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Abstract
As improvements in per-transistor speed and energy effi-

ciency diminish, radical departures from conventional ap-

proaches are becoming critical to improving the performance

and energy efficiency of general-purpose processors. We

propose a solution—from circuit to compiler—that enables

general-purpose use of limited-precision, analog hardware

to accelerate “approximable” code—code that can tolerate

imprecise execution. We utilize an algorithmic transformation

that automatically converts approximable regions of code from

a von Neumann model to an “analog” neural model. We out-

line the challenges of taking an analog approach, including

restricted-range value encoding, limited precision in computa-

tion, circuit inaccuracies, noise, and constraints on supported

topologies. We address these limitations with a combination

of circuit techniques, a hardware/software interface, neural-

network training techniques, and compiler support. Analog

neural acceleration provides whole application speedup of

3.7× and energy savings of 6.3× with quality loss less than

10% for all except one benchmark. These results show that

using limited-precision analog circuits for code acceleration,

through a neural approach, is both feasible and beneficial

over a range of approximation-tolerant, emerging applica-

tions including financial analysis, signal processing, robotics,

3D gaming, compression, and image processing.

1. Introduction

Energy efficiency now fundamentally limits microproces-

sor performance gains. CMOS scaling no longer provides

gains in efficiency commensurate with transistor density in-

creases [16, 25]. As a result, both the semiconductor industry

and the research community are increasingly focused on spe-

cialized accelerators, which provide large gains in efficiency

and performance by restricting the workloads that benefit. The

community is facing an “iron triangle”; we can choose any

two of performance, efficiency, and generality at the expense

of the third. Before the effective end of Dennard scaling,

we improved all three consistently for decades. Solutions

that improve performance and efficiency, while retaining as

much generality as possible, are highly desirable, hence the

growing interest in GPGPUs and FPGAs. A growing body

of recent work [13, 17, 44, 2, 35, 8, 28, 38, 18, 51, 46] has

focused on approximation as a strategy for the iron triangle.

Many classes of applications can tolerate small errors in their

outputs with no discernible loss in QoR (Quality of Result).

Many conventional techniques in energy-efficient computing

navigate a design space defined by the two dimensions of

performance and energy, and traditionally trade one for the

other. General-purpose approximate computing explores a

third dimension—that of error.
Many design alternatives become possible once precision

is relaxed. An obvious candidate is the use of analog circuits

for computation. However, computation in the analog domain

has several major challenges, even when small errors are per-

missible. First, analog circuits tend to be special purpose,

good for only specific operations. Second, the bit widths they

can accommodate are smaller than current floating-point stan-

dards (i.e. 32/64 bits), since the ranges must be represented

by physical voltage or current levels. Another consideration is

determining where the boundaries between digital and analog

computation lie. Using individual analog operations will not

be effective due to the overhead of A/D and D/A conversions.

Finally, effective storage of temporary analog results is chal-

lenging in current CMOS technologies. These limitations has

made it ineffective to design analog von Neumann processors

that can be programmed with conventional languages.
Despite these challenges, the potential performance and

energy gains from analog execution are highly attractive. An

important challenge is thus to architect designs where a signif-

icant portion of the computation can be run in the analog do-

main, while also addressing the issues of value range, domain

conversions, and relative error. Recent work on Neural Pro-

cessing Units (NPUs) may provide a possible approach [18].

NPU-enabled systems rely on an algorithmic transformation

that converts regions of approximable general-purpose code

into a neural representation (specifically, multi-layer percep-

trons) at compile time. At run-time, the processor invokes the

NPU instead of running the original code. NPUs have shown

large performance and efficiency gains, since they subsume

an entire code region (including all of the instruction fetch,

decode, etc., overheads). They have an added advantage in

that they convert many distinct code patterns into a common

representation that can be run on a single physical accelerator,

improving generality.
NPUs may be a good match for mixed-signal implementa-

tions for a number of reasons. First, prior research has shown

that neural networks can be implemented in analog domain

to solve classes of domain-specific problems, such as pattern

recognition [5, 47, 49, 32]. Second, the process of invok-

ing a neural network and returning a result defines a clean,



coarse-grained interface for D/A and A/D conversion. Third,

the compile-time training of the network permits any analog-

specific restrictions to be hidden from the programmer. The

programmer simply specifies which region of the code can

be approximated, without adding any neural-network-specific

information. Thus, no additional changes to the programming

model are necessary.
In this paper we evaluate an NPU design with mixed-signal

components and develop a compilation workflow for utilizing

the mixed-signal NPU for code acceleration. The goal of this

study is to investigate challenges and define potential solutions

to enable effective mixed-signal NPU execution. The objective

is to both bound application error to sufficiently low levels

and achieve worthwhile performance or efficiency gains for

general-purpose approximable code. This study makes the

following four findings:

1. Due to range limitations, it is necessary to limit the scope

of the analog execution to a single neuron; inter-neuron

communication should be in the digital domain.

2. Again due to range issues, there is an interplay between

the bit widths (inputs and weights) that neurons can use

and the number of inputs that they can process. We found

that the best design limited weights and inputs to eight bits,

while also restricting the number of inputs to each neuron

to eight. The input count limitation restricts the topological

space of feasible neural networks.

3. We found that using a customized continuous-discrete

learning method (CDLM) [10], which accounts for limited-

precision computation at training time, is necessary to re-

duce error due to analog range limitations.

4. Given the analog-imposed topology restrictions, we found

that using a Resilient Back Propagation (RPROP) [30] train-

ing algorithm can further reduce error over a conventional

backpropagation algorithm.
We found that exposing the analog limitations to the com-

piler allowed for the compensation of these shortcomings and

produced sufficiently accurate results. The latter three find-

ings were all used at training time; we trained networks at

compile time using 8-bit values, topologies restricted to eight

inputs per neuron, plus RPROP and CDLM for training. Using

these techniques together, we were able to bound error on all

applications but one to a 10% limit, which is commensurate

with entirely digital approximation techniques. The average

time required to compute a neural result was 3.3× better than

a previous digital implementation with an additional energy

savings of 12.1×. The performance gains result in an average

full-application-level improvement of 3.7× and 23.3× in per-

formance and energy-delay product, respectively. This study

shows that using limited-precision analog circuits for code ac-

celeration, by converting regions of imperative code to neural

networks and exposing the circuit limitations to the compiler,

is both feasible and advantageous. While it may be possible

to move more of the accelerator architecture design into the

analog domain, the current mixed-signal design performs well

enough that only 3% and 46% additional improvements in

application-level energy consumption and performance are

possible with improved accelerator designs. However, improv-

ing the performance of the analog NPU may lead to higher

overall performance gains.

2. Overview and Background

Programming. We use a similar programming model as de-

scribed in [18] to enable programmers to mark error-tolerant

regions of code as candidates for transformation using a sim-

ple keyword, approximable. Explicit annotation of code for

approximation is a common practice in approximate program-

ming languages [45, 7]. A candidate region is an error-tolerant

function of any size, containing function calls, loops, and com-

plex control flow. Frequently executed functions provide a

greater opportunity for gains. In addition to error tolerance,

the candidate function must have well-defined inputs and out-

puts. That is, the number of inputs and outputs must be known

at compile time. Additionally, the code region must not read

any data other than its inputs, nor affect any data other than its

outputs. No major changes are necessary to the programming

language beyond adding the approximable keyword.

Exposing analog circuits to the compiler. Although an

analog accelerator presents the opportunity for gains in ef-

ficiency over a digital NPU, it suffers from reduced accuracy

and flexibility, which results in limitations on possible network

topologies and limited-precision computation, potentially re-

sulting in a decreased range of applications that can utilize

the acceleration. These shortcomings at the hardware level,

however, can be exposed as a high-level model and considered

in the training phase.
Four characteristics need to be exposed: (1) limited preci-

sion for input and output encoding, (2) limited precision for

encoding weights, (3) the behavior of the activation function

(sigmoid), (4) limited feasible neural topologies. Other low-

level circuit behavior such as response to noise can also be

exposed to the compiler. Section 5 describes this necessary

hardware/software interface in more detail.

Analog neural accelerator circuit design. To extract the

high-level model for the compiler and to be able to acceler-

ate execution, we design a mixed-signal neural hardware for

multilayer perceptrons. The accelerator must support a large

enough variety of neural network topologies to be useful over a

wide range of applications. As we will show, each applications

requires a different topology for the neural network that is re-

placing its approximable regions of code. Section 4 describes

a candidate A-NPU circuit design, and outlines the challenges

and tradeoffs present with an analog implementation.

Compiling for analog neural hardware. The compiler

aims to mimic approximable regions of code with neural net-

works that can be executable on the mixed-signal accelerator.

While considering the limitation of the analog hardware, the

compiler searches the topology space of the neural networks

and selects and trains a neural network to produce outputs
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Figure 1: Framework for using limited-precision analog computation to accelerate code written in conventional languages.

comparable to those produced by the original code segment.

1) Profile-driven training data collection. During a pro-

filing stage, the compiler runs the application with represen-

tative profiling inputs and collects the inputs and outputs to

the approximable code region. This step provides the training

data for the rest of the compilation workflow.

2) Training for a limited-precision A-NPU. This stage

is where our compilation workflow significantly deviates from

the framework presented in [18] that targets digital NPUs.

The compiler uses the collected training data to train a multi-

layer perceptron neural network, choosing a network topology,

i.e. the number of neurons and their connectivity, and taking

a gradient descent approach to find the synaptic weights of

the network while minimizing the error with respect to the

training data. This compilation stage does a neural topology

search to find the smallest neural network that (a) adheres to

the organization of the analog circuit and (b) delivers accept-

able accuracy at the application level. The network training

algorithm, which finds optimal synaptic weights, uses a combi-

nation of a resilient back propagation algorithm, RPROP [30],

that we found to outperform traditional back propagation for

restricted network topologies, and a continuous-discrete learn-

ing method, CDLM [10], that attempts to correct for error due

to limited-precision computation. Section 5 describes these

techniques that address analog limitations.

3) Code generation for hybrid analog-digital execution.

Similar to prior work [18], in the code generation phase, the

compiler replaces each instance of the original program code

with code that initiates a computation on the analog neural

accelerator. Similar ISA extensions are used to specify the

neural network topology, send input and weight values to the

A-NPU, and retrieve computed outputs from the A-NPU.

3. Analog Circuits for Neural Computation

This section describes how analog circuits can perform the

computation of neurons in multi-layer perceptrons, which

are widely used neural networks. We also discuss, at a high-

level, how limitations of the analog circuits manifest in the

computation. We explain how these restrictions are exposed

to the compilation framework. The next section presents a

concrete design for the analog neural accelerator.
As Figure 2a illustrates, each neuron in a multi-layer per-

ceptron takes in a set of inputs (xi) and performs a weighted

sum of those input values (∑i xiwi). The weights (wi) are the

result of training the neural network on . After the summation
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Figure 2: One neuron and its conceptual analog circuit.

stage, which produces a linear combination of the weighted

inputs, the neuron applies a nonlinearity function, sigmoid, to

the result of summation.
Figure 2b depicts a conceptual analog circuit that performs

the three necessary operations of a neuron: (1) scaling inputs

by weight (xiwi), (2) summing the scaled inputs (∑i xiwi), and

(3) applying the nonlinearity function (sigmoid). This con-

ceptual design first encodes the digital inputs (xi) as analog

current levels (I(xi)). Then, these current levels pass through

a set of variable resistances whose values (R(wi)) are set pro-

portional to the corresponding weights (wi). The voltage level

at the output of each resistance (I(xi)R(wi)), is proportional to

xiwi. These voltages are then converted to currents that can be

summed quickly according to Kirchhoff’s current law (KCL).

Analog circuits only operate linearly within a small range of

voltage and current levels, outside of which the transistors

enter saturation mode with IV characteristics similar in shape

to a non-linear sigmoid function. Thus, at the high level, the

non-linearity is naturally applied to the result of summation

when the final voltage reaches the analog-to-digital converter

(ADC). Compared to a digital implementation of a neuron,

which requires multipliers, adder trees and sigmoid lookup

tables, the analog implementation leverages the physical prop-

erties of the circuit elements and is orders of magnitude more

efficient. However, it operates in limited ranges and therefore

offers limited precision.

Analog-digital boundaries. The conceptual design in Fig-

ure 2b draws the analog-digital boundary at the level of an

algorithmic neuron. As we will discuss, the analog neural

accelerator will be a composition of these analog neural units

(ANUs). However, an alternative design, primarily optimizing

for efficiency, may lay out the entirety of a neural network

with only analog components, limiting the D-to-A and A-to-D

conversions to the inputs and outputs of the neural network



and not the individual neurons. The overhead of conversions

in the ANUs significantly limits the potential efficiency gains

of an analog approach toward neural computation. However,

there is a tradeoff between efficiency, reconfigurability (gener-

ality), and accuracy in analog neural hardware design. Pushing

more of the implementation into the analog domain gains ef-

ficiency at the expense of flexibility, limiting the scope of

supported network topologies and, consequently, limiting po-

tential network accuracy. The NPU approach targets code

approximation, rather than typical, simpler neural tasks, such

as recognition and prediction, and imposes higher accuracy

requirements. The main challenge is to manage this tradeoff to

achieve acceptable accuracy for code acceleration, while deliv-

ering higher performance and efficiency when analog neural

circuits are used for general-purpose code acceleration.
As prior work [18] has shown and we corroborate, regions

of code from different applications require different topolo-

gies of neural networks. While a holistically analog neural

hardware design with fixed-wire connections between neu-

rons may be efficient, it effectively provides a fixed topology

network, limiting the scope of applications that can benefit

from the neural accelerator, as the optimal network topology

varies with application. Additionally, routing analog signals

among neurons and the limited capability of analog circuits

for buffering signals negatively impacts accuracy and makes

the circuit susceptible to noise. In order to provide additional

flexibility, we set the digital-analog boundary in conjunction

with an algorithmic, sigmoid-activated neuron. where a set

of digital inputs and weights are converted to the analog do-

main for efficient computation, producing a digital output that

can be accurately routed to multiple consumers. We refer to

this basic computation unit as an analog neural unit, or ANU.

ANUs can be composed, in various physical configurations,

along with digital control and storage, to form a reconfigurable

mixed-signal NPU, or A-NPU.
One of the most prevalent limitations in analog design is

the bounded range of currents and voltages within which the

circuits can operate effectively. These range limitations restrict

the bit-width of input and weight values and the network

topologies that can be computed accurately and efficiently.

We expose these limitations to the compiler and our custom

training algorithm and compilation workflow considers these

restrictions when searching for optimal network topologies

and training neural networks. As we will show, one of the

insights from this work is that even with limited bit-width

(≤ 8), and a restricted neural topology, many general-purpose

approximate applications achieve acceptable accuracy and

significantly benefit from mixed-signal neural acceleration.

Value representation and bit-width limitations. One of

the fundamental design choices for an ANU is the bit-width

of inputs and weights. Increasing the number of bits results

in an exponential increase in the ADC and DAC energy dis-

sipation and can significantly limit the benefits from analog

acceleration. Furthermore, due to the fixed range of voltage

and current levels, increasing the number of bits translates to

quantizing this fixed value range to fine granularities that prac-

tical ADCs can not handle. In addition, the fine granularity

encoding makes the analog circuit significantly more suscepti-

ble to noise, thermal, voltage, current, and process variations.

In practice, these non-ideal effects can adversely affect the

final accuracy when more bit-width is used for weights and

inputs. We design our ANUs such that the granularity of the

voltage and current levels used for information encoding is to

a large degree robust to variations and noise.

Topology restrictions. Another important design choice is

the number of inputs in the ANU. Similar to bit-width, in-

creasing the number of ANU inputs translates to encoding

a larger value range in a bounded voltage and current range,

which, as discussed, becomes impractical. There is a tradeoff

between accuracy and efficiency in choosing the number ANU

inputs. The larger the number of inputs, the larger the number

of multiply and add operations that can be done in parallel in

the analog domain, increasing efficiency. However, due to the

bounded range of voltage and currents, increasing the number

of inputs requires decreasing the number of bits for inputs and

weights. Through circuit-level simulations, we empirically

found that limiting the number of inputs to eight with 8-bit

inputs and weights strikes a balance between accuracy and

efficiency. A digital implementation does not impose such

restrictions on the number of inputs to the hardware neuron

and it can potentially compute arbitrary topologies of neural

networks. However, this unique ANU limitation restricts the

topology of the neural network that can run on the analog

accelerator. Our customized training algorithm and compi-

lation workflow takes into account this topology limitation

and produces neural networks that can be computed on our

mixed-signal accelerator.

Non-ideal sigmoid. The saturation behavior of the analog

circuit that leads to sigmoid-like behavior after the summation

stage represents an approximation of the ideal sigmoid. We

measure this behavior at the circuit level and expose it to the

compiler and the training algorithm.

4. Mixed-Signal Neural Accelerator (A-NPU)

This section describes a concrete ANU design and the mixed-

signal, neural accelerator, A-NPU.

4.1. ANU Circuit Design

Figure 3 illustrates the design of a single analog neuron (ANU).

The ANU performs the computation of one neuron, or y ≈
sigmoid(∑i wixi). We place the analog-digital boundary at

the ANU level, with computation in the analog domain and

storage in the digital domain. Digital input and weight values

are represented in sign-magnitude form. In the figure, swi

and sxi
represent the sign bits and wi and xi represent the

magnitude. Digital input values are converted to the analog

domain through current-steering DACs that translate digital

values to analog currents. Current-steering DACs are used for
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Figure 3: A single analog neuron (ANU).

their speed and simplicity. In Figure 3, I(|xi|) is the analog

current that represents the magnitude of the input value, xi.

Digital weight values control resistor-string ladders that create

a variable resistance depending on the magnitude of each

weight (R(|wi|)) . We use a standard resistor ladder thats

consists of a set of resistors connected to a tree-structured

set of switches. The digital weight bits control the switches,

adjusting the effective resistance, R(|wi|), seen by the input

current (I(|xi|)). These variable resistances scale the input

currents by the digital weight values, effectively multiplying

each input magnitude by its corresponding weight magnitude.

The output of the resistor ladder is a voltage: V (|wixi|) =
I(|xi|)×R(|wi|). The resistor network requires 2m resistors

and approximately 2m+1 switches, where m is the number of

digital weight bits. This resistor ladder design has been shown

to work well for m ≤ 10. Our circuit simulations show that

only minimally sized switches are necessary.
V (|wixi|), as well as the XOR of the weight and input sign

bits, feed to a differential pair that converts voltage values

to two differential currents (I+(wixi), I−(wixi)) that capture

the sign of the weighted input. These differential currents

are proportional to the voltage applied to the differential pair,

V (|wixi|). If the voltage difference between the two gates is

kept small, the current-voltage relationship is linear, producing

I+(wixi) =
Ibias

2
+∆I and I−(wixi) =

Ibias
2

−∆I. Resistor ladder

values are chosen such that the gate voltage remains in the

range that produces linear outputs, and consequently a more

accurate final result. Based on the sign of the computation, a

switch steers either the current associated with a positive value

or the current associated with a negative value to a single wire

to be efficiently summed according to Kirchhoff’s current law.

The alternate current is steered to a second wire, retaining

differential operation at later design stages. Differential op-

eration combats environmental noise and increases gain, the

later being particularly important for mitigating the impact of

analog range challenges at later stages.
Resistors convert the resulting pair of differential currents

to voltages, V+(∑i wixi) and V−(∑i wixi), that represent the

weighted sum of the inputs to the ANU. These voltages are
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Figure 4: Mixed-signal neural accelerator, A-NPU. Only four of the

ANUs are shown. Each ANU processes eight 8-bit inputs.

used as input to an additional amplification stage (implemented

as a current-mode differential amplifier with diode-connected

load). The goal of this amplification stage is to significantly

magnify the input voltage range of interest that maps to the

linear output region of the desired sigmoid function. Our

experiments show that neural networks are sensitive to the

steepness of this non-linear function, losing accuracy with

shallower, non-linear activation functions. This fact is rele-

vant for an analog implementation because steeper functions

increase range pressure in the analog domain, as a small range

of interest must be mapped to a much larger output range in

accordance with ADC input range requirements for accurate

conversion. We magnify this range of interest, choosing circuit

parameters that give the required gain, but also allowing for

saturation with inputs outside of this range.
The amplified voltage is used as input to an ADC that con-

verts the analog voltage to a digital value. We chose a flash

ADC design (named for its speed), which consists of a set

of reference voltages and comparators [1, 31]. The ADC re-

quires 2n comparators, where n is the number of digital output

bits. Flash ADC designs are capable of converting 8 bits at

a frequency on the order of one GHz. We require 2–3 mV

between ADC quantization levels for accurate operation and

noise tolerance. Typically, ADC reference voltages increase

linearly; however, we use a non-linearly increasing set of ref-

erence voltages to capture the behavior of a sigmoid function,

which also improves the accuracy of the analog sigmoid.

4.2. Reconfigurable Mixed-Signal A-NPU

We design a reconfigurable mixed-signal A-NPU that can per-

form the computation of a wide variety of neural topologies

since each requires a different topology. Figure 4 illustrates

the A-NPU design with some details omitted for clarity. The

figure shows four ANUs while the actual design has eight.

The A-NPU is a time-multiplexed architecture where the al-

gorithmic neurons are mapped to the ANUs based on a static

scheduling algorithm, which is loaded to the A-NPU before

invocation. The multi-layer perceptron consists of layers of

neurons, where the inputs of each layer are the outputs of

the previous layer. The ANU starts from the input layer and

performs the computations of the neurons layer by layer. The

Input Buffer always contains the inputs to the neurons, either



coming from the processor or from the previous layer com-

putation. The Output Buffer, which is a single entry buffer,

collects the outputs of the ANUs. When all of its columns are

computed, the results are pushed back to the Input Buffer to en-

able calculation of the next layer. The Row Selector determines

which entry of the input buffer will be fed to the ANUs. The

output of the ANUs will be written to a single-entry output

buffer. The Column Selector determines which column of the

output buffer will be written by the ANUs. These selectors are

FIFO buffers whose values are part of the preloaded A-NPU

configuration. All the buffers are digital SRAM structures.
Each ANU has eight inputs. As shown in Figure 4, each

A-NPU is augmented with a dedicated weight buffer, storing

the 8-bit weights. The weight buffers simultaneously feed the

weights to the ANUs. The weights and the order in which they

are fed to the ANUs are part of the A-NPU configuration. The

Input Buffer and Weight Buffers synchronously provide the inputs

and weights for the ANUs based on the pre-loaded order.

A-NPU configuration. During code generation, the com-

piler produces an A-NPU configuration that constitutes the

weights and the schedule. The static A-NPU scheduling al-

gorithm first assigns an order to the neurons of the neural

network, in which the neurons will be computed in the ANUs.

The scheduler then takes the following steps for each layer

of the neural network: (1) Assign each neuron to one of the

ANUs. (2) Assign an order to neurons. (3) Assign an or-

der to the weights. (4) Generate the order for inputs to feed

the ANUs. (5) Generate the order in which the outputs will

be written to the Output Buffer. The scheduler also assigns a

unique order for the inputs and outputs of the neural network

in which the core communicates data with the A-NPU.

4.3. Architectural interface for A-NPU

We adopt the same FIFO-based architectural interface through

which a digital NPU communicates with the processor [18].

The A-NPU is tightly integrated to the pipeline. The processor

only communicates with the ANUs through the Input, Output,

Config FIFOs. The processor ISA is extended with special in-

structions that can enqueue and dequeue data from these FIFOs

as shown in Figure 4. When a data value is queued/dequeued

to/from the Input/Output FIFO, the A-NPU converts the values

to the appropriate representation for the A-NPU/processor.

5. Compilation for Analog Acceleration

As Figure 1 illustrates, the compilation for A-NPU execution

consists of three stages: (1) profile-driven data collection, (2)

training for a limited-precision A-NPU, and (3) code genera-

tion for hybrid analog-digital execution. In the profile-driven

data collection stage, the compiler instruments the application

to collect the inputs and outputs of approximable functions.

The compiler then runs the application with representative

inputs and collects the inputs and their corresponding outputs.

These input-output pairs constitute the training data. Section 4

briefly discussed ISA extensions and code generation. While

compilation stages (1) and (3) are similar to the techniques pre-

sented for a digital implementation [18], the training phase is

unique to an analog approach, accounting for analog-imposed,

topology restrictions and adjusting weight selection to account

for limited-precision computation.

Hardware/software interface for exposing analog circuits

to the compiler. As we discussed in Section 3, we ex-

pose the following analog circuit restrictions to the compiler

through a hardware/software interface that captures the fol-

lowing circuit characteristics: (1) input bit-width limitations,

(2) weight bit-width limitations, (3) limited number of inputs

to each analog neuron (topology restriction), and (4) the non-

ideal shape of the analog sigmoid. The compiler internally

constructs a high-level model of the circuit based on these

limitations and uses this model during the neural topology

search and training with the goal of limiting the impact of

inaccuracies due to an analog implementation.

Training for limited bit widths and analog computation.

Traditional training algorithms for multi-layered perceptron

neural networks use a gradient descent approach to minimize

the average network error, over a set of training input-output

pairs, by backpropagating the output error through the net-

work and iteratively adjusting the weight values to minimize

that error. Traditional training techniques, however, that do

not consider limited-precision inputs, weights, and outputs

perform poorly when these values are saturated to adhere to

the bit-width requirements that are feasible for an implemen-

tation in the analog domain. Simply limiting weight values

during training is also detrimental to achieving quality outputs

because the algorithm does not have sufficient precision to

converge to a quality solution.
To incorporate bit-width limitations into the training al-

gorithm, we use a customized continuous-discrete learning

method (CDLM) [10]. This approach takes advantage of the

availability of full-precision computation at training time and

then adjusts slightly to optimize the network for errors due

to limited-precision values. In an initial phase, CDLM first

trains a fully-precise network according to a standard training

algorithm, such as backpropagation [43]. In a second phase,

it discretizes the input, weight, and output values according

the the exposed analog specification. The algorithm calcu-

lates the new error and backpropagates that error through the

fully-precise network using full-precision computation and

updates the weight values according to the algorithm also used

in stage 1. This process repeats, backpropagating the ’dis-

crete’ errors through a precise network. The original CDLM

training algorithm was developed to mitigate the impact of

limited-precision weights. We customize this algorithm by

incorporating the input bit-width limitation and the output

bit-width limitation in addition to limited weight values. Ad-

ditionally, this training scheme is advantageous for an analog

implementation because it is general enough to also make up

for errors that arise due to an analog implementation, such as a

non-ideal sigmoid function and any other analog non-ideality



that behaves consistently.
In essence, after one round of full-precision training, the

compiler models an analog-like version of the network. A

second, CDLM-based training pass adjusts for these analog-

imposed errors, enabling the inaccurate and limited A-NPU as

an option for a beneficial NPU implementation by maintaining

acceptable accuracy and generality.

Training with topology restrictions. In addition to deter-

mining weight values for a given network topology, the com-

piler searches the space of possible topologies to find an opti-

mal network for a given approximable code region. Conven-

tional multi-layered perceptron networks are fully connected,

i.e. the output of each neuron in one layer is routed to the input

of each neuron in the following layer. However, analog range

limitations restrict the number of inputs that can be computed

in a neuron (eight in our design). Consequently, network con-

nections must be limited, and in many cases, the network can

not be fully connected.
We impose the circuit restriction on the connectivity be-

tween the neurons during the topology search and we use a

simple algorithm guided by the mean-squared error of the

network to determine the best topology given the exposed

restriction. The error evaluation uses a typical cross-validation

approach: the compiler partitions the data collected during

profiling into a training set, 70% of the data, and a test set, the

remaining 30%. The topology search algorithm trains many

different neural-network topologies using the training set and

chooses the one with the highest accuracy on the test set and

the lowest latency on the A-NPU hardware (prioritizing accu-

racy). The space of possible topologies is large, so we restrict

the search to neural networks with at most two hidden layers.

We also limit the number of neurons per hidden layer to pow-

ers of two up to 32. The numbers of neurons in the input and

output layers are predetermined based on the number of inputs

and outputs in the candidate function.
To further improve accuracy, and compensate for topology-

restricted networks, we utilize a Resilient Back Propagation

(RPROP) [30] training algorithm as the base training algorithm

in our CDLM framework. During training, instead of updating

the weight values based on the backpropagated error (as in

conventional backpropagation [43]), the RPROP algorithm

increases or decreases the weight values by a predefined value

based on the sign of the error. Our investigation showed that

RPROP significantly outperforms conventional backpropaga-

tion for the selected network topologies, requiring only half of

the number of training epochs as backpropagation to converge

on a quality solution. The main advantage of the application of

RPROP training to an analog approach to neural computing is

its robustness to the sigmoid function and topology restrictions

imposed by the analog design. Backpropagation, for example,

is extremely sensitive to the steepness of the sigmoid function,

and allowing for a variety of steepness levels in a fixed, analog

implementation is challenging. Additionally, backpropagation

performs poorly with a shallow sigmoid function. The require-

ment of a steep sigmoid function exacerbates analog range

challenges, possibly making the implementation infeasible.

RPROP tolerates a more shallow sigmoid activation steepness

and performs consistently utilizing a constant activation steep-

ness over all applications. Our RPROP-based, customized

CDLM training phase requires 5000 training epochs, with the

analog-based CDLM phase adding roughly 10% to the training

time of the baseline training algorithm.

6. Evaluations

Cycle-accurate simulation and energy modeling. We use

the MARSSx86 x86-64 cycle-accurate simulator [39] to model

the performance of the processor. The processor is modeled

after a single-core Intel Nehalem to evaluate the performance

benefits of A-NPU acceleration over an aggressive out-of-

order architecture1. We extended the simulator to include ISA-

level support for A-NPU queue and dequeue instructions. We

also augmented MARSSx86 with a cycle-accurate simulator

for our A-NPU design and an 8-bit, fixed-point D-NPU with

eight processing engines (PEs) as described in [18]. We use

GCC v4.7.3 with -o3 to enable compiler optimization. The

baseline in our experiments is the benchmark run solely on the

processor without neural transformation. We use McPAT [33]

for processor energy estimations. We model the energy of an

8-bit, fixed-point D-NPU using results from McPAT, CACTI

6.5 [37], and [22] to estimate its energy. Both the D-NPU and

the processor operate at 3.4GHz at 0.9 V, while the A-NPU is

clocked at one third of the digital clock frequency, 1.1GHz at

1.2 V, to achieve acceptable accuracy.

Circuit design for ANU. We built a detailed transistor-level

SPICE model of the analog neuron, ANU. We designed and

simulated the 8-bit, 8-input ANU in the Cadence Analog De-

sign Environment using predictive technology models at 45

nm [6]. We ran detailed Spectre SPICE simulations to under-

stand circuit behavior and measure ANU energy consumption.

We used CACTI to estimate the energy of the A-NPU buffers.

Evaluations consider all A-NPU components, both digital and

analog. For the analog parts, we used direct measurements

from the transistor-level SPICE simulations. For SRAM ac-

cesses, we used CACTI. We built an A-NPU cycle-accurate

simulator to evaluate the performance improvements. Similar

to McPAT, we combined simulation statistics with measure-

ments from SPICE and CACTI to calculate A-NPU energy. To

avoid biasing our study toward analog designs, all energy and

performance comparisons are to an 8-bit, fixed-point D-NPU

(8-bit inputs/weights/multiply-adders). For consistency with

the available McPAT model for the baseline processor, we

1Processor: Fetch/Issue Width: 4/5, INT ALUs/FPUs: 6/6, Load/Store

FUs: 1/1, ROB Entries: 128, Issue Queue Entries: 36, INT/FP Physical

Registers: 256/256, Branch Predictor: Tournament 48 KB, BTB Sets/Ways:

1024/4, RAS Entries: 64, Load/Store Queue Entries: 48/48, Dependence

Predictor: 4096-entry Bloom Filter, ITLB/DTLB Entries: 128/256 L1: 32

KB Instruction, 32 KB Data, Line Width: 64 bytes, 8-Way, Latency: 3 cycles

L2: 256 KB, Line Width: 64 bytes, 8-Way, Latency: 6 cycles L3: 2 MB,

Line Width 64 bytes, 16-Way, Latency: 27 cycles Memory Latency: 50 ns



Table 1: The evaluated benchmarks, characterization of each offloaded function, training data, and the trained neural network.

Benchmark*Name Descrip0on Type

#*of*

Func0on*

Calls

#*of*

Loops

#*of*Ifs/

elses

#*of*

x86@64*

Instruc0on

s

Evalua0on*Input*

Set
Training*Input*Set

Neural*Network*

Topology

Fully*

Digital*NN*

MSE

Analog*NN*

MSE*(8@bit)

Applica0on*Error*

Metric

Fully*

Digital*

Error

Analog*

Error

blackscholes

Mathema'cal*

model*of*a*

financial*market*

Financial*

Analysis
5 0 5 309

4096*Data*Point*

from*PARSEC

16384*Data*Point*

from*PARSEC 6*E>*8*E>*8E>*1 0.000011 0.00228 Avg.*Rela've*Error 6.02% 10.2%

M
RadixE2*CooleyE

Tukey*fast*fourier

Signal*

Processing
2 0 0 34

2048*Random*

Floa'ng*Point*

Numbers

32768*Random*

Floa'ng*Point*

Numbers

1*E>*4*E>*4*E>*2 0.00002 0.00194 Avg.*Rela've*Error 2.75% 4.1%

inversek2j
Inverse*kinema'cs*

for*2Ejoint*arm
Robo'cs 4 0 0 100

10000*(x,*y)*

Random*

Coordinates

10000*(x,*y)*

Random*

Coordinates

2*E>*8*E>*2 0.000341 0.00467 Avg.*Rela've*Error 6.2% 9.4%

jmeint

Triangle*

intersec'on*

detec'on

3D*Gaming 32 0 23 1,079

10000*Random*

Pairs*of*3D*

Triangle*

Coordinates

10000*Random*

Pairs*of*3D*

Triangle*

Coordinate

18*E>*32*E>*8*E>*2 0.05235 0.06729 Miss*Rate 17.68% 19.7%

jpeg JPEG*encoding Compression 3 4 0 1,257
220x200EPixel*

Color*Image

Three*512x512E

Pixel*Color*Images
64*E>*16*E>*8*E>*64 0.0000156 0.0000325 Image*Diff 5.48% 8.4%

kmeans KEmeans*clustering
Machine*

Learning
1 0 0 26

220x200EPixel*

Color*Image

50000*Pairs*of*

Random*(r,*g,*b)*

Values

6*E>*8*E>*4*E>*1 0.00752 0.009589 Image*Diff 3.21% 7.3%

sobel
Sobel*edge*

detector

Image*

Processing
3 2 1 88

220x200EPixel*

Color*Image

One*512x512E

Pixel*Color*Image
9*E>*8*E>*1 0.000782 0.00405 Image*Diff 3.89% 5.2%

Table 2: Area estimates for the analog neuron (ANU).

Sub-circuit Area

8×8-bit DAC 3,096 T∗

8×Resistor Ladder (8-bit weights) 4,096 T + 1 KΩ (≈ 450T)

8×Differential Pair 48 T

I-to-V Resistors 20 KΩ (≈ 30 T)

Differential Amplifier 244 T

8-bit ADC 2550 T + 1 KΩ (≈ 450 T)

Total ≈ 10,964 T

∗Transistor with width/length = 1

used McPAT and CACTI to estimate D-NPU energy. Even

though we do not have a fabrication-ready layout for the de-

sign, in Table 2, we provide an estimate of the ANU area in

terms of number of transistors. T denotes a transistor with
width
length

= 1. As shown, each ANU (which performs eight, 8-bit

analog multiply-adds in parallel followed by a sigmoid) re-

quires about 10,964 transistors. An equivalent digital neuron

that performs eight, 8-bit multiply-adds and a sigmoid would

require about 72,456 T from which 56,000 T are for the eight,

8-bit multiply-adds and 16,456 T for the sigmoid lookup. With

the same compute capability, the analog neuron requires 6.6×
fewer transistors than its equivalent digital implementation.

Benchmarks. We use the benchmarks in [18] and add one

more, blackscholes. These benchmarks represent a diverse set

of application domains, including financial analysis, signal pro-

cessing, robotics, 3D gaming, compression, image processing.

Table 1 summarizes information about each benchmark: ap-

plication domain, target code, neural-network topology, train-

ing/test data and final application error levels for fully-digital

neural networks and analog neural networks using our cus-

tomized RPROP-based CDLM training algorithm. The neural

networks were trained using either typical program inputs,

such as sample images, or a limited number of random inputs.

Accuracy results are reported using an independent data set,

e.g, an input image that is different than the image used dur-

ing training. Each benchmark requires an application-specific

error metric, which is used in our evaluations. As shown in Ta-
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Figure 5: A-NPU with 8 ANUs vs. D-NPU with 8 PEs.

ble 1, each application benefits from a different neural network

topology, so the ability to reconfigure the A-NPU is critical.

A-NPU vs 8-bit D-NPU. Figure 5 shows the average energy

improvement and speedup for one invocation of an A-NPU

over one invocation of an 8-bit D-NPU, where the A-NPU

is clocked at 1
3

the D-NPU frequency. On average, the A-

NPU is 12.1× more energy efficient and 3.3× faster than

the D-NPU. While consuming significantly less energy, the

A-NPU can perform 64 multiply-adds in parallel, while the

D-NPU can only perform eight. This energy-efficient, par-

allel computation explains why jpeg–with the largest neural

network (64→16→8→64)–achieves the highest energy and

performance improvements, 82.2× and 15.2×, respectively.

The larger the network, the higher the benefits from A-NPU.

Compared to a D-NPU, an A-NPU offers a higher level of par-

allelism with low energy cost that can potentially enable using

larger neural networks to replace more complicated code.

Whole application speedup and energy savings. Figure 6

shows the whole application speedup and energy savings when

the processor is augmented with an 8-bit, 8-PE D-NPU, our

8-ANU A-NPU, and an ideal NPU, which takes zero cycles

and consumes zero energy. Figure 6c shows the percentage of

dynamic instructions subsumed by the neural transformation

of the candidate code. The results show, following the Am-

dahl’s Law, that the larger the number of dynamic instructions

subsumed, the larger the benefits from neural acceleration.
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Figure 6: Whole application speedup and energy saving with D-NPU,

A-NPU, and an Ideal NPU that consumes zero energy and takes zero

cycles for neural computation.

Geometric mean speedup and energy savings with an A-NPU

is 3.7× and 6.3× respectively, which is 48% and 24% better

than an 8-bit, 8-PE NPU. Among the benchmarks, kmeans

sees slow down with D-NPU and A-NPU-based acceleration.

All benchmarks benefit in terms of energy. The speedup with

A-NPU acceleration ranges from 0.8× to 24.5×. The energy

savings range from 1.3× to 51.2×.As the results show, the

savings with an A-NPU closely follows the ideal case, and,

in terms of “energy”, there is little value in designing a more

sophisticated A-NPU. This result is due to the fact that the

energy cost of executing instructions in the von Neumann,

out-of-order pipeline is much higher than performing sim-

ple multiply-adds in the analog domain. Using physics laws

(Ohm’s law for multiplication and Kirchhoff’s law for summa-

tion) and analog properties of devices to perform computation

can lead to significant energy and performance benefits.

Application error. Table 3 shows the application-level er-

rors with a floating point D-NPU, A-NPU with ideal sigmoid

and our A-NPU which incorporates non-idealities of the ana-

log sigmoid. Except for jmeint, which shows error above 10%,

all of the applications show error less than or around 10%.

Application average error rates with the A-NPU range from

Table 3: Error with a floating point D-NPU, A-NPU with ideal sigmoid,

and A-NPU with non-ideal sigmoid.
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Figure 7: CDF plot of application output error. A point (x,y) indicates

that y% of the output elements see error ≤ x%.

4.1% to 10.2%. This quality-of-result loss is commensurate

with other work on quality trade-offs. Among digital hard-

ware approximation techniques, Truffle [17] and EnerJ [45]

shows similar error (3–10%) for some applications and much

greater error (above 80%) for others in a moderate configura-

tion. Green [3] has error rates below 1% for some applications

but greater than 20% for others. A case study [36] explores

manual optimizations of the x264 video encoder that trade

off 0.5–10% quality loss. As expected, the quality-of-results

degradation with an A-NPU is more than a floating point

D-NPU. However, the quality losses are commensurate with

digital approximate computing techniques.
To study the application-level quality loss in more detail,

Figure 7 illustrates the CDF (cumulative distribution function)

plot of final error for each element of application’s output.

Each benchmark’s output consists of a collection of elements–

an image consists of pixels; a vector consists of scalars; etc.

This CDF reveals the distribution of error among an applica-

tion’s output elements and shows that only a small fraction

of the output elements see large quality loss with analog ac-

celeration. The majority (80% to 100%) of each application’s

output elements have error less than 10% except for jmeint.

Exposing circuit limitations to the compiler. Figure 8

shows the effect of bit-width restrictions on application-level

error, assuming 8 inputs per neuron. As the results suggest,

exposing the bit-width limitations and the topology restric-

tions to the compiler enables our RPROP-based, customized

CDLM training algorithm to find and train neural networks

that can achieve accuracy levels commensurate with the digital

approximation techniques, using only eight bits of precision

for inputs, outputs, and weights, and eight inputs to the analog

neurons. Several applications show less than 10% error even

with fewer than eight bits. The results shows that there are

many applications that can significantly benefit from analog



Figure 8: Application error with limited bit-width analog neural computation.
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Figure 9: Speedup/energy saving with limited A-NPU invocations.

acceleration without significant output quality loss.

Limited analog acceleration. We examine the effects on

the benefits when, due to noise or pathological inputs, only

a fraction of the invocations are offloaded to the A-NPU. In

this case, the application falls back to the original code for

the remaining invocations. Figure 9 depicts the application

speedup and energy improvement when only 80%, 85%, 90%,

95%, and 100% of the invocations are offloaded to the A-NPU.

The results suggest that even limited analog accelerators can

provide significant energy and performance improvements.

7. Limitations and Considerations

Applicability. Not all applications can benefit from analog

acceleration; however, our work shows that there are many that

can. More rigorous optimization at the circuit level, as well as

broadening the scope off application coverage by continued

advancements at the neural transformation step, may provide

significant improvements in accuracy and generality.

Other design points. This study evaluates the performance

and energy improvements of an A-NPU assuming integration

with a modern, high-performance processor. If low-power

cores are used instead, we expect to see, and preliminary

results confirm, that the performance benefits of an A-NPU

increase, and that the energy benefits decrease.

Variability and noise. We designed the circuit with vari-

ability and noise as first-order concerns, and we made several

design decisions to mitigate them. We limit both the input and

weight bit widths, as well as the analog neuron input count

to eight to provide quantization margins for variation/noise.

We designed the sigmoid circuit one order of magnitude more

shallow than the digital implementation to provide additional

margins for variation and noise. We used a differential design,

which provides resilience to noise by representing a value by

the difference between two signals; as noise affects the pair

of nearby signals similarly, the difference between the sig-

nals remains intact and the computation correct. Conversion

to the digital domain after each analog neuron computation

enforces computation integrity and reduces variation/noise

susceptibility, while incurring energy and speed overheads.

As mentioned in Section 6, to further improve the quality of

the final result, we can refrain from A-NPU invocations and

fall back to the original code as needed. An online noise-

monitoring system could potentially limit the invocation of

the A-NPU to low-noise situations. Incorporating a quanti-

tative noise model into the training algorithm may improve

robustness to analog noise.

Training for variability. A neural approach to approximate

computing presents the opportunity to correct for certain types

of analog-imposed inaccuracy, such as process variation, non-

linearity, and other forms of non-ideality that are consistent for

executions on a particular A-NPU hardware instance for some

period of time. After an initial training phase that accounts for

the predictable, compiler-exposed analog limitations, a second

(shorter) training phase can adjust for hardware-specific non-

idealities, sending training inputs and outputs to the A-NPU

and adjusting network weights to minimize error. This correc-



tion technique is able to address inter and intra-chip process

variation and hardware-dependent, non-ideal analog behavior.

Smaller technology nodes. This work is the start of using

analog circuits for code acceleration. Providing benefits at

smaller nodes may require using larger transistors for analog

parts, trading off area for resilience. Energy-efficient perfor-

mance is growing in importance relative to area efficiency,

especially as CMOS scaling benefits continue to diminish.

8. Related Work

This research lies at the intersection of (a) general-purpose

approximate computing, (b) accelerators, (c) analog and digital

neural hardware, (d) neural-based code acceleration, (e) and

limited-precision learning. This work combines techniques

in all these areas to provide a compilation workflow and the

architecture/circuit design that enables code acceleration with

limited-precision mixed-signal neural hardware. In each area,

we discuss the key related work that inspired our work.

General-purpose approximate computing. Several stud-

ies have shown that diverse classes of applications are tolerant

to imprecise execution [20, 54, 34, 12, 45]. A growing body

of work has explored relaxing the abstraction of full accuracy

at the circuit and architecture level for gains in performance,

energy, and resource utilization [13, 17, 44, 2, 35, 8, 28, 38,

18, 51, 46]. These circuit and architecture studies, although

proven successful, are limited to purely digital techniques. We

explore how a mixed-signal, analog-digital approach can go

beyond what digital approximate techniques offer.

Accelerators. Research on accelerators seeks to synthesize

efficient circuits or FPGA configurations to accelerate general-

purpose code [41, 42, 11, 19, 29]. Similarly, static specializa-

tion has shown significant efficiency gains for irregular and

legacy code [52, 53]. More recently, configurable accelerators

have been proposed that allow the main CPU to offload cer-

tain code to a small, efficient structure [23, 24]. This paper

extends the prior work on digital accelerators with a new class

of mixed-signal, analog-digital accelerators.

Analog and digital neural hardware. There is an exten-

sive body of work on hardware implementations of neural net-

works both in digital [40, 15, 55] and analog [5, 47, 49, 32, 48].

Recent work has proposed higher-level abstractions for imple-

mentation of neural networks [27]. Other work has examined

fault-tolerant hardware neural networks [26, 50]. In particu-

lar, Temam [50] uses datasets from the UCI machine learning

repository [21] to explore fault tolerance of a hardware neural

network design. In contrast, our compilation, neural-network

selection/training framework, and architecture design aim at

applying neural networks to general-purpose code written in

familiar programming models and languages, not explicitly

written to utilize neural networks directly.

Neural-based code acceleration. A recent study [9] shows

that a number of applications can be manually reimplemented

with explicit use of various kinds of neural networks. That

study did not prescribe a programming workflow, nor a pre-

ferred hardware architecture. More recent work exposes ana-

log spiking neurons as primitive operators [4]. This work

devises a new programming model that allows programmers

to express digital signal-processing applications as a graph of

analog neurons and automatically maps the expressed graph

to a tiled analog, spiking-neural hardware. The work in [4] is

restricted to the domain of applications whose inputs are real-

world signals that should be encoded as pulses. Our approach

addresses the long-standing challenges of using analog com-

putation (programmability and generality) by not imposing

domain-specific limitations, and by providing analog circuitry

that is integrated with a conventional digital processor in a

way that does not require a new programming paradigm.

Limited-precision learning. The work in [14] provides a

complete survey of learning algorithms that consider limited

precision neural hardware implementation. We tried various al-

gorithms, but we found that CDLM [10] was the most effective.

More sophisticated limited-precision learning techniques can

improve the reported quality results in this paper and further

confirm the feasibility and effectiveness of the mixed-signal,

approach for neural-based code acceleration.

9. Conclusions

For decades, before the effective end of Dennard scaling, we

consistently improved performance and efficiency while main-

taining generality in general-purpose computing. As the bene-

fits from scaling diminish, the community is facing an iron tri-

angle; we can choose any two of performance, efficiency, and

generality at the expense of the third. Solutions that improve

performance and efficiency, while retaining as much generality

as possible, are growing in importance. Analog circuits inher-

ently trade accuracy for significant gains in energy-efficiency.

However, it is challenging to utilize them in a way that is both

programmable and generally useful. As this paper showed, the

neural transformation of general-purpose approximable code

provides an avenue for realizing the benefits of analog compu-

tation while targeting code written in conventional languages.

This work provided an end-to-end solution for utilizing ana-

log circuits for accelerating approximate applications, from

circuits to compiler design. The insights from this work show

that it is crucial to expose analog circuit characteristics to the

compilation and neural network training phases. The NPU

model offers a way to exploit analog efficiencies, despite their

challenges, for a wider range of applications than is typically

possible. Further, mixed-signal execution delivers much larger

savings for NPUs than digital. However, this study is not

conclusive. The full range of applications that can exploit

mixed-signal NPUs is still unknown, as is whether it will be

sufficiently large to drive adoption in high-volume micropro-

cessors. It is still an open question how developers might

reason about the acceptable level of error when an application

undergoes an approximate execution including analog accel-

eration. Finally, in a noisy, high-performance microprocessor



environment, it is unclear that an analog NPU would not be

adversely affected. However, the significant gains from A-

NPU acceleration and the diversity of the studied applications

suggest a potentially promising path forward.
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