7), if £'(z) has only finite jumps and "(z) is
integrable, then An - 1/n? for great n, and so on. The assumption f'(n) = finite demands
already more than can be expected from the function f(z) (which will be identified with

Ez(z)) on physical reasons. On the other hand there is no need of IAnl < C/nz, but only of
lAn] < C/nl+0 , a > 0. In addition, even the conditions ensuring {Ani< ¢/n? can be relaxed
in comparison with those which flow from the present discussion of equation (17). A proof
employing more sophisticated methods (the second mean value theorem of the integral calculus)
can come along without invoking properties of the second derivative. But the treatment becomes

19)

more involved, so there will be only quoted from reference the necessary theorems together

with their presuppositions.

A basic property of a function arising in this context is covered by the Dirichlet
conditions: A function 'f(z) fulfils them, if it is bounded in the closed interval [ﬂ, —ﬂ] .
and if this interval can be broken up into a finite number of open intervals, in each of
which f(z) is monotonic (ref.lg), §93). There is the theorem (ibid., §10L4, III; ref.18)
Section 157): "If f(z) is bounded and continuous and otherwise satisfies Dirichlet's
conditions in -7 < z < m, while f(m=0) =f(-m + o) and if f£'(z) is bounded and otherwise

satisfies Dirichlet's conditions in the same interval, the coefficients in the Fourier

series for f(z) are less in absolute value than K/n?, X = const."

However, the presuppositions of the above theorem are still too incisive. The function
which is expanded into a Fourier series in the present discussion, is the tangential electrical
field Ez(z,r=a) = EZ(z) = F(2zn/p). From physical considerations it is expected that its
derivative BEz/Bz is weakly singular at z = + p/2, at the places where the inner rim goes

over into the cylindrical section of the drift tube bore. This means that F'(z) has the



- o4 -

same singularity at z = + m. Therefore it is not bounded and it does not fulfil the
complete set of assumptions of the above theorem. But it is reasonable to expect that the
singularity of F'(z) (and of aEi(z)/az) is of the same nature as that of 3/dz(n2 - 2z2)" with
some a > 0. Tt is then possible to construct a function f(z) = F(z) - A g(z) which ful-
fils the presuppositions of the above theorem, by subtracting out this singularity of the
derivative of F(z) with the help of a multiple of the function g(z) (with a = o) given in
equation (13) . By this choice of the constants o and A it is achieved that f'(z) is
bounded and fulfils the Dirichlet conditions. The Fourier coefficients An of f(z) therefore

1+

behave asymptotically as !/n2 . The asymptotic behaviour 1/n % of the coefficients ¢, of

g(z) is given by (15). The asymptotic behaviour of the coefficients Bn = An + ACn is

. +
determined by the smaller of the two exponents 2 and 1+ a. In general a < 1, so Bn < 1/nl a.
This reasoning is summarized in the following equation:

= 2
£(z) = A /2 + ) A cos(nz) |An| < K/n
n=1
+
Aglz) =AC /2+ | AC_ cos(nz) lc | <c/m®™ n>o0  (2.4.18)
o n n
n=1
0o
a+l
F(z) = £(z) + Ag(z) = B /2 + ) B cos(nz) |Bn|<.AC/n
n=1

From the preceding discussion it is concluded that the coefficients Bn of the Fourier

Expansion (5) of the tangential electrical field Ez(z) are governed by the inequality (7):

a —-—
Ez(z) = El
s

ne-1 8

+
By cos(27sz/D), |Bs| < const./lsll ® 4> 0,s#0 (2.4.19)
if it is supposed :

1.) Ez(z) fulfils Dirichlet's conditions in the closed interval -p/2 < z < p/2.
2.) E:(z) = Ez(-z) which ensures Ei(-p/e) = Ez(p/2)
3.) an(z)/Bz fulfils Dirichlet's conditions in -p/2 < z < p/2.

Qo
h.) Ez(z)/az is at z = *+ p/2 not more singular than the derivative 3/9z((p/2)2 = 22) with

o > 0.

It is reasonable to believe that these conditions are fairly well reproduced by the
real field existing in a linac gap. E: = Ez(z,a) will be continuous and bounded if there is
no sharp corner at z = + p/2. Neither it nor 3E2/82\= 3/9z Ez(z?a) will have an infinite
number of wiggles violating the condition of monotony in subintervals as demanded by Dirichlet's
conditions. 3E2/3Z is permitted to have a weak singularity as might arise at |z| = p/2

vwhere the curved rim joins the straight section of the interior of the drift tubes.
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Finally, it should be indicated how the conditions listed above may be relaxed. The
total symmetry EZ('Z) = Ei(z) may be given up; similarly the weak singularity of an/az

may be different at z = p/2 and at z = - p/2, e.g. BEz(z = p/2)/8z ~ (p/2 - z)al-l,
BEz(z = - p/2)/3z ~ (p/2 + z)OLQ-l s Og5 Oy > 0, so that the a in inequality (7) is the
minimum of o and o However, (7) will fail if Ez(-p/z) = Ei(p/e)is abandoned. I do not

say that giving up this assumption principally excludes the possibility of a rigorous proof
of beam dynamics equations like those developed in Chapter 5,but the treatment would

probably become more complicated.
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2.4.B Analytic Properties of the Amplitude function b(k )
4

The amplitude function :

-0

b ) =2 [ By (-1)%sin(k,p/2) (k, - ons/p) (2.4.6)
S=w
is continuous and bounded for any real kz, because it consists of an absolutely and uniformly
convergent series of continuous and bounded terms. The denominator of the coefficient of BS
vanishes at kz =oms/p (s =0, + , +2, ...); but so does the numerator, the ratio there
being equal to (<1)° and this is the maximum value the modulus of the function considered

assumes for any real k_, i.e. |sin(kzp/2)/(kZ - 2ns/p)| < 1.

IBnl = K (2.4.20)

- s sin(kzp/Z)
ok )| < |2 1 B_(-1)
= [e]

s kz - 2ns/p

e~ 8

by the assumptions 1. — 4. on the electrical field Eaz'(z) Ev(z,r = a) listed at the end

. .. . +
of the appendix A. Since the Fourier coefficients Bn behave asymptotically as 1/nl ¢
where o > 0, the series z Bn is absolutely convergent and its sum is a constant.
For complex pkz/2 = ¢ iu2 = (p/2) R elwit can be shown that
|b(kz)| < pK cosh(u2) = pK cosh (‘1?2B sin ¥) (2.4.21)

This estimate results from :

: 2
(sin u cosh u2)

- 2 2

(ul ms)? + ug

IA

(cosh u2)2

4 s 2 . 2
{cos u sinh ue) sinh u\\

< < (cosh u2)2
(ul ms) w3 u, /

from which follows :

. 2
sln(kzp/2)

pkz/2 - ms

< 2 cosh u,

2

: 2 4 . 2 |
(sin w cosh u2) (cos w sinh u2) J

T 1 o2
(ul Ts) w3
which finally gives :

5 —o sin(kzp/z)
l-I; b(kz)l <2 7 IBSI m < b cosh u,

S= 5= n=o

) lBs‘ < cosh u, 8 1 an| = 2K cosh u,
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Using (21) it is concluded :

. o . - .
- !b(kz) elkzzl < e (z=p/2)R 51nw_¥e (z+p/2)R siny >0
if z>p/2,0<w<nl
and R > (2.14.22)
or z <=p/2, 0 > ¢y >=1

When estimating b+(kz) and b_(kz), one may proceed in the following manner :

o=

2 -u, o 5 2 = =-u
£ - +
o b+(kz)| <e 2 z IBSI (ul ms) ug| < Ke 2
s= (2.k.23)
21 (k) < <Ke 2
p
where K = ) ‘Bs|/Min [(ul - ms)2 + ug] . The final result is :
sm
2 ik z = =(p/2+z)R siny
p|‘t>_,_(kz)e 2“] <Ke -0
if z > =-p/2, 0 <y <™ and R » » .,
(2.h.24)
5 . _ i .
;lb_(kz) elkZZ| <% e(p/2 z)R siny >0

if z <p/2 ,0>¢ > -1 and R + » .
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2.k, C Absolute Convergence of Integrals Representing Fields

The integrands of the integrals (2.2.11) to (2.2.13) (and of any derivative with respect
to r and/or z) are well behaved for any finite real kz. b(kz) is continuous and bounded
along the whole real kz-axis, as explained just before. The zeros of Jo(ya) lie off the

)

real kz-axis if the frequency w/2m is smaller than the lowest cut—off frequency (w < v,y

(ef. Fig. 2.2.1 and appendix D, especially eq. (39)).

The discussion of the behaviour of the integrands for kZ tending to + «» is at first
limited to that of E > (2.2.11). Use is made of the fact that for great real k the root
y is purely imaginary (cf.(2.2.10))and approximately proportional to i[kzl :

1 1
y = (k%2 - x2)% ¢ (-k )% = i|x | (2.4.25)
[¢] Z Z z
and
|Jn(yr)| z |In(|kz|r)| |kzl >k (2.4.26)
21)

The modified Bessel function will be replaced by its asymptotic expression:
x 1
In(x) ~ e /(2mx)? x| >> 1 largx| < n/2 . (2.k.27)

With these formulae and with (20) the modulus of the integrand of (2.2.11) is estimated

for large real kz to :
Ib(kz) k2 Jo(yr)/Jo(ya)l < |b(kz)IIIé|kz|r)/Io(|kZ|a)

P T RY e L B Cre I (2.4.28)

if a>r K >+ o

provided r > O ; otherwise JO(O) =] and the second line of (28) reads as X (2n|kz|a)%
e_lkzI & It results that the integral (2.2.11) representing Ez(z,r) is absolutely and
uniformly convergent for any z and r < 6 < a. All other integrals are treated in a
completely analogous fashion. Comparing those for Er and HO to that of EZ, one recognizes
that JO(Yr) is replaced by szl(Yr)/Y, Jl(Yr)/y resp.,vhich are finite even for Yy = O.
Differentiating any one of these integrals with respect to z and/or r,the integrand will
contain some powers of kz, Y and some derivative of Jn({y). Any integrand arising in this

way is comprised within the following general expression estimated in the same manner as

that for Ez above in (28).

m>0, s>1, n>0, n+s>0, £ >0, mn,s,yq integers
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(k) 2 kjys Jr(f“)(yr)/Jo(ya)i < Klkz‘m+sllr(12')(|kz|r)/lo(|kz|a)| (2.14.29)
< K (a/r)%lkzlm*se_‘kzl(a-r) >0
if a>r k -+t

(26) and (27) are also valid for the &-th derivative of Jn(yr), ifr#0. Ifr
(1)
o

Jg ~ J£2)~ -Ji ~ (J2 - Jo)/2 =- 1/2 for r = 0) and does not produce any troubles in this

0,

Jé%) (yr) is either zero (e.g. Jé ~J ~ - Jl =0 forr =0 ) or some constant (e.g.

context.
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2.4 D Green 's function for a Wave Guide and Derivation of Eg. (2.4.3)

Here will be summarized expressions and properties of the Green 's function Gl used in

the course of the present derivations. This is done in a rather short fashion which should
suffice for those acquainted with this technique. A detailed introduction will be given
elsewhere 22), see also ref.(h3).

To relate a vector field (as e.g. the electromagnetic field) in the interior of a domain
to the corresponding field at the surrounding boundary, in general a Green 's tensor is
necessary. However, in this simple case (among others) with axial symmetry where there is only
one component of the tangential electrical field different from zero, one can emplay the

scalar Green 's function Gl(z,rggg;) belonging to the differential equation :

AG, + kéGl =-6(z -32) 8(r - 7)/r (2.4.30)

where the S-functions have their usual meaning : The integrals:

8 -
fd(z -z)dz =1,
o

<0

- §
Sr-x) r dr = Iﬁ(r -r)dr=1 (2.4,31)
Y

" =

if the interval of integration (a,B) ( (Y,8) ) includes the point z (r), and are zero other-

wise. Gl obeys the boundary conditions :

r=a: G, =0 (2.4.32)

and

lim G, = 0, 1lim aGl/az =0 (if o <wcl) (2.4.33)
|2 |+ |2 |+
If into Green's second theorem :
[T - == - - - = = w29
) [ _[ (Gl A V(z,r) = V(z,r) AGl) rdr dz = \[df (Gl o Vo
z==0 r=0
© a
3G ~ 3G
= r dz (G él - -:l) + 1lim r dr (G LA V——L)
1 or or = 1.-
- - |z]+w - 9z o0z
Z=m—co r=a r=o0
(2.4,34)
a
3G
+ 1lim |r dr (G aV-V-—]-'
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Gl as defined above, is inserted,the second and the third integral on the right hand side
vanish by (33). In the first integral the first term is zero by (32). On the left hand
side of (34) for V(z,r) some solution of the Helmholtz equation :

AV(z,r) + kéV =0 (2.4,35)

is used and AV and KGl are eliminated with the help of the differential equations (35) and
(30):

I'_ﬁs
BRI
R
B
&
—
T
=
<
1
<
o1
(9]
1]

[ r dr dz (=6, K2V + Vv k26 + V(z,r) 8(z = z) 8(r - r)/T )
(2.4.36)

Equating (34) and (36) finally gives :

V(z,xr) = - a I dz V(z,r) ael(z,r;z,;)/a; (r < a) (2.4,37)

Gl can be represented by a Fourier integral :

(2,4.38)

o -

-1 J ax 2T s ()| 5 (ve) B () = 8P (va) 3 (vm) |19 (va)

1 - -
with y = (kg - kz)2 , (2.2,10), and ro=r,r =T if r > r and vice versa. This integral

(1) (1)
. I ) H9 (va) /3 _(va))
exp(ikzz) resp. and is therefore a solution of (30) at least for r ¥ r , z # z. The case

22)

is a superposition of elementary waves JO(Yr) exp(ikzz), (B (yr) = JO(Yr

z = ;, r =7 is a bit more tricky and it is referred to ref.”“’for a detailed discussidn.
It is obvious that G, =0atr=a, for there r =r_=a and the square bracket in (38) is
zero, The symmetry in the arguments (z,r) and (z,r) indicated in eq. (38) and the property

(33) can be seen if Gl is expanded into a series of wave guide modes, eq. (40) The integrand
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in (38) is single-valued: The only branch points could arise at y = O, since Hél)(x) contains

a term proportional to logx; but in the square bracket of (38) the logyof Hi

1) (yr>) cancels
against that of Hgl)(ya) if y - 0; this can be proved by putting H0 = JO + 1 NO and inserting
the series expansions of J_ and N_. Since (38) is single-valued, it is permissible to evaluate
it by Cauchy's residue theorem. The path of integration in the kz-plane is closed by a semi-
circle CU (CL) if z = 2z > 0 ( < 0) and the integrals along CU (CL) vagish if the radii of these
semi-circles tend to infinity. (c¢f. Section 2.5. B). The integral I equals 2ni times the
sum of the residues of the poles enclosed by the paths real axis + CU_w (real axis + CL).

(cf. Fig. 2.2.1). These simple poles lie at k = * ing:

1

- _
sing =xfGgare]  (ebs)

o
o
—
=2
©
fast
1l
o
=<
)
1
[}
[l
()
v
-
n

n >0 if w-= koc < Jv/a =w .

ch/Zn is the cut-off frequency of the v=th circular TM-mode in a wave guide of radius a.
Only the second term of the square bracket (38) contributes to these poles, in the first one
the Jo(ya) of the numerator and that of the denominator cancel. For the calculation of the

residues compare eq. (2.5.10).

With Hél)(jv) = 21/(Jl(jv) njv) which follows from the Wronskian given below in (L2),

the residue series becomes :

= J (3 r/a) 3 (§x/a)

=

Gl(z,rzz,;) ==, e'“v|z‘zl (2.4.20)

®

S E
v=1 nv 1(Jv)
The symmetry Gl(;,;,z,r) = Gl(z,r,;,;) is now obvious as well as (33). (33) is fulfilled as
long as all n, are positive, Differentiating (38) (r< =r, r_ = r = a) gives :

>

8Gl(z,r,z,r)/3r|;=a =

= % ‘[dkz eikz(z_z) ('Y)Jo(Ya) Jo(Ya) Hil)(va) - Hil)(Ya) Jl(Ya) /JO(Ya)
o . L (2.h.41)
= - é-i—a jakz delkz(z-Z)Jo(Yr)/Jo(Ya)
In order to arrive at the last equation, the Wronskian:
70 iV - g ) B = 2/(nix) (2.4.42)
o 1 1 o °e

has been used.



—33_

With the aid of (L41) equation (37) assumes its final form :

V(z,r) = é; J az V(;,a) fdkzeikz(z-z) Jo(Yr)/Jo(Ya) (2.4.,43)

g =0

Identifying V(z,r) with EZ(z,r) which as a Cartesian field component fulfils the homogeneous

Helmholtz equation (35), gives equation (3).
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2.4.E Different Expressions for EY and bk ) .
Z Z

Mesh calculations yield numerical values for the field at discrete points only.  There
arises the question of interpolation: fit some analytical expression to these values given
along a line r = const., either r = a, |z| < p/2 or r < a, |z‘ < L/2. One possibility,
exploited in the DPreceding parts of this section, consists of expanding Ez(z,r=a) into a
Fourier series. = To my opinion this is the most natural approach. — The amplitude function

b(kz) which is by (4) a Fourier transform, turns out to be a convenient analytical function.

Tt has been investigated whether the Fourier transforms of other functions which could
be used for fitting, are suitable from the point of view that the integrals (2.2.11) to
(2.2.,13) containing the corresponding b(kz) can be evaluated by Cauchy's residue theorem,
The result is that all other functions considered have rather impractical Fourier transforms

b(kz).

There have been considered some simple functions which come into mind at the inspection

of field distributions ( e.g. Figs. 2.5.3 , 2.5.4) :

a) A function which is easy to fit to given values is a polynomial. An even polynomial
might be used t6 approximate the exciting fields in the gap circumference. (By reason of the
sy mmetry supposed at the beginning, eq. (5), the tangential fields U(z,a) = - a He(z,a) and

E z(z,a) are even. It suffices to investigate just an even power, e.g.

|z| < p/2 U(z) = 220
Its Fourier transform :
p/2
b(k) = z2n e-lkz dz
-p/2
- n n=1
2n+1 . v v+2
B ,| sin(pk/2)- 1 (=2) + 1 -2
(2 mn)'[ oz L Tament (ep)2v T oo (P/2) I G ()7
V=0 V=0

has poles of order 2n at k = 0; evaluation of residues would be tedious if n > 1.
Fields along a line r = const., =L/2 < z < L/2 situated within the drift tube space exhibit
bell-like shapes. They might be approximated by:

b) a Gaussian times a polynomial. Its Fourier transform is again a Gaussian times
a polynomial, now in k . exp(-ki) grows indefinitely for |kzl + o in the part
m/k <!arg(kz)| < 31/4 of the complex k_-plane. It is not possible to evaluate an
_.integral fdkzb(kz) ... by Cauchy's residue theorem,



c¢) the inverse of an even polynomial, e.g.
= (.2 2y"1
U(z) = (22 + c2) c > 0.
Its Fourier transform :
-|k Ic
e 'z

blk,) = (n/c)

is not at all analytic in kz'
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2.5 Series Expansions of Fields

Series expansions for the various field components valid within the drift tube space
r < a. are obtained by evaluating the integral representations (2.2.9) till (2.2.13) contain-
ing b(kz) given in equation (2.4,6) by means of Cauchy's residue theorem. If z < =p/2
(z > p/2) the path of integration (C, or the real kz-axis resp.) is closed by a semi-circle
L (CU) situated in the lower (upper) kz-plane (ef. Fig. 2.2.1). By (2.4.9),(2.4.22) the
integral along CL (CU) vanishes if the radius R of these semi-circles tends to infinity.
The integral along the real axis therefore equals 2mi times the sum of the residues due to

the simple poles enclosed :

1
=0 : = 3 = 3 = 4+ 7 = 3 2 o 2)2 o5
Jlya) =0 ya=j o= L,k =xdn =4 ((3,/a)% = 2) (2.5.1)

If |z| < p/2 the method just described fails, since one of the exponentials in
b(kz) eikzZ ~ eikz(P/2 *z) _ e'ikz(P/2'Z) becomes infinite along CU and CL if R increases
indefinitely. For this reason the path of integration is deformed into C(Fig. 2.5.1) and
b(kz) afterwards split up into b(kz) = b+(kz) + b_(kz), see (2,4,10), The integrals

containing b+(kz) , b_(kz) resp. vanish along C._, C_ resp. in the limit R -~ » ., The integral

U’ L
along C is 27i times the sum of the residues due to the two chains of simple poles, one given

by (2.5.1), the other by kZ = 21s/p, 5 = 0, ¥1, +2,... .

Before listing these expansions, it may be worthwhile to recall that from the symmetry
of the tangential electrical field

E(z) = E (z,a) = E (-z,a) = E(=2)
z z zZ z

as assumed in eq. (2.4.5), result the following symmetries of the field components :

V(z,r) = V(=z,r) He(z,r) = HO(-z,r)
(2.5.2)
EZ(z,r) = Ez(-z,r) R Er(z,r) = - Er(z,r)
One has
|z| > p/2: V(z,r) =
(2.5.3a)

n o . .
Bn(-l) Jo(Jvr/a) 51nh£nvp/2) -

vlz|+D
a

33,06 2 4 2
n=o L* 6n0 =y VLIV (pnv) (2mm)
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Fig. 2.5.1 The contour C. It is indented at kz =+ 2rn/p, n =1, 2, ... and at kZ
The integral representations of the field components EZ . Er and Heare regular at kZ

and these points do not give a contribution for them,
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|z] = p/2 : v(|p/2|,r) =

n
Cn 2 By 1 M) e B, (-1) I (ur/p)
2 (xkp)? 7 (k_a) (2m)* = (k p)* I_(wa/p)

1 (2.5.3b)

n=1

= B (-1)" I (§r/s)

e v +D
7 n . 2 2
So Lt i, Jl(Jv) (pnv) + (2m) b

-2
|z| < p/2 : V(z,r) =

o E o2 EQ 1 I (k) - B cos(2mz/p) I (v r/p)
P72 (kop)2 Jo(koa) n=l(2'rrn)2 - (kop)zlo( wa7p)

(2.5.3¢)

n . B
o Bn(-l) w Jo(Jvr/a) co;h(nvz) e'nvP/2f o
i c

-2 z Z . . i 3
+ 8 +
neo Tt 8 lJle(Jv) (pn )* + (2m)
'v'=

with:
i

b = [omi2 = e pr2 ] (2.5.4)

and

. ik |z] _ . ik p/2
2k D =-1iE b(ko) e o 2 ko Db i El b+(ko) e o

_ s ik z -ik z
2k D, =-i El[ b (k) eo" + b_(k ) e "o ]
D, » Db and Dc do not contribute to the electromagnetic field. The expressions for the

field components follow from the series listed above by use of (2.2.5) and (2.2.11 to 13)or by

direct evaluation of the integral representations (r < a) :

=) n © . . .
lz] >2: B (z,r) = 4B (2 2 ) B (-1) ) I Gr/a) 3 sinh(n p/2) __ 2]
2 Z 1\a e Vv
n=o 1+ & _v=1 . (pn_)?% + (2mn)?
no Jl(Jv) v

(2.5.5a)

=R . P- =
|z| st E(5r) =E

(2.5.5D)
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n . . -n
i 2(2) = B (-1 = T (ir/a) § eV
O

s 2 2
1+ Gno v=1 Jl(Jv) (an) + (2m)

[o ifa#r

5§ =<
ar Ll ifa=r
B(z=p/2%o) = D(z=-p/2;0)= % nzo B (-1)7(1 + ano)'l
B J (kr) ® I (ur/p)
. D . _ “o'o0o o' m
|z| 5 Ez(z,r) 2 El ‘-2 Jo(koa‘) + nZan cos(2mz/p) _—Io( una/P)
(2.5.5¢)
2 » n ® . .
- 2</§:> ) B (-1) y J (i x/a) jcosn(n z) e_nvp/z}
00+ 8 . v=1 3.G) (pnv)2 + (2m)?
o B (-1)" « J (j.r/a) pn sinh(n_p/2)
z > p/2 : _ S n 1V v -n_|z|
z < =p/2: Er(z,r) =X hEl a nzo 1+ (Sno %;l Jl(jv) (an)2 + (2m)? ¢ v
(R.5.6a)
® I (ur/p)
D, = 2m s L n - .
lz] < 5 Er(z,r) 2 Ell:nzl Bn u sin(2mnz/p) IO( una/p) (2.5.6c)
n . .
L2 ozo '.Bn(-l) & Jl(Jvr/a) pn, s1nh(nVZ) e-nvp/2]
a n=o 1+ Gno v=1 Jl('jv) (an)2 * (21rn)2
2 (-1)™ 3,3 r/a)  sinh(n p/2) |2
|z|>P- H (z,r) = =14 E ew ) L A zenv
2" 1 oo L 5.0, (pn )* + (2m)
(2.5.7a)
B J . (k r) £ I_(ur/p)
|z|=§:H®(‘g—,r)=-El Ew D EO;:L— Lo EBn(-l)n']]J'—'—l—‘n——‘
o® J (ka) n=l nI (ua/p)
o' o o''n (2.5.7D)
© - n o - 3 - -1
.2} B (-1) Jl(J.vr/a) eznvp ,
& n=0 1+ 6no v=1’ J]_(‘]v) (an) + (2m)
B J(kr) = I (ur/p)
<. H(z,r) =-2E, ew L.t Lo + ) Bcos(2ﬂnz/p)l'—-—l—L—
lzl =2 9 Z 4 T 1 1Y kop JO(koa) n=1 n Un IO(L!na/P)
n .
. E Bn(_l) ® Jl("]vl:/a) cosh(nvz) e-“vp/2
& n=o 1+ Gno V=L Jl(Jv) (pnv)2 + (2m)?

(2.5.7¢)
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Remember that E1 R BO =1, Bn originate from the Fourier expansion of the tangential
electrical field applied along the gap circumference :

o

E (z, r=a) = E-(2) = 2E. |1/2 + ] B_cos(2mz/p)|,0 < z < p/2 (2,k4,5)
z Z 1 n=1 n -

How to find their numerical values is explained three paragraphs later. Series of type (a)
represent superpositions of (evanescant) wave guide modes, in (b) and (c) there is a second
sum (running over n only) directly related to the exciting field E:(z). Equation (5b)

reproduces the jump of Ez assumed at the beginning in equations (2.4.1), (2.L4.2) .

A1l the expressions (a) and (c) above are analytical functions in r and =z provided
r <a and |z| # p/2. However, at and around z = *+ p/2 the series of v converge very
slowly, the product of the exponential times the hyperbolic function which has a decisive
influence upon a speedy decrease of terms, decaying dilatorily with increasing v . They
are hardly tractable numerically in this region, In the series for V, Ez’ HO but not in
that for Er the troublesome part can be summed at |z| = p/2 which procedure yields series (b).

The derivatives of all these series are definitely or indefinitely divergent at 1zi = p/2.

If r > a the series (b) and (c) diverge, the n-th term being approximately proportional
to B exp(=2mn(a=r)). B which is expected to diminish only as an inverse power of n, cf.
Section 2.4 A, cannot overcome the exponential growth of the modified Bessel function. It
is completely natural that something goes wrong for r > a. The Green's function Gl
(2.4.38) is valid within the space r < a only, the expression becomes infinite for r > a.
The domain of integration in Green's theorem (2.4.,34) is confined to the region T < a and
the integral in equation (2,4.36) is zero if r > a, i.e. V(z,r) = Ez(z,r) =0 if r > a.
The representation (2.4.36) describes a field excited by sources situated at r = a,
|z| < p/2 which have been chosen in such a way to produce the field in the interior, but no
field outside r = a. (Compare the analogous situation in electrostatics or potential

35) )

theory, e.g. ref . The series which is derived from the integral just described, should
behave accordingly. For a series it is a rather difficult job to be zero for a continuous
range of the argument r (» > r > a) without being identical zero for any r. So it has
recourse to divergence,to bring its domain of validity in concordance with that of the
generating integral. This statement should not be taken too literally. The use of
Cauchy's residue theorem for the evaluation of the integrals (2.2.9) to (2.2.13) is

impossible if r > a.

Just for fun we once evaluated some series (¢) for r > a with a finite number of terms
in n. Already for modest r - a > O the sums oscillate between large positive and negative

. . . . 2
values. Series of type (a) have been investigated numerically 3).

In general they are
convergent for r > a, they diverge only at some discrete points. But there seems to be no

physical application of these expressions for r > a.
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The above series contain the still unknown Fourier coefficients, El . Bn' A finite
number of them may be extracted from cavity fields calculated by numerical methods. Mesh
calculations (e.g. 13), 17) yield numerical values of U = -rHO at discrete points within the
whole cavity. One employs a truncated series for -rHO(Tc), inserts for r and z the coordinates
of a point lying within the drift tube space r < a and equates it to the corresponding mesh
value Um' In this way one sets up a system of linear equations for the unknown Fourier
coefficients. We choose one mesh line situated very near to the edge of the drift tube,

r % a,and take N terms,i.e. N Fourier coefficients, N being the number of mesh points in
the region o < z < p/2. All the information needed concerning the field in the drift tube
region can be derived in that way which has the advantage of introducing properties of an
exact field but may lack some smoothing effect as is achieved when one is fitting a curve

containing less disposable parameters than the number of values given.

Using these Fourier coefficients, U = UC may be calculated for all points within the
space (r < a), and compared with the corresponding values Um given by mesh calculation .
For z < p/2 an agreement in U/r of about 1% is achieved. TFor z > p/2 : Uc/r< Um/r, the
difference increases rapidly with increasing z, and amounts to about 50 to 60 percent at

z = L/2.

This is not as serious as it appears since the values at z = /2 are smaller by three
to five orders of magnitude than their maximum values attained in the central region of the
cell. To a large extent the difference between Uc and Um is due to the fact that the above
series describe the field in the wave guide rather than a cavity with end plates at
z =+ L/2, It is possible to give an approximate physical reasoning which leads to the
result that at 12] = L/2 the wave guide field value is about half of the cavity field value.

This is explained in Fig. 2.5.2.

With the aid of the series listed before, field distributions in a gap may be calculated.
Examples are shown in Figs. 2.5.3, 2,5.t and 2.1.3.

Agreement between the electric field along the axis, Ez(z, r=0), computed in this way
with that found by fitting a parabola to the mesh values and deriving this expression, is
very satisfactory. In general, in the gap differences are not greater than 1%, often
smaller than 1 °/oo. Outside it differences may be greater but are not serious. In some
cavities where a column of mesh points is too near to the gap end, z = p/2, convergence of
series at these points is insufficient for one or two points, and greater differences may
occur. This affects particularly Er which has just there its maximum. But this does not
appreciably influence the values of the beam dynamics toefficients when these fields are used
for their computation.

In conclusion it may be said that the method described is somewhat complicated and pro=
bably demands more computer and programmer's time than the simple interpolations usually
employed. So its use seems to be justified only for tests of the quality of mesh calcul-
ations (where, however, the domain of comparison is restricted to the gap) and for computation

of the Fourier coefficients Bn to find approximate expressions for To(k) and the S=coefficients.
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The electrical fields corresponding to the static approximation follow from the

expressions above by the replacements:
k =0 e 21 pn_ > va/a (2.5.8)

This is a very good approximation, since in (l):(jv/a)2 >> kg, e.g.

(5,/2)7 = (2472077 < 5,8 x 10" > 89,9 « (32 = (2n/0)2 V)

and in (4):(2m) >> (kop)z, e.g.

(om)2 >> (2m x p/A)2 =~ (2m x (0.02 to 25)/150)2

This reflects the well known fact that the static solution is good as long as the distances
from metallic boundaries are small in comparison with A. Further simplification to a
homogeneous field across the gap (BS =0, s # 0) gives the results already given by R.TAYLOR.3)
The non-static field given in ref. 10) slightly differs from that in (2.5.5) and is only an

approximate solution of Maxwell's equations.

Fig. 2.5.2 The difference between cavity and wave guide field values at cell end,

z = L/2. TFor fixed r the wave guide field U, e (z,r) = - rHe(z,r),

eq. (2.5.7a) decreases exponentially with increasing z (—). The cavity
boundary condition BUcav/Bz =0, eq. (2.3.7), can be approximately fulfilled
by adding to Uw “ the field found from it by reflections(=--). This pro-

cedure yields the field (~..-) which has at z = L/2 a value twice that of

U .
Weg.

* . . . . -2 . .
) In the numerical expressions the dimension (metres) 1s omitted.
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2.5,A Evaluation of Residues

The calculation of the various residues rendering the above series (3) to (7) is
easy since all poles are simple.

The following formula is used

Res( g(z)/(z =z ) 5 z=12 ) = glz) (2.5.9)

The residue of g(kz)/Jo(ya) at the zeros, ya = jv , of the Bessel function is found with
the aid of de 1l'Hospital's rule

.
= 2 o 12)2
ya = a (ko kz)

Res( g(kz)/Jo(Ya) HS

1+

kz + inv
in ) =g(+in) lim . (77—
v v kz+ +in) Jo (ya)

(2.5.10)
glx in ) d/ak ( 1/Jo(\(a))

-1
- . (s 2(= 3 s
. = g(£ in ) a2, 8% (3 1nv)/3v}
s - X in

v
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) 2 ___|
2 | _axis_ } _ 4100

} } } e Z (CN)
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’

‘Fig. 2.5.3. Fields in the drift tube space of cavity KATZ 15141, Energy = .6LkL MeV,
transit time factor T = .68 , w/2r = 202,19 MHz, normalization : average field strength

E =V /L=1M/mn Cavity radius R = 48,1 cm, inner radius of drift tube a = 0.TL cm,
ofter Jiameter of drift tube = 17.9 cm, radius of curvature of outer rim = 1,94 cm, radius
of curvature in inner rim R. = .73 cm, distance of mesh-lines Az = Ar » 2 mm. Second index
of fields indicates mesh lifle suffix.
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kZ1
X-j
N1
Fig. 2.5.5. The complex kz-plane. The semi-circles CUR and CLR pass just between
. . N . \
* ing and * ing ., the N-th and the (N+1)-th zero of the Bessel function JO(Ya) = 0. The
1
branch cuts v, = 0 which ensure that the imaginary part Y, of the root Y= v, +iY2 = (ki - kg)2

is positive throughout the whole plane, run along the real kZ -axis between —ko and +kO and
along the whole imaginary kZ -axis. They are needed only for the estimate of the asymptotic
behaviour of the integrand in (2.5.15). The integrals themselves are single-valued.
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Fig. 2.5.6 Linear Approximations for Sine and Cosine
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2.5.B Rigorous Demonstration of Expansion into a Residue Series

The procedure to be employed will be demonstrated on an example where the series (5a)
of Ez(z,r), z >p/2, will be derived from the corresponding integral representation (2.2.11).
At first an integral around the semi-circle of finite radius RN situated in the upper half of

the complex kz-plane is set up and evaluated by use of Cauchy's residue theorem (see Fig.2.5.5):

o N
J‘f(kz) a, + \[f(kz) d = ami ) Res(f(kz) 3k o=+ i”v) (2.5.11)

'RN CURN v=1

The integrand:

£(k ) = (8 /27) b(k ) oiEg2 3 (y)/3 (va) (2.5.12)

is regular within the domain enclosed except for the simple poles JO(Ya) =0 .

RN is defined as :

R = a(N + i)r N = integer (2.5.13)

Then C passes just half-way between the poles kz = inN = 1 jN/a ~ i (N=1)/a and kz =
inN +1 %1 (W + 3/4)/a and never hits a singularity. If with increasing N i) the integral
dong CUR vanishes, i1i) the other integral in (11) assumes a definite value, iii) the series
on the ryght hand side of (11) wniformly converges, then the integral | f(kz) dkz equals

-—Cco

211 times the residue series.

The proof of i) is as follows :

For sufficiently great N, kz and Yy are given along CUR by:
N
= iy - iy
k, =Bye Ak, =Ry ie ay
(2.5.1k)
)
= + 1 =2—2§~' = 3 + i >
Y=g oty (ko kz) x lkz i RNlcoswl RN siny (Y2 > 0)

The subscript N will now be dropped, but the limit R -+ » is always to be understood

as N >« , Fmploying (2.4.21) and (2.4.25) till (2.4.27) the second integral of (11) is
estimated at :

| QY

m
1 - 1 -(g= |
ff<kz) @, | ¢ a(a/n)? fom® siny ) T SR SR gy
CUR o

(2.5.15)

=

2K(a/r)

IA

(Il + I, 4 13 + Ih) .



- 4 -
/2 T
The integral in the first line is split up into f + Jﬁ and cosh ( ) is decomposed

into the exponentials. This yields 4 integrals as inaicateg{2 As the arguments of all
exponentials are negative, the above inequality still holds when siny, cosy are replaced

by the following smaller linear functions (cf. Fig. 2.5.6):

2 y/v < siny, 1=-2y/m < lcosy| 0<y< w/2
(2.5.16)
2 - 2y/m < sinp, -1+ 2 P/m < Icoswl m2 <Py <m
These integrals may be evaluated :
e [ (z = p/2) - (a=r)] 20/ Rz 3 p/2) _ cler)R
Il , = R o Rlar J o z 3P a~r m Q=7 e e
’ '0 -2[(2 : p/2) - (a—r)]
(2.5.17)
"L 1 ev/
- - - Rl (z = p/2) = (a=r) | 2¢/m
I, =Re 2R(z 7 p/2) R(a=r) I e + s =
E]

/2

e-R(a-r) _ e-R(z " p/2)

2[(z 7 p/2) = (a=1)]

condition i) above is now obvious, for all four integrals and therefore (15) tend to zero
ifR. N> , provided a=r > O and z > p/2.
The residues sre given by :

Z

owi Res( £(k ) 3 k = in) == B DB(in) e v jvJo(jvr/a)/(azanl(jv) )

Z

(2.5.18)

© -1
== El sinh(nvp/2) e jVJo(jvr/a)/(ale(jv)) nEOBn(-l)p(l+6no) 1y EZV + (2nn/p)2]

With:

o=

~cos [(v - l)n]

lg GG r/a)l s1, 9,35,) & (2/m)
and

<W]|B|=x=KbEx
n=o

n=o

4 E B (-1)" L T | g2 =
4 n (a+ Gno) Jv/a Ny + (2m/p)? ]
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it is :
121\' Res(f(kz) H kz = inv)l : (El E/e) [e-nV(Z-P/z) + e-nv(Z + P/Q)]

Here z = p/2 < z + p/2 , therefore the modulus of the general term of the residue series

(11) decreases faster than exp(-nv(z-p/2)) - exp(-jv(z-p/Z)/aJSexp(-Vﬂ(z-p/Z)/a)-

The latter produces a geometric series 2 qn , with q = =n(z=-p/2)/a. It can be concluded
that the condition iii) above is fulfilled since residue series (11) is uniformly and
absolutely convergent, if z > /2. Condition ii) above has already been ascertained in
Section 2.4.C. The proof of the expansion of the integral (2.2.11) into the series (5a) 1is
now complete. Interchange of summation with regard to n and v is permissible, the series

in n and v being uniformly and absolutely convergent in the interior of the drift tube space.

When z < =p/2, then a circle CLR lying in the lower half of the complex kz—plane is

used to close the path running along Ehe real axis and the whole game is played again mutatis
mutandis.

When |z| < p/2 the path of the integrations is deformed into C . The choice of the
indentations is arbitrary; the sole purpose is to avoid the singularities of b+(kz) and
b_(kz) lying on the real axis. Afterwards the following equation is set up:

£,(k) =b,(k) eX2% 3 (yr)/T_(va)
+'z +' 7z o o

Lf(kz) S i f+(kz) ak o+ é[f_(kz) dk =
U L (2.5.19)

©

=2mi ] |Res( f+(kz) 3 &,
v=1

in,) - Res( r_(k,) 3 k, = =in )

o o

+2mi ] Res( £,(k,) 3 k, = 2m/p) - 2ri ] Res( £_(k,) 3 kx, = -2m/p)
n=o n=1

Ll

o ¢ are shown to be zero by (2.4,11).  (17) again applies to the series in v ; (9)
anH (2.4, L12) serve for the calculation of the residues of the second chain., The first
series in n contained in (3b), (3c),(5b), (5¢), (6b), (6c), (Tb) and (Tc) uniformly con-
verge ; for them bounding geometric series may be set up by use of :

B I_(wr/p)/I(we/p) - B e 2T sy (2.5.20)

and similar relations for the terms in Il .
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2.5C Summation of series at |z| = p/2

At |z| = p/2 the expansions (a) valid for |z| > p/2 and (c¢) valid for |z| < p/2 join
(except that for E. (2.5.6), whose behaviour at this point remains undetermined). In order
to prove this fact the part of 2 cosh(nvp/z) exp(-nvp/z) =1 - exp(-nvp) or sinh(nvp/2)
exp(-nvp/2) no longer containing an exponential, must be summed. For this purpose the

integral :

r k3, 0r) 1 )
z  y9J (ya) kJ - (2m/p)*

lim
R>w» |k |'=R
Z

(2.5.21)

is introduced., If the radius of the circle |kz| =R, C - Co in Figs. 2.2.1 and 2.5.5,
tends to infinity, then the integral vanishes as may be shown by the method described in
equations (14) to (17). In consequence, the sum of all residues enclosed which are due to

the simple poles at kz = i_inv, * ko, + 2mn/p, is zero, This gives :

J Jvr/a) 1

(3,) (n )%+ (2m)2~

o

2 ) =

v=1 Jv Jl
(2.5.22)

¢ Lem)? - x2)?]) 1 i 1

- )23%)(kop)2 - (2m)? ~ (k_p)? - (2m)?

1, [(2m)? - (xp

= -k2
Ifn =0, IO(XM ko)

its derivative with respect to r is employed for H

Jo(kox). This expansion serves for summing (3), the series for U ;

o equations (7). The integral to be

used for Ez’ equations (5), gives a slightly different result :

cm e 2 2y | =
Rli?m g § d.kz kz Jo(yr)/[Jo(Ya) (kZ (2mn/p) )] Gar (2.5.23)
e | =R
vhere Gar =1if r = a, Gar = 0 if r# a. The residue series belonging to (23) is :

1
o . . r 2 _ 272

(2)° AL N VN = om)? - (x p) g

a 9,0 (pn ) + (2m) ar Io(%'[( omn)? _(kop)zjé)

(2.5.2h)

A trial to set up a similar integral to produce the corresponding series of Er(g,r) is not
successful; residues due to kz = inv, 2mn/p cancel against those arising from kz = - inv,

-2nmn/p respectively.
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2.6 Voltage, Transit Time Factor, T—coefficients

The instantaneous peak voltage, measured at the instant wt =¢ = -¢O along the line

r = const is :
V(r) = J\ E (z,r) dz = B, b(0) J _(k r)/J (ka) = VJ (kr) (2.6.1)

For the evaluation of this integral,the representation (2.2.11) of EZ has been inserted,

b(0) = p (cf. (2.4.6))has been used; and the definitions :

Vl = V(a) = E.p vV =v(0) = EOL = Elp/JO(koa) (2.6.2)

have been adopted.

Vl(VO) is the "voltage" across the gap (along the axis), El(EO) the average field
strength at the same lines. L is the length of the cell. In numerical results of field
calculations, it is common to normalize the fields such that Eo =1 MV/m. (In a linac
under operation EO =1=-3M//m.) In the static limit (ko = 0) there is no r-dependence of
the voltage (1), and in practice it is negligible, since (for example) 0 < kor < koa =
= ora/A s 31 1072, V) sV < 0,9988.

When EO is computed according to (2) with the help of El found by the method described
in Section 2.5, it does not exactly reproduce the normalization of 1 MV/m, but deviations of

more than 1 or 2% are very exceptional.

When approximately solving the equations of particle motion, integrals like :

n
Ez(z,r) cos(kz) dz \[E}(z,r) sin (kz) dz
o o
(2.6.3)
“.; (o]
Ez(z,r) sin(kz) dz , Jj Er(z,r) cos(kz) dz
K o
will arise, where k = w/io. (éo= mid plane velocity of the particle). For this reason

these integrals will be introduced as dynamical coefficients (T- and S—-coefficients), and
their properties will be discussed in this and the following section. For the present k
may just be regarded as a parameter, k > ko’ whose connections with particle veloeity does

not matter.

The longitudinal T=coefficient Tl(k,r) is defined as :

28

vy Tl(k,r) = Ez(z,r) cos(kz) dz = VoTo(k) Io(krr) (2.6.4,)

-—CO



with
2)% (2.6.5)
T o
The evaluation of the above integral containing Ez(z,r) from (2.2.11) and b(kz) from

(2.4.6) shows that the result factorizes in the way indicated on the right hand side.
To(k) is defined below.

The same factorization can be achieved in the following integral over the radial

e

electrical field, called the transverse T-coefficient Tr(k,r) :

(2.6.6)

vom () = | Binr) sin(ka) 2= Vo T (6) K Tk

-=C0

and similarly in the integral over the magnetic field, called the magnetic T-coefficient

Tm(k,r) :

v, T (k,r) = - i; ‘[ uHg(z,r) cos(kz) dz = V T (k) 1, (k) /K, (2.6.7)

In (4),(6) and (7) use has already been made of the transit time factor, defined as :

(k) = %; J£Ez(z,0) cos(kz) dz (2.6.8)

All T=coefficients are known as soon as k and the transit time factor To are given;

they may just be regarded as convenient abbreviations.

Evaluation of the above integral with EZ from (2,2.11) and b(kz) from (2.4.6) gives :

_ bfk) Jo(koa) _
o) = 500) Tk ool 1+ )
(2.6.9)
n
o (k) = Jo(koa) sin(kp/2) Y= - E 2(-1) B (kp)?
00 Io(kra) (kp/2) n=l (2m)? - (kp)?
This is rewritten with the help of (2)

E, b(k)/Io(kra) =V, To(k) (2.6.10)

Inserting this into (2.2.11) to ( 2.2.13) gives the same field representations as used in

earlier treatments 7)-9).
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1), 8)

In earlier work the factor Jo(koa) + 1 is missing 3 where To(k) was taken
from the static approximation, ko = 0. In many cases the field Ez(z,a) applied along the

gap has been approximated by a homogeneous one, Ez(z,a) = El, and Y has been neglected.

The transit time factor has been introduced into the theory of linac particle dynamics
by PANOFSKYl). Together with its derivatives Té(k), Tg(k), it plays a primary role in
beam dynamics calculations treating the motion of a proton which crosses an accelerating
gap (see Section 3.1 and Chapter 5). A1l these quantities are needed for the single
value k = w/zo, and may be easily obtaired from fields given numerically by numerical inte-
gration of the integral defined in (8). Regarding the cell as a closed cavity, a common

definition for T, is, instead of (8) :

L/2 L/2
T = ‘r E (2,0) cos§%5 dz I E_(2,0) dz (2.6.11)
° -y *? -L/2

The transit time factor To(k) for any k = w/éo is found from T , T' , .. with the help
o o

of a Taylor's series around 2 /L :
1
T (k) = - '+ = (k-
O( ) TO + (k = 27 /L) TO *3 (kx = 27/L) Tg + ... (2.6.12)

To(k) is a measure of the distribution of E_ in the longitudinal direction, and
0 < ]TO| 1. TO ~ 1 for small ideal gaps, and decreases with increasing gap size.
Too corresponds to an excitation by a purely homogeneous field Ez = El across the boundary
of the gap; Y accounts for the deviation from homogeneity. Y is expected to be not very
large compared with unity, since the aim is to achieve a field as homogeneous as possible,

i.e. 1= BO >> Bn (n > 1) (and since each term contains in addition a factor of order
1/n2).

The fields in the gaps of a number of Alvarez cells have been studied; and the transit
time factor, To’ and its derivatives have been evaluated by use of the formulae given in

table II. k was computed from :

=

k = m/io = (m/c)/(c/éo) =k, [ 1 - (ch/W)} (2.6.13)

where mc2 is proton rest mass and W the mean kinetic energy of the cell 13). The list
o . s . . 1 L
of cavities comprised some of the cavities of the CERN 3 MeV experimental linac 3) 2 ),

25) 26)27)‘

two cavities designed by KATZ The fields and

beam dynamics coefficients of the latter have been re-calculated by MARTINI and WARNER 2&).

and a number of MURA cavities.

There appears quite a clear correlation between the value of Y (which in turn strongly
depends on the value of Bl), the "uniformity" of the exeiting field, E:(z) = Ez(z,r=a), and
(at not too high energy) the ratio Ri/p (ef. Fig. 2.1.4). As a measure of the uniformity
the ratio p9/p may be introduced where p9/2 is the distance where the field Ez has decayed

to 90% of its maximum value, Numerical results are compared in table 2.6.1.
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The following tentative conclusions can be drawn. In the 3 MeV linac cavities the
field EZ attaing a high degree of uniformity, very probably due to the small ratio Ri/p
(and may be also due to a favourable shaping of the outer part of the drift tube). Y is
small, The transit time factor, To , and its derivatives can be very well approximated
by that of a uniform field, Too In the two KATZ cavities Ri/P is greater, therefore Y is.
greater. To and especially Té cannot be approximated by that of a uniform field. In the
low energy MURA cavities Ri/p is not small enough, the field uniformity parameter p9/p is
smaller than 0.8 and the differences between To and Too and also between the corresponding
derivatives are quite appreciable. With increasing gap length (cf. the 63 MeV cavity)
p9/p again approaches 0.8, Y drops to .03 and agreement between TO and TOo and also between
the derivatives becomes satisfactory. It is interesting that for the cavities in the range
47 to 83 MeV Y is small in spite of the central depression of EZ (this depression already
appears in the 19 MeV Cell). In the 197 MeV cell Y,on the contrary, is again quite great.
At not too great gap length, comparison of T0 found by numerical integration of Ez(z,r=0)
with the above TOO may give an indication of the field distribution in the gap circumference.
ir |Y| = ITO - Tool/Too is small, the field EZ has either a plateau or a not too deep central
depression, while a great Y indicates that the field soon begins to drop from the maximum
which in that case is assumed at the gap centre or very near to it.

The value of TO is strongly influenced by the gap geometry. Small radius of curvature
of the inner drift tube rim may enhance the electrical field at the gap end, thereby increasing

To at low energy or decreasing it at high energy.

Also the bore radius a is of importance. In practice, To may vary between about .50 and
0.85 . If transverse geometries are comparable, TO first increases with energy. Then To
is roughly constant between say 5 and 50 MeV and afterwards it again decreases, due to the

deep central depression of the electrical field upon the axis.



TABLE VII

*IIA STqBL UT USATS aae saejowesed TeoTweUuAp DUE TBOTI33W0s8 ITayT

*ONTEA UNWIXEW. S3T JO %06 03 paddosp sey .Mm PTSTF SU3 YOTUM SUOTEB 9OUBISTDP U3 ST m\mm

*SSTATIABD SNOTIBA JO SJI09DBJ SWIY FTSURI],

‘T°9'C °TqBL

80T~ 991"~ | 8¢T"~| Ye¢ - | 89L°- | Lgg- Geg - | OLL*- | 84G" 10° 6° ¢02T*~| 48T"-| TTO°L6T| G9¥ T¢
160° - ¢c0*~ | 900°=| Log*- | ¥ov-- | g¥lL* gesr - | ¢vG - | T0L" Y- AN 6G00° | o¥o* | B860°¥8 |9¢L o¢
610" - Ggo- vTo* | zo¢ - | evve- | LGLe ¢0¢e- | 6P~ | gGL Go* 88" vv1o* | o0t | VelLe¢9 |zbe oz
960°* 11" 920" | 092~ | 62¢°- | Ges* 90° I£N €920° | ¥G0* | 9GL*L¥ | 0¢s o¢ VU
GetT Gge* ¢90* | g4z~ | 2h¢-- | gI8* 60° 8L* 2990 | 6¥T* | ¢9V*6T | T¥6 o¢
¢8T" LLg*+ | 260 | ¢z - | ovs - | gIs* vvee- | 1vet- | L1g® TT” 29° TOT* | 9¢2* | 098°0T | I¥2 oz
G6T* LG TIT* | 82e*~ | G¢¢*- | 618" vezs- | sz¢r- | 128" 91" g¥* €621 | 262 | 69v ¢ | Ge¢ T¢
6L0* 89T°+ | 090" | L¥e*- | Lg¢*- | esl® 9bee- | 16¢°-| 98l otT* TL® 9¢90° | L¥T* | 186°L | Vg0 ¢t
GGT* 1~ 86¢°+ | 9zz* | L2T*- | ¢16°- | 889° 6TT - | 926°- | 6L9° 9¢° 4% ce6e | 91V | tho- VT ¢t o
yoo-+ Lyor 910" | L8T*- | otTb*- | ¥9l- 88T~ | 90¥-- | oLL® 80° 98* v9to* | 090° | Y9z | L19 16
100+ gbo* LT0* | 18T~ | 02¥*- | 96L° ¢8I~ | GTI¥Y*- | 29l* 80° Lg* GLTO® | G90° | G6¢*2 | STV 16 .
200" - Lso* 810" | LLT*- | 61F°- | LGL® 6LT*- | 9T¥"- | 09L° Lo* 98° GOTO* | 0LO® | T68°T |2IT 16 >MMM
G90°- 860° 820 | 621°- | 69V~ | 9TL* Vet | 29v - | T2l 80°* 98° 9820 | GOT* | 8¢l ¢oc oL
61T - ¢to- ¢20° | G80°- | 60G*- | 289° TOT*- | 2T16°-| 069° ot* og* 6¢20° | 680° | 8GG* TOO 0L
ohe 9 °F
°%5 - Q1 | 99797 |oog07| ol e °5 v S o1
m\H g m\mﬁH X Tg memwm £y1ABD
SJUSTOTJFO0) I9TINO WOIJ UOT3BIS€QUT TROTISUMU £




—51-

2.,6.A Evaluation of Voltage and T-coefficients

The evaluation of the quantities V(r), T,, T , T and T defined above by integrals,
r

is easily accomplished by methods of complex integration.

In the expression defining the voltage V(r) (eq.(1)):

2 2 o .
El ik z
V(r) = lin l[ E (z,r) dz = == 1lim J‘ dz [ dk bk ) e z° J (yr)/J (ya)
z 2m z z o [}
,Q,—>oo_l 2_>°°-2, _:o

(2.6.14)

the path of integration in the complex kz-plane is indented at k = 0 (Co’ see Fig., 2.6.1)

before the integration with respect to z is performed :

E .
. . I3
V(r) = =i 2% lim J ak, b(k)) % etz I (yr)/3 (va)
Q > ¢ zZ
o (2.6.15)
1 =ik, 8
+ Jd.kz b(kz) e 2 JO(Yr)/JO(Ya)
Z
c
o)

In the first (second) integral the path c, is completed by the addition of CU (CL)
(Fig. 2.2.1) whose contribution vanishes, as usual (cf. (2.4.9) and (2.5.15) to (2.5.1T)),
if & > p/2. The integrals equal 2mi times the sum of the residues due to the simple
poles enclosed. Those due to kz =+ in (-inv) (Jo(ya) = 0) contain a factor e
(ef.(2.5.18))and vanish in the 1limit § > » . In the first integral remains the contri-

bution due to kZ = O which does not depend on £ :
V(r) = El b(0) Jo(kor)/Jo(kOa) = Elp Jo(kor)/Jo(koa) (2.6.16)

b(0) = p follows from (2.4.6): terms with n # O vanish for k, =0 ; that withn =0
(2 BO sin(kzplz)hqkzp) yields in the limit kZ + 0: Bop =p .

To begin the treatment of the Il-coefficient, ¢ (Fig. 2.2.1) is used as path of

integration in the complex kz-plane 3 this permits to perform the integration with

respect to z :

)
v Tl(k,r) = 1lim J Ez(z,r) cos(kz) dz

9 >

-
. N - . _ . _
) El_ tin J‘ " 1ok i) -ia(k +k) . Gk =k) _ o in(k, k) )
b YNy ik + k) ik - k)
L > o o z z

(2.6.17)
x b(k,) I (yr)/3 (ya)
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The four integrals, each one containing one exponential, are evaluated as before
~ ik + k), =-it(k + k) . .
where C is closed by CU (CL) for e z - (e z — '), Residues due to kZ =+ ing
vanish if & » = , In the second, third integral respectively, there remain the
contributions due to k= -k, +k resp., they are equal since b(=k) = b(k), and yield :
VOTl(k,r) = E

N (b(k)/Io(kra) ) Io(krr) (2.6.18)

with = iy(k)

0 gives the transit time factor :

;
= 2 o 12 2
K (k k2 )2 >0, eq. (5).

=]

’..;T

-
[t}

T, (k,r=0) = (B, /V_) (b(k)/T_(k a))

. ) 3 (k_a) bE)/(pI_(k2))  (2.6.19)

E/V = El/V(O) = Jo(koa)/p has been taken from (2). Inserting b(k) from (2.L4.6)
9

)e Tr(k,r) and Tm(k,r) may be treated in the same way.

kZ2

\\~4// = kzr

Fig. 2.6.1 The contour CO
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2.7 The S=coefficients

Among the integrals listed in (2.6.3), two which are even functions in z by the symmetry
properties (2.5.2) of the field, have been employed for the definition of the T-coefficients.
Tt is this symmetry which permits the factorization of the radial dependence accomplished
in equations (2.6.4) and (2.6.6). The odd functions give rise to the S-coefficients, needed
for dynamical calculations in the first half of the gap. First attempts of this type have
been started by LAPOSTOLLE 7)9), and the present definitions of the S=coefficients are

generalizations of his idea.

The longitudinal, the transverse and the magnetic S=coefficient are defined as :

©

Vosl(k,r) =2 l EZ(z,r) sin(kz) dz (2.7.1)
o

VoSr(k’r) =2 Er(z,r) cos(kz) dz (2.7.2)
o

VoSm(k,r) = Ei uHe(z,r) sin(kz) dz (2.7.3)
)

(It should be noted that the above S-coefficients are completely different from the
s-factor (coupling-coefficient) defined by SWENSON 4) .)

=N and S ( as well as T,

dimension of a length. Tt may be tempting to introduce dimensionless definitions by multi-

and Tr) are dimensionless, while S, (and Tm) have the

plying the right hand sides of (2.6.7) and (2.7.3) by k. However, this brings disadvantages in
the presentation of dynamical formulae, because it is then no longer possible to write
a/ax, s (k ,r) K =k = a/a 8_(k,r).
On the other hand in numerics it is preferable to introduce some normalization.
Without it S and T are smaller than the other T- and S-coefficients by a factor 10 to 100.
It may be best to multlply T and S by 2n/L and to modify dynamical formulae in Tables v to VI ac=
cordingly.n all these formulae Sm(or dSm/dk, dZSm/dkz) is preceded by k. Therefore the

normalization can be done in the following way :
kS = (xL/2r) x (2r §_/L) = (kL/2m) x S
m m m norm

where kL/2m ~ 1. S

The various S—coefficients are related to each other by :
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- - 2
v, asl(k,r)/ar =2 wuHg(0,r)/k v, K2 Sr(k,r)/k (2.7.4)
V. 38 (k,r)/or = 2 E (O,r) = V_8_(k,r)/r = k V_8S_(k,r) (2.7.5)
o r 4 o r o 1
VoS (k,r) = 2= uH (0,r) == V_ S (k,r) (2.7.6)
o Pp\EeT) T HiHglYeT k ‘o Pp T el

[e]

Numerical values of the S-coefficients (with k = w/éo) may be found by numerical
integration of the defining integrals. Regarding the cell as a closed cavity, a common

definition for Sl(k,r) is instead of (1) :

(01 =2 B () sinl2 e o) (2.7.7)
s (r) =2 E (z,r) sin— dz E (z2,0) dz 2.7.7
1 J; Z L J;/Z zZ

*
and similarly for the other two S—coefficients.) It is expected that then the relations

(4) to (6) are no longer exactly fulfilled, but that they represent a good approximation.
For the evaluation of the radial derivatives of the S—coefficients (4) and (5) may be

useful since they permit to circumvent the need of radial derivatives of the fields.

The S-coefficients do not exhibit such a simple dependence on r comparable to that of
the T=coefficients. With € as the path of integration in the kz-plane (Fig. 2.7.1) it is
possible to integrate with respect to z and evaluate the integrals in kz in the same way as

the field expression in the case |z| < p/2. This gives :

Sl(k,r) = - To(k)ctg(kp/z) Io(krr)

J (k r) pk B I (nur/p)
[e] [e] _ I O n
* ok/2 b, (kg2) nzl (2m)* = (xp)* Io(una/p) (2.7.8)
2 B (-1)n g (j.r/a) exp(-nvp/2) J
- B n o "V v
8 Jo(koa) (kP)(a) nzo 1 + éno - Jl(jv) (kp)? + (nvp)Z (2mn)2 + (nvp)z
with
_ 1
2
W= (2m)2 - (kop)2 (2.5.4)
-
and
- 3
np = (jvp/a)2 - (kop)2 (2.5.1)
L
*) Sl(k,r) = Sl(r) + (k - 27/L) Si(r) + %-(k - 21/L)2 Sz(r) + ...
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The expression in the first line of (8) may be rewritten as :

- T, (k,r) cte(xp/2)

Equation (8) is rewritten in a different notation suitable for displaying numerical results:

S . (r) =8, (r)
. im (2.7.8a)
1o(T) + Z
n=1 ln(r)
* Slr(r)
k = w/io is taken from eq.(2.6.13)and is no longer indicated.
The series for the radial S=-coefficient:
8,.(k,r) = T (k) cte(kp/2) lg—r I, (k,x)
© 2
T R S Sl i (2.7.9)
oo™ 4 (2m)2 - (kp)? ) Io(una/p)
- o : - 2
o ) B Z B ( )" Jl(JY_r/a) exp(znvp/z‘) ] (;\Vp) i
pmo T F 80 = 9.0 (kp)E 4 (np)® (kp)° + (n D)
where the first line equals :
Tr(k,r) ctg(kp/2),
is written in the same way as:
8.(r) =s_ ()
+ Y Srn(r)
n:
+8,,.(r) (2.7.92)
The magnetic S=coefficient is :
1
-5 Sm(k r) = - To(k) ctg(kp/2) —— k ) l(k r) (2.7.10)
1 I (k) ® B 1 I{yr/p)
* ko/2 k P b Iolkga) ke Z (21rn)2 - () Io(una/p) T
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B (-1)" 7 J.(j.r/a) exp(-n_p/2) (2. 7. 10)
- D n v 1 v VP 1
° Jo(koa) = a nZO 1+ éno vil Jl(jv) (kp)® + (nv’p)2 (2m)* + (nv:p)2

The first term on the right hand side is :

- -;— Tm(k,r) ctg(kp/2)

A programme has been prepared for the evaluation of the above series for Sl(k,r) and
Sr(k,r) and for the derivatives dSl/dk, d/dk BSl/Br, dSr/dk, d/dk BSr/ar for the single
value k computed from(2,6.13). The Fourier coefficients, Bn, are found by the method
described in Section 2.5. The behaviour of the various terms of these series depends much
more sensitively upon the field distribution and the gap geometry, than is the case of the
transit time factor, To . Therefore tables of results for some of the cavities are given
using the notation introduced in equations (8a) and (9a). For sake of comparison the
values of the beam dynamics coefficients computed by numerical integration are also given as
well as the partial sums when only contributions due to the first three Fourier coefficients

are retained, (S S ) . Sr/r is given since Sr behaves linearly for not too great r,.

la2® "ra2
In the derivatives some terms show striking similarities with corresponding terms in
Sl and Sr . They have the same order of magnitude as their counterparts, often almost the
same value. These correspondences are summarized in the following equations where the notations

of equations (8a) and(9a) are used :

ks, /dk ~ s (a)

a/dk asln/ar ~ -5 (b)
(2.7.11)

k asm/ak ~ S, (1/3 = 1/100) ()

da/dk asm/ar ~ -sln (a)

The sign ~ in the above relations means that the expressions on both sides are of about the
same order of magnitude. k dsrn/dk is smaller than Srn and this is indicated by the numerical

factor included in the bracket.

The following conclusions can be drawn., The terms Slm . Srm containing the transit
time factor are almost always important, as well as their derivatives in dSl/dk, d/dk BSl/Br seese
The same can be said about S . The magnitude of the terms S

lo 1n
of their derivatives) generally decreases with increasing n. However, this decrease is less

. Srn ( and similarly that

pronounced for higher energies. At low energy only the first, say two or three Fourier
coefficients, Bn , are important. In the CERN 3 MeV experimental linac cavities (e.g.

MARTINI 51L415) the terms of type Sln and Srn are small due to the good uniformity of the field.
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While the double series Slr and Srr are small in the KATZ and MURA cavities, they are not
completely negligible in the 3 MeV linac cavities. There it may be even necessary to retain two
terms of the series in v which exponentially decreases with increasing v,  The convergence

with respect to this index depends quite sensitively upon the ratio p/a = (g + 2Ri)/a.

In conclusion it can be said that at low energy only the first few harmonies of the field

Ez(z) = Ez(z,r=a) applied along the gap circumference, eq. (2.4.5) determine the behaviour

of ysthe beam dynamics coefficients. With increasing energy more and more harmonics become

of equal importance in the S-coefficients. However, in the beam dynamics equations these
coefficients are multiplied by ratios like eVO/W(W = kinetic energy) and the contributions

as a whole become increasingly smaller. For many applications it may suffice to use besides
Slm or Srm the parts of the above expressions which contain the first two or three Fourier
coefficients. Still the arising formulae are lengthy and the computation of derivatives is
tedious. It is annoying that these simple (and in most cases monotonous) functions of r

are given by such frightening expressions.
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2.7.A Derivation of Relations Connecting the S=coefficients

These relations are found by expressing the fields by the Hertz potential V(z,r)
(equations (2.2.5) and (2.2.11) to 2.2.13)) and by partial integrations. Use is also made
of the fact that all fields vanish at

z] == .

Proof of (k4):

V5 (kr) =2 I E (z,r) sin(kz) dz =2 \[ sin(kz) (k2 + 92/32%) V(z,r) dz
o o
k2 z=° K2 cwav
=-2 cos(kz) V 2 f?z- cos(kz) dz (2.7.12)
z =0
(o)
v 2= T 3V
+ 2 — sin(kz) -2k J‘— cos(kz) dz
3z 9z
z=o0 A

k2 K2\
=2, v(o,r) -2k 1——;]

v, 88, (k,r)/or

2 kg/k w(o,r)/or =2 ki/k J32v(z,r)/araz cos(kz) dz
o)

=2 ko uHe(O,r) - ki/k vO Sr(k,r) (2.7.122a)

When deriving the above formula with respect to k, the « contained in the first term must

be regarded as a constant independent of k.

Proof of (5) :

_ T o (32v(a,r 193V
v, BSr(k,r)/Br v Sr(k,r)/r =2 ‘£ 5a <ﬂi—=—l + 2 3r> cos(kz) dz

I)Ez(z,r)
= =2 I 5. cos(kz) dz (2.7.13)
o
Z = oo Y
= =2 E, cos(kz) -2 kf Ez(z,r) sin(kz) dz
z =0
o

2 EZ(O,r) - kV, Sl(k,r)
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Proof of (6):

v, S (k,r) = =2 l‘i—o J W, (z,r) sin(kz) dz = = 2 i_o en Jg_z(z’r) Finlis) az
o o
Z = © @ 2
=2 ;— 5%" cos(kz) —g% - 2;—3;’—\]‘ gzZr cos(kz) dz  (2.7.1k4)
o} =0 [e] o
=2c -1
K Wy (0,r) =3 ¥, 8, (kr)
Kzz c
— M N— t + '/\', \UammnUsmn U o Kz
-6 4w 2 -K <Ko | K, K 2 4w b
P P P P p P

Fig. 2.7.1 The contour C. It is indented at k =*k and
at kZ = + 2m/p, n = 0,1,2,...
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2.7.B Series Expansions for the S-coefficients

At first the integral representation (2.2.11) and the contour C (see Fig. 2,2.1) are

used :

2
2 lim I Ez(z,r) sin(kz) dz

L >

v, 8 (k,r)

)
E . .
= -3 X 1im j dz J &k, b(kz)<elz(kz+k) _ elz(kz-k))Jo(Yr)/Jo(Ya)

L > -

C

| i2(k_+k) _ if(k_=k) _
= =i 2 qinm j dk e Z 1 e z 1

2| i(x +x)  i(k - k) b(k,) I, (vr)/I (va)
2 > = z z

n
3

.. i + . .
The integrals containing ell(kz—k) are evaluated in the same way as those for the T=-coef-

ficients : C and CU make up a closed contour and, in the limit & - =, the contributions of

all poles enclosed vanish except that arising from kz = +k :

. Io(krr) E I 1 1 Jo(vr)

Vo8 (kr) =i Bb(k) Ty vy V& 1T Ty Tk -k (k) 570y
(o) r ) Z bA (e}

=iV 1 (k,r) + e (2.7.15)

-~

Now the contour C is changed into € (Fig. 2.7.1) and b(kz) decomposed afterwards
into b(kz) = b+(kz) + b_(kz) (ef.(2.4.10) ). For b, b_ respectively, the integral
along CU (CL) is again zero, see (2.4.11) and (2.4.24). The integral which has been left
in (15) is 2ri times the sum of residues due to the poles enclosed kZ = +k, iﬁnv, 0,

+2m/p (n = 1,2,...) ¢
(v /E) 8, (k,r) = 1 (k) I_(kr)/I_(ka) =

= (=i b (k) =1 b_(-K) ) I (kx)/T (kz2)

s I (G x/a) b+(1nv)( 1 1 ) b_(=in ) 1 o
s : — — — pa— —
= Jl(Jv)a /Jv in, in k ing k ing in, k ing k

+i 2B itk g (k,¥)/ (3 (x 2))

= I,(yr/p) 5 1 _ 1 N 1 _ 1
Y Io(una/p) n|2m/p + Kk 2m/p -k =2m/p +k -2m/p -k

+
n
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Tn the lasttwo lines the residues (2.4.12) have been used. From (2.4.6) and (2.4,10)

it is found :

i [b(k) - b6 - b-(‘k)] I B,(-1)° (x-2ws/p) ™ [2i sin(kp/2) = 2 eikp/2]

g=®°

= = b(k) ctg(kp/2)

-1 BS('l)S (k-21fns/p)-l 2 cos(kp/2)

s=w
(Notei b_(=k) exptikp/2) = i | Bs(-l)s(—k-zws/p)-l =-i ] B (-1)%(k + oms/p) L
5= s=

—c0

i § B (-1)° (x-27s/p) " )

S=o

A11 this together with equations (2.6.2) gives the series (8).

Similarly, for the radial S—coefficient :

Vs (k,r) = =i 2 lim jdk et U5t -y + o2l ;lb(k ) 5 H0m)
L} - . + . -
o'r o faw b2 1(kz k) 1(kZ k) J z YJo(ya)
c
k I{kxr) E k_J.(yr)
. r 1 1 1 z 1
1B b)) T ) Toard Tl vx Tk -k p(k,) Y J_(ya)
r o r -~ Z zZ [o]
C
= =] + cee ofe
iV T (k,r) (2.7.16)

The remaining integral is treated by the method already described after equation (15),and
this finally yields the series (8).

Finally, the same method gives for the magnetic S—coefficient :

E J, (yr)
_ s 1 J 11 1
Vo Sm(k,r) =1 V0 Tm(k,r) + on de kz . - kz b(kz) YJO(Ya)
c
(2.7.17)

and thereafter the series 2.7.10.
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2.8 Series Expansions of the Field Starting from the Potential U = = rHe .
In Section 2.4 and 2.5 it has been assumed that the field within the drift tube space
r < a is excited by the tangential electrical field :

n=1l

EZ(Z) = 2E [1/2 ) B cos(2ﬂnz/p)} (2.k.5)

applied along the circumferential slot r = a, Izl < p/2. On the other hand, numerical
methods usually give values of U = = rHe at discrete points. Therefore either these

values must be interpolated to give values of the electrical field or, as has been described
in Section 2.5, the series for U = - rHg (2.5.7c) derived from eq. (2.4.5) can be used to

determine the coefficients Bn by solving a set of linear equations.

Still another approach may be based upon the fact that the electromagnetic field in the
interior of a domain is completely determined if the magnetic field in this case He,
tangential to the boundary enclosing the domain, is given. This method is simpler than
those described before as far as the evaluation of the Fourier coefficients is concerned,
since these may be calculated by use of the Bessel formulae, see appendix 2.8A. On the other
hand, this method has some drawbacks. Inspection of eq. (2.5.7) or Fig. 2.5.3 reveals that
the magnetic field, He, is nonzero along the wall of the drift tube, r = a, |z| > p/2. And
experience shows that the contributions due to regions adjacent to the gap ( |z‘ slightly greater
than p/2) are appredable and cannot be neglected. Therefore in the present approach a
cylinder O < r < 2 <a entirely contained in the interior of the drift tube space with a
circumferential gap |z| < p/2 = L/2, whose length equals that of the cell, is selected as
domain upon which Green's theorem is applied. The model (Fig. 2.8.1.) is an infinitely
long circular wave guide of radius 2 in which an electromagnetic field is excited by the

boundary field:

|z] < p/2: - rHe(z,;) = U(z,a) = %(z) = A /2 + 1 A cos(2mz/p)
o b o
_ _ = (2.8.1)
|z| > p/2: U(z,a) = U (z) =0

P instead of cell length L has been used in order to make the derivation slightly more
general. But in the present applications 5 =1, is used. The first objection which may

be raised is the fact that the field U(z,a) is cut away at lz] = L/2 where it begins to grow
again. But coupling between different cavities is small and consequently the aforementioned
approximation is not so serious. This is confirmed by the results of field comparisons.

A more serious point is the fact that kL = 27T, a quantity which appears in the denominators
of some terms of the series expressions of the transit time factor and of the S=coefficients,

is very small. Care of this must be taken in computations.
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The field in the interior as a functional of the boundary field, Ua(z) = U(z,;) is

found with the help of a Green's function, cf. eq. (23) :

a,=

Ulz,r) = £ = f az jd.k o1k, (zm2)yag) 3, (yr)/3, (va)

wiR
=

Z

- rHy(z,r) = U(z,r) = éz%? [ & alk) ik,2 3, ()13, (v8) (2.8.2)
with :
1
y o= (k2= k2)*
and :
alk )=a(-k ) = sin(k p/2) ] A (-1)° (x - 2ws/p) (2.8.3)

g=%©

n
Ah ( l) 1

L Tos . a7 - 507

= - 2p (k,p) sin(k p/2)
n

The longitudinal electrical field is found from (2) with the help of (2.3.4) :

E (Z’r) = _].‘_._
Z

1 ik z -
e I dkz a(kz) ez YJO(yr)/Jl(Ya) (2.8.4)
wea M
The integrals (2) and (L4) have simple poles at :

1

_ H
I (ya)=3,(§1) =0:  k =xin! =+i [(j"r /a)? = kg] (2.8.5)

They can be evaluated by use of Cauchy's residue theorem as described in sections
2.5, 2,5A, 2.5B. If z > 5/2 (z < -5/2) then the path of integrations is completed by a
semicircle of infinite radius CU (CL , Fig. 2.2.1) and the integral equals the infinite
sum of the residues enclosed. If Izl < 5 /2 then the path of integration in the kz-plane
must be deformed into C(cf. Fig. 2.5.1, where,however, for the present application p must

be replaced by D), a(kz) decomposed into the exponentials and C completed by Cys Cp, Tesp.

L
This gives an additional chain of simple poles at kz =+ 2rn/p, n = 0,1,2,.0. »  The result

of the= calculations is the following series :
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lz] < p/2 ¢ U(z,r) ==r He(z,r) =
A g (xr) = I (ur/p)
S - 7oA cos(ommZ) 27 (2.8.6a)
a2 J.(k &) L n - - - -
170 n=1 P Il(una/p)
“\2® A (-1)* o« J_(j'r/a) ' cosh(n'z) - 1
+of B o 1°v v v nip/2
a2 | n=o 1+ 6no v=1 Jo(J;) (5“&)2 + (2mn)?
|z| = p/2 : U(gyr) =-r Ho(g3r) =
A I (kr) © I, (v r/p)
|23 [ 0 2 (2.8.60)
2a 1627 pm P 1 P -
- o 1)1 ® SV /7 ) "T‘l"]_;
+ 2 2 : An( ]5-) Jl(%",r/a) = ilvl ° o+ §=- ]3
a| n=o 1+ no v=1 Jo(Jv) (an) + (2m) ar
1 ;.=r _ oza n
8= = D = A (-1)7 /(1 + 8 )
ar 0 afr n=o o no
(lz] > p/e:) U(z,r) = =-r He(z,r) = (2.8.6¢)
n =y - sy . "'
- 3\ - © A (-1) o Jl(J‘fr/a) iy s1rh(nvp/2) c-nw'rlz|
a a n=o 1+ 61‘10 v=1 JO(J"'T) (n\'fﬁ)z * (2'"'11)2
with
e 2
W= L(eﬂn)2 - (koi)%| (2.8.7)

The expressions for the electrical field may be derived according to egs. (2.3.14) and (2.3.5):

|z] < 5/2: megs Ez(z’r) =
A I (k) I (v r/p)
°©, s 2 ©° z, = o 'n
=7 kp = *+ z A cos(2mnz) w T ===y (2.8.8a)
2 "o Jl(koa) wl 3’ Il(gna/p)

2 T+s5__ T (") (n'p)Z + (2m)2 ©
no [o] v v

v=1

n ) <y - sy ]
. z(é)3 © A1)y 3 (igx/e) 332 cosh(niz) - g
n=o
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‘z[ = 5/2 2 weap Ez(z,r) =
A I (kx) = o Io(inr/i)
> kop Jl(koa) + L An(—l) un'fifi;g7§7 (2.8.8b)
- © - n L3 3 = it -n'_
+ 2(2—)3 An( 1) Jo(‘]vr/a) ‘]vz c VP
a/ n=o 1 + 6no v=1 Jo(j;) (n;ﬁ)z + (2mn)?
(lz] > p/2:) E (z,r) =
(2.8.8¢c)
o (527 (1) = 3 (ir/a) 2 simn(ngp/2) 5y
" ews? ( a) L LTI G iz (2m)z T
|z] < p/2 weap B (z,r) = (2.8.9a)
- I, (n r/p)
. Z 1l 'n
nzl 21n An 51n(2ﬂn§) EITT;E7§)
, - oy ® See s\ ttfwt . .
) é 2 | An( 1) Jl(JYT/a) Jvfivf) 51nh(nzz) e'“ép/2
8o ¥ 6no v=1 Jo(Jv) (nvp) + (2m)
z > p/2 .
weap E (z,r) = (2.8.9¢)
z <=p/2 *

ML

I
1
n

( -)2 E An(--l)n @ Jl(j;r/Q) j;(n;ﬁ) sinh(n;§/2)

— — e b
NI Jo(JV) (n!5)2™+ (2m)

Since in general 5/2 = L, the expressions of type (c¢) valid for z > 5/2 cannot be used.
This has been indicated by bracketing the expressions giving their domain of validity. They
are given here for the sake of completeness. If z is rather close to 5/2, then the series
in v converge very slowly. The parts exhibiting these unpleasant features can be summed

at z = p/2 for U and E,.

The method has been applied in the following way: In general values of U of the last
mesh line within the drift tube space are used to determine N Fourier coefficients 1-\.n with
the help of the Bessel formulae, cf. appendix A. N is the number of meshpoints per line.

a is the radius of this line. Using these Fourier coefficients in formulae (6) the value
of U (= Uc) can be calculated for any point with r < a and is compared with the corresponding
me sh value Um . In the gap, |zl < p/2, (where p = g + 2 Ri is again the gap length as de-

fined in Fig. 2.1.4 and as used in Section 2.5 ).
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Uc/r and Um/r agree to better than 1% ; for|z| > p/2,UC/r becomes smaller than Um/r
and is only 50% of it at |;| = L/2. As already explained in Section 2.5 and Fig. 2.5.2,
this difference arises from the different boundary conditions at z = L/2, Um being a cavity
field and UC a wave guide field. This discrepancy is not so serious as it appears since
t hese values in the drift tube bore are smaller by several orders of magnitude compared
with the values in the gap. The electrical fields; too, have been calculated with the help
of (8) and (9). Agreement with the values due to the first approach (Section 2.5) and with
those found by interpolation of meshvalues is satisfactory (a few % , in the gap, mostly
as good as 1%). Near to |z| z L/2 the calculated values of Ez and Er sometimes exhibit

spurious oscillations.

In order to simplify the discussion, the method described in Section 2.5 is called the
electric approach, the present method the magnetic one. Their degree of complexity is
comparable, slightly higher for the electric approach where a system of linear equations must
be solved whose degree equals the number of mesh points in the gap. Therefore, a simple
interpolation procedure to give the field values appears more advantageous than both approaches.
In the electric approach some field values at |z| * p/2 may be wrong due to insufficient
convergence, while field values found by the magnetic approach are inaccurate only in the
interior of thg drift tube where they are small anyway. For this reason the latter method
seems to be better for field calculations. But the Fourier coefficients, Bn , found in the
electric approach describe the exciting field at the gap circumference and may be amenable

to a physical interpretation which may also favour the understanding of beam dynamics

coefficients.
foz)
g1 92
IR e In
- -~\T
-~
pd
// /
\\\ ,// _7
] Az f
O
z
1 2 3 - N-1 N n
p

Fig. 2.8.2. Trigonometric interpolation of discrete values
gl, g2, e gN given at equidistant points
1, 2, ... N.
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2.8.A Bessel Formulae for the Determination of Fourier Coefficients

At N equidistant points 1,2,3, ... N the values g > e &y of a periodic and even

g
1’ =2
function are given. The point 1 is the centre of symmetry and the points 1 to N describe
half a period of the function, see Fig. 2.8.2. These values can be interpolated by the finite

trigonometric sum :

N-1
glz) = A /2 + 1 A, cos(2mvz/p) (2.8.10)
v=1
with period:
p = 2(N - 1)Az (2.8.11)
Az is the distance of adjoining points. The Fourier coefficients AV can be calculated
according to the Bessel formula:28)
-1 Y N-1
A = - + 6 + (= + -1)/(N-1 .8.12
eS| e ) g * (1) g+ 2 Z g, cos | mv(n-1)/(N-1) | (2 )
n=2
Then the function g(z) assumes the prescribed values :
g, = g((s-1) Az) ' S = 1,25... N (2.8.13)
The derivation of (12) is easy29). Inserting 5 =2 (N-1) Az and z = (s = 1) Az =

=g Az, s =a+1=1,2,...N into (10) gives a linear system of equations:

N-1,
gg = g((s=1) Az) = gladz)= } A, cos mvo/(N=1) (2.8.14)
v=0

The double prime at the summation sign indicates that the first and the last term must be
multiplied by % (cf. eq. (10) together with (12)). The system (13) is solved with the help
of the orthogonality relations:

-

N-1,,
- -1) = 3 (N - + + .8.
azo cos o/ (W l)} cos | avr/(N-1) 3 (N l)éuv (1 Gv,o 6V,N-l) (2.8.15)
to give (12). The same equation is obtained if the integral for the Fourier coefficients
of an even integrable function g(z) :
P
2 -
Av =3 I g(z) cos(2mvz/p) dz
o
is approximately evaluated by the trapezoidal rule.
30)

The programme for the calculation of Fourier coefficients given in ref. has been

adapted for the present case.
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2.8.B A second Green's Function of a Wave Guide. Derivation of Eq. (2.8.2)

The Green's function G2(z,r;;,;) is a solution of the inhomogereous wave equation (2.4.30)

obeying the boundary conditions (2.4.33):

lim G, =0 lim 3G2/8z =0 (if w < wél) (2.8.16)
2] > = o] =
In place of (2.4.32) a different condition is prescribed :
r=a: 3C,/3r = 0 (2.8.17)

Inserting G2 into Green's theorem, eq. (2.4.34), gives by use of (16) and (17):

o a

) [ dz _J ar r ( G2 AV(z,r) - V(z,r) A G2 ) = J[r dz o= G2(z,r;z,r) i
7, == r=0 7, == ‘r=a,

(2.1.18)
Since V and (G2) are solutions of the homogeneous wave equation (2.4.35) (of the

inhomogeneous wave equation (2.4.30)), it follows:

r<ac: Viz,r) =a de Gy(z,73 7)o (2.8.19)

G2 can be represented by the Fourier integral :

G2(z,r;z,r) = Gg(z,r;z,r) =

(

[e]

i j ax, 50 5 () |06 1 ) - B 6E) 3 () |/ (1)

c
(2.8.20)

The path C follows the real kz-axis, except that it avoids the simple poles kZ =+ ko 5
see Fig. 2.2.1. For frequencies below the lowest cut-off frequency (w < wél) the other
poles, kz =+ in;, eq. (5), lie on the kz2 -axis just between the nv's. The residue series

b elonging to (20) is :

3 (3ir/a) Jo(jéi/a)

- - hed - ] -— - - --
G2(z,r;z,r) = %L 2 e nvIZ 3 + :3—— elkolz z| (2.8.21)
2 v=1 n! J2(j!) ak
v “o'vv o

o
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Deriving (19) with respect to r, inserting G2 of equation (20) and using the Wronksian

(2.4.42) gives:
3 P ooy 3 ()
W _ 1 - ik (z=z) "1 - 3V
5 - on3 ‘[ dz Jdkz ez 31?;;) a o (2.8.22)
-0 -0 r=a

V is identified with the Hertz

+ ko have disappeared.

Here the singularities at kZ
V/or, eq. (2.3.2) gives :

p otential V. U=-r He = —cwr
o N . - J_(yr)
_r1 - ik (z=z) "1 - -
U(z,r) = S5 J‘dz Jd.kz ez _Jl(ya) U(z,a) (2.8.23)
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2.8.C Derivation and Summation of Series Expansions.

The derivation of the series expansions (6) to (9) is accomplished by the method des-
cribed in Sections 2.5.A and 2.5.B with some slight modifications. The fact that the
denominators of the integral representations (2) and (L) contain Jl(ya) in place of
Jo(ya) (cf. eq. (2.5.12)) does not make a principal difference. Of course, the radius
of the semicircles C__ and CL must be chosen to pass about half-way between the points

U

k . = i,in; . The residues at these simple poles are computed according to (2.5.10) where,

h owever, at the end of the calculations Ji(j%) is eliminated with the help of the differential

equation of the Bessel functions :

Sy = - M(31) = (1730 Vs . - oy
91(30) angn) = (50 316G + 3 (60 Jg.(3;) (2.8.24)
The sumation of the series (6a) and (6c) at |z| = p/2 is accomplished by use of :
(22 © I (r/a) i e - Il(unr/i)
(a 1 JOG"[) (2mn)? + (71"’p)2 ar IO(;na/ﬁ) (2.8.25)

This series follows from the integral :

.
lim = ﬁ) ax k3 (yr)/ Jl(yE) (k2 - (2m/p)2) | = oz (2.8.26)
|k FR

zZ

. . . ~1
by Cauchy's residue theorem (cf. Section 2.5.C). By applying the operator r ~(3/dr)r to
b oth sides of (25) results the series needed for the summation of (8a) and (8c).
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2.9 Expressions for Voltage, Transit Time Factor and S-Coefficients Based

on the Series for U = - rH .
Av)

The instantaneous peak voltage V(r) is found with the help of eq. (2.8.4) in the same
way as in egs. (2.6.13) till (2.6.15) :

2
A /2 Jo(kor)

. ) -
V(r) = 1lim Ez(z,r) dz = === kP 7 &3
L > 1l o

(2.9.1)
-2

a(kZ=O) = A05/2 has been used. In the usual method first the electric field along the

axis, Ez(z,O) is computed by interpolating the values of U(z,r) = = rH _(z,r). This is then

[S]
integrated numerically to give the voltage v, = V(0). When v, is computed with the help

of (1) :

v, = EO/L = (Ao/e) kop/(wsa Jl(koa)) (2.9.1a)

there is no need for such an interpolation, since AO is computed by numerical integration of
U(z,r) = -r He(z,r). The procedure is simpler, but less information on the field distribution
is used, because here the values of only one mesh line, r = a, are used while the interpolation

to find EZ involves those of several lines.

The derivation of the transit time factor :

2 -
a(k) Eg_ Jl(koa)
pA0/2 ko Il(kra)

J Ez(z,O) cos(kz) dz = (2.9.2)

o 2 > @ VO
-2

is analogous to that described in egs. (2.6.16),(2.6.18). However there is an important

difference as far as the application of formula (2) is concerned:

In general 5 is put equal to the total cell length L. Then the quantity:

a =27 - kp = 21 = KL (2.9.3)

contained in the coefficient of Al in a(k) is zero or at least very small. In order to take
this into account, (2) is rewritten :

T (k) = EL Jl(koa) sin(kL/2) + Al 2kL  sin(a/2)
o k

o Il(kra) kL/2 A0/2 2m + kL a

(2.9.5k)

. kL (=1)"
- okL s1n(zr) ) Ao?z (2m)2 - (xL)?

n=1
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This expression is tractable even if o is zero or very near to it. In that case the main
contribution arises from the term proportional to [sin(a/z)]/a and all others are small.com—
pared to it. Agreement between the numerical value of To found in this way and those due to

other methods is good. The arguments brought forward in the comparison of methods at the end

of the preceeding paragraph apply here too.

The longitudinal S—coefficient :

< |

Sl(k,r) = 1lim J E (z,r) sin(kz) dz
) L > o z

can be expressed by the following series :

s, (k,r) = = T_(Kk) cte(kp/2) T (k r)

J (k.r) o A = I (nr/p)
oo~ __k - n_ W _o . n- .
toge 2k, e nzl i/z “I,(a%) (2.9.5)
o\ 3 o 1\ © LN -n'p/2 s12
+hEg (k a) (g> L An( ” EY vl JO(JYI:/a) 2e “VP{ 2 iv T2
k 1o \a ) 2 (a_/2)(1+8 ) 2y I,033) (2m)Z + (n!p)?(kp)* + (ngp)

3 . - 2 . 5)2
with: T (2mn) (kop)
But this is very inconvenient if p =1L Sl is rewritten with a= 2m = kL :
- n
o A -1
Jo(kor) S 1k I_E_IL Jl(koa) cos(kL/2) _ oI, cos(_ké) ) n i ) .
B +
kL/2 o'r Tk I(k3F) (kL/2) 2’ 2, A /2 (2m) (kL)
a I (x I (wr/L
. 2 Jl(koa.) KL A _1_ . o( r) s &3 S/ )
27 + kL k L Ao/2 a r Il(kra) 2 1 Il(Iig/L)
o A I (wr/L)
kL - n_ - o' 'n
-2= J.(ka) } L =Ty (2.9.6)
k L 17 o A°/2 n Il( una/L)
3w A (-1)" o J (j'r/a 12 -n'L/2
- b ELL Jl(k @) % ) (An52)21+6 ) 3(;("{'; : ém)iv+ (n'L)? (klj2 I (n'1)?
o ° a/ n=o o no’'v=l o Jv v v

1

2
with : 'Ln = [:(21m)2 - (koL)z:l
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If 27 = kL, o= 0 then k L = ;1 and de 1'Hospital's rule gives for the terms of the
second line :

- . by 2
-2 5 (x a) Hole Io(]:lf/L) - EEI°(u1r/L)] (2.9.7)
kL 170" A /2 o 1, (,8/L) M, Gia/m)]?

The expression (6) has been evaluated in one or two cases and there agreement with results

of other computations was satisfactory. But it would be dangerous to generalize without
checking the features which have been observed in these particular examples. The first two
terms of the expression (6) are the most important ones. The first of them is almost constant.

In the second only the first term of the infinite sum gives an appreciable contribution.

The third term is the difference of two great terms; but it is small. Greater than it
is the term with n = 2 in the infinite sum giving the third expression while the other terms

of it are small. The double series is smaller than 10-5 Sl(k,r).

The expressions for the other S-Coefficients have not been derived and the whole approach
has been abandoned in favour of that described in Sections 2.5 to 2.7. Some reasons for
doing this were accidental. The other is that the approach where the longitudinal electric
field E:(z) applied along the gap r = a, |z| < p/2 is assumed as the basic quantity, is more

appealing from the physical point of view.
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3. Motion of a Proton in a Spatially Uniform Time-Harmonic Field

This chapter is exclusively devoted to the motion of a proton in a uniform time-harmonic
e lectric field. This is an unrealistic approximation to the real field in a linac gap.
But it provides a simple example where many of the problems and notions prevailing in the
realistic case can be studied easily. Also the various methods of solving the equations
of motion are discussed. This may serve as an introduction for novices in the linac art
and may be skipped by the adepts as an unnecessary diversion though some of the derivations

included here might be new to them.

V=E1g cos(wt)

mid-plane
t=0:z=0
2:'20
entrance exit
input output

Z,

(P1 CPZ

Fig. 3.1.1 Motion of a proton in a plane condensor as

model of an accelerating gap.
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3.1 DNon-relativistic Treatment. The Pertubation Parameter k.

The motion of a proton in the spatially homogeneous field :

= + = =
E El cos(¢ ¢o), ¢ = wt, El const.
of a plane condensor (Fig.3.1.1) to whose plates an alternating voltage is applied, may
s erve as an admittedly oversimplified example. Such a field does not represent a very
realistic approximation to the real field of an accelerating gap (cf. Fig. 1.1.5). 1In
addition, it is only an approximate solution of Maxwells equations, contrary to the static

homogeneous field, since AEZ + kOZEz = kiEz # 0. Even if the field is not Maxwellian, it

is always permitted to assume such a field of force. The corresponding equation of
motion :
Z=mwlz" = eE = eE + ” 1.
mZ=mwz eE = eE, cos(¢ ¢O) (3.1.1)
(* = d/d¢ = d/d(wt) ) with the initial conditions ¢ =wt =0: 2z =0, 3 = éo (3.1.2)

has the solution :

z = (éo/w) ¢ = eE; | ¢ sing  + cos(¢ + ¢O) - cos¢ (3.1.3)

[

It is a peculiarity of the accelerator art that the conditions (2) specifying the solution
of eq. (1) are given at the centre, z= 0, of the gap. Therefore they are called mid-plane
conditions . The reason for this choice will become clear in the course of the treatment
of particle dynamics in a realistic model of an accelerating gap, where the centre is a
rather well defined point while entrance and exit are in general assumed at z = —, +w
respectively. Of course, it is necessary to find these mid-gap values too. This is

explained in Section 3.3.
Equation (3) is rewritten in dimensionless form:
kz = ¢ -« l:¢ sing_ + cos(¢ + q>o) - cos¢_ ] (3.1.3a)
with
k = w/io (3.1.4)
and:

K ='eEl/(mwéo) (3.1.5)
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Equation (3) reveals a typical difficulty encountered in the treatment of dynamics in time-
dependent fields: Trajectories and other quantities depending upon them (as e.g. kinetic
energy) are given as functions of time t (or time angle (= phase) ¢). But geometry singles
out the longitudinal variable z (e.g. gap entrance and exit are situated at z = -g/2, g/2

respectively).

It is necessary to solve the trancendental equation (3a) for ¢ with given z. This
cannot be done exactly. Thus successive approximations may be employed to invert equation

(3a). If El ~ k = 0, then there is no field and the particle is moving freely :

bioy(2) = +°)(2) = kz (3.1.6)

Higher approximations are obtained by iteration. In this way the influence of the electrical

fi e1d upon particle motion is taken into account in successive steps:
¢(i+l)(Z) = kz + K [COS(¢(i) + ¢0) = COS¢O + ¢(i)51n¢o] (30107)
This is written down explicitely for the first two iterations :

¢(l)(z) = kz + [cos(¢(o)(z) + ¢o) - cos¢o + ¢(o)(z) sin¢o]
(3.1.7a)

kz + K [cos(kz + ¢o) - cos¢o + kz sin¢o]
(3.1.70)

fl

¢(2)(z) kz + k [cos(¢(l)(z) + ¢o) - cos¢O + ¢(l)(z) sin¢o]

If the expression for ¢(l)(z) is inserted into the right hand side of (Tb) this gives a rather
clumsy expression. An approximation is introduced which is based upon the smallness of x .

(In a proton linac gap, typically k < 0.1 (w/2m= 200 Miz, E, < 14 MV/m, éo > 0.035 ¢ (~ 0.5 MeV)),

in a proton synchrotron accelerating gap k < 0.01 (w/2m = 3 Miz, El z 0.1 MV/m, éo- > 0.3 ¢
*
(~ 50 MeV)) ). Due to the smallness of k the results of (Ta) and (7b) may be displayed by
expanding them in a Taylor's series with regard to « :
o 1
sy = o) + i) - (3.1.80)

1]

kz + « [cos(kz + ¢0) - cos¢ + kz sin¢o]

¢(2)(Z) = ¢(°)(z) + K¢(l){z) + K2¢(2)(Z) + k3., (3.1.8b)

kz + [cos(kz + ¢o) - cos¢_ + kz sin¢O ] - K2¢(l)(z)[sin(kz + ¢o)—sin¢o]

+ k3.,

*)

In an electron linac K%34 Therefore expansions in powers of k as displayed in equations (8)
are inappropriate in this case. In addition, it is not reasonable to treat electron motion by
non -relativistic equations as (1) and (3) .
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In this and the following sections subscripts indicate the order of iteration; e.g.
¢(l)(z), eq. (Ta), results from one iteration; ¢(2)(z), eq. (Tb) from two iterations.
Superscripts denote the order of grivation with respect to « (or equally the power of «
accompanying the expression ); e.g. ¢(2)(z) = (d2¢(2)/dK2)K_O = (d%¢ 3)/d|<2)'<=o= ee .
The result of at least n iterations is needed to compute ¢(n7(z) = (d£¢(n) (z)/dKn)K=o;

(z) )(z) which result from even higher iterations, will give the same

¢(n+l) ? ¢(n+2

¢(n)(Z) B (dn¢(n+l)(z)/dKn)K =0 (dn¢(n+2)(z)/de)K =0 "

By this kind of expansion the solutions ¢(l)(z), ¢<2)(z) found by iteration assume a
form which reminds one of another approximate method of solution, namely perturbation theory
where solutions are found by expanding the solutions and all equations in powers of a small
parameter (as here is « ). This view is supported by the physical interpretation which can
be given to x = (eEl/w)/(mio). It may be regarded as the ratio of two momenta. The
average force eEl times the time 1/w (~ 1 period) which equals the impact of the electrical

*)

field on the free particle with momentum méo. .

(1)

(z) is not greater in absolute value than ¢(O)(z), that in turn

(1) () ana &©)

It is assumed that ¢
¢(2)(z) is not greater than ¢ (z), and so on. The first power of k neglected
should then give the order of magnitude of the error. Thus perturbation theory has in
comparison with iterations the advantage that it gives an indication of the accuracy obtained,
if the assumption just mentioned is fulfilled. However, in most cases it is not possible to
prove this very basic assumption, since the calculation of higher order expressions becomes
prohibitively complicated. In the present case it has been shown that the first order

solution is already a good approximation to the exact one and that the second order cor=

rections still improve the result. (See the end of this section).

*

) This physical interpretation suggests that the parameter describing the magnitude
of the impact of the accelerating field upon the particle crossing a linac gap, is even
smaller than k = eEl/min, since this quantity is derived from particle motion in a
homogeneous field unlimited in its extension. Even such a time harmonic field has a

direction accelerating a charge only during one half of a period, so its effect may be of the

order of /2. In an accelerator gap the particle sees the field only during one quarter
or one third of a period. Therefore the results of first order perturbation theory may
be as accurate as those of power series in /3 < 0. 033 or /b < 0.025. This matches

with the results of the numerical investigation reported at the end of this section where it
is found that the coefficients accompanying the powersof k in eq. (8) and (10) even

decrease with increasing order n.
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Inserting ¢ = ¢(l)(z) from (8a) into the equation of motion,

mE = d/dz (im22) = aW/dz = eE = eE cos(¢ + ¢o) (3.1.9)

expanding into powers of k and integrating gives the energy gain across the gap:

g/2
AW = eEl I cos(¢ + ¢o) dz =
-g/2
= + cay(d) + k2. (3.1.10)

_ + 1 - sin(k ; 2 L.,
eV, Toh(k) cos¢0 eV k3 cos(kg/2) o 31n(2¢o) + eVoK
where
g/2
VO = I El dz = Elg is the instantaneous peak voltage across the gap
-g/2
and where
g/2
_ 1 _ sin(kg/2)
k) = — E k! dz = J1.11
Toh( ) 5 e N cos(kz) dz (ke /2) (3 )
-g/2

is the transit time factor ( (2.6.8), (2.6.9), ko = 0) for a field homogeneous in the z—- and
r-direction (therefore no Io(ka)). In eq. (10) it accounts for the fact that the field
strength is changing during the time the particle is crossing the gap, so that it cannot
acquire an amount of kinetic energy equivalent to the "instantaneous potential difference"
eVl cos¢O . It would gain this amount only if its velocity were so great or the width of
the gap so small that the transit time were small compared to the period of the field. In
practice : m/3 < kg < 2n/3, 0.96 > Toh > 0.83 (Fig. 3.1.2). The transit time factor of a
real gap To(k), eq. (2.6.9), is divided by Io(kra) > 1., Moreover, in cavities designed

for rather high energies the electrical field along the axis exhibits a strong depression in
the centre (cf. Fig. 2.5.4). This further diminishes T se-8&- T, = 0.56 (197 MeV, MURA
365 20)).

The second term in (10) gives a correction. It is small, for it is multiplied by
k(< 0.1) and, in addition, the trigonometric expression is small compared to Toh(k). (ef.
Fig. 3.1.3).

Equation (10) represents a power series in k . Even in the first gap of an Alvarez
linac structure k is not greater than 0.1 and it becomes smaller afterwards. By use of (8)
all other dynamical variables may assume a similar form permitting to estimate the accuracy
achieved, since there is the hope that the order of magnitude of each term is essentially
determined by the power in « , the accompanying coefficient not increasing in magnitude with

increasing order.



sin(kg/2)

Tp (k)=
oh kg/2
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Fig. 3.1.2 Transit time factor for uniform field, Toh(k), as function of transit

time angle, kg.
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31):

In order to check this, a numerical investigation was undertaken

Repeating the iterations (7) sufficiently often for a given z, the corresponding value
of the time—angle ¢(z) is found to any desired accuracy. ¢ = 0.1 was chosen which cor-
responds to w/2m = 200 MHz, E = 1h.2 MV/m, 20 = 0.035 ¢ = 1.047 x 107 m/s (W = 0.5 MeV,

0.5 MeV protons). These values are even more unfavourable than those actually encountered
at the entrance of a proton linac. Fig. 3.1.4 displays the difference between exact phase
¢EX(z) and the first order approximation ¢(l)(z), egs (Ta) and (8a), Fig. 3.1.5 the
difference ¢EX(Z) - ¢(2)(z). In Figs. 3.1.6 , 3.1.T is shown the deviation of the approx-

imate phase changes A¢(l)’ A¢(2) respectively from the exact A¢EX . Inserting the exact
phases into the expression for gain in kinetic energy gives an accurate value of this
quantity :
BV, = (m/2) 22(z=g/2) - %2(z=—g/2) (3.1.12)
=2k W sin(¢EX(z=g/2) + ¢0) - sin(¢EX(Z='g/2) + 00

2
+ kW Sin(¢EX(z=g/2) +¢0) - sing | - sin(¢EX(z=-g/2) + ¢o) - sin¢ }

)

Tn table 3.1.1 these values are compared with the approximate results AW(O = AW

and AW(1) = ) (1)
order results to better than 2 %o . Comparison of AW(O)/AWEX with Aw(l)/AWEX reveals that

(o)

+ kAW First order results are accurate to better than 1%, second

KAW(l) is smaller than AW(O) by a factor 50 to 100. This is more favourable than it was

() is not greater than AW(O). The

assumed at the beginning where it was postulated that AW
same conclusion can be drawn from formula (10) and Figs. 3.1.2 and 3.1.3 . 1In addition the

correction term has a sign such that it always improves the result.
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3.1.A Roots of the Phase Equation (3.1.3a)

E quation (3) is rewritten as :

¢ = kz + K[COS(¢ + ) = cosd + ¢ sincbo] (3.1.13)

Roots of this equation for a given value of the parameter z may be interpreted as
intersections of the straight line ¢(1 - sin¢o) - kz +«x cos¢oﬁwith the sinusoidal curve
k cos(¢ + ¢o). The slope of the former, 1 + |K sin¢0] (o < -¢O i“/2 , in order to ensure
acceleration and phase stability 32)):i.s greater than that of k cos(¢ + ¢o) , provided
0 <k < 1. Therefore, the two curves have exactly one point in common, i.e. (13) has
one and only one root. The method of solution by iterations (7) is convergent. A suf-

ficient condition that the iterations

converge to the solution x = f(x) is 33) :

|f{(x)l? k | sin(x + ¢O) - sin¢o| <2k <1l.

The speed of convergence of iterations can be estimated with the help of equations like
(4.1.6) which indicate the relation between approximate solutions found by perturbation
theory and those found by iterations. In the numerical example discussed just before
where & = 0.1, each iteration improves the accuracy of the solution by at least one order

of magnitude. Convergence is slowest at the gap ends, |z| = g/2.
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3.1. B Convergence of Perturbation Series

Here will be discussed the conditions which ensure convergence of the perturbation
series for phase, eq. (8) and kinetic energy, eq. (10). It is convenient to transform

the equation of motion (1) into a set of two first order equations:
-1 1 1
d¢/dz = d(wt)/dz = v (dz/dt) ~ = w(m/2)?/(T)? (3.1.1k)
ar/dz = d/dz(% 3%) = eB  cos(é + o) (3.1.15)

where T is kinetic energy. Equation (14) is just an identity, eq. (15) agrees with (9).

38)

The¥ may be derived by canonical transformations . With the help of the solution (3),
(T)2 may be expressed by :

ol=

(m)2 = (m/2)% w/k [l + k(sin(¢ + ¢o) - sin¢o)] (3.1.16)

where k and ¢ are defined in egs. (4), (5) respectively. Introducing the dimensionless

variables :

z = kz n=T/W="T/(n é02/2) (3.1.17)

1
and replacing (T)? by the expression (16), equations (14) and (15) are rewritten in

dimensionless form :

a 1 ) sin(¢ + ¢O) - sind

o = =1 -k (3. 1. 18=2)
C o1+ K[sin(¢+¢o) sin ¢o] 1+ K[sin(¢ + ¢O) - sin¢O]

=g, *« fl(¢; K3 T)

EE =k 2 cos(¢ + ¢O) =0+ k 2 cos(¢ + ¢O)
(3.1.18b)

g, < T, (¢ 3¢ 32 )

Equation (18a) is particularly suggestive. At points where the denominator vanishes,
d¢/dz and with it all higher derivatives cease to exist. This cannot happen for any
real ¢, ¢0 if |k|<1/2. On the contrary, if lie| > 1/2, then the denominator may vanish
for certain values of ¢, ¢, and it may be expected that these singularities determine the
radius of convergence of series expansions. Tt should be remembered that only equations
(18a) and (18b) together describe the dynamical problem completely and that the singularities

even if they occur in only one of the two equations limit the range of the solutions of both.
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The rigorous demonstration of the convergence of the perturbation series solutions :

8(2) =690 (2) + oM ) + k2B () + 2.,
(3.1.19)
n(g) = n(°)(c) + Kn(l)(a) +k2n (2)(c) +k3..

is limited to the case where 0 < «<1/2 which suffices for the present applications (where

34)

0 <k < 0.1) . The corresponding theory may be found in ref. . g = 0, g, = 1 are just

constants. f2(¢; k3 £) 1is analytical in ¢ and k for any real values of ¢,k, z3 and so is
fl(¢; k3 ¢) provided O < k < 1/2. It follows from the theorems in that reference that the

series (18) converge for any real ¢ and ¢ if |«| < 1/2.

The convergence of the perturbation series (18) has various aspects. Firstly, there
is the question under which conditions they converge at all. This has been settled just
before. For perturbation series the sole convergence which is a property concerning the tail
of the series, is not so helpful. It is practically impossible to evaluated terms of too high
an order; therefore the convergence must be sufficiently fast, so that the first few terms
give sufficient accuracy. The third point regards the perturbation parameter k . It should

(n)(

be chosen in such a way that the coefficients, e.g. ¢ t), accompanying the various powers,

n . . . . . . . .
Kk 4, do not 1ncrease with increasing n. Which property permits to estimate the accuracy which
can be obtained by retaining the first N terms of the series, since the error should not be

+ +
much greater than . l¢(n l)(C).
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3.2 Practical Application of Beam Dynamics Formulae. Evaluation of Mid=Gap Values

by Use of S=coefficients.

The beam dynamics formulae derived in the preceeding section will first be cast into a
form as they are used in practical applications. Of course, the expressions derived above
for a uniform field represent an approximation too poor to be used in the treatment of
particle dynamics in a real gap. Nevertheless it may be worthwhile to introduce already
here the procedure employed in realistic cases. In the thin lens approximation which is
explained in detail in Section L.2, the real particle trajectory is replaced by a step

*
function., Only first order ) expressions are used.
Afterwards the evaluation of the mid-gap values will also be discussed.

The expression for the energy gain across the gap may be taken over as it stands in
eq. (3.1.9b) :

AW =¢eV T _ (k) cos¢ + eV K «us (3.2.1)
o oh o o

where k = w/zo , eq. (4). How it is used in the thin lens approximation, is described

in egs. (L4.2.2.) and Fig. 4,2.1 .

The change of total phase across the gap, A¢, however, is decomposed into three
contributions (cf. Fig. 4.2.2 and egs. (%.2.5) )

LI

Mol Erl Ea g oKBl 00 0 g (3.2.2)
2, 2 2,2 2\ z Z
1 2 1 2

The first (second) contribution corresponds to the phase change of a particle moving
freely with the input velocity 21 = 7(z=—g/2) through the first half of the gapup to the centre
(with the output velocity,é2 = 2(z=g/2) through the second half of the gap). The last one

A$, the change in reduced phase, is found from (3.1.8a) and from :

-1
éo/i(z) = [l + Kk [sin(¢o + ¢(z)) = sind o]]

-1
[1 + K [sin(d)O + kz) - sin¢O] + Kz...] (3.2.3)

I

1 =« [sin(¢o + kz) = sin¢o] + k2,..

%
) Note that eVoK = eEng in eq.(1) and (eVo/2W)K in eq(4) are already of second order in

the field.
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to be :
A$ = ;%9 [cos(kg/2) - Ei%é%gi%l]4.;%2 K ees
(3.2.h)
- ez;;k Lon )+ ...

W=m 2§/2 is kinetic energy at the gap centre.

These beam dynamics equations permit to calculate the motion of the particle through
the total gap only after the mid-gap values éo and ¢O are known. This is due to the fact
that in the preceeding section the general solution of the equation of motion has been
specified by the mitial conditions (3.1.2) where it is assumed that the particle is at the
gap centre, z = 0, at time (phase) wt =¢ = O and there has velocity 20 . At that instant
the time harmonic accelerating field has the value E, =E cos¢o . The choice of the initial
data indicating the phase the field assumes at the instant where the particle passes at a
certain reference point, is called the choice of the reference point for phase. The gap
centre, z = 0, is this reference point with the initial conditions (3.1.2). Other reference

points are discussed in the next section.

If a particle is traced through the whole linac , then the following method is applied:
Assume the motion of this particle through the first n-1 gaPs has been worked out: therefore
the phase and energy it has in leaving the (n-1)-th gap, are known. After the phase change
through the drift space before the n-th gap has been taken into account, the input values of
phase and energy are known. Starting from these the mid-gap values of the same gquantities
must be found. The increments of phase and energy across the first half of the gap can be
calculated with the help of the formulae containing S=coefficients given below. Afterwards
the change in energy and phase across the whole gap is calculated according to egs. (1),(2)
and (4).

The gain in energy across the first half of the gap is found from eq.(3.1.9) where
¢ = ¢(o)(z) = kz, eq. (3.1.6), is inserted :

o
= +
Awl eEl cos(d)o kz) dz
-g/2
1 sin(kg/2) T 1 - cos(kg/2) .
= L sinixg/=) + = 2.
Awl eVo > Te/o cos¢o eVO > re/o 51n¢o (3.2.5)
=eV T (k) cosp +eV = S (k) sins
o 2 oh o o 2 oh o

V,=Eeg. The transit time factor T (k) is already known from formula (3.1.11). In the

o h
above expression appears a second coefficient, the (longitudinal) S=coefficient for a homo-

geneous field (cf. eq.(2.7.1)) :



The phase change across the
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g/2

E

4 sin(kz) dz =

2
soh(k) = vs

o

into two contributions:

e

Ad R

1

Ne

oA

8(220) - $(z=g/2) = 2&

1

o
— +
Z ae

1 - cos(kg/?)

kg/2

1

(3.2.6)

first half of the gap, A¢l, is similar to A¢, eq. (2), decomposed

(3.2.7)

The first term, wg/(221), is the phase change of a particle moving freely with the input

velocity él= z(z=—g/2)from the entrance to the gap centre.

in reduced phase.

A¢l is found from (3.1.8a).

(1) A$l is calculated with the help of (3):

The second, A$1 is the change

A, = ;_eq%k _ sin(keg/2) N cos(kg/2) ing - |- 1 - cos(kg/2) + sin(kg/2)
1-2 2w Kg/2 k siné, 2g/2 k
eVk
_1_o J <3 : - a
=2 2w 1 ax Ton(E) sing, ak Son(®)
= A;L - eY)k l .d_ S (k)
2 2W 2 dk oh

The procedure to find the wanted mid-gap values 20, (¢o + ¢(0)) = o

input values z

1’ ¢1

= (¢0 + ¢ (z=—g/2)) uses the equations:

W e _ 22y =
o (25 = 27) = by
-9 =% E4p5
¢o d)l z. 2 ¢l
1
k = w/z W=mz/2
(o] (o]

from

Tom this expression and from the definition

N

cos¢OJ
(3.2.8)

|
cosd ?

J

o

cos¢
o

the known

(3.2.9)

(3.2.10)

(3.2.11)

or Awl and A$l the expressions (5) and (8) (where k and W of eq. (11) are inserted) are

employed.

which is solved by iteration.

m'22/2=W+AW-AW

1

The exit velocity Zys is found from :

This then gives a system of implicit transcerdental equations for éo and ¢ 5

(3.2.12)
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3.3 The choice of the Reference Point for Phase and Zero Order Wlocity

The problem investigated here is a rather intriguing one. Therefore it may be explained
with an exemple. The evaluation of the zero order energy gain AW(O) as calculated in eq.
(3.1.10) may be interpreted in the following way : A charge is carried through the accelerating
gap with constant velocity, éo . The force the time-dependent field exerts upon this charge
at each point is registered and the integral of these values across the gap is assumed to be
approximately equal to the gain in energy the proton acquires in the corresponding real
( accelerated) motion. The scanning velocity used in Section 3.1 is éo , the velocity the
particle really has in the centre of the gap. In the same way the initial conditions given
at the gap centre, z = 0, determine the whole zero order solution describing free particle
motion and enter thereby in the higher approximations. Approximate solutions are exact at
this point. Tt is held in wide belief that approximate solutions chosen in this way describe
the motion through the whole gap most accurately. But one may ask if another fictitious
scanning velocity which equals the velocity the particle assumes at a different point in the
gap, say at the entrance, will give better results. Of course, all initial conditions
must be chosen accordingly. This point in the gap where initial conditions for solutions
are prescribed and where approximate solutions are exact, is called the reference point.

The motion of a proton in a time-harmonic uniform field offers a simple example to investigate
the influence of the choice of the reference point upon approximate results numerically.
Results confirm that approximate solutions give best accuracy for reference points near to

the gap centre, though the differences are not very appreciable.

However, when mid-gap conditions are used, it is necessary to find these mid-gap
values,¢O and W=m é§/2, starting from the input values of these quantities given at the
gap entrance. This step where the S—coefficients come into the play, described in section
3.2, is again of an asymmetric nature and it may be that its results are not more accurate
than those of the second so that the overall accuracy of both steps may not be better than
that of a method where the energy gain and phase change across the whole gap wquld be com-

puted directly from the input data. This problem has, however, not yet been investigated.

Some care must be taken to choose the conditions determining the arbitrary constants in
the solution of the equation of motion (which correspond to the initial or mid-plane conditions)
appropriately so that the different expressions always describe the same motion. The initial
conditions as chosen in eq. (3.1.2) imply that the field has the value EZ = El cos¢o when
the particle is at the gap centre. If another point within the gap,say with coordinate
z = ag/2 (entrance = =1 <a <1l = exit)(Fig. 3.2.1) together with the exact velocity the
particle assumes in it, is chosen to specify the solution, then the phase constant in the

electric field must be adjusted accordingly.

The example is the same which already has peen studied in the preceding section .
The treatment consists of two steps: i) equation (3.1.7) belonging to the initial data

(3.1.2) is repeated sufficiently often for all z = ag/2 in order to give exact values for



_87_

the phase ¢Ex(z=ag/2) = wo(a) .  The step width for o is 1/60 to 1/30 depending on gap length.

Thereafter the exact particle velocity at this point:

2(z= = % + i + - si 11>5
2(z=0g/2) = 291 K[sm(cbo wo(a)) sin ¢o_]] v(a) (34301)
is calculateds ii) Then a certain reference point (i.e. a certain value for a) is chosen.

The equation of motion with the appropriate phase constant :

.o

mZ = eE cos(wt + wo(a)) (363.2)

is solved with the (initial) conditions :
t = 0: z = ag/2 % =v(a) (363.3)

This ensures that the particle feels at the same space point and the same "physical" time
the same force irrespective of the choice of the reference point o (or of the origin of the

time scale). Solving (2) under the conditions (3):
wz = wag/2 + v(a) wt - Kio [wt sin ¢o(a) + cos(wt + wo(u)) - coswo(a)]

(3.3.4)

therefore gives the same exact values for phase, energy gain and all other quantitiess on
the contrary, the results of approximate formulae and procedures will depend on o . or

example, if an approximate expression for phase wt is inserted into the velocity formula:

°

z(wt) = (eEl/m) [sin(wt + wo) - sin woJ (3+3.5)

different values for the entrance velocity will be found depending on o 3 this also applies
to the velocity at any other point except for the point z = ag/2 where the velocity v(a) will

be reproduced. o = O gives the results of the preceding section .

The zero and first order expression for the entrance (ti) and exit time (te) are found

by iteration :

Mti(o) L+
- _ug (36346)

2 v(a)

=3
Yy
e(o)
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wti(l)l J’wti(o)w % L+a

. wg . -1
< P+ K e + (@) sin wo(a) + cos [¢O (a) + >
wte(l) [wte(oj

v(o

a_ﬂg_]- cosyp (a)
) o

(3e3.7)

wti(l) and Mte(l) are inserted into the velocity formula (5) which in turn gives the gain
in kinetic energy AW(a) = m/2 (3%(uwt (l)) - Zz(wt,(l))). Subsequent expansion into powers
e i

of Kio/v(a) gives zero and first order energy gain, AW(O)(u) and AW(O) + KAw(l)(a) :

2
(o) _ v(e) 1 . [ kg 2y _ kg _‘o
AW T (@) = eV :, re/2 51n(2 7Ty %8 u)o(u) & 5 Tl

(343.8)

e'% v;: sin.(%ﬁ Véz)(l—a) + ¢o> - sin (wo - %E-Xéil (1 + a) )

AW(O) + KAW(l) is rather clumsy and may be found in ref.31) . The factorization of the
dependence of AW(a) on phase on the one hand and on velocity and gap length (transit time

factor) on the other, ¥ only possible if o = 0, eq.(3.1,10) where the centre is reference

point, If the entrance is reference point, @ = = 1, then AW(O)(a) becomes (v (o = =1) =
z, = entrance velocity, wo(-a) = ¢l = input phase ) :
z.8 zg
(o) 1 . 1
AW - = eV ————m- _ + —_— . )
(a==1) = e A zlg/2w sin 7= cos ¢l 5w (34369)

The first and second order energy gain are compared with the exact value AW'Ex for all a .
The value of o where the approximate results come closest to the exact one, is called the

optimal reference point a_ o Its position is z. = (g/2)aopto Results are displayed in

opt
Tables 3e3.1, 3¢3.2 and in Hgs. 3.3.2 = 3.3.4. The optimal reference point is always
situated in the first half of the gap, not very far from the centre. But the accuracy
of the approximate formulae is in general as good as 1% even if the entrance is taken as

reference point.



entrance centre | exit
- lo i 7

EZ= E, cos */3 (o\)

Fig. 3.3.1 Position of the reference point for phase in the gap.
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3.4 Relativistic Treatment

It is not a very realistic approximation to take into account the relativistic mass
veriation while neglecting the effect of the magnetic field which necessarily accompanies
a time-dependent electric field. Nevertheless it may be useful to treat this example in

order to expose the method which is applied to a realistic field in chapter 6.

The relativistic equation of motion :

>
d m v =
e EI—:—;;;;- e eE1 cos(wt +¢o) (3.4.1)

where m is rest mass, is integrated once. With the initial conditions:

. . L) -> + . . .
t=0: (x,y,2) =0, (X,7,2) = v = v, = (xo,yo,zo) (3.4.2)

this gives :

+ gz(eEl/w) Lsin(¢ + ¢O) - sin¢oJ

1

> =1

=mv (1-082)°
o o

ol=

m ; (x - BZ)-

(3.4.3)

where ¢ = wt. This equation cannot be solved exactly. The most annoying feature is the
-1
root (1 = B2) ? on the left hand side. It can be removed by the following method. (3)

is divided by mc and squared, i.e. the inner product is formed of the left hand side and of

the right hand side respectively :
-1 -1 2\=3 Z . .
B2(1 - B2) ~ = Bi (1 - Bé) +2 (1 - Bo) T % sin(¢ + ¢O) - sln¢o
(3.4.4)
2

+ Ki [sin(¢ +¢o) - sin¢o] = F

1
with K, = eEl/(mmc) K Bo . This is solved for B2 and (1 - B2)2 is evaluated:

1 -1
YL -82) = F g2 = F(1 + P (1-82)°=(1+7F°
(3.4.5)
1 1 1 éo
(1 -82)2=(1- ei)2 1+ 2(1 - eg)2 = %, sin(¢ + ¢o) - sincpo
=2 -3
+ (1 - Bg) Ki (sin(¢ + ¢o) - sin¢(3 J
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Multiplying the left hand side of (3) by that of (5) and the right hand side of (3) by
that of (5) gives an equation m = .... where the right hand side is a pure function of

t (or ¢) though a quite complicated one. Since Ko is small
_ . _ -3
K = eEl/(mwzo) < 0.1 Ko = eEl/(mmc) < 3.6 x 10 (3.4.6)

the root in (5) is expanded in powersof Ko The resulting simplification permits to
by integrating the right hand side term by term:

= sees

integrate the equation of motion m ¥

x L io‘ i ; .
= , -i o+ K, “%'(l - 82)° [f05(¢ *+¢,) = cosp + ¢ sin¢o}
yJ( SrOJ
(3.4.7)
/3% 1 1
2.0 _ = = s 2
+ Ki(l - Bi) \2 5 ) @(2 + sin ¢O) +

+ 2 sin¢o [cos(¢ + ¢O) - cos¢o]

- % [sin [2(¢ + ¢O)] - sin(2¢o)] >+ ves

z 1
J ¢ = (x - *E‘Kc) (1 - Bg)2 [COS(¢ + ¢O) - cosy_ + ¢ sin¢o]

z =

€ {ON°

52

+ 2 sin¢o Lcos(¢ + ¢o) - cos¢o]
i

- %—[sin E2(¢ + ¢O)] - sin(2¢o)J>+ ...J

(3.4.8)

The equation for the transverse coordinates displays the

with k = 0/2_, eq. (3.1.4).
coupling between longitudinal and transverse motion due to the relativistic mass variation.

.
.

Solving equation (8) for phase ¢ by iteration as in (3.1.6), (3.1.7) gives
éO 2 3
—_ - - 2 - >
¢(2)(z) = kz +< i Kc> (1 BO) [cos(kz * ¢O) cos¢o + kz 31n¢o]
: 2 -
-<LK - EQ K?> (1 - Bg) Lcos(kz + ¢0) - cos¢ + kz sin¢o]x

[sin(kz + ¢o) - sin¢o] (5.5.9)

—



; éz
. 3 1 .
+ Ki (1- Bi) E(l - ;8) (kz (5 + 51n2¢0)
i
+ 2 sind>O [cos(kz + ¢0) - cos¢o_|

sin(2kz + 2¢ ) = sin(2¢ )J)+
- o o

N

Iif éo z Bc approaches the velocity of light, phase ¢ becomes :

lim ¢(z) = kz (3.4.10)

z >c

o
The velocity no longer increases and the phase increases linearly with distance. Reduced
phase ¢ = ¢ - z d¢/dz = k = w/io (ef. Section L.2) is constant . Inserting (5) into the

relativistic expression for the change in total kinetic energy :

o=

tot } (3.4.11)

=1 -
AW, . = me? [(1 - 82) % - (1 - 82)
e 1

(the subscripts i and e denote the 8 = v/c of entrance and exit) and subsequent expansion in

powersof Ko gives :

, o -
AW, = mchc—o K | sin ch(g/E)» + ¢o:\v' sin [¢('g/2) + ¢o]

1 22
+ Ki (1 - 32)2% <l - gg')([sinl:dn(g/z) + ¢O:l - sincpo:]

_ 2 )
—l-sin [¢(-g/2) + ¢o} - sintbo] )+ >

|
i
J

) (3.4.12)

Introducing (+ g/2) from (9) gives the increase in total kinetic energy:
(2)*=

-

22 .
(l - —2—) 1 cos(%} - sinlkg)

= + - R2
Aw‘co’c, e\é Toh(k) COS(bo e\{) k(1 E)o) c 2 kg + k2 ..
*
(3.4.13) )
with the high relativistic limit :
lim AW, o = OW = eV Toh(k) cosé (3.4.14)

z >c
o

K Equations (36), (37), (39) and (40) of ref.3l) (corresponding to equations (8), (9)

and (13) of this section) contain an error.
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The same result follows from (3.1.9) with the help of (10).

The second term of (13) may be split up into two parts, one proportional to k which
arises from the second iteration, the other proportional to Kéé/cz which is due to the
mass variation. This already hints to the fact that relativistic contributions are of the

order kB2.
o



4.  Approximation Schemes

In the first section of this chapter the general methods of solving approximately the
equations of motion are explained. In Section 4.2 the thin lens approximation is des-
cribed. This is a method generally employed but scarcely described in full. The end of
this section treats shortly the canonically conjugate thin lens variables and may help to

correct some wide-spread misconception about them.
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4.1. General Considerations on Perturbation Theory

In this section are presented the somewhat different methods of approximation employed
in solving equations of motion with a field too complicated to permit an exact solution.
Br simplicity the discussion will be restricted to the one-dimensional problem. As in
chapter three, subscripts indicate the order of iterationj superscripts denote the order
of the perturbation equation, i.e. the power of the perturbation parameter k accompanying

the expression.
In one method the equation of motion :
Z = Hz,t) (4.1.1)
containing the force term Kz,t) is solved by iteration: a zero order approximation zg (t)
is assumed for the trajectory; this is inserted into the right hand side of (1), which
becomes a pure function of t, and the differential equation can be integrated by quadratures.
This procedure can be repeated :

B = Mz (£),6) G (8) , B, = Rz (6),8) 2 G,(8) 5 .o (4.1.2)

In the present application the initial trajectory is that of a free particle, i.e.

2 () = &t = ACH

The other approach,perturbation theory, is at first explained in a problem which is

somewhat different in nature from that to which the method is applied in Chapters 5 and 6.
The peculiarities which arise if the unperturbed motion is free particle motion, will be
discussed after the general principle has been described. In perturbation theory it is

assumed that the problem to be solved :

i = g(z,t) + Kf(Z,t) =F(Zst) ()4.1.3)

belonging to the external force F(z,t) = g(z,t) + kf(z,t), with g7 0), is not very much

different from one with the external force g(z,t):

= g(z,t) (h.1.3a)

N
|

whose solution z(o)(t) is known :
504y = 822 (6) 1) (4.1.3b)

In other words: The term «f in eq. (3), the perturbation is small compared to g,

the unperturbed force. It is not indispensible, but very advantageous to express the
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smallness of the perturbation by a perturbation parameter k as indicated in equation (3),
where it is assumed that g and f are of about the same order of magnitude while k is small

compared to unity.

An example of this kind is the motion of an artificial satellite (with an orbit not too
far from earth) in the joint gravitational field of earth and moon. The unperturbed motion

is that of the satellite in the sole field of the earth, g -~ me/r2 where o is earth mass and

(0)(

r the distance of these two bodies. The solution corresponding to z t) is a Kepler
ellipse. The perturbation is the additional gravitational field due to the moon. The
perturbation parameter « is the ratio m.m/(me + mm) where m is the moon mass. Before the
advent of the space age the standard example of this so-called restricted three body problem

. Lo e . . 6
was the motion of a planetoid in the common gravitational field of sun and Jupiter 3 ).

The solution of (3) is expressed as a power series in k :
1 2
28) = 290) + M) + 2Py & L (h.1.1)

Br the further treatment the basic assumption is made that all functions are analytic in k 3
each equation must be fulfilled separately in each power of k. Inserting (L) into (3) ,

expanding into powers of k and comparing coefficients of equal powers of k , gives :

A A ORS
e i 2200 g 0,0 = 260 (1.1.5)
2 s By gz(z(o)(t),t) = %‘z(l)zgzz(z(o),t) + z(l)fz( (o),t)

The subscript, z, of g and f denotes partial derivation with respect to the independent
variable z. The solution of the zero order equation is known by assumptions; in the
succeeding ones the nth right hand side contains only functions already found in the pre-=
ceding steps. The whole equation is solved to get the nth approximation, z(n)(t). It is
assumed that z(n+l)(t) is not greater than z(n)(t) for the range of t considered, so that
the choice of k , and the assumption of the series (4), are reasonable and allow an estimate

of the accuracy attained with the first n terms of (k).

Now it is necessary to generalize the method just described for the present applications
where the zero order approximation is assumed to be motion without force, i.e. free particle

motion : g = o, F= «kf. It is no longer possible to compare forces and to suppose that

|kf| << |g|. Still it is conceivable that the motion of a fast moving particle is not’
changed very much by a weak field of force to which it is exposed during a short time; and
that the difference between the two trajectories is not very great. This vague notion of

smallness of the influence the field exerts upon the otherwise free particle passing it,
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may be sharpened by the statement : The impulse transmitted to the particle during the time
it traverses the interaction region, should be small compared to the free particle momentum.
In the case where g = O it is no longer possible to find a suitable perturbation parameter,
k, by inspection of the equations of motion in Newtonian form (3). Other forms of them may
be more suitable, as for example the system in canonical form (3.1.18) which is equivalent

to the Newtonian form (3.1.1). The right hand side of (3.1.18a) appears again as the sum of
two terms, the second being multiplied by « = (eEl/w)/(méo) while g and f are of about the

same order of magnitude, provided k << 1.

In order to guess Kk, it is necessary to rely on physical considerations of the kind
given above, on equations already containing the result (e.g. (3.1.8) to (3.1.10))and on the
relations which connect in the case g = O the solutions of the systems (2) with those of (5),

namely :

2 (8 =20, 2 8) = 2() + P

(4.1.6)
2,(t) = 2+ ea@ ) + 2 2@ (e) + 63 ...

They are derived in appendix A.

From this comparison and from the results of chapters 3 and 5, it may be concluded that
K = eEl/(mmio) of (3.1.5), (5.1.4) is a suitable parameter to describe the influence of the
electric field upon the motion of an otherwise free particle, where to each power of k cor-
responds an order in iteration and where the power of k gives the order of magnitude of the
whole term. It may also be concluded from the relativistic treatment in Section 3.3 and
Chapter 6 that the order of magnitude of relativistic effects (force of the magnetic radio
frequency field and mass variation) is given by « ké/k2 =~k B2 ., Kg. 4.1.1 shows the
relative magnitude of these various parameters depending on particle velocity which nearly

equals the longitudinal velocity.
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Fg. 4.1.1 Relative magnitude of perturbation parameters K, K2, vuees

kB2, versus (longitudinal) particle velocity. Frst order
contributions (~k) have been normalized to unity. k = eEl/(mméo),

20 * g, w/2m = 200 MHz, El = 14,2 MV/m, m = proton rest mass.
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4. 1.A Relation between Iterative and Perturbation Theoretic Solution

The following consideratiors where the solutions found by iterations are compared with

those due to perturbation theory, do not represent a mathematical proof. Famal expansions
are employed, and the question of convergence is not touched. The convergence of such
3h4)

series is discussed in ref. (Ccf. Section 3.1.B).

The equation of motion :

7 = F (z,t) (L.1.1)
with initial conditions :
t=0 : z=0,2= 20 (L.1.7)
is solved by iteration. At the beginning the trial solution z(o)(t) is inserted and the
resulting equation is integrated twice with respect to time. This gives in view of the
initial conditions (7) :
7 = F(z t),t 4.1.8a
) = T (2gy(8)50) (4.1.82)
t — - -
2 (t=\rthz £),8) + 2 4.1.8b)
W = | @0 g (
t - E = - =
2(1y(t) = fo a \Ld F(z(o)(t),t) *+ 3t (4.1.8¢)

Then the solution z(l)(t) is used to give the second approximation :

2(2) = F‘(z(l)(t),t) (k.1.9a)

é(z) = e ()-l.l.9b)
t ot o

z(g)(t) = L at £ at F(z(l)(E),E) N (4.1.9¢)

Another set of solutions is found by perturbation theory. At present the total force acting
upon the particle is regarded as a perturbation xf(z,t). There is no unperturbed force
g(z,t) in the equation of motion (3) :

%= F(z,t) = k £(z,t) g(z,t)= 0 (k.1.10)

Assuming the perturbation expansion :
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z(t) = z(o)(t) + KZ(l)(t) + .<2z(2)(t) + k3., (.1.11)

eq. (10) is split into the system of perturbation equations :

2(o) =0 (L.1.12
5 (1) o f(z(o)(t),t) (4.1.13)
2(2) - fz(z(o)(t),t) (h.1.1L)

where the subscript, z, denotes partial derivation with respect to the independent variable

z. Its solution belonging to the initial conditions (7) are :

20) =5t = 2 (8) (4.1.12a)
t T o

Dy =fat [a £2:°%).5) (4.1.138)
(o] (o)
t to_ -

By = fat Jai 2P0 (h.1.1ha)
(o) o)

Now the two sets are put in relation to each other under the assumption that the trial

solution z, ,(t) used in eq. (8) describes free particle motion :
(o)
= (0) = &
z(o)(t) z /(%) zot (4.1.15)

Take the First two terms of (11) and insert into this expression the solutions (12a) and

(13a). Comparing this with (8c) given in view of F = kf :

201y (8) = 20 6) + 2 s) (4.1.16)

This is inserted into (9c) and the resulting equation is expanded into a Taylor's series with

respect to «k @

: t o E (o) = 1)z 3
z(z)(t) =zt + [ at £ at F(z' (%) +kz " (%),t) (k.1.17)
(e}
t 0t - _ -
= z(o)(t) + fd% f at {31(z(°),E) + Kz(l)(E) F;(z(o),f) + k2,..}
(o) o]

Comparing this with (11) where now the first three terms are retained, gives with F= «f :

20y ®) = 220 v M) ¢ 2Py + (4.1.18)

Egs. (15), (16) and (18) are the three equations quoted in eq. (6).
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The results of the first iteration equals that of first order perturbation theory.
The solution found by the second iteration is not exactly equal to that found by second
order perturbation theory : Second order perturbation theory gives only terms which are
proportional to KO, Kl and k2 . The second iteration solution may be expanded into a Taylors
series in k and the terms proportional to KO, Kl, k2 will be the same as those due to per-
turbation theory; but it still contains terms of higher powers by which it differs from the

perturbation theoretic solution. The same situation is observed in higher orders.

Br a uniform field F; = O,‘and the first order approximation gives already the exact
solution, eq. (3.1.3). All higher approximations Jjust reproduce this solution. However,
if z is chosen as the independent variable the solutions no longer can be given exactly.

In this case the equivalence between iterations and perturbation theory is again restricted
to that described just before. Ibr example, second order results are not exactly equal,

as is revealed by the comparison in eq. (3.1.8b).



- 100 -

4.2 Treatment of Particle Trajectories. The Thin Lens Approximation

The numerical integration of particle trajectories through a linac gap makes use of two

different methods : One employs step by step integration of Newton's equations :

o=

ma/at v/(1 - 82)% = eblz,r,t) + e v x H(z,r,t) (4.2.1)

Nowadays programmes for a Runge-Kutta (or similar) treatment of differential equations are
available in almost every computer library. However, such an approach has certain dis-
advantages, it is time-consuming and, in addition, it may require large amounts of storage
capacity to provide information on the fields accelerating the particle. These drawbacks
become prohibitively severe in case of computations following particles through the whole
linac. (The travelling wave approach not considered here, is not sufficiently accurate to
give more than qualitative results). ®r this reason, this method is now rarely used, its

9) 37).

application is in general limited to checks of consistency and accuracy of the second

The second method has been proposed by PANOFSKYl) to compute longitudinal motion of a
proton in an Alvarez type linear accelerator. Considering the successive gaps as really
independent, and separated by drift space where the r.f. field is practically zero, PANOFSKY
derived an expression for the energy gain of a particle in such a gap as if it were reduced
to its median plane. The longitudinal motion can then be computed in a way similar to beam
optics with thin lenses, i.e. at each gap particles receive an energy which they keep along
the drift spai§ ug t? the centre of the next gap. This approach has been refined by several

5) 9

authors (e.g. and extended to include transverse motion. It is somewhat of a matrix

type (but not necessarily linear) and is extensively used in the design and analysis of proton

11)

linear accelerators .

In this Section the "thin lens approximation" will be described. (Chapter 5 is devoted
to the explicit derivation of the pertinent matrix elements (or difference equations) which
is accomplished by approximate solution of the equation of motion in a linac gap.) The real
path of a particle crossing a cell (-L1 <z < L2), or the quadrupole field-free part of a cell,
is replaced by a fictitious one in which the whole change of motion (in both longitudinal and
transverse planes) takes place in the median plane, i.e. the gap centre,and outside of this
plane the particle moves as if it were free. The term "Jens" as used in this context does not
describe a physically realizable device 3 it is only a mathematical prescription for treating

fictitious trajectories.

It may be worthwhile to stress the difference between this method used in particle optics
and those used in ordinary (light) optics. In ordinary (geometrical) optics a thick lens is
described by two principal planes. To each of them belongs a focal point. If the position
of these planes and the focal length are known, it is possible to construct for each ray

entering the system the corresponding one leaving it. The intermediate ray connecting the
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external ones may be again fictitious, but it is continuous. If the optical lens is suf-
ficiently thin so that the two principal planes coincide, or are at least very near to each
other, it is possible to represent this lens by just one principal plane with two foci.

This is the thin lens approximation as the term is used in ordinary optics. The term thin
lens approximation given to the method used here in particle optics covers a different
description. In a proton linac the accelerating gap regarded as a beam optical lens is a
thick lens, i.e. it cannot be described by only one principal plane in the sense this word
is used in light optics. However, it is more convenient to represent it by one plane sit-
uated in the gap centre in place of two principal planes. But this beam optical thin lens
approximation must use discontinuous "rays" as shown in the figures below. There is also a
two lens method, where the fictitious trajectory is continuous, but is bent at two plaanes

12)

which are again called "lenses"

In any approach of this kind the spatial coordinate z (measured along the linac axis)
is singled out and it is envisaged to introduce it as the independent variable; in consequence,
time t (or time-angle (phase) ¢= wt ) becomes a dependent variable,d = ¢(z), and together with
total energy E (-E/w) 1t gives the pair of canonically conjugate longitudinal coordinates.¥
Either the equations of motion must be appropriately transformed from the beginningj or if
the common shape (1) of Newton's equations is retained, as is done here, the change of variables
must be carried out in the composition of the difference equations. At low energy the

substitution dt = const. dz provides a poor approximation to this requirement.

Momentum-like coordinates (e.g. radial momentum P total (or longitudinal) kinetic
energy or total energy) are constant in force-free regions and the fictitious trajectory is

just a step function (see Fig. 4.2.1) :

"L $2 20 : T(z) = W_
(k.2.2)
+0 <z < L2: T(z) = W+ =W_+ AW
In place of radial momentum :
=L < < =0 : =
1222 Py Pr-

(h.2.3)
+0 <z < L.:p =p + =D + Apr

radial slope, r” = dr/dz, often is preferred because it is accessible to direct measurement

by slits. Its difference equations are :
-Ll $2<=0:r" =r’
(k.2.4)
0 <z < L2: ri=r; =rl+ Ar

¥ Another pair are reduced phase, ¢, and -T/w, longitudinal kinetic energy divided by w.
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The other variables (e.g. time-angle (phase) ¢(z) or radial position r) linearly increase
with z in domains free from fields. In fact, in such regions z and r vary linearly with
time t (or ¢) and the inverse of a linear function is also linear. The fictitious thin lens

trajectory is (ef. Hg. 4.2.2) 3 ~ =d/dz ) :

L. <z <=0 : ¢(z) ¢(-Ll) + (z + Ll)¢’(-Ll)

l_ -
(k.2.5)
-0 <z <40 :d_ = 4(=0) 06, =¢(+0) = 9(-0) + A}
*0 <z <L, ¢(z) = ¢(+0) + z ¢'(L2)
and (Hg. 4.2.3)

L gz -0 :w(z) = x(-L) + (2 + L)r7 (<L)
-0 <z <40 :r= r(=0) = r = r(+0) = r(-0) + Ar (h.2.6)
*0 <z <Ly r(z) = r(+0) + z r’(LZ)

The fictitious trajectory is discontinuous in ¢(z) and r(z). However, the jumps Ad

and A; do not correspond to the total change of phase and radial position across the gap,

but only to the difference in reduced phase:

o(z) = ¢(z) - z ¢7(2) (L.2.7)

83 = 3(+0) = 8(-0) = ¢(+0) - ¢(-0) = o(L)) = L$7(L,) - $(-L) = L#"(-L.)

(4.2.8)

and reduced radial position :
r(z) = r(z) - z r"(2) (1.2.9)

Ar = #(+0) - 7(-0)

r(+0) - r(-0) = r(L2) - Lzri(Le) - r(-Ll) - Ijr’(-Ll)

(L.2.10)

A¢ and Ar become infinite if one or both Lj tend to infinity, while A$ ad AT approach finite

limits. These jumps account for the fact that the field accelerating the particle is dis-=

1)

tributed throughout the gap. This has been overlooked in earlier work ’. The error has

been detected by J.S. BELL2) and later by PROME ©) 9)for phase. In the paper just quoted 9)

radial position has been correctly treated; PARMILA had to be cured from this defect 37).

. . . 11) 12
An equivalent alternative method introduced by PROME ) ) employs two lenses, one at each

gap end (see Fig. 4.2.3).
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Fig. 4.2.1. Thin lens approximation for longitudinal kinetic energy. The
real trajectory ( ) is replaced by the step function (---).
W 1is the mid-gap value of T. The same procedure applies to
other momentum-like variables.
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Fig. 4.2.2

Thin lens approximation for phase (or time-—angle), ¢(z) + ¢o =Wt + g .

The real trajectory ( ) is replaced by two straight lines (---) with

input slope d¢/dziz=_ and output slope d¢/dz]z=L respectively con-

L
nected by A¢ which is %nly the change in reduced phase.



Fig. 4.2.3

-p/2 0 p/2 Z

Thin lens and two lens approximation for radius. The action of the

radial electrical Held E_ distributed throughout the gap can be approxi-
mated by one "lens" situafed at the centre (z = 0) producing a dis-
continuous trajectory (-..-..) or by two lenses (one at each gap end

z = + p/2) ylelding a continous trajectory (- — =). Both methods give
trajectories equivalent to the real one ( J. Earlier methods (e.g.
PARMILA 1) which employed one lens, but retained a continuous trajectory
(....) could not account for the fact that the force is distributed through-
out the gap, and yielded incorrect results.
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The action of the accelerating field upon the particle trajectories is incorporated both
into the increments AW, Apr (or Ar”), Ad, Ar and into the slopes ¢~ and r” 1in equations

{5),(6) respectively, which are different before and after the lens situated at z = O.

In this context arises the question whether it is possible to set up a thin lens

H amiltonian HTL from which the increments A(-W/w), A, Apr, AT may be derived by differen-

tiations with respect to mid-gap values :

A(=W/w) = = BH /30
A% = BHpy /8(-W_/w)
(k.2.11)
bp, = - aHTL/a§O
or = aHTL/BPro
38)

The principles how to find such a Hamiltonian have been explained by the author .
It is necessary to introduce canonically conjugate reduced variables by canonical trans-—

formations. A set of such canonically conjugate variables is :

Q, = ¢ =¢ -z dp/dz
P¢ == T/w
(h.2.12)
Pr = pr + ...
Q. =r-o¢p/(m) +...=r=¢ar/ap + ... = Tt

T is longitudinal kinetic energy, m z2/2. The dots in the equations for the radial
variables Qr’ Pr indicates that there have been omitted terms involving the potential of the
accelerating field which vanish in the limit |z| - ©. Therefore in the limit Lj + © the
i ncrements of all four variables across the whole gap agree with those of the left hand
sides of (11). Unfortunately, the derivation of the thin lens Hamiltonian belonging to
the set of equations (11) by canonical transformations meets some practical difficulties.
The canonically conjugate radial variables as indicated above, can be given only after the
potential has been approximated by the first terms of a power series in r (same expansion as
in eq. (5.1.12)). This entails further complications rendering the procedure impractical in

appli cations, (see also ref. 41 which is an improved version of ref. 38).

The canonically conjugate radial variables as given in eq. (12) differ from r” = dr/dz,
eq. (L) and r=r -z dr/dz, eq. (9), the radial variables usually employed in the treatment

of particle dynamics. In fact, r” and T are not canonically conjugate variables since their
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Poisson bracket is different from unity already to the first order in k, i.e. in the fields.
By the method developed in ref. 38) it can be shown that the Poisson bracket for the two

variables or ,8r” (a,B constants) is :

(ar,gr”) = aB/(mz)( 1 + (ar/az)?) = (3 /2) (1 + (ar/az)?) (4.2.13)

1+ K oo

where for convenience af = m éo has been taeken and where the coefficient of k is different
from zero. In addition, the Poisson brackets between any one of the two longitudinal co-
ordinates ¢= Q¢,'Py = - T/w on the one hand and any one of the pair r~, T on the other are
different from zero already to the first order in k. In consequence, these variables do not
fulfil Liouville's theorem, even not to the first order in the field. Of course it is
completely admissible to describe particle dynamics by variables which lack this property.
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5. Non-Relativistic Motion of a Proton in a Realistic Field

Here the non-relativistic equations of motion containing the real field of a gap are
s olved and the beam dynamics difference equations are derived. Calculations are lengthy and
involved. An easy way is described at the beginning of Section 5.2; unfortunately, it

was not possible to derive all necessary equations by it .
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5.1. Approximate Solution of the Non-relativistic Equations of Motion

The treatment starts with the equations of motion :

m? = mw?z " = e EZ n¥ = mw?r = e Er (5.1.1)

~

where ~ = d/d¢ = d/d(wt) denotes derivation with respect to phase and where m is rest mass.
The magnetic field is omitted since, as will be seen in Chapter 6 the effect of the mass
variation is of the same order of magnitude . 'Mid plame conditions" (given at the centre

of the gap) are now employed instead of initial conditions :

t=¢=0: z=0,z2 =3z/w= éo/w = 1/k
r=r ,r = ro/w =r o/k = (dr/dz)o/k (5.1.2)
= = :é: =
=86 =0 8 o =0 6(¢) = O
to specify the solutions of the differential equations (1). There are no forces acting in
the azimuthal direction, and planar motion can be assumed. Equations (1) will be solved by

the perturbation theory of section L.1.

After insertion of the field representations (2.2.11), (2.2.12) they are rewritten in a

shape more suitable for this purpose :

1 ik
k z°% =« cos(¢ + ¢o) o Jﬂdkz b(kz) 27 JO(Yr)/Jo(Ya)
(5.1.3)
k r~~ =« cos(¢ + 4>O) ;—; Jdkz b(kz) etE,2 k Jl(Yr)/(YJO(Ya))
k is the perturbation parameter (cf. (3.1.5)) :
¢ = eE_/(mwz ) = eE_k/(mw?) (5.1.4)
1 o 1
Assuming the perturbation series :
z(¢) = z(o)(¢) R RO 2(2)(¢) + 3
(5.1.5)

fo) = 2%+ 2P+ B v
equations (3) are split up into the system :

o . Z(0)~~ - -Z-(O)/wz =0 r(0)~\ - i-.(o)/wz =0 (5.1.6)
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(o)

Kl : k z(l)“ = cos(¢ + ¢O) é%' I dkz b(kz) eikzz Jo(yr(o))/Jo(Ya)
- (5.1.7)
(1) - ik 2(©) (0)
k r S = cos(¢ + ¢O) "2_“ J dkz b(kz) e 2z kz Jl(Yr )/(YJO(Ya))

o)

[} ) (
kS 1k z(g)“ = cos(¢ + ¢ )-j; J\dk v(k ) e ik z YJ'(Yr(O)) r(l) +
o 2 z o

* k) Jo(r(o)) iz 3 (va)
. (o) (5.1.8)
k r(2)~\ = COS(d) + d)o) %—%— I dkzb(kz) elkzz kz yJi(Yr(O)) r(l) +
+ ikz Jl(Yr(o))z(l) (YJO(Ya))

k3

by expansion in powers of k , and equating coefficients.of equal powers of k. One may compare
(6) to (8) with the system (4.1.12) to (4.1.14). The corresponding pair of mid-plane conditions
is required for each pair of equations (6), (T), (8). Inserting (2) into (5), and equating

coefficients of equal power of k gives :

©rut =g =00 20 =0, 200 2, 20 o, L O S s (5.1.0)
(o] [e] [e]
Kt wt = ¢ = 02 z(n) = z(n)‘ = r(n) = r(n)‘ =0, n=1,2,... (5.1.10)

Equations (6) describe the motion of a free particle whose solutions corresponding to (9)

are
r(o)(¢) =rié+tr z(o)(¢) = ¢/k (5.1.11)

Introducing (11) into (7), the right hand side becomes a pure function of ¢ . The arising

integrals must be further approximatedby expansion of the Bessel functions into powers of r;:

Jn<y[r;¢ + ro]> = Jn(yro) + r;¢ YJ;(YrO) + r;2 cee (5.1.12)

Terms of second or higher order in r_ are neglected. Equations (7) are integrated

twice with respect to ¢:
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gy .1 J TG by 360k /) -is, de(k /x-1)
(¢) = on dk bk ) J (Ya) 2 i(kZ + k) 2 i(kZ - k) +Az
s L
1 ¥ rr) [oie, 1ok, /6+1) o1t (k, /K1)
T on J &, olk) 5y |2 i(k, + k) ¢k (ke + k)?
5 L
. e—i¢oei¢(kz/k-1) - i ei¢(kz/k-1)
2 ik - k) 2 (x - x)*
Z Z
(5.1.13)
2Py = ns v B
J (yr ) | i¢ ie(k /x + 1) _-i¢_ _i¢(k /k-1) '|
L oo’ |e ok z e _oe Z
ko I &k, 205) 5 va) [ 2 (5, + w2 > G, - 07 |
c
o1 J vIlvr ) [ e ek /krl) _ Lok, /x41)
kroow VO, (k) 3 (Ya) 2 Gk, + k)2 b + 2ik 5 (, : X)3
c
ity ei¢(k /k-1) e i¢(x /k-1)
+ > (kz f k)2 ¢ + 21k 32 [e) E(RZ f k)5
(5.1.1k)
(1) -1 szl(Yro)
T (¢) =5, I dk b(kz) f;}:z;;j‘ eee + A
¢
. k J'(Yr )
< -1 1
+ oo I dk b(k ) __E-T;;T_ [ eee ]
c
(5.1.15)
~ -
(1) ) . I k Jl(Yr )
r'(9) = A + B, +-21—1Tk ax b(kz)—Y—J—-G—:—)' L
¢
. i e \l' kJ'(Yr)
o Ko &k bk ) "TF"TVZT' ceen
c

(5.1.16)
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The new integrands in (13) to (16) are singular at kz =+ k. Therefore the path of
integration in the kz-plane has been indented at kz =+k (C in Fig. (2.2.1))before performing

integrations with respect to ¢ .

The constants of integration, Az R Bz R Ar . Br are uniquely determined by (10). How-
ever , they need not be determined here since all quantities considered in this section are
differences of such a kind that these constants drop out. They are evaluated in appendix
5.2.A, The above solutions provide the basis for the derivation of the difference equations
describing the influence of the gap field upon the particle crossing it. This is done in the

next two sections.

Before that, however, it is necessary to derive the transformatims already mentioned in
S ection 4.2 +treating the thin lens approximation, which lead from ¢ to z as independent
variable, and to express them afterwards by the solutions (13) to (16). These transformations
cannot be performed exactly, expansions in powers of k are employed. An accuracy of first
order (in k) only is required. 1In an expression already multiplied by «(e.g. Kz(l)(¢))

(o)

. . . 1
the substitutions ¢ °/ = kz, 2 = ¢/k suffice to change from ¢ to z (e.g. KZ( )(kz) ) and

vice versa.

Longitudinal kinetic energy is given from (5) and (11) :

ve2iw 2o [ 22 2P w e e
= (mw?/2k2?) + mw?/k Kz(l)‘(q)) + k2 ... (5.1.17)
T=V + 2 Wk Kz(l)‘(kz) + k2 ...

To find the phase variation, the equation z = z(¢) must be solved for a given z :

with the help of (5) and (11), this leads to :

kz

il

o + Kkz(l)(cp) + k2.,

¢ = kz - K kz(l)(¢) - k2.,

which is now solved by iteration :
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b =kz -k k z(l)(¢(°)) -2 ...
0(2) = kz -k k 2 (kz) - k2 ... (5.1.18)
Tts derivative :
6° = as/az = x - k¥ 2P (kz) - 2 ..., (5.1.19)

is needed to express reduced phase (4.2.5) :

$(z) = ¢(z) - z67(2)

-k k [z(l)(kz) - kz z(l)“(kz)] + k2 ... (5.1.20)
In these equations the letter z denotes two different things:z is just the position of
the particle, while z(l)( ), z(l)\( ) are the function operators defined by equations (13),
(14) respectively.
Radial velocity is given by :
#¢) = 0 v (¢) =v [r; v rM(g) w2 ...] (5.1.21)
= [r; + K r(l)*(kz) +2
For the transition from r(¢) =w r>(¢) to :
r® = dr/dz = (dr/d¢)(d¢/dz) = r>¢~ (5.1.22)
(5), (11) and (19) are used :
r (¢) = r; + K[k r(l)*(kz) - r; k z(l)‘(kz)} + k2 ... (5.1.23)
In an earlier paper 39) the variation of ¢~ in equation (22) had been overlocked and

4” (¢) erroneously replaced by the constant k = ¢”(0). Therefore the expressions arising

from the second term in the square bradket of (23) are missing in the difference equations

of this ref.39). This mistake has been detected by PROME hO). Similar objections may be

W), ) - 9).

raised against the treatment in refs.

Reduced radius (4.2.9) is found with the help of (5), (11), (18) and (13) :
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r—-zr’

K
n

o+ + Kr(l)(¢) + «2,,
[e) [e)

[z(o)(¢) + x z(l)(¢) + K?..] [r; + K kr(l)‘(¢) -rlx k z(l)*(¢) + KZ.]

T + K[r(l)(kz) - kz r(l)\(kz)] - rg K[z(l)(kz) - kz z(l)‘(kz)] + 2.,

r +« [r(l)(kz) - kz r(l>*(kz)} + ré (z)/k + 2.,

o
= - (5.1.2k)
= r + rs o(z)/k + «%...
In the last line but one equation (20) has been used.
. . . . . 5 39)
Again, the reduced radius as defined in the paper just mentioned :
r=r - ¢ dr/dd = r - ¢ r°
™
=Tt r (k) = (2) r(l)‘(kz)] + k2 (5.1.25)

has not been entirely correct.
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5.2. Difference Equations Across the Whole Gap

Before making use of the equations listed above to derive the difference equations for
change in energy, phase,radial slope and radial position across the gap it may be pointed out
that difference equations for AW and Apr can be obtained in a simpler way. This is shown for

AW. Equation (5.1.1) gives :

=nd o _d .
m % o 7 o W=e Ez(z,r,¢) (5.2.1.)

v

It is permitted to insert in the right hand side the zero order solutions (cf. (5.1.11)):

300 =y ) . vl b r (5.2.2)

to get the gain in energy to first order ( in «k ). Expanding in powersof r” and subsequent
o

integration gives :

AW/e

|
8§——8
]w
=
N
‘N
H
o
“
e
IS]
N
o
N
+

[

E kz) dz + v~
J z(z,ro, z) dz r;
-0

Ton, (2
cos Ez(z,ro) cos(kz) dz - rl sing J 5o
o

-—c0

z sin(kz) dz

In the second line the equations (2.,2.11) and (2.2.12) and the symmetry properties (2.5.2)

have been used, Comparison with (2,6.4) leads to :
AW = + “ si
) eVO Tl(k,ro) cosd eVo d/dk BTl(k,rO)/aro r? 51n¢0 (5.2.3)

The second equation (5.1.1), when treated similarly, yields the change in radial momentum.
This kind of treatment is easy for AW and Apr where only one integration with respect to ¢
is involved, In the othercases the use of equations (5.1.13) to (5.1.16) appears more

advantageous.

The gain in the longitudinal kinetic energy between z = = % and z = £, AW(L), is given
from (5.1.17):

(L) = m(w?/k) « [z(l)*(kz) - z(l)t(-kz)] + k2., (5.2.4)

The evaluation of z(l)“(¢),(5.l.l3) for ¢ = + k& 1is accomplished in Appendix A. This is

easy, provided £ > p/2, O is completed by C

U

> Cp respectively (cf. Fig. 2.2.1) for +2(=2)
and Cauchy's residue theorem is used. The poles kz = + k (see (11)) give again AW of (3);

the poles k, = #* in (Jo(ya) = 0, cf, (2.5.1)) give an additional series whose terms are
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proportional to exp(-nvl). Consequently, in the limit % - there remains AW of (3) only.
In appendix B the additional series just mentioned is given. Its expressions are complicated;

it is doubtful whether its inclusion would be rewarded by a proportional increase in accuracy.

At least, it gives some insight under which condition the limit & - « represents a good

approximation, namely
2,4 x (L = p)/(2a) >> 1

where L is cell length and a the radius of the drift tube bore.

The integral representations (2.2.11) to (2.2.13) may be regarded as a superposition of
waves of all phase velocities. The poles kz =% (for ¢ = k&) and kz ==k (for $§_;%2) which
correspond to the singular pehaviour of the Fourier Dirichlet integral in refs. , cut out
from the continuous spectrum the wave whose phase velocity equals the particle velocity. It
appears as if the particle interacts with that wave only which has the same velocity. This
statement must not be taken tooliterally. In an evaluation of the integrals (5.1.13) to
(5.1.16) where & < p/2 which may be accomplished in the same way as that of the fields (cf.

(2.5.19)), there appear additional poles at kz = + 2mn/p representing standing waves.

The change in reduced phase between the points z = = and z = & is according to (5.1.20):

A$(2) = = « K [z(l)(kz) - (k) z(l)“(kz)] - [z(l)(-kﬁ) - (=k8) z(l)‘(-kl)] + k2.,

and in the limit £ - «

eV
- [¢] .
A = 5 k [ a/dx Tl(k,ro) sing_ + a/dk BTl(k,ro)/ar0 r? cosé ] (5.2.5)

In order to get the last expression, (16) has been used. The treatment of the transverse

quantities is similar,

ar~ = alar/dp) = « lim [r(l)‘(kk) - r(l)~<-m)]

2,-)00
(5.2.6)
eVo
=>m |- T.(k,r ) sing_ + d/ak 3T (k,r )/3r  rl cosé
Ar® = A(dr/dz) =k Ar> = r7 AW/ (2W)
(5.2.7)
eVO ,
= |- Tr(k,ro) sing _ + Qd/dk aTr(k,ro)/aro - Tl(k,ro)) v’ cosd
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AT =A(r -¢ dr/d) =

K lim [[(r(l)(kl) - (k®) r(l)‘(kl)] - [r(l)(—kl) - (-k4) r(l)*(-kz)] ] k2 ...

L > o

eV (5.2.8)
- - 9 2 2 L.
== o [d/d.k Tr(k’ro) cos¢ ot d?/dk BTr(k,ro)/aro r’ 51n¢0}
Ar = AM(r - z dr/dz) = Ar + r; Ad/k (5.2.9)

eV
9

2 2 - - .
por l:d/dk Tr(k,ro) cosq)o + (d /dk 3Tr (k,ro)/'ar0 d/dk Tl(k,ro)>rO 51n¢0}

AW, A%, Ar”, Ar  are listed in Table I.
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5.2.A Evaluation of Beam Dynamics Integrals

The evaluation of the integrals in kZ arising from (5.1.13) to (5.1.16) is simple in
the case where the particle crosses the whole gap, ¢ = k& (=k#) respectively with & > p/2.
A rigorous proof has to proceed along the lines exposed in Section 2,5.B, and this will not
be repeated here. The evaluation is accomplished by Cauchy's residue theorem, after the path
T has been completed to a closed contour by adding CU . CL respectively. Besides the simple
poles k, = in, (-inv) (ef. (2.5.10)) (whose contributions will in general be disregarded),
there are poles of various orders at k = +k (=k). The residue of a pole of order n is
easily found by:

-1
Res (n(x)/(x=x_)" ; x=x ) = [(n—l)!] (@ hx)/a) (5.2.10)

X=X
o

For convenience, the integrals involving the magnetic field which are needed in the
relativistic treatment, are treated here together with those containing the electric field
components, and all are combined into one equation. Curly brackets contain three lines, one
valid for E_, E,,Hg respectively. z(l)‘( ) r(l)“( ), m(l)“( ), z(l)( ), r(l)( ) and m(l)( )
should be regarded as function operators defined by integrals in kz . They are used to
express the coordinates'of a particle, see equations (5.1.17) to (5.1.25), but they should

not be confused with the coordinates themselves.

[ 2 (9) , [Ez<z‘°),r(°), »o
= (4) - = f a < Er(z(°),r(°),$) > =
kE
m(l)s(d)) 1 o He(z(o)’r(o)’g) UC/kO
(5.2.11)
. . + . . A
= —]; I el¢0 el¢(kz/k+l) |- ] e—l¢o el¢(kz/k-l) _1 [ z )\
=5y ok, Tk i(k, + X) +<t +j 2 ik, - K) +<l A I
C - . A
m
r™ i¢  i¢(k /k+1) ip  i¢(k /k+1)
[e) e O € Z
* 3 J: T, T 5 ei(kzz+ o *tET (k_+ k)2
C
. [ : ] e—i¢o ei¢(kz/k-l) +k e-i¢o ei¢(kz/k-l)
1 * J> 2 i(k, = x) ¢ 2 (k, - %)?

where f and fr must be chosen according to the following table:



- 116 -

function | field £(k,) £ (k)
l B b(,) I, (v )3, (va) “o(x,) v I, (yr )13, (va)
) B | -ible) k3 (e )/ (3 (ra)) | =ib(,) K, 33 (v )/ (ve)
n*) B, () 7 (1) (07, (va) io(k_) 33 (vr )3 (va)

Table 5.2.1 Abbreviations for Field and Beam Dynamics Integrals.

Evaluation as described above gives for ¢ = + k& (& > p/2) :

(5.2.12)
z(l)‘(ikﬂ,) Az} (+) 1 (+)
(¥ig,) (¥ig_)
e = A @ S v @ <(m) £, ()
<l > < ;> < 5 < ‘>
1 -(#k0) £ (#K) + ik a/ak, £ (k)|
(1)
Lm (jkl)) LAm t - L -

In all the small round brackets either the upper or the lower sign must be chosen
Taking into account the (even or

consistently. Note that terms containing & cancel.

0dd) symmetry of f(kz) gives together with (2.6.10) :
E, b(k)/I (k) =V, T (k) «b(k)/J (ya) = (eVo/2Wk) T_ (k)
(5.2.13)

the result :



(#) T (k) I (kxr)
(o] O Ir o
+

-iTo(k) k Il(krro)/kr

-1 To(k) Il(krro)/kr
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Kz(l)‘(ikl)

(1)

KT

S (+kp)

Km(l)‘(ikl)

Ve

2

J

e(-"id>o) eV,

2Wk

KA

KA

KA

.
i @/ak T (k)k I (kr )
o rl r o

A

(0 a/ac T 00 L)

(+) d/ax To(k) k Ii(krro) L

J

e(¥i¢o)

2

(5.2.14)

eV
o)
2Wk

The expressions in the curly brackets in the last line are T-coefficients, and the two

blocks may be replaced by the following ones:

(+) Tl(k’ro)
-i Tr(k’ro)

=i T (k.,r )
m o)

In place of the functions :

.

i a/ak aT. (k,r )/or
1 o o

(+) d/ax BTr(k,ro)/Bro

(+) d/ax 3T (k,r )/d3r
m o o

Vv

(5.2.15)

2 (4) e Ao +B
J oWy bolas 4 eMNE) b= < agem, -
o
nM(9) 23 A$ B
L J \ 7 L J
[ i _ie(k /K1) +1 i (k_/k-1)
N Jity idlk /Kt ity ek /xm1
T o | By T [ 2 w2 Y7 T2 g -w?
6 -
kr® [ 3¢ i0(k /k+1) 19 ie(k /x + 1)
] e 0O € Z . e O e
") O RO T T ¢tk PRESAE ]
c L Z V4
+
| [ i, ek /x-1) ity ek /x-1)
* ]‘+ I 2 (k- k)2 o+ 2k k, = %)°



only the reduced quantities are given :

-i

d/dk To(k) Io(krro)
a/dk T (k) k I_(k r )/k
o l ro r

d/ax T (k) I.(k r )/k
o l ro r

Vv

J/

¢ Lr(l)(_tkl) - (+k2) T

2
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(¥i¢ ) eV
e O [e]

W

¢ [z(l)(ikl) - (4x) z(l)‘(ikﬁ)]
(l)~<_+_m)1

‘ |:m(1>(_tkl) - (+k) m(”*(iu)]

,

N

A%

(+)

-i

-i

(5.2.16)

a2/ak? T (k)k I (k. r )
o r 1l ro

42/ax? T (k) kx I'(k r )
) 1l ro

2 ]
a2/ ax? To(k) Il(krro)

(¥i¢ ) oV
e [e]

2

-

~— I

W

Again, the two blocks of formulae given in the last line may be replaced by the following

ones

-i

d/dk Tl(k,ro)
a/ak T_(k,r ) 5

a/dx Tm(k,ro)

42 /ax? aTl(k,ro)/aro
2 2
a2 /ax aTr(k,ro)/aro

2 2
a?/ax? BT (k,r )/or,
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5.2.B Correction terms for finite cell length

In the above appendix differences of all quantities have been evaluated in the limit
L > e, If the length of the drift tubes or (of their quadrupole field free part) is not
large in comparison with their inner diameter, the contributions due to the first poles
kZ =+ inl s in2,... (Jo(ya) = 0) (ef.(2,5.1)) may no longer bg negligible. In physical
terms: the field of the evanescent modes has not yet sufficiently died off. Unfortunately,
these correction terms are complicated and, in addition, it is questionable whether they
describe beam dynamics correctly, since the series (c) which have been derived in Section 2.5
from the same integral representations of wave guide fields, strongly differ from the cavity

fields found by mesh calculations for |z| > p/2.

Therefore only an example, the change in kinetic energy between z = - § and z =% .

% being finite, is given. Residues for kz =+ inv are evaluated by use of (2,5.10). This
gives :
eV

AW(R) = AW+ 5;% Jo(koa) vzljv Jo(jvr/a)[Rv(kl) - Rv(-kz)]

(5.2.17)

©

- rl/a Vzl ji Jl(jvr/a)[z(ﬁv(kz) + Rv(—kz)]-(Pv(kz) - Pv(-kz))]:}

AW is the change for & - =, equation (3). Rv and Pv are abbreviations for the following

expressions :
b(inv) e-nvljz'| -
R_(+kL) = k sin(¢ + kL) + n_ cos(¢_ * kf)
v n_ J.(3) (n2 + k2?)
v 1 v v
(5.2,18)
—— ,Q, -
b(inv) e %I |
- . 2 o 12 + - 1 +
Poltke) n 3 (5,) (nZ +x%)? (ng = &) cos(¢, 2 k4) = 2nk sin(o, + ke)

> (-1)an 1
i =1 inh — In2 + (2 2
b(in ) n, sinh(n p/2) ] T3 [nv (2m/p)
n=o no
By use of this formula it is possible to indicate under which conditions the contributions

due to the poles kZ =+ invcan be safely neglected. It may be expected that the magnitude
of theterms of the series in (17) is mainly determined by the greater of the two exponentials
contained in Pv and R, ¢

o], (el = p/2)

o~ oo
=

. -ng
2 b(1nv) e

and this will be small if :

n, (2] = p/2) =5 (2] - p/2)/ax (v = 1/4) = (2] = p/2)/a>> 1. (5.2.19)
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Here the static approximation (2.5.8) has been used. For v = 1 this condition gives :
2,h x (|&] = p/2)/a >> 1 (5.2.19)

For % a value must be used which is representative for the distance of the boundary where
the regime of the accelerating gap ends and a new (accelerating or focusing) zone begins,

from the gap centre.
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5¢3 Difference Equations for the First Half of the Gap

The increments AW, Ag, Ar”, AT as derived in the preceeding section and displayed

o
are preferred to initial values for several reasons: One is the belief supported by some

in Table I, are given as functions of the mid=-gap values W, ¢O, r’, ro. Mid=-gap values

examples (cf. Section 3.2.) that the accuracy of approximate formulae is better in the

first case. Another is convenience of design.

Still it is necessary to find them for a particle entering the gap so that the trans-
fermations across the whole gap can be performed. For this purpose are needed equations
describing the change of kinetic energy Awl, phase Agl, radial slope Ari and position A;l
across the first half of the gap. These equations are solved for W, ¢o R r;, ry by iterationms,

A question which has not yet been cleared up, is whether the gain in accuracy acquired by the
employment of mid=gap values is not lost in this step. The half gap equations also have

applications in the design of linac cells ll),

The gain in kinetic energy through the first half of the gap is found from (5.1.17) :

Awl = 2Wk k [z(l)‘(o) - z(l)‘(-kl)] + k2 .. (5.3.1)

z(l)“(o) is zero according to (5.1.10). For z(l)“(-kl) the representation (5.1.13) may be
used with the argument ¢= =k . This gives terms of two kinds. The first pnes are the
integrals of (5.1.13) with argument ¢ = =kf ., They have been evaluated in Appendix 5.2.A and
can be expressed by T-coefficients and their derivatives. The second type is represented

by the constant Azf It is found from equation (5.1.13)‘by the mid-gap condition z(l)‘(O) =0
and is the negative of the integrals on the right hand side of (5.1,13) with the argument

$ = 0. These integrals, however, cannot be so easily evaluated than those with [4] = x2 > kp/2.
The same difficulty has already been faced in Section 2.5 when there the field representations
have been evaluated for points in the interior of the gap. But instead of proceeding
immediately by the method described in the first paragraph of Section 2.5 and in equation

(2. 5.19), it is preferred to perform this task in two steps. The first consists of
expressing these integrals by the longitudinal S-coefficient, Sl(k,r) and its derivatives
defined in Section 2.7. This is done in Appendix 5.3.A. The second step where the

explicit expression for these integrals with ¢= 0, i.e. for the S-coefficients, are derived,
has already been accomplished in Section 2.7 and appendix 2,.7.B where also approximations

are discussed.

In this way, the gain in the kinetic energy through the first half of the gap is found
with the help of (5.2.14) and of eq. (8) given in Appendix 5.3.A :
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b, = lim 2 Wk K[z(l)‘(o) - z(l)“(—kﬁ) 1
L >
= eVO % [Sl(k,ro) sin¢o - Tl(k,ro) cos¢o +Tl(k,ro) ei¢o1 (5.3.1a)
r’ .
+ eVO 52‘(-d/dk B/Bro) [Sl cos¢0 - i Tl cos¢o +iTl el¢o]

The Tl coefficient is given in eq. (2.6.4). This gives the first equation of Table III.

The procedure is analogous for all other quantities :

b3, =k [- B0y + 20 ) = (k) 2P (k) ] + k2.,

eV
o

=~% o k %:d/dk [Tl(k’ro) sing, = Sl(k,ro) cos¢o} (5.3.2)

- i 2 2 + 3 L
r? d2/dx ?/aro [Tl cos¢O Sl 31n¢o ]J

Ari =y [r(l)‘(o) - r(l)‘(-kz)] + k2.,
eV
2_w12 <|_ [— Tr(k,ro) sin¢>o - Sr(k,ro) cosdpo] (5.3.3)

+ r” d/dk 9/9r [T cos¢ = S sing ] }
o olL'r o r o

SR

Ar] =k Ar] - r] by / (2W) (5.3.4)
07, = ]:r(l)(o) e D ) = (o) 2P () ]+ <.

_ 1 eVo ( .

=S S d/dk | = Tr(k,ro) cos¢ + Sr(k,ro) sing (5.3.5)

- r” d2/dk? 3/er ['I‘ sing + S_ cos¢ ]L
[0} o r o r o

J

br) =Ar + r’ A¢l/k . (5.3.6)
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5.3.A Mid-Gap Values expressed by S-coefficients

The method of presentation introduced in Section 5.2 A by which expressions arising from

Ez’ Er’He are simultaneously displayed in the three rows of one equation, is again used here

together with the definition of the f's given in Table 5.2.1. The evaluation, however,

employs a different approach, but is rather simple.

Putting ¢ = O in the integrals of equations (5.2.10) gives:

~

(1),

z (0) *
_ (1). _ 1 ei¢o 1. e-i¢o 1
0= qr (o) » =3= ‘[ dk, £(k,) |3 zjii:frjzy et 2 ik, - k)
m(l)*(o) C -
(5.3.7)
L .
Z

r;k ei¢o 1 e-l¢o 1
+ < A >+ — dak f —_— 7y t < + 2> .
2 z (kz) 2 (kZ + k) 2 (kz - k)?

=
Q)
1

Exponentials are eliminated by use of the Euler formula. The path of integration is
symmetric, i.e. apart from its direction it is not changed by the substitution kz+ -kz.
Thus integrals over odd functions in kz vanish; there remain only integrals which can be

replaced by the integrals (and their derivatives) discussed in Section 2.7.B.

-k A, Jo(yro) R - ees ] sind
E bk J r
< =¢ A > = Li_l dk _(_L < (-k ) l(Y O) 1 + 1 cosd
T 2Wk 2 27 z J_(ya) 7 Y k +k k -k o
0 Lz z
-k A ¢ t iliifgl ‘e - e cosd
S voL °
J - b
! cese + cee
Y JO(Yr) L ] coscbo
r” E bk ) i
+-& o 1 —_—Z < x I (yr 1 - 1 sing ¢
oWk 2 2m dkz J (ya) A l(Y o) (kz + k)2 (kZ -k)2 LS
c (1) Tl )| e * ] sing




[0
o

n [

=

- 12k -

_Sl(k’ro)

-i Tl(k’ro)_ sing

J -Sr(k’ro) -i Tr(k’ro) coso_ » *

Sm(k,ro) -i Tm(k,ro) cosh,

(5.3.8)

. 1
[—S +1 T cos¢
_ o

ré eV0 r B
oo s - .
+ > oWk d/dk B/Bro L Sr i T 51n¢0 >

.
[ Sm -1 Tm' 51n¢0

The same procedure is used to evaluate (5.2.15) for ¢ = O and gives in view of (5.1.10)

- BZ [Sl(k,ro) -1 Tl(k,ro)} cos¢o
.l - .
j =« B, >=+7 d/dx < [Sr(k’ro) + i Tr(k’ro)] s1n¢O Loy
-k B ES (kyr ) + i T (k,r )] sind
m m o m o o
(5.3.9)
Sl -1 Tl 31n¢0

r; eVO ) |
2 = 2 -1
33 d4/dk 3/3r0< ESr i Tr cos¢O
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5.4 A Method to avoid S-Coefficients

In the preceding sections the mid-gap conditions (5.1.2) have been used to specify
the solution of the equations of motion from which the difference equations across the whole
gap have been deduced. Before these can be used the mid-gap values must be found with the
help of the formula derived in Section 5.3 which involve the S-coefficients. Since the
S—coefficients are rather complicated functions of k = w/éo and r, it may be worthwhile indi-
cating that there exists a possibility of avoiding them if the input coordinates are used
to express the change of kinetic energy, phase,... across the gap. The expressions for the
differences of these quantities are similar to those derived before. They involve the

transit time factor To’ eq. (2.6.7), where, however, the argument is
k= u/t (5.4.1)
(2, = longitudinal input velocity) in place of k = w/éo .

It is not possible to give here the complete set of difference equationsf The dis-

cussion is limited to the formula for the energy gain which is derived from the equation of

motion @

m%=dw/dz = e Ez(z,r) cos(¢ + wl) (5.4.2)
Ez(z,r) is the field representation (2.2.11). It is assumed that at time zero the particle
is at the cell entrance which has a distance z = - £ < —-p/2 from the gap (and cell) centre
z =0

(5.4.3)

At that instant the longitudinal field distribution is EZ = Ez(z,r) cos¢l. The relation
between the phase constant ¢O introduced in eg. (5.1.3) and the present phase constant

by must be rather complicated and depends on &, the radius and the velocities.

The equations of motion are again solved by perturbation theory. The zero order

solutions describing free particle motion are in view of the initial conditions (3) :

wt = ¢ = Ez + El
(5.4.14)

= + r’ +
r=r rl(z %)

this is inserted into (2) where, as usual, a Taylor expansion with respect to ri is per-

formed. Integration from z = =% to z = & gives :

L2)

¥ The complete set is given in
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5 _ _ % BEZ(z,rl)
J Ez(z,rl)cos(kz + kQ + wl) dz + ri J _—

AW/e
arl
-2 -2

(z + &) cos(kz + kL + wl) dz

cos (k&+ wl) J~Ez(z,rl) cos(kz) az
-2

2

riz cos(ke + wl)Jw

-2

OE (z,rl)

+

” -
arl cos(kz) dz

2
P Pt aEz(Z’rl)
r; sin(kg + ¢l) I o
-2

z sin(kz) dz
1

In the last step the symmetry Ez(z,r) = EZ(-z,r) has been used. The limits of the
integrals may be replaced by & - « while in the trigonometric functions the finite value
of  must be retained. Comparison with (2.6.4) gives for the gain in kinetic energy across

th e whole gap:

- = - =2 7% [ R - ginlE
AW = eVo Tl(k’rl) cos(k& + wl)+eVO [2 ar, Tl(k,rl) i arlTl(k,rl):l rs sin(k8 + wl)
(5.4.5)
i, ” ” iy o - sin(E
= eV 1T (k) I (kx ) cos(kt + ¥y) eV [[z + dk) T (k) k Il(krrl)] r; sin(ke + ¥,)
with

ke = [ - 2] (5.1.6)

To(i) is the transit time factor, eq. (2.6.8),depending on the longitudinal input velocity
by k = .
2, by k w/zl

The above formula shows the form of dynamics equations typical for this approach which
differs from that presently employed. Tt is obvious that the whole linac design procedure

must be changed from the very start if this new set of difference equations is employed.
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6. Relativistic Motion

Here the relativistic equations of motion are solved approximately and the ensuing dif-

ference equations are derived. The method by which the relativistic mass variation is

treated, may be new.
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6.1 Approximate Solution of the Relativistic Equations of Motion

In a relativistic treatment of the equations of motion, the most troublesome thing is
the root expressing the variation of mass with velocity. In order to circumvent this
obstacle, it is assumed that the solutions z(¢) and r(¢) are already known and can be in-

serted into the equation of motion

my a/ap W(1-82)"Y/2 = cB(z,r,0) + (¥ x ul(z,r,0)) (6.1.1)
where m = rest mass. Integrating once with respect to ¢ leads to :
¢ -
V- e) V2 =3 - ey I a Leﬁ v e(¥ x ﬁu)] e (6.1.2)
o
$O contains the constants of integration. The above equation is squared, i.e. the inner

product is formed of the vector on each side, and divided by c2(8 = ¥/e):

¢
- - -1
g2(1 - 2) 1 = B2(1 - 62) 1. 2¢ (1 - 82)7° I aé [EO-E/El + EO-($ x ﬁu/El)] +x2.. = F
]
with (6.1.3)
Ko = eEl/(mwc) = KBy - (6.1.4)

KBO < 0.00k, see (3.4.6). Taylor's expansions in this quantity are used, but they are
more of a formal nature. For, as opposed to K, Kc itself is not the parameter indicating
the order of magnitude of relativistic effects. Solving (3) for B2, forming the expression

1
for (1 - #2)° and expanding into powers of Ko gives

ol
o=

62/(1 - g2) " = F 82 = F/(1 + F) (1-82)°=(1+F)

1 ]
2

1=
ol

: |
- = - g2 - - g2 3. 3. 2
(1 - 82) (1 Bo) <1 Kc(l BO) [ dé [60 E/El + 30 (v % Hu/El)} + K. j
o
(6.1.5)
Multiplying eq. (2) by (5) gives:
¢
> > 2% > > >
kv = kvo + w(l - eo) K Id¢ I_E/El + (v x uH/El)
° (6.1.6)

¢
1 1
- - p2)2 —)'. ». _ p23)2
kvo(l 80) ch[ d¢[80 E/E1 + 8 (v x Hp/Elﬂ + (1 BO) KoKene
[}
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The first integral arises from the force on the right hand side of equation (1).
The second one has been introduced by the manipulations performed to get rid of (1 - 82)-5
on the left hand side. Therefore it is admissible to say that it accounts for the mass
variation. The increase (or decrease) of the particle mass is expressed by the effect of

the forces having acted upon it.

Plane motion is assumed, O = 8 = 0, and the vector ¥ has two components only :

w(dr/d¢, dz/de) = w(r™ , ¢°) (6.1.7)

> ..
v=(r, 2)
Perturbation series similar to (5.1.5) are assumed:

z(¢) = z(o)(¢) + Kk z(r)(¢) + k2.,

6.1.8
r(¢) = r(°)(¢) + x r(r)(¢) + k2., (6.2.8)

z(o)(¢) s r(o)(¢), 3(0)(¢) correspond to free-particle motion and are determined by the mid-

plane conditions (5.1.2) :

VOl ST i) = w (3,23) = (w/) (x1)

0*%o
(o) (o) (6:9)
[e) [¢) <
= = +
Z o/k r ro¢ T
where k = uvéo. The first order terms are labelled by the superscript r +to indicate

that after inserting (8) into (6), terms proportional to k and K, must be retained since

these two Quantities are not so different in magnitude for higher velocities 20. This gives:

¢ ->
M=l J‘E s ,¢) aé + W d¢ i(O)xP.I'_I. T ,d))
w(1-g2)? KU H k w B
) )
(6.1.10)
> ¢ 5
AU B A RO IRC
w "ok w E
1
o
where chk/(KC) = w2/e? = ki has been used. The term of the second line of eq. (6) involv—

ing the magnetic field does not contribute to that order of approximation. (10) is split up

into components and terms non-linear in r; are dropped :
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z " (¢) =
¢
o Jl ¢Ez(z(0)’ (©) 4y K2 . uH@(z(o)’r(o)m
Lk ll;El e T x o Fikole o
5[ ? 5 (2002 ¢ 5 (200 00) ) L
_ o = _Z L1pr > s .
2\ k £ E do + r £ E, dp + r-2...

(6.1.11)
P4 =
[ b g (,(0) (o) , ¢ (o) (o) , 4 (o) (o)
(1—62)% J L l. r Z e ’¢)d¢ _ EQ_ . -];\[ UHO(Z Iy Y 3¢)d _ —11(2 ’ ;L_ 5_ (Z ST ,¢,)
1 lr k2 k2
= (1-82)% 1 =P (o) - 2P NG

The reduction of the relativistic equations of motion is completed. The first order
relativistic solutions are expressed by functions already defined in the non-relativistic
treatment, see (5.2.11), where the integral representations (2.2.11) to (2.2.13) for
Ez(z,r,¢), Er and HO have been used. The second integration with respect to ¢ is easy, it
amounts to dropping the grave accents in the above equations. The first term in each line
is due to the electrical field and is the only one included in the non-relativistic solutions.
All other terms are preceded by ki/k2 x Bé which hints to the fact that all relativistic
contributions are of the order KB%- This is confirmed by the outcome of the evaluations

which follow. The second term in each line arises from the magnetic field, the remaining

ones account for the relativistic mass variation.

The thin lens variables 6(z), r°(z), r(z) as well as r>(¢) and ;(¢) may be taken from
(5.1.20) to (5.1.25) except that in these equations Z(l)*(¢), z(l)(¢), r(l)‘(¢) and r(l)(¢)
must be replaced by z(r)‘(¢), z(r)(¢), r(r)‘(¢) and r(r)(¢) respectively. Kinetic energy
T deserves special attention. In the non-relativistic case only longitudinal kinetic energy
has been used, while in the relativistic domain longitudinal and transverse kinetic energy

in general are coupled. In addition, the relativistic and non-relativistic expresssiocns for
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total kinetic energy are different. To the degree of approximation here employed, however,
they are not coupled, and equal the non-relativistic expressions. In order to demonstrate

this, (5) is inserted into

and this is afterwards expanded in powers of K,

¢
2<1/2 > >
= 2 - - + 2 . + k2 ...
Tiop =B C I:(l eo) 1] me? K, JM By E/El ke -
o
(6.1.12)
= const. + (mw?/k) K[z(l)‘(¢) + r; r(l)‘(¢)] + Kg -
The constant cancels when differences are formed. The first term in the square bracket

equals the second term of (5.1.17), the essential term of non-relativistic longitudinal

kinetic energy. The last +term in the above bracket is radial kinetic energy, provided

.

0 = 0 and the magnetic field force is neglected.
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6.2 Relativistic Difference Equations

For simplicity, in this section the relativistic difference equations across the whole
gap and along the first half of it are derived together. It is known from the non-relativistic
treatment that each of the difference equations consists of two parts, one containing
T-coefficients and giving half of the change of the corresponding quantity across the total
gap, the second part containing S-coefficients. Of course, this has been checked here and

the simplified procedure is mainly employed in order to save space.

The change in kinetic energy is found from (6.1.12), (5.3.8) and (5.2.1Lk):

. *
we ) = 2w Jl[z‘l*(o) - z(”*(-kz)] +l [r‘”*(o) - r‘“(-km] 2.

1

1 . .

= + + - -

5 eV 1 [Tl cos¢_ + 5) 51n¢o] r; d/dx a/aro[ml sing - S cos¢o]
N

+ r” [- T sing - S cos¢d ] T + k2.,
o r o r o

The argument (k,ro) of the T- and S-coefficients is suppressed throughout this
section. Terms containing the T-coefficients are combined to give the energy gain across

the whole gap:

(r) J
AW = eV T + “ si - “ si
R l 1 COS¢O d/dk a/BrO Tl v 51n¢>o + [ Tr r’ s1n¢o

j I— |
v
+
»
N}

and thereafter the change in the first half :

*
(r)

)
A

(r 1 . . + .
—_ - _S
a2+ 5 eVO Sl sing a/dk a/Br0 Sl r’ cosg . cosé,

(6.2.2)

*

. 1 -
= - - g
Awl + > eV0 [ Tr 31n¢o r cos¢o]

For the derivation of the other difference equations,equations (5.1.18) to (5.1.25) may
. 1 r .
be used where, however, the superscrlpt( ) must be replaced by (r) and the corresponding
functions be taken from (6.1.11). The arising integrals have already been evaluated in

equations (5.2.14), (5.2.16) and (5.3.8), (5.3.9).

The starred brackets give, as always, radial kinetic energy.
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This gives for the change in reduced phase :

B} ]
A¢1(r) = -k {z(r)(o) - [z(r)(—kl) - (=x2) z(r)‘(-k!z):[f + 2.,
a5 () [ K2
L o =-kks (1 - Eg) <z(l)(o) - [z(l)(-kfb) - (=k8) z(l)‘(-k!l):\>
(1-82)° {
k2

£ 9 <k 20y - k[m(l)(-kl) - (-x2) m(l)~(-kz)]

-2y + [r(l)(_kz) - (=x) r(l)~(-k£):|>}
eV k2
) S

a2 .
T, a? Bro [Tl cos¢o * Sl 51n¢0:l

k2
d . .
+ 2 & + S + L
Z <ro [ T cos¢o S 51n¢0:| ik [ Tr cosg Sr 51n¢o]> J

o8

With

(6.2.3)

B

the total reduced phase, A;(r), can be written:

-(r) ev J k2 -
_Ay T ooy <-I{% d 7 sing - & 27 r;cosd)o

ak 1 od.kzarol

ké ev_ k2 1
- ° .
= w2 Ad o %2 To kr Il ro cosq>O
and thereafter the change in the first half :
v k2 5 '
= (r) =(r) 2%leoJ o d d ) . s
Ay Ap /2 = (1 BO) >on { 1-32 = 51 cosd  *+ 57 . 1 r? sing

d d PR
<—k = S - S ) r” sin¢
(6.2.5)
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= (r)
Ad K2 k2 eV
1 o\, = 1 o . d d
= 1 - —=]A -—_ = —x - —_ —_ 3
(1-62)? < k2> TR W T <UE1COS¢0 [k ax Sntac Sr ] sint >

o

The change in radial velocity is :

Ar“(r) =k [r(r)‘(o) - r(r)“(-kﬁﬂ + k3.

1
s(r)
Ar
L - ! [r(1)~(o) - r(1)~(-kz)]
(1-82)2 |
© 2

- Eg<[1<m<1>~<o> - |+ 2z [0 - z‘l)*(-km]) ]J>
FEA SRR R Sy

k 2 [T cos¢p + S sind ]
Bro m o m o

[-k T sin¢ + k S cosd ] +r
m o m o

g™

”
[e]
+ 2 | T

o[

With (3) and k Tm = Tr the difference Ar‘(r) can be written :

)
Kz

cos¢o + 85 sin¢o]

=

%

. (66206)
-— T -2 r” cosd
k2 1 % m o
o
and with this one gets for Ari(r) :
(6.2.7)
V
(r) (r) 2l So J a 3 .
= ~ + - = —_— - — — ——
Arl Ar /2 + (1 BO) 5 3 t Sr cos¢0 o 3ro Sr r 51n¢o
d 9 P
s s 2
2 k n cos¢O k &= o7 S r s1n¢O
__o©
X2
+ S ‘ si
1 r’ sing
The transformation from r~= dr/d¢ to r”= dr/dz is accomplished by use of :
o) = e (0) - r’ vk [z(r)‘(kz) - z(r)‘(-kz)]
1
=k Ar‘(r) - rs (1 - 82)2 (1 - k2/k2) AW/(2W) + r22.., (6.2.8)
o o o o
1
pe () =k ars(®) Cope (1 - 2)2 (1 - k2/k2) aw /(2W) + r72...
1 1 o o o 1 o



- 135 -

This gives :

2
_Ar_»(i)hij C5 Vo sing +[d__e_T . }r'coscb
(1-8)% oW l | k2 r o dk dr r 1 o o
k2 ]
-= T -—B—T r” cos¢ >
k2 1 Bro m o J

2 -

k ~
3 [a 0. 4d |
[aro< & rrteFa %n) Slj o Sln¢oj

The change of reduced radius is calculated in two steps, at first the change in

T=r=¢dr/dé¢ is found, and then that of T = r = z dr/dz.

A;ﬁr) =K { r(r)(o) - [r(r)(-kl) - (=k%) r(r)*(-kg)] + k2.,

=(r) (
4“]_ —leVO <Q‘__Tc 6 +8 . + Jiz.—a— T . S -]
(1_62)% 2 2w L dk r S9%% r 51n¢0 To a2 Bro r Sln¢o r COS¢OJ
o
d : PN . \ |
—|-T -5 + - |- +
ké k = [ ' cos¢o n 51n¢OJ ro k 2 aro [ Tm 51n¢o Sm cos¢o] L
T k2

+I‘"d—-T sind + S_ cosod !
o dk 1 o 1 SO J

(r)

In the expression for ir the T-coefficients can be :combined

k2 k2 k2
4 o . 4a . _ o\ 4 o
x r T Fa m o\ L 2 ) ax r e T
(6.2.11)
2 2 2
ax2"r k2 dk2™m k2 ) ax2°r k2 T dk m

to give:
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v k2
=(r) (r) 11%% il o, d
= + - R2)2 = —= + — =
ary ar-T7 /2 + (1 = g2) > o = S, tT kg S sing
k
3 | a2 o a2
- + — —
or I:dk2 r Rz E d.kzsm:l *, cost,

(6.2.13)

The transition r = r - ¢ dr/de -~ r=r -z dr/dz is analogous to the last line of equation
(5.1.24) =

A;(r) K ki eVo BTm l
——— = - _0 o - — + —_ 1
" 1 1 = AT w2 oW Tm cosd)O kM 2 T Tl r” sing
(1 -82) o
(6.2.14)

=(r) _ \z(zx) _a2y31l_o a oy & :
AT ariti/2 4 (1= 82)% 5 @ S, T Ear Sn)sind,

1 r
k2
3 2 o 42 a -
- —] = + — k —, + =

<3r [ a2 Or %2 k 225n ] dk S%) Ty costy,
(6.2.15)

The four quantities used AW, Ag, Ar”, Ar 5 Awl, Agl, Ari, A;l when treating particle

trajectories in the thin lens approximation are listed in Tables II and IV.
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Table I = The Transit Time Factor and its Derivatives

To(k) = éi Ez(z,o) cos(kz) dz Too(l +Y)

(o] 28

T'(k) = = 2 J E (z,0) z sin(kz) dz =T' (L+Y)+T Y'
Vo Z 00 00
o
2 oo
™(k) = = — 2 = m" ] 1 "
500 = - J E (2,0) 2 cos(kz) dz = Th (L +Y) +2 1L Y' + T ¥
o
1
2 2 ¢
k, = [k - ko] p=g+2R; (Fig. 2.1.4)
Jo(k 2) sin(kp/2)
(k a) (kp/2)
I,(k_a)
1 l a _kp 1'\"r
™ = = - =
00 2 cte(kp/2) kp pkyp I (kra) ]

=3
I

e |
e ]
{ 1

+
T
B LSS (=5
P Tl \5p - (k)
© n -1
Y=-2(xp)2 |} (-1) B [(2nn)2 - (kp)? ]
n=1
Y 8 -
— - - n -
Y' = 2p o 2(kp)3 } (-1) B [(2’nn)2 (kp)2]
n=1
Y 51 Y . -
R B i A 2(kp)"* nzl (-1)"B, [(Zﬂn)z - (kp)z]
The apostrophe (') denotes derivation with respect to k(=w/£o). It is customary

to normalize the derivatives by multiplying them by omn/L or k. This has not been done in

the above expressions.
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Table II - Expressions for T— and S-coefficients

. Tl(k,r) = To(k) Il(krr) T (k,r) =T (k) Il(krr)/kr
Tf(k,r) =T (k) k Il(krr)/kr k= (k2 - kf))l/2
J (k r) © pk B I (pr/p)
_ oo’ _ n o 'n
Sl(k’r) = - ctg(kp/2) To Io(krr) * pk/2 4 Jo(koa) nzl (2m)? - (kp)2? Io(una/p)
E Bn(-l)n w Jo(jvr/a) exp(-n p/2) 3,

2
2 .
8 5lkge) (kp) (a) n0 T+ o LTI GO )7+ (np)2(@m)? + (np)?

o B (2m)?
(kr)/k_ + 43 (ka) nzl 18

1 Il(unr/P)
(2m)? - (xp)? w I (u a/p)

Sr(k,r) = ctg(kp/2) To(k) k Il

© B (-1)" = J (j r/a) exp(-n_p/2) (n_p)?
-89 (k) 3 I e TE )2 G2 (o)
° ° & n=0l * no v=l1 Jl Iy (kp)® + P kp * nvp

J (k r) ® (wr/p)

I
n 1l 1™
Sk nzl(2ﬂn)2-(kp)2 u I una/P)

Lol

2 o o
= - s 2. _© o
S (k,r) ctg(kp/2) To(k) wp nlky i kop L Jo(koa n O(

© B (-1)" « J (jr/a) exp(-n p/2)
_ D n 1y V.
8 J (k a) kp ) T+ 6

n=Q o

1
7,6 (kp)? + (nvp)2 (2mm)? + (nvp)2

o v=1

2

np = [(jvp/a)2 - (kop)2 ] w = [(2nn)2 - (kop)2 ] p=g+2R,

V

Sm and Tm are not dimensionless. Concerning their normalization see p. 53.

P, &> Ri are defined in Fig. 2.1.L.
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Table IIT - Non-relativistic change of longitudinal kinetic energy,

reduced phase, radial slope and reduced radial position

across a g8ap

AW = eV T I
[0 o o)
AP = ok a/ak(T I )
O O
Ar” = = o

(Tok Il/kr)

d/dk(To k Il/kr)

cos¢

sing

sind

cos¢

evo d/dk(TokrIl)

ok a2/ak2(T k I.)
or

1
a [d/dk(Tok Ii) - TOIO ]

a [dz/dk?(Tok Ii) - d/dk(TOIO)]

Table IV - Change of the Same Quantities in the Relativistic Case

AW = AW

Aér/(l - Bg)é A% (1 - kg/kz)

,
- _ r2)2 - - k2 /12
Arr/(l BO) Ar©(1 ko/k )

=

A;r/(l - Bi)

*
+ [- ev_ (Tok Il/kr) r’sin¢ ]

r° sing¢

r” cosé

cos¢

sing¢

- uk(ki/kz) (ToIl/kr)

2 /.2
+ o (ko/k ) To

(I - Io)

Adding the term in the square brackets gives the gain in total kinetic energy .

(cf. eq. (6. 1. 12) and (6.2.1)).

r cos¢

r cos¢

Ar (1 - ki/kz) - a(ki/kz) (TOIl/kr) cosd - o (ki/k2) a/ax(2r 17 - TOIO) r“sin¢
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Table V - Change of Kinetic FEnergy, Reduced Phase, Radial Slope and Reduced Position

along the First Half of the Gap

Awl = AW/2 + (eVO/2) i Sl sin¢g = d/dk 3Sl/ar r’cos¢ ]
- - r
by, = Ap/2 =~ (ok/2) dSl/dk cos¢ + a2 /ax? asl/ar r°sing :l
Ars = Ar”/2 = (a/2) I S, cos¢ + (d/ax BSr/ar + Sl) r’sing ]
- - r
Ar, = Ar/2 + (a/2) dSr/d.k sing - (d2?/dax? asr/ar + dSl/dk) r’cos¢ ]
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Table VI - Change of the Same Quantities in the Relativistic Case

Y

as *
. 9 1.,

= + - — — + -

Awrl Awr/2 (eVO/2) Sl sin¢ ( Sy ak [ Sr} r’cosé f
*
= Aw, + 1~ [ - T sin¢ = S cos¢ ]
1 r r
2 2 2
1 k das ass k as as

- - 3 ak [ o 1 0 1 . o r m . L

= A —a-82)?2 < (1-=% )= +— —7 1’ -9 X4 B )
86 ¢r/2 ( Bo) 5 L . T cos¢ 3 @l T sind ) e k o |7 sing

o 2\ | T I as_ as_ ]
= - g2)? - — - —= == 01 r* cospo —= — 4 a3
(1 80) 1 1-12 )% "2, k] d = TELm r’ sino I
1, K2 as_ ki as_ L

NSO “j2 - (1L -82)2 =< |s +—= |\ =+ — |+ “si
ro, Arr/2 ( BO) = > k S ) cos¢ — | &= 2 k = Sl r’sing
_ _ ) [ as ké as_ a?s_ k2 a%s as,
A = + - g2)2 2 — + =k — ing - [ == — + —= .
Tr1 br /2 + (1= 80" 5 1 dk K2 * sing ar |2 k2 EF a2 Q@ ) Treose

# Adding the term in the square bracket gives the gain in total kinetic energy

(ef. eq.(6.1.12))



- 143 -

Common to Tables III to V1

Q
1]

evo/(zw) ké/kz (dz/dt)é/cz N 52

=
L[}

m/2 (dz/dt)i = (m/2) ig m = rest mass 1- ki/k? k%/k? 1 - Si

The argument k = w/io of To(k), krro of the modified Bessel functions In(krr) and
k,ro of Sl(k,ro), Sr(k,ro), Sm(k,ro) and the subscript o of 9 T and ro = (dr/dz)o
have been dropped. In all the expressions of Tables III and VI all these parameters

refer to mid-gap values.
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