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Abstract A 2D and a 3D finite-volume code in general curvilinear coordinates
have been developed using the Basis2D/3D platform by Michelsen. The codes are
based on the Reynolds averaged incompressible isothermal Navier-Stokes equa-
tions and use primitive variables (U, V, W and P). The turbulence is modelled
by the high Reynolds number k£ — e model.

Cartesian velocity components are used in a non-staggered arrangement follow-
ing the methodology of Rhie. The equation system is solved using the SIMPLE
method of Patankar and Spalding. Solution of the transport equations is obtained
by a successive application of a TDMA solver in alternating direction. The solution
of the pressure correction equation is accelerated using the multigrid tools from the
Basis2D/3D platform. Additionally a three-level grid sequence was implemented
in order to minimize the overall solution time.

As turbulent boundary conditions two versions of the logarithmic law-of-the-wall
were implemented in order to handle both atmospheric and engineering flows, the
wall being assumed to be rough or smooth, respectively.

Higher-order schemes (SUDS and QUICK) were implemented as explicit cor-
rections to a first-order upwind difference scheme.

In both the 2D and the 3D code it is possible to handle multiblock configura-
tions. This feature was added in order to obtain a greater geometric flexibility.
The multiblock capability was achieved by use of the domain decomposition tools
of the Basis2D/3D environment.

To mesh natural terrain in connection with atmospheric flow over complex ter-
rain, a two- and a three-dimensional hyperbolic mesh generator were constructed.
Additionally, a two- and a three-dimensional mesh generator based on a simple
version of the transfinite interpolation technique were implemented.

Several two-dimensional test cases were calculated e.g. laminar flow over a cir-
cular cylinder, turbulent channel flow, and turbulent flow over a backward facing
step, all with satisfying results. In order to illustrate the application of the codes
to atmospheric flow two cases was calculated, flow over a cube in a thick turbulent
boundary-layer, and the atmospheric flow over the Askervein hill.

For the flow over a cube, the results shows good agreement with the measure-
ments capturing the major structures of the flow, including the large separated
region behind the cube, and the horse-shoe vortex in front of the cube. Also,
the velocity profiles and pressure distributions on the cube surface are in good
agreement with measurements.

For flow over Askervein the speed-up and flow angle in ten meters height over
terrain shows an excellent agreement with the measurements, except near the hill
summit where the values is found to be to low.

This dissertation is submitted in partial fulfilment of the requirements for the Dan-
ish Ph.D. degree in technological sciences at the Technical University of Denmark.
The dissertation is based on theoretical and numerical work carried out during the
period January 1992 to December 1994 at The Department of Meteorology and
Wind Energy, Risg National Laboratory.
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Last thing I remember, I was
Running for the door
I had to find the passage back
To the place I was before
‘Relax’, said the night man,
‘We are programmed to receive.
You can check out any time you like,
but you can never leave.’
D. Henley, G. Frey, and D. Felder
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1 Introduction

1.1 Background for the present work

Many different subjects with connection to the atmospheric boundary layer are
studied at The Department of Meteorology and Wind Energy.

One of these is the study of flow over complex terrain, a topic connected with
many practical problems, e.g. wind turbine siting, dispersion in natural terrain,
and dispersion within cities. The present work has evolved from the study of flow
over complex terrain.

The methods used to study flow over complex terrain range from theoretical
considerations, over full-scale measurements and wind tunnel studies to numerical
modeling. The present work is dealing with numerical modeling and is a con-
tinuation of the numerical study of atmospheric flows using computational fluid
dynamics (CFD) started in The Department of Meteorologi and Wind Energy in
the late eighties.

The project on numerical modeling was started in cooperation with The De-
partment of Fluid Mechanics at DTU and The Danish Maritime Institute. The
aim of the study was to investigate whether 2D /3D CFD codes using rectangular
grids could be used to compute flow over complex terrain. The work focussed on
the KAMELEON code (a commercial code of the Patankar and Spalding type
written in Trondheim by Berge [4]). Two different approaches were tried in order
to apply the KAMELEON code to atmospheric flow.

The first approach was to investigate the direct application of the KAMELEON
code to nonrectangular geometries. The nonrectangular hill shapes were modeled
by blocking out the hill in a rectangular grid. This method resulted in the hill
surface being represented as a staircase. As the boundary controls the flow, a
very fine resolution was necessary in order to obtain an accurate solution with the
staircase method. The results of this approach were unsatisfactory as the model
was unable to predict the correct flow behaviour, see de Baas [7].

In the second approach, no attempts were made to model the actual geometry
of the hill. It was assumed that the terms arising during the transformation of
the curvilinear grid into a rectangular grid were of minor importance for the hori-
zontal flow. Therefore the rectangular grid of the KAMELEON code was retained
and instead the hill was modeled by fixing the pressure according to the poten-
tial flow solution over the hill. Using the potential pressure, the computing time
could be considerable lowered compared to the use of the static pressure. Unfor-
tunately, the use of potential pressure along with neglecting the curvature terms
in the flow equations limit the possible range of application to flows over terrain
with moderate slopes and without separation. Additionally, this method is unable
to represent the vertical velocity perturbations of the hill as the transformation
terms are neglected. Despite these obvious limitations the results of the model was
encouraging, see [7].

1.2 The present study

It was decided to carry on the work using CFD to compute flow over complex
terrain. Based on the experience gained in connection with the KAMELEON code,
the new code would have to use general non-orthogonal curvilinear coordinates,
and the hydrodynamic pressure. Without the limitation of using the potential
pressure, the resulting code should be able to compute separated flow, and no
limits on the terrain slope would exist. Using curvilinear coordinates, the hill
shape could be modeled accurately with no need of an excessive fine grid therby

RisgR-827(EN) 7



limiting the number of necessary computational cells.

It was decided to use the SIMPLE method of Patankar and Spalding [43] to
compute the incompressible isothermal flow using Cartesian velocity components
in a co-located arrangement. To avoid the well-known pressure decoupling, the
Rhie/Chow interpolation technique was used, see Rhie [47].

As turbulence model the k£ — € model was chosen, mainly because it is well
tested, reasonably accurate and easily implemented. The Reynolds stress model
was also considered but abandoned as the improvements of the results are only
minor compared to the k& — € model, whereas the implementation is much more
complicated.

It was obvious that with a minimum of extra work the flow code could be
made applicable to both small-scale atmospheric flows and industrial flows. This
extra work was primarily concerned with the turbulence model, where two different
versions of the logarithmic law-of-the-wall used as boundary conditions are needed.

Using the SIMPLE algorithm to obtain the pressure velocity coupling, the
elliptic pressure correction equations need to be solved within a certain toler-
ance. As the solution of the pressure correction equations is known to be very
time-consuming, multigrid methods were investigated and a simple CG multigrid
method was implemented in the developed two-dimensional test code.

The possibility of expanding the geometric flexibility of the code, using the
multiblock approach, was investigated. A 2D multiblock code was inertially devel-
oped. The final 2D /3D codes were implemented using the basis2D /3D platform by
Michelsen [33], providing both the multigrid solver and the domain decomposition
tools.

In the first part of the report the steps necessary for developing the model,
i.e. transformation of the flow equations, discretization, and related subjects will
be addressed. Also the subject of generating general non-orthogonal curvilinear
meshes will be addressed. In the second part of the report, the developed codes
are validated in several test cases, e.g. laminar flow around a cylinder, turbulent
channel flow, turbulent flow over backward facing step. And finally the code is
applied to flow over a cube in a thick turbulent boundary layer, and to prediction
of the atmospheric boundary layer flow over the Askervein hill, both as a 2D and
as a 3D simulation.

8 Risg-R-827(EN)



2 Governing Equations

2.1 Introduction

The present work is concerned primarily with the development of a general-
purpose numerical flow solver for turbulent incompressible isothermal flow. The
model is intended to be used both for small scale atmospheric flows' and for
industrial flows.

The approach chosen is to work with the pressure velocity formulation of the
Reynolds averaged Navier-Stokes equations (RANS), using the well-known high
Reynolds number k — ¢ model to describe the turbulence. The k — € model is
chosen because it is well tested, relatively simple (only two extra partial differential
equations has to be solved), and it is well suited for steady-state calculations.

2.2 Navier-Stokes equations

The governing equations can be stated in a coordinate free form as

20+ (5) =0, M

%(ﬁf;)+v-(ﬁfz®f:—7’)25f;, (2)

S (59)+V - (55— a) = S )
where

p density ,

? velocity vector ,

¢ scalar quantity ,

T stress tensor ,

q flux vector .

The stress tensor is given as
-2
T=—(P+ guV -9)+2uS

where S is the rate of deformation tensor
ou + o ou + 0 Ou + ow

1 JeXv gﬂf gg ekl 87 dw
— _ ou gv oY oy ov ow
5= 8y+8w 8y+6y Bz+8y ’

Ou 4 Ow Ow 4 Ov Buw 4 duw
P is the mean normal compressive stress, or the static pressure
~ 1
P = —3 Tkk »

and /is the unit tensor

1 00
I=10 10
0 01

1n this work small scale atmospheric flows will refer to flows of a typical dimension less than
10 km x 10 km x 10 km.
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Reynolds averaged Navier-Stokes equations

In principle, the Navier-Stokes (NS) equations suffice to describe turbulent flow.
Unfortunately, use of the NS equations in a discrete formulation as a finite volume
model, pose some practical problems.

The reason for this is the wide range of length and time scales in a turbulent
flow. The largest length scale is equal to the geometry in question, and the smallest
length scale is of the size of the dissipative eddies. The smallest time scale of the
flow is equal to the turbulent fluctuation time, and the largest time scales are of
the size of the slowly changing mean variation of the flow.

If this should be accounted for in a numerical simulation, the computational
mesh would have to be fine enough to model the dissipative eddies, and at the
same time cover the total domain requiring a large number of cells. In order to
resolve the time scales of the flow, small time steps must be used to capture the
fast turbulent fluctuations. Also long times series have to be calculated in order to
catch the large-scale time variation of the flow, resulting in a very large number
of time-steps.

In the present work RANS equations will be used to model the turbulence, using
the well-known high Reynolds number k — € turbulence model.

The time averaged RANS model is well suited for steady-state calculations,
and thus the computer time can be minimized for flows that are steady using
well established acceleration techniques for steady-state calculations. On the other
hand, it can be argued that the model can be used even for simulating transient
flows, predicting the transient behaviour of the mean flow when the instationarities
of the mean flow are on a time scale which is large compared to the averaging time.

The RANS equation is derived from the standard NS equations by decomposing
the variables into mean and fluctuating quantities marked with a 7, followed by a
time averaging. The Reynolds decomposition technique yields

i, = Ui+uj,
P = P+y,
po= ptp,
¢ = p+¢,

etc.

Now writing the governing equations in Cartesian coordinates, expanding the
volumetric momentum source into a gravitational force pg; plus the Coriolis force
2¢€;;182;U and keeping a general part Sy for later inclusion of other volume
sources. The terms in the expression for the Coriolis force are the permutation
tensor €;;, and the angular velocity vector of the earth rotation (2;. Inserting the
Reynolds decomposed variables and performing time averaging we get

0 0
E(P) + %(PUJ‘) =0,
o, 9 8 [ (0 U\
ot (pUs) + 633j (pUzUJ) 627]‘ [,u (6-’17]' + 3.%) puiuj:|
oP
+ 72— = p9i — 26Uk

ox;

0 9 oy 9 (,9¢ =\ _
5. PP+ a—mi(pUm) oz, (u oz, pu,«p) =S, -

1yt

As a result of the averaging process, extra terms puzu; and puly' have ap-

peared. They are called Reynolds stresses and Reynolds fluxes, respectively, and
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are grouped together with the laminar stresses or fluxes, even though they come
from the convective terms.

In order to make the number of unknowns equal to the number of equations, the
Reynolds stresses and fluxes have to be modelled, this problem is the well-known
turbulent closure problem. Here the Boussinesq approximation, often called the
eddy viscosity technique, will be used to obtain closed expressions for the Reynolds
stresses and fluxes. This results in the following approximation for the respective
terms

— oU;  oU; 2
1,1 — — ..
pubul, = (6333 + 5 l) + 3pk(51] )

d¢
ubp! = — .
pu;p Lo ( 6:@)
The assumption of incompressible flow implies that no density fluctuations can
exist, and the term p'g; must vanish. As we are considering flow in a hydrostatic
equilibrium, the gravitational force pg; is absorbed into the pressure term

oP _ op
8a:i a axi
in the following the superscript ~ will be dropped, and the pressure just denoted P,
even though it now represents the perturbation around the hydrostatic pressure.
Also the term 2/3pkd;; will be absorbed into the pressure term following standard
practice.
The scales of the flows to be considered will be relatively small, a typical length
scale will be less than 10 km, so the Coriolis force will be omitted. Inserting this
into the RANS equations we end up with the following equations

— PG »

57(0) + 50U = S
%(pUi) + %(pUin) [ um+ Mt 6-’171 )] + gf;: =S, (5)
200+ - (pUsp) — [(u ) ] S, ©)

2.3 k — e equations

The approximation made for the Reynolds terms in the previous section demands
a technique in order to obtain the eddy viscosity. Here the first-order two-equations
k — € model will be used for this purpose. The eddy viscosity is expressed as the
ratio between the square of the turbulent kinetic energy and the dissipation of
turbulent kinetic energy multiplied by a constant
2
=G~ @
In order to use this expression two equations must be derived, one equation
governing the turbulent kinetic energy, k, and the second equation governing the
dissipation of turbulent kinetic energy, €
The derivation of these equations will not be given in detail here, as the deriva-
tion is rather lengthy. Neither will the approximation used to close the equations
be discussed, the reader is instead referred to standard textbooks on the subject.
Starting with the equation for the mean energy of the turbulent fluctuations
(turbulent kinetic energy) the following is done. First the Reynolds decomposed
Navier-Stokes equations are multiplied by «} and time averaged followed by a
subtraction of the result of multiplying the RANS by U;. Finally some of the

Risg-R-827(EN) 11



terms in the equation have to be modelled before the equation can be used, all
this results in the following equation for turbulent kinetic energy
53 (P05 (V) =5 (s 22) 87] - gy (a7 + 502 )=pe (8)
The equation for dissipation of the turbulent energy can also be derived from the
NS equations by first taking the partial derivative 8/0z; of the momentum equa-
tions for the turbulent fluctuations 2, and then multiplying them by pdu;/0z; and
performing time averaging of the result. Again some of the terms need modelling
before the equation can be used, and finally we get

0 0 0 ue\ Oe
5 19+ 5 (0Us6) = g [+ 24) 3
2
= Cel%ﬂt% (g:[trjj + gg:) - PC&% -(9)

It is easily seen that both (8) for turbulent kinetic energy and (9) for dissipation
of turbulent kinetic energy have the form of the generic scalar transport equation
(3). This implies that no special attention is needed for discretization of these
equations, except for the treatment of the source terms, which can be done in
exactly the same way as for all other scalar transport equations.

Looking at the k and € equation, the lack of the Coriolis force is striking. If we
look at the three individual equations for the normal Reynolds stresses instead
of looking at the equation for k, we would discover that in these equations the
Coriolis force is still present. The explanation of this is that the Coriolis force does
not change the energy of the mean normal stresses, it only redistributes energy
among the three components.

One important consequence of this is that the k — e model is unable to properly
describe a flow where the redistribution effect of the Coriolis force is essential.
In such cases the k — ¢ model must be abandoned, and another turbulence model
that is capable of describing these effects must be used instead, one obvious choice
would be the Reynolds stress model.

k — € model constants

In the past a great deal of work has been put into the determination of the con-
stants of the k—e model and testing them on a wide variety of flows. The constants
have been determined from experimental data, considering basic universal flows,
and afterwards these findings have been improved by computer optimization.

The constant C), is found by considering equilibrium turbulence near a wall,
and this leads to the following equation

U2\’
c,=(= 10
= (%) (10)
where U, is the friction velocity at the wall.
Again considering equilibrium turbulence near a wall, a relationship between

the C¢1, Ce2 and C), constants has been determined

52

Ca=Co— ——, (11)
Cioe
where & is the von Karman constant equal to 0.40.
The constants C¢» and o, are determined by considering the decay of grid tur-
bulence giving the following values

Cey ~ 1.92 (12)

2The equations for the turbulent fluctuations are the results of subtracting the RANS from
the Reynolds decomposed Navier-Stokes equations.

12 Risg—R-827(EN)



oe ~ 1.30 (13)
To some extent the ratio of turbulent diffusivity of momentum and turbulent
kinetic energy is equal, resulting in the turbulent Prandtl number o having a
value of 1.00.
For industrial flows the value of C}, is well established
Uz\?
Cu= (f) =0.09,

resulting in the set of constants listed in table 1 for the k — € model, originally
proposed by the Imperial College Group, see Launder and Spalding [22].

Table 1. k — € model constants for industrial flow, according to [22].

K CN Ok O¢ CE]. 062
040 009 100 130 142 1.92

For atmospheric flows the typical value of k/U? differs from the value found
for industrial flows, see Panofsky and Dutton [41], Zeman and Jensen [65] and
Raithby, Stubley and Taylor [46]. This results in a different value for C),

U2\’
C, = (f) - 0.03,

and as C» and o, are unchanged, this difference in C, results in a C¢; value of
2
Co=Cop-—— =121. (14)
Cio.
The values of the k—e model constants used as a standard for stable atmospheric
boundary layer flows are listed in table 2.

Table 2. k — € model constants for atmospheric boundary layer flows.

k  Cy o o Cq Co
0.40 0.03 1.00 1.30 1.21 1.92

2.4 Closure

The equations governing the time averaged turbulent flow are based on using
Reynolds decomposition of the variables and time averaging. The resulting equa-
tions for momentum are identical to the laminar counterpart except that the
viscosity has been exchanged by an effective viscosity pey = g + p¢. This means
that changing from calculating laminar flow to calculating turbulent flow is sim-
ple, just choosing either to use the £ — e model to calculate the eddy viscosity or
setting it equal to zero.

The fact that the equations for & and € have the form of the generic equations
for scalar transport is convenient as this means that no special considerations of
the discretization of these equations are necessary.

It has been argued that even though the model is intended primarily for steady-
state calculation, the model can be used for transient calculations when the time
variations of the mean flow are slow.

Two sets of constants for the model have been derived, one set for use in indus-
trial flows and the other set for use in the atmospheric boundary layer.

Risg—R-827(EN) 13



3 Equations in curvilinear form

3.1 Introduction

For the flow in complex domains it is often not possible to use Cartesian or rect-
angular coordinates. Therefore the flow equations will be transformed into general
curvilinear coordinates, allowing the grids to conform to the boundaries even for
complex domains.

The transformed equations can be written in at least four different forms, see
Viviand [61] and Hindman [13]. The four different forms are called the chain-
rule conservation form, weak conservation form, strong conservation form, and
non-conservation form.

Even though all of these different forms of the transformed equations are equally
good referring to the differential forms of the equations, this is not true for the
discrete versions of the equations. Only the strong conservation form will result in
discrete equations being conservative, meaning that the accumulation within the
domain is equal to the inflow over the domain boundaries minus the outflow over
the domain boundaries plus the production within the domain.

The reason why the strong conservation form, in contrast to the other formu-
lations, results in the discrete equation being conservative is that only the strong
conservation law form will result in discrete equations where all fluxes are as-
sociated with cell faces. All of the remaining formulations will result in discrete
formulations where some fluxes are associated with the cell centres.

When all the fluxes are evaluated at cell faces, it is easy to ensure that the flux
leaving a cell through a cell face, will enter the neighbouring cell sharing that cell
face. This will result in the telescopic collapse of the internal fluxes, leaving only
the fluxes at the domain boundary. For the other formulations there is no obvious
way of obtaining the telescopic collapse of the internal fluxes as some fluxes is
associated with cell centres.

3.2 Transformation relations

Working with a curvilinear coordinate system, the Cartesian flow equations must
be transformed into the actual coordinate system. The transformation between
the curvilinear coordinate (£,7,() and the Cartesian coordinate systems (z,y, z)
is defined as

£ = &(z,9,2),

n = ny,2),

¢ = ((=y,7),
or

z = z(n0) ,

y = y&nQ,

z = z2(§m0) -

using these relations the flow equations can be transformed. The partial differen-
tials can be expressed by the chain rule
0 00 0O00dn 09¢C 0 0 0
= ar A a. a. T ara. — assz T 7 Nz a5 > 1
97~ 0€dx T onow T acor ~ ae T oy T ¢t (15)
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0 00 ddg 009 0 P P
_ = — ' 5 _ 7 o o9 1
by~ 9Edy T omay Tacay ~ s T o™ T act (16)
0 006 00n 00C 0 9 )

0z  0€dz  Ondz 9Oz agfz 5" T 5 ¢ (17)

Before these relations can be used to transform the flow equations we must
derive expressions for the metric terms &;,&,,&., Mz, My, Nz, Gz, ¢y and (. First we
write the differential expressions

d§ = Eedx+ &ydy +&.dz
dn = ngdr+nydy +n.dz ,
d¢ = (dr+ (ydy + (dz .
Or expressed in matrix notation
[ dg 1 [ & gy & dx
dn | = 1| M Ny N dy (18)
| dC | | Cz Cy Cz dz
The equivalent can easily be derived for the inverse transformation yielding
[ de | [ e =, x¢ d¢
dy | =1 Y% Yn Y% dn (19)
L dz | Lz 2z % dg
Comparing (18) and (19) the following relation can be identified
_ -1
& & & Te Ty X
Me My M= | =| Y& Yn ¥c (20)
| Ce Cy ¢z R¢  Zn &
We use the complement method to compute the inverse matrix
ittt (f{—)T 21)
Eh

A

where is called the Jacobian J of the transformation and K 7 is the complement

matrix resulting when the elements in A are substituted by there corresponding
complements. For the Jacobian we have

- Te
‘A‘ = | ¥
Zg

= me(yn2¢ — Y¢zn) — Tp(Yeze — Yeze) + ¢ (Yezn — Yn2e)

= J.

Tn
Yn
Zn

Z¢
Y¢
¢

For the complement matrix we get

=
pNI
|

= |
|
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Y¢
¢

Z¢
2

Z¢
Y¢

(Yez¢ — yeze)
Teze — T¢Ze)

Yn  Ye ‘ B ‘ Ye
Zy 2 2
Ty T g
Zy 2 2
Ty T¢ ‘ B ‘ T¢
Yn Yc Ye
(ynzc - yczn)
Tnye — TcYn)
Tpye — Tcye)  —(Teye — Teye)

Ye
23

23
¢

Te
Ye

Yn
Zn

Z¢
¢

Ty
Yn

(Yezn — Ynze)
— (g2 — Tn2e)
(Teyn — TnYe)

(23)
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Combining (21), (22) and (23) we get the following expressions for the metric

terms

1

e = j(ynZC —Yczy) =
1

& = _j(wnzC —Tczn) =
1

& = j(mnyg - .’L'gyn) =
1

Ne = —j(ygzc —Yczg) =
1

my = (@ —zcze) =
1

n. = —j(wgyc —TcYe) =
1

G = j(yizn —Ynze) =
1

G = _j($§zn — Ty2g) =
1

¢ = j(wﬁyn - xnyﬁ) =

g,

J

1
70453;

7o
o
7%y
o
o

jaCy

J

Qez -

(24)

Examining the expressions for the a’s in (24), taking ag; = (yn2¢ — Yc2zy) as an
example it is seen that |y,zc — yc2y| is a differential area equal to the projection

of the ¢£-face on the z-plan of the Cartesian coordinate system.

Inserting the expressions for the metric terms (24) into (15) to (17) we get for

the partial differentials

3 1 0 o + 0 a

Oz ag ¢ na + ac
9 _1(0 a 2,

8:1/ 85 51/ U?J 6C
9 _1(d 4 d

5z~ 7 \ag T gyt ac

(25)

(26)

(27)

Instead of using the partlal differential to transform the flow equations, we will
derive an expression for the divergence of a vector V - F', which directly results in
the strong conservation form of the flow equations when applied to the Cartesian

versions.

The divergence operator V - F with F = Fy(z,y, 2)i + Fs(z,y, 2)] + Fs(z,y, z)l;

is defined as
- = OF, OF,
Py 72
v ox + oy

or
0z

Using the partial differentials (25), (26) and (27) we get

. . 1/(0R
L, L(on
J 66 Qgy
L1 6F3
J 8{

16

OF, on
on na +

o8,

8F3
anz

ac)
a)
ae)
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Rewriting the terms according to
F F;
ba& = Ohae _ F dac, ,
¢ 0¢ ¢

and rearranging we get

=~ l 8F1a,;~m 6F1a,7w 8F1a<w
v = J[ o o T a
80&@ 8am aagw
— | F; ) o fpuni F
(la£+lan+lac>]
+ l 6F2045y+6F204ny 6F204<y
J| o€ on o¢
Oag Oa Oa¢
- F Yy F ny F Yy
(23€+28n+234)]
+ l 8F3agz 6F3OL"Z 8F3a<z
J o¢ on oC
6@53 aa z 8a(z
— | F ) il F.
(3a£+ oy 6<>]

Inserting the a’s in the negative terms and reducing we get

I 1
V-F = j(Flagm +F2a§y+F3a§z)
1
+ j(Flanm + Frogy + Faon;),
1
+ j(Flan +F2(Jé<y +F30écz) . (28)
Now the tools, (25), (26), (27) and (28), necessary to transform the flow equation
are ready.

3.3 Transformation of flow equations

To illustrate the transformation of the flow equations, we will go through the
transformation of the U-momentum equation. In Cartesian coordinates the U-
momentum has the form

opU  0pUU  0pUV  OpUW 0 ou
=2 |9,
ot T or T oy T oa: oz | Moz

D (20O L D[ (N 0P
ay 1"\ 8y " oz 9z 9z | oz oz V-

Time-dependent term

The time-dependent term is invariant under transformation, and needs no further
attention.

Convection terms

The convective terms must be transformed, this is done by using the divergence
operator.
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opUU  9pUV  9pUW 1
ar t oy T ar — 7PVt pUVag +pUWae),

1
+ i (pPUU s + pUVayy + pUWay:),

1
+ 3 (PUUacs + pUVagy + pUWacz),

= %(CIU)€+§(CQU)W+§(C3U)@ (30)

where the mass fluxes C1, C and C3 are given by

Ci = pUag +pVagy +pWaog, ,
Co = pUayg + pVayy + pWay, ,
Cz3 = pUacs +pVag +pWag, . (31)

Diffusion terms

Next we will look at the diffusive terms, again we will use the divergence operator

9 [, U] O [ (U aV\], O (0U oW
oz | Moz oy a oy Oz a2 "\ 82 ox

_1 26—Ua+ 8—U+6—Va+ 8—U+6—Wa
ST | Her TGy T e ) T\ G, T ar ) ¢

J

~~

a1 §
—I—l 2 6—Ua + 6—U+6—V Qpy + (9_U+6_W a
J | “Hagy e TH oy Ox) " F\a: " 8z )
+l 2 6—Ua + 8—U+8—V acy + 8—U+8—W ! (32)
T | Hox ™ T oy T or ) v TH\8r T A )|
x <

Applying the partial differentials (25), (26) and (27) to the three under-braced
terms starting with a; we get

1
a1 = 2p0ge - (Ugaes + Unoine + Ucago)

1
thaey [(Uﬁaﬁy + Upany + Ucacy) = + (Veags + Vyane + Veags) _]

J

N

1
+pae, [(Ugagz + Unanz + UCa(z) + (Wgagw + Wnanm + Wgagz) j:| .

Rearranging the terms we get

n
ap = S[(egog +agag +agac) U

+  (agzans + agyony + agzan:) Uy
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+ (ageace + agyacy + agac) U
+ g (geUs + aneUp + aceUc)
+ agy (g Ve + ane Vo + aca Vo)
+  ag; (s We + ana Wy + ac, We)l
= % (B11U¢ + B12Up + 13U + agpwin + agywor + o wsn) (33)
where
Pr1i = Ogats + gyaey + ez,
Pra = Qgalme + Qgymy + 0200z,
P13 = agpacs + agyacy + agzacs
wir = g Ue + o Uy + ac,Ue
war = QeeVe +anaVy + Ve,
w31 = QgeWe + anaWy + ac We -

The same procedure can be applied to a; and a3 yielding

az = % (B21Ug + B22Uy + B23U¢ + anpwrr + anywar + anzws1) (34)
where

Ba1 = QpaOge + apyagy + apaags

Baz = QpzOpy + QpyOny + apzyy

B2z = QpaOge + apyocy + anzacs
And

as = % (B31U¢ + B32Uy + BasUe + a¢owin + agywar + a¢czwsi) (35)
where

B31 = QeaQer +QeyQey + aczogs

B2 = QeaQue + QcyOpy + ac 0y

B3z = QcaQea +ocyacy +aczocs -

Pressure term

The last term to be transformed is the pressure term, this is simply done by using
the equation for the partial differential

8—P = l B—Pa +6—Pa +6—Pa

9z JN\aE T ap T e
_ l OPayg, _ Oagy ~ OPoayy, _ Oap, = OPag, _ Oacy
‘J(as Poe T 7o Tay TTac e
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_ } (6Pa§w + OPay, . 3Pa<w> _? (Bagw

¢ an ¢ ¢
_ 1 (0Pag, N OPay, N 6Pagz)
- J o¢ on oC )

Volumetric source term

Oapy  Oogy
an T o )

(36)

The volumetric source is invariant during the transformation and is left unchanged

Transformed equations

The remaining two momentum equations can be transformed in a similar way.
The U-momentum equation is now assembled using (30) to (36) and multiplied

by the Jacobian, which is time independent, and we get
U-momentum:

9pJU 9 0 0
“ar T g QU * 5, (U + 5 (GU)
0 u 0 0 H

~ ¢ [j (Bng)] an [ (B22Uy )] ac [j (/333U<)]
9 1p

_6_6 I:j (1812U"7 =+ ,813UC + W110ey + W210¢y + w31a€Z)]
o rp

_6,,7 [J (,821U§ =+ ﬂ23U< + W11 Qpg + W21 Qpy + w31a712):|
0
~a¢ [ (B31U¢ + Ba2Upy + wir0¢e + woragy + w310¢Cz)]
OPog,  OPap,  OPac,

e T T ac =I5

V-momentum:

ApJV D L9 + 9
0 1p M

~ 5 [j (ﬂqu)] ~ o [j (522%)] ac [ (fB33VC)]
9 1p

_85 [3 (B12Vy + Bi3Ve + wiaey + waney + w3za£z)]
0 rp

_6_77 [J (;821VE + ,323V< + w120y + W20y + w320é77z)]
0
6{ [ (B31Ve + B32Vy + wiaags + wasaey + w32aCz)]
0Pag, ~ OPay,  OPac,

+ 5 + B + o =JSy

W-momentum

opJW 8 L0 + 9

A (guwg)] . [— (B2 W, )} O 1L o)
o¢ LJ on LJ NS
9 1p

0t [j (B12Wy + BrsWe + wisaga + wasagy + w33a§Z)]
9 rp

oy [3 (B21We + BasWe + wisaye + wozayy + ""330‘"3)]

20
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0
[g (B31We + B3o Wy, + wisaey + wasOey + Wazoz)

Kz
O0Pog, OPay, OPoc,
+ BTz + o + - JSy (39)

where the following definitions have been used

Pii = QgrOge + agyQgy + agz0gz,
Prz = Qgalna + QgyQny + ez,
Pis = Qgog + agacy + agag,
Par = QueOge + opyQey + 2z,
Pz = QpoQna + QpyQny + Anz0yyz,
Pas = QueOce + QpyOgy + anzQcz,
Pa1 = Qzagr + agyagy + o,
Bs2 = Qo + QcyOny + aczQne,
B3z = Qpace +agacy +acog,
wit = agUe + an Uy + ¢ U,
war = QgeVe + ane Vi + e Ve,
war = g We + anaWy + ac We,
wiz = agyUs + any Uy + agyUg,
Wiz = agyVe +anVy +ag Ve,
wza = agyWe +an,Wy +agWe,
wiz = agUs +ayUy +ac U,
wz = ag Ve +an.Vy+acVe,
w3z = g We+ oWy +ac.We.

3.4 Closure

Comparison of the transformed equation (37) with the Cartesian version (29)
reveals the transformation has introduced extra terms into the momentum equa-
tions. For a Cartesian mesh it is easily seen that the transformed equation (37)
reduces to the Cartesian version (29).

As can be seen that the flux terms have become more complicated, the so-called
cross diffusion terms have arisen from the diffusion terms, and the pressure term
has expanded into three pressure terms. Even though a lot of extra terms have
been introduced, the discretization of the individual terms in the transformed
equation is not more complicated than the discretization of the individual terms
in the Cartesian equations.

The discretization should therefore not cause any special problems and will be
given in the following chapter.
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4 Discretization of the flow
equations

The present derivation of the discrete version of the governing differential equa-
tions is based on the finite volume technique. The continuous fields are approxi-
mated by the values at discrete points in space and time. The discrete points in
space are often referred to as mesh or grid points, and the spacing between the
discrete time levels at which the solution exists are called the time steps.

To obtain the difference equation following the finite volume methodology the
solution domain is divided into a number of non-overlapping control volumes each
holding a single mesh point, and the differential equations are integrated over each
of these control volumes and over the finite time step.

The assumption regarding the variation of the variables between the mesh points
and the time levels necessary to evaluate the integrals will be discussed along the
process of obtaining the integral equation.

Two important aspects of the finite volume method will be mentioned here.
First, the method of integrating the differential equation to obtain the discrete
equations is easy to understand, facilitating the interpretation of the physical
meaning of the resulting terms.

Secondly, and maybe most importantly, when the differential equations are ex-
pressed in conservation-law form the discrete equations obtained using the finite
volume method will fulfill the conservation principle for each of the finite control
volumes. Ensuring that the flux over a cell face is uniquely determined for two
cells sharing a common cell face, also the sum over the individual control volumes
constituting the total solution domain will fulfill the conservation principle. As a
consequence, the solution will always exhibit physical behaviour, irrespective of
how coarse a mesh is used. The solution on a coarse mesh may not be very accu-
rate, but as the coarse solution reflects the overall behaviour of the solution, this
information can be used to construct a finer mesh for an improved calculation.

4.1 Desired properties of the
finite volume equation

Before carrying on with the derivation of the finite volume equation some consid-
erations of the desired properties of the resulting equation will be appropriated.

The resulting equation system will be solved sequentially by the SIMPLE pro-
cedure of Patankar and Spalding [43] using standard iterative solvers for linear
problems. To allow this, the equations must at least fulfill two conditions. The
equations for U, V, W, P etc. must be decoupled, and any nonlinearity must be
removed. We will revert to the linearization in connection with the treatment of
the nonlinear convective terms. The form of the resulting algebraic equation can
be written in the generic way

Apdp+ Y Anpdms =S, (40)

where Ap is the centre-node coefficient, Y A,p¢np is the influence of the neigh-
bouring nodes on the P-node, and S is a source. Besides being linear the equations
must possess the following properties:

e conservativeness
e boundedness

e transportiveness
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Conservativeness

Conservativeness means that accumulation of a species in the domain equals the
inflow minus the outflow of the domain plus the production within the domain.
The fulfilment of this was ensured when transforming the Cartesian flow equations
by keeping the differential equation on a strong conservative form. In the discrete
analog (40) everything except the volume sources is associated with the cell faces,
meaning that the strong conservative form can be retained by ensuring that the
fluxes at the cell faces are uniquely represented for two cells sharing a cell face.
In this way all internal fluxes will be cancelled in pairs, leaving only the fluxes at
the domain boundary and the volume sources.

Boundedness

Boundedness means that in the absence of volume sources, the values in the inte-
rior of the domain should be bounded by the values at the boundary of the domain.
In this connection the instationary term can be viewed as a volume source. It can
be shown that this requirement will be fulfilled [26] if,

| Ap[>> | Am | (41)

The inequality can be relaxed to an equality in all points except one. As
Ap = Y —A,p for all inner points, it is clear that all neighbouring coefficients
must possess the same sign to fulfill the relaxed requirement®. When boundary
conditions are applied, the unrelaxed requirement will be fulfilled at all boundary
points with Dirichlet conditions.

This criterion is identical to that of Scarborough, stating that a sufficient condi-
tion for convergence of the Gauss-Seidel method for an iterative solution of linear
algebraic equation systems is the fulfilment of (41). This means that when ensur-
ing the solution to be bounded we also ensure convergence of at least one iterative
method.

Transportiveness

Transportiveness means that the discrete equation must reflect the parabolic na-
ture of the fluid flow. For a stagnant fluid with constant diffusivity a point source
will spread equally in all directions. If a velocity is added, the spreading will be
shifted into direction of the velocity. Using the Peclet number, Pe = pUL/T" where
L is a characteristic length and T" the diffusivity, expressing the ratio of convec-
tion to diffusion, the transportiveness can be illustrated as a series of ellipses, see
Fig. 1. For Pe = 0 the spreading occurs equally in all directions. As the Peclet
number is raised the spreading is shifted into the downstream direction. In the
limit of an infinite Peclet number the ellipse will collapse into a streak line.

The technique of making the resulting finite volume equation reflect the trans-
portiveness of the flow will be addressed in a later section of this chapter dealing
with differencing schemes.

4.2 Geometric layout

To discretize the flow equation in 3D, the physical domain is subdivided into finite
volumes. Here the subdivision will be restricted to structured grids composed of
hexahedrons (quadrangles in 2D). The flow variables will be stored in the centre
of these computational cells, see Fig. 2, where the cell centre is defined as the

3Here all neighbour coefficients are chosen to be negative.
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Pe=0

U Pe=co

Figure 1. Transportiveness of the fluid illustrated by the influence of the Peclet
number on the spreading of a point source. For Pe = () the spreading occurs equally
in all directions. As the Peclet number is raised the spreading is shifted into the
downstream direction. In the limit of an infinite Peclet number the ellipse will
collapse into a streak line.

point where the coordinates equal 1/8 of the sum of the coordinates of the cell
vertices. We will use capital letter for the cell centres, lower-case letters for the
cell vertices, the midpoints of cell faces and cell edges.

Here the phrase structured grid will cover a grid where the individual cells have
well defined neighbours, 26 in 3D (8 in 2D). Using extended compass notation
in three dimensions the neighbours are, 6 face neighbours N, S, E;, W, T and B,
12 edge neighbours NW, NE, SE, S, TW, TE, BE, BW, TS, TN, BN, BS, and 8
vertex neighbours TNW, TNE, TSE, TS, BNW, BNE, BSE, BS, see Fig. 3.

4.3 Cell-face values

In the process of obtaining the finite-volume equations we will need to evaluate
gradients and values at the cell faces.

As the fluid properties and variables are stored at the cell centres, the most
obvious way of obtaining cell-face values is to use linear interpolation between cell
centres. For an east cell-face we have

be =5 (9p+65) ,

using one half for the linear interpolation factor, see Fig. 10. The viscosity, density,
and the pressure at the cell face will be calculated in this way, and the value will
be assumed to be constant over the cell face.

For the convected velocities in the convection terms this treatment will some-
times result in erroneous results, and an alternative treatment must be devised.
The discussion of this problem will be left to be treated in connection with the
evaluation of the the convection terms.

For the gradient evaluation we will distinguish between two types of gradients,
normal gradients and cross gradients. The reason for this is purely computational,
and is dictated by the storing of the variables.

The normal gradients are the 0/9¢ at {-faces, 0/0n at n-faces, and 9/9¢ at
(-faces where a &-face is a face with the normal pointing in the &-direction in
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Figure 2. A single finite-volume cell around point P. The point P is located in the
geometric centre of the cell. The cell centres of the normal neighbours are indicated

in capital letters, the cell face positions are indicated in lower-case letters, using
an extended compass notation.

Figure 3. Cell centres of finite-volume cells in a structured grid, P is the centre of
the present cell, and the neighbours are named using an extended compass notation.
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computational space. All normal gradients can be computed using the second-
order accurate central differences between cell centres, using an east face (&-face)
as an example

0¢\  dr—9p _
(5e), = 5 =eu-or-

For the cross-term gradients, these are 8/9n, 0/90¢ at &-faces, 0/9€, 08/0¢ at
n-faces, and 0/9¢, 8/0n at (-faces the direct application of the central differences
between cell centres is not possible. Instead the gradients are computed as in-
terpolation between two central differences, again using the east cell face as an

example
(). = 2160, (G).]
_ % |:¢1\;;¢S+¢NE2';¢SE:|
n n
= 1 [6n = 99)+ (9np = 9s)] - 42)
(5). = 21(50),+ (&),
= % [(¢r — ¢B) + (¢15 — dBE)] - (43)

The necessary geometric information, the metrics or cofactors at cell faces, the
interpolation factors, and the calculation of the cell volumes are described in
Chapter 8 dealing with geometric quantities.

4.4 Integration of flow equations

Having decided the geometric layout and how to evaluate the cell-face values and
gradients, we are now able to integrate the flow equation over a finite-volume cell.
The U-momentum equation will be used as an example of the integration process.
In the following the integration over space and time will be indicated as

t+At pt pn pe
/dVolth/ / / / d¢ dn d¢ dt .
t b Js w

The integration of the U-momentum equation (37) can now be written as

opJU
ot

0 u
+/6—§(C’1U)dVoldt—/6—€ —(ﬂnUg)] dVol dt

——dVoldt

/a (CoU d\foldt—/6 B (820, )] dVol dt

/6C (CsU) dVol dt — /ag ﬁ33U<)]de1dt

=

/ B¢ [— /BIZUW + 613Ug + wWi11Qgy + War gy + w31a§z)] dVol dt

/]
-/l
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(B21Ug + Ba3U¢ + wii0me + waroyy + W31anz)j| dVol dt

K.It

ﬂ31U§ + ﬂ32Uﬂ + w1y + w1y + w31a<z)] dVol dt



OPag, OPaupy OPa¢,
i 14 1 =z 1 il S5 1
+/ 3¢ dVodt+/ an dVo dt+/ ac dVol dt

= / Sydvoldt . (44)

The individual terms of the U-momentum equation will now be treated, starting
with the instationary term.

Instationary term

The instationary term pJU is assumed to be constant over the cell volume so the
integration simply yields

/ 9pIU ol dt

ot
= (pPJUAEARAQ) ! — (pTUAEARAQ),
= ppJpUL2t — pp JpUb (45)

where Jp is the volume of the computational cell, and A, An and A( =1 for a
computational cell. No interpolation is necessary as everything is evaluated in the
cell centre.

Convective terms

Looking at the convective terms, these being the second, fourth and sixth term in
(44) we get

/ %(ClU)dVoldt = At[(CUAY) — (CUtAY) ]

= (L -I;)At, (46)

where the *+4¢ indicates that the values have been evaluated at the end of the

time step treating these fully implicitly.
An analog treatment of the two remaining convective terms in (44) results in

[ gy Camnavolde = arfeaw), - (Gt

= (U5-I)At, (47)

and

/ 8% (C3U) dVol dt At [(CsUAY), — (CsUAY) ]

= (I —I%)At. (48)

Taking the convective momentum fluxes (I¢), we see that these terms are non-
linear caused by the velocity entering in second power. To get a linear algebraic
equation, these terms must be linearized. This is accomplished by taking the ve-
locities going into the mass flux terms (Cy,C> and C3) from the previous time
step.

Failing to evaluate all quantities at the end of the time step, we violate the fully
implicit time step assumption, and this is one of the reasons why in the beginning
of the chapter we stated that the time marching scheme was semi-implicit.
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We now have, using the convective flux at the east face as an example
Cre = peU; (agz)e +pe‘/:zt(a§y) + pW! (agz)e

where the ! indicates that these velocities are evaluated at the start of the time
step.

The calculation of the a’s is described in section 8.3, the densities and velocities
going into the mass flux could be linearly interpolated between cell centres as
described earlier in this chapter.

As the mass flux is calculated in connection with enforcement of the continuity,
this value will be used instead of performing the interpolation just described.
Further details are left until the treatment of the pressure correction equation.

Making the solution bounded and fulfilling the transportive nature of the flow,
care must be taken when evaluating the convected quantity at the cell face. This
is discussed in the section dealing with difference schemes.

Diffusive fluxes

Taking the diffusive coefficients we will again violate the fully implicit time step-
ping by treating the cross-diffusive part of the flux explicit, using old values.

This explicit term will be treated as a source term and to distinguish it from
volume sources it will be called a false source term.

The explicit treatment of the cross diffusive part of the diffusive terms can be
allowed because in most cases these terms are small. When the mesh is orthogonal
the cross terms are identically zero, and for small departures from orthogonality
the terms will be small. When care is taken to minimize the degree of nonorthog-
onality when generating meshes, the explicit implementation of cross terms has
been shown to work quite well both for steady-state and transient calculations
[47], [45], and [30].

Normal diffusion terms

Taking the normal diffusive term, i.e. the third, fifth and seventh term in (44),
still using the fully implicit evaluation we get

/ag (B11U¢)| dvol dt

= —At [(%511U§+At)e - (%,311U£+At) ]

w

= (Id" — I At (49)
/ 3 BzzU )] dVol dt

= —At [(%BzzUJi*At)n - (§ﬂ22U5+At)s]

= (I - 1) At (50)

/ 3 ﬂggUg)] dVol dt

= -t [(Bpavrat) — (Bpeeta) |
= (If" ~ Ij") At . Y
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For the normal diffusive terms (I%"), using the east face term as an example,
we have

I = (%ﬂﬁnU?At)

The a’s going into the f11 are all evaluated according to the description in
Chapter 8, and the 8 can be assembled from these as

e

(B11), = (agzez), + (agyagy), + (Qez0s:), -

Using central differentiation for the velocity gradient as earlier described and
linear interpolation to obtain J. and p. we have

3(up + pp)
gin — 2\BP (UtrAt A
e L(Jp + Jp) (Br)e (U )

Iéin — A%n (Ugi—At _ U;;—l—At) ,

where
AFP = _l;_:(ﬂll)e :
AR = —5—:(511% :
AV = —l}—:(ﬁzl)n :
AL = —l}—:(ﬁm)s :
A = (s
A = -2 (s
B = Al — A Adn _ Adn _ gdn Al

As a result of our explicit treatment of the cross diffusion terms, the part of the
influence coefficient resulting from diffusion will always be negative, and thereby
fulfill the boundedness requirement.

Cross-diffusion terms

For the cross-diffusive terms, the eight, ninth, and tenth terms in (44), the fully
implicit treatment will be violated, and the term will simply be evaluated at the
start of the time step.

0
- / 3_5 [g (B12Uy + B13U¢ + wiiaey + woraey + w310452)] dVol dt
= —At [(% (512U,€ + /313UéE + whioes + whiaey + wéla&))e
+ (ﬁ(@ UL + BisUE + whiagp + whiagy +whag.)
7 P12ty 13Y¢ 11Xz 21%¢y 31%¢z w
= (I{° = I")At (52)
9 [k
— 6_77 I:j (/B21UE + Bo3U¢ + wirome + war oy + w31anz)] dVoldt
= —At [(% (B21U{ + BasUf + Wiy + whyay + wélanz))"
+ (% (521U£ + 523Ué5 + Wiy Qe + Wy Ay + wélaw))s]

= (I¥ - I¥)At (53)
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and
o 1p
R [j (B31Ue + B32Up + winaee +warogy + w310‘<z)] dVoldt
—_At[(* Ut Ut ¢ ¢ ¢
7 (Ba1 ¢ T B32Uy + wijoge +wy oy + wi10¢2) .

+ (% (531U,;-5 + B32U; + wh ey +whiacy, + wglacz))b]
= (If° — I{*)At . (54)
Again taking the east face as an example, we have
I = (% (BHU; + BlgUZ + whiag, + whiag, + wélagz))e ,

where the viscosity, cell volume, and the 8’s can be evaluated in the same way as
the normal diffusive terms. The normal derivatives of the velocity will be derived
according to the practice earlier described.

The expressions for the a’s going into the the w terms are calculated according
to the practice described in Chapter 8, and the method earlier described will be
used to obtain the cross derivatives of the velocity. For the w’s at the east face
this results in the following expressions

(i), = (age), (U~ Up) +(ane), 7 [(U% —U8) + (U — Us)
+ (o), 7 (U5~ UB) + (Uhs ~ Upp)]
(), = (ags), (V —VE) + (ane), 1 [(V ~ V&) + (Vg — V)]

1
+(ac), 7 [(V+ = Vg) + (Vie = Vas)]
and

(ws1), = (aga), (Wg = Wp) + (), 7 [(Wh = W) + (W — Wg)]

B~ =

+(aca), 7 [ = Wh) + (Why — Whe)] -

As the cross-diffusive terms are treated explicitly, there is no reason for splitting
them into influence coefficients, instead the six cross-diffusive fluxes are moved to
the right-hand side of the equation and assembled into a false source term Sg, the
resulting false source term gets the form

Sp=Iy —IF + I - I + I} — Ij° .

Pressure terms

The pressure terms, the eleventh, twelfth and thirteenth term in (40) will also be
treated explicitly, in order to make the momentum equation and pressure equation
decoupled

6POL§$
23

dVoldt = At[(P'ag,), — (P'ags),]

= (I’-I2)At, (55)

/ OPns ol dt

3 At [(Playg), — (Page),]

(I - I)) At (56)
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6Pagw
/ Edvoldt = At[(Placs), = (Placs),]

= (IP-IP)At. (57)

Taking the east face as an example to show how the quantities are evaluated
we get

Ig = (Ptagw)e .

The a’s are evaluated at the cell face where they are used, see Chapter 8 and
no interpolation is needed. For the pressure at the cell faces linear interpolation
is used resulting in the following expression for the pressure force at the east wall

1
12 = 5 (Ph+ PY) (aca), -

As the pressure terms are treated explicitly there is no reason for splitting them
into influence coefficients, instead the pressure terms are moved to the right-hand
side of the equation and are assembled into a pressure source

Sp=IF —IP+IP —IP + IV — IV .

Volumetric source term

Finally, the volumetric source will be treated, this is the last term in (40), and
this term will also be treated explicitly by evaluating it a the start of the time
step.

/JSVdVOI dt = JpSéAt . (58)

As was the case with the instationary term, no difficulties are encountered as
everything is located in the cell centre just where it is needed.

4.5 Differencing schemes

Before the final algebraic equation can be assembled, the evaluation of the con-
vected velocities in the convective terms has to be addressed. Here four different
schemes for treating these velocities will be discussed, the second-order accurate
Central Differencing Scheme, the first-order accurate Upwind Differencing Scheme,
the Second-order accurate Upwind Scheme, and the third-order accurate QUICK
scheme.

A technique making the higher-order schemes more stable, recasting them into
a upwind formulation plus a source term will be described, see Yeo et al. [64].

Central Differencing Scheme (CDS)

A simple way of performing the interpolation of the quantity to the cell face is
by linear interpolation between the adjoining cell centres, resulting in the Central
Differencing Scheme. In terms of Taylor series expansions, the CDS is second-order
accurate. For an east cell face we have

be =3 (65 +0p)

Similar expressions can be derived for the remaining cell faces. Inserting these
interpolated cell-face values into (46-48) and rearranging we get
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4y = 30,
4 = G,
a5 = -2,
4 o= 30,
Ap = —%Cb,
a5 o= LG,
AS = —AG, — AG — AG — AG — AG — A (59)

Some of these coeflicients are always positive, and when the flow is convectively
dominated | A¢ |>| A9 |, this will result in positive influence coefficients A =
A° + A% > 0 leading to unbounded solutions. As downstream and upstream
information have the same weight in the CDS, the scheme is unable to reflect the
transportiveness of the flow as Pe — oo, resulting in unbounded solutions and
even divergence using an iterative solver.

Upwind Differencing Scheme (UDS)

The UDS do not have the boundedness problem of the CDS, this is achieved by
assuming the cell-face value to be equal to the value at the cell centre in the
upstream grid direction. In terms of Taylor series expansions the UDS is only
first-order accurate. For an east cell face we have
[ ¢p if Cc>0
¢e_{ ¢p it Ce <0
Similar expressions can be derived for the remaining cell faces. Inserting into
(46-48) and rearranging we get

Ay = —max{0, C,},
A5 = —max{0,-C.}
A = —max{0, C,},
Ay = —max{0,-C,} ,
A = —max{0, Cp} ,
A = —max{0,-C:} ,
AS = AL, — AS — AS — AS — AG — A5 (60)

As no positive coefficients arise, the scheme has no boundedness problems.

The price paid for getting rid of the boundedness problems is the introduction
of false (or numerical) diffusion.

False diffusion is a multidimensional phenomenon. False diffusion occurs when
the flow is oblique to the grid lines and where there is a nonzero gradient of the
dependent variable in the direction normal to the flow [42].

The reason of the false diffusion is the practice of interpolating in the grid
direction instead of the flow direction, de Vahl and Mallison [8] give the following
approximate expression for the false diffusion
pUAzAy sin 260

4(Aysin® 0 + Az cos 39)

I‘lfa.lse =
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where 6 is the angel between the U-velocity and the z-direction, Az and Ay are
the grid spacings. It is seen that the false diffusion is most serious when § = 45°
and absent when 6 = 0°.

Second-order Upwind Scheme (SUDS)

A more accurate upwind scheme can be constructed if two upstream points are
used instead of one to determine the cell face value. The resulting scheme is second
order accurate in terms of Taylor series expansions.

A straightforward implementation of this scheme would yield two major prob-
lems, first the computational molecule would expand from a seven-point molecule
to a thirteen point-molecule in three dimensions, and secondly positive coefficients
would arise violating the boundedness criterion.

In order to circumvent these problems, the scheme will be put into an upwind
form, treating it as a pure upwind scheme plus a source term following [64]. In this
case we only have a seven point molecule, and no positive influence coefficients
arise.

Using two upstream points we get the following expression for the east cell value

5 _{ ¢p + % (¢p —dw) if C. >0
7\ ¢p+5(¢p—dpE) if Cc<0
The flux at the east face can now be written as

Cepe = max{0,Cc}dp —max{0,-Cec}dr

+ 5 max (0,0} (6p — bw) ~ max{0,~C} (65 — bpx)] |

where the last term will be treated explicitly and moved to the right-hand side
of the equation in order to get a upwind formulation. Similar expressions can be
derived for the remaining faces.

Inserting these flux expressions into (46-48) and rearranging we get

Ay = —max{0, Cy},
Ay = —max{0,—-C.} ,
A5 = —max{o, G},
Ay = —max{0,-C,} ,
AG = —max{0, Cp} ,
AL = —max{0,—-Ci} ,
Ap = —Af - A5 - A5 A5 - A5 — 45,
Ssups = 5 (max {0, Cul (9w — bww) — max {0, ~Cu} (6p — 65)

5 (max{0,C.) (9p = dw) — max {0,~C.} (65  651))
45 (max {0, C,} (95 — dss) — max {0,~Cy} (9p — o)
— 5 (max{0,Co} (9p — 65) ~ max {0, ~Cu} (B — b))
b2 (max {0, 04} (65 — 6p) — max {0, -Gy} (6p — 67))
— 5 (max{0,C} (6p — ) — max {0, ~Ci} (b7 — br1) » (61)
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where Ssyps is a term added to the source term on the right-hand side of (40). The
same practice can be applied to the CDS, so the scheme would become bounded.
But even though the scheme becomes bounded, the scheme will still lack the
transportiveness of the upwind schemes.

Quadratic Upstream Interpolation for Convection Kinematics (QUICK)

The third-order accurate QUICK scheme of [23], is based on an upstream shifted
quadratic interpolation. This means performing the interpolation of the face value,
using a parabola fitted through the two nearest upstream points and the nearest
downstream point.

For an east face value this practice result in the following expressions

é :{ 3 (¢ + 68) — 5 (9w + dp — 2¢p) if Cc >0
‘ 3 (0B +¢p) — § (6P + ¢pE — 2¢E) if C. <0

Looking at the expressions, the scheme can be seen as a CDS plus a stabilizing
term proportional to the curvature of the fitted parabola. The scheme includes
downstream information. Accordingly, it does not fulfill the requirement of trans-
portiveness, as do the UDS and SUDS. The influense of the downstream point is
weaker than that of the CDS, as the scheme possesses a clear upstream weighting.

The direct application of the QUICK scheme will pose the same problems as
were discussed in connection with the SUDS scheme. The resulting computational
molecule includes thirteen points, and the scheme will generate positive influence
coefficients. Again the cure for these problems is the same as in the case of SUDS,
the scheme will be put into an upwind formulation resulting in the following
expression for the east face flux

Ce¢e = max {07 Ce} ¢P — max {07 _Ce} ¢E'
g max{0,C.} (35 — 260 — 6w)

— max{0,-C.} (3¢p — 20r — d5E)] ,

where the last term will be treated explicitly and put on the right-hand side of
the equation in order to obtain the upwind formulation. Similar expressions can
be derived for the remaining faces. Inserting these flux expressions into (46-48)
and rearranging we get

Ay = —max{0, Cy},
Ay = —max{0,-C.} ,
A = —max{0, C,},
Ay = —max{0,-C,} ,
Ay = —max{0, Cp} ,
A = —max{0,-C:} ,
A = Ay Ap - AS - A% - Ap - A5

Sovick = é max {0, Cu}(3¢p — 20w — dww)
— max {0, —Cy} (3w — 2¢p — ¢5)]
_é max {0, C.}(3¢r —20p — éw)
+ max {0, —C.} (3¢p — 205 — dEE)]
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+é max {0, C,}(3¢p — 2065 — pss)

— max {0, —Cs} (3¢5 — 26p — ¢n)]
_é max {0, Cy}(3én — 26p — bs3)

+ max {0, —Cp} (3¢p — 2¢n — ¢ nN)]

+é max {0, Cy}(3¢p — 205 — i)

— max {0, —Cy} (365 — 20p — ¢7)]
_é [max {0, C;}(3¢r —26p — é5)

+ max {0, —C;} (3¢p — 207 — drr)] - (62)

4.6 Finite volume equation

Now the components can be assembled to give the finite-volume equation (40).
For the U-momentum equation, this results in

APUItj—At‘}‘AWUé[—}_At+AEUE+At+ASU§+At+ANUJtV+At

+ABUL A + ApULAY = Sy + Sy + Sk + Sp + Sc (63)

where the following definitions have been used

Aw
Ag
As
An
Ap
Ar

Ap

St
Sy
Sk
Sp
Sc

= A+ A%,
= AP+ A%,
= Af + 45,
= AV + A%,
= A +A%,
= A7+ A7,

ppJp
At

= —-Aw - Ap—As— Ay —-Ap—Ar+

ppIPUp
At
= 0,

— _Iéic_’_IZl]c_Igc_'_I;ic_I;lc_i_Igic,
= —IP+I)-I0+1F —IF + 1),

= explicitly treated terms for convection. (64)

The generalization of the remaining momentum equations and the transport
equations for k and e is straightforward and will not be given here. The resulting
equations can be found in Appendix A.

4.7 Closure

Looking at the discretized U-momentum equation we see that it fulfills all of the
requirements stated in the beginning of the chapter. The equation is decoupled
from the remaining equations, the equation is linear and fulfills the requirement
of conservativeness, boundedness and transportiveness.
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Starting with the conservative property of the equation, this was ensured by
use of the strong conservation law form of the transformed equation as a basis for
the finite-volume derivation of the discrete equation.

The decoupling of the equation from the remaining equation was obtained by
evaluating all variables except the U-velocity at the start of the time step. This
was done for the pressure source Sp and the V and W velocities entering the mass
flux.

The explicit evaluation of the convective terms ensured not only the decoupling
of the momentum equations, but it also ensured the resulting equation to be
linear, which is essential as the equations will be solved using techniques from
linear algebra.

The explicit treatment of the cross-diffusional terms and the S¢ term result-
ing when the various difference schemes were cast into upwind form ensured the
equation to be bounded. As already mentioned this criterion often referred to as
the Scarborough criterion is also a sufficient condition to guarantee that at least
the Gauss-Seidel iteration will converge.

Apart from the CDS scheme all the schemes possesses clear upwind weighting,
meaning that except when using the CDS, the resulting equation will reflect the
transportiveness of the flow.

As mentioned the generalization of this procedure to the remaining equations is
straightforward. For the momentum equations for V and W all terms are identical
with the U-momentum equation terms except for the explicit treated source terms,
St, Sy, Sk, Sp, and Sc. In the rest of this report the five parts of the source
term will gathered in a single term called Sy_mom, Sv-mom, and Sw_mom re-
spectivley for the three momentum equations. For points adjacent to boundaries
also the central coefficient Ap will differ for the three momentum equations, when
boundary conditions are included. In fact this can be used when making the com-
puter code, meaning that we have to calculate and store only a single set of the
neighbouring coefficients Aw, Ag, As, An, Ap, Ar and use these for all three
momentum equations.
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5 Pressure equation

5.1 Introduction

Working with incompressible flow, no equation of state exists for the pressure.
The standard practice for incompressible codes is to derive an equation for the
pressure by combining the continuity equation with the momentum equations.

The momentum equations are used as a predictor to advance the solution in
time. In general the resulting flow field will not fulfill the continuity equation, and
the rewritten continuity equation working on the pressure is used as a corrector
making the predicted flow field satisfy the continuity constraint.

5.2 Cell-face velocities

To introduce the pressure into the discretized continuity equation, the cell-face
velocities will be expressed by the momentum equations just as in the standard
staggered approach. For the cell centre the velocities are given by

SUmem - Z AnbUnb

Up = Apu ’
v — SV—mom - Z Ananb
P AP,V )
W Sw—mom — > AnsWh (65)
Apw '

Where the three source terms, Sy_mom, Sv_mom, and Sw_mom includes all
the explicitly treated terms.

Figure 4. The figure shows the staggered cell used for calculating the cell-face
velocities, the staggered cell is moved half a cell length in order to be centred
around the cell face.

For a staggered cell as shown in Fig. 4, here the east face velocities will be used
as an example, the cell face velocities U, V, and W, for the non-staggered cell can

Risg-R-827(EN) 37



be expressed by the momentum equations for the staggered cells. The coefficients
and variables referring to the staggered cell are indicated with a

Sti—mom — X A Uny

U, = )
APy
v SPomon = TALV
e - S ’
AP,V
SS _ AS WS
AP,W

As the coefficients and variables for the staggered cell momentum equation
do not exist, a practice for obtaining them must be devised. The most obvious
would be to use linear interpolation between the momentum equations for the
neighbouring cells. For an east face this would be an interpolation between the
present cell and the eastern cell neighbour. This practice would lead to the well-
known odd even pressure decoupling, as only every second pressure node figures
in the resulting equation see Patankar [42].

A remedy to overcome this problem is the Rhie/Chow interpolation, Rhie [47],
using linear interpolation for all terms except for the pressure source. Instead the
pressure source is centred around the cell face, giving the following expressions for
the cell border velocities

U — Sa_mom - Z AnbUnb
‘ Apu .
v (o U) (as), (P5 — Pp)

+ Ot e ne _Pse) (a(m)e (Pte _Pbe)] )

S —1mom EAnanb>

Ve:( Apy
(o).

1
{7 ) (agy), (Pe — Pp)
P7
+  (any), (Pre — Pse) + (acy), (Pre — Pbe)] )
W, = (S _mom ZAannb>
Ap,w .

¥ ( ! ) (0c2), (P — Pp)

Apw

+ anz e (Pne - Pse) + (a(z)e (Pte - Pbe)] ) (67)

where the overlined terms are calculated by linear interpolation between the cell
centres on each side of the cell border. For the east cell face we interpolated
between the influence coefficients for the present cell P and the east cell E. The
source terms, S;;_mom> Ov —mom> a2d S, _mom includes all explicit treated terms
except the pressure sources. For the remaining cell faces the generalization of (67)
is straightforward.
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5.3 SIMPLE algorithm

The momentum and pressure equations will be used in a predictor corrector fash-
ion.

Predictor step

The pressure at the new time step (or the new iteration in case of a steady-state
calculation) is found by assuming it to be unchanged from the previous time step,
ie. P = P. In the following the predicted variables will be indicated by a .
Solution of the momentum equations using the pressure P’ gives the predicted

velocity field at the cell centre

o SU—mom—EAnbU;b

Apuu
V. o= Sy _mom — ) Anan,b
P Apyv ’
Wi, = Sw_mom — 3. AW, , (68)
Apw

The predicted velocity at the cell face is given by (67), using an east face as an
example

Ap,u

= ( A;U)e [(ac0), (Pi - P)

+ (@), (Pie = Pre) + (aca), (Pl = B.)]

v, = <S; mom ZAnbv,;b)

r_ St}fmom - Z AnbU;bb>

Apyv

) (agy), (PIIE _PIIJ)
(any) (Pne - Psle) + (O‘Cy)e (Ptle - PI;e)] >

W o= <SI;/ mom EAan>

+

Ap.w

) (0c2), (P~ P)

+ (ans), (Phe = Ple) + (ac2), (Pie = Pic)] - (69)

Inserting the cell-face velocities on the form of (69) into the equation for the
east cell face flux having the form of (31), we get

PR (Y s ey

Apyu

+
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* m((asz)e(% ~ P})

+ (an)e (Pl = PL) + (Pl = L))

+ (e} (P = Ph) + (Phs = Pho) ) }

S - ZAnbV,;
+ (agy)e{< V-mom b)

Ap,v

' ( L )e(mgy)e(Pg—P;))

Apyv

+ (an)e g (P — P+ (P — Phy)

+  (acy)e 1((PT PB)+(PTI“E_PJIEJE))>}

{(SW mom EAan >
+ a{z e

Apw

+ (o) (i

(Py = Pg) + (Png — Psg))

1
+ (an)eg
1
4

b () (Ph— P+ (P P;_:,E))) H .

The cross-term pressure gradients in the previous derivation have been approxi-
mated by expressions of the following kind

Ppe — P = i((PN — Ps) + (Pne — Psg)) , (70)

and linear interpolation was used to calculate pe.

Generalization of the expression for the cell-face flux (70) to the remaining cell
faces is straightforward. Inserting the cell-face fluxes into the discrete continuity
equation the mass deficit, Smass, can be calculated, namely

Smass:Cé—CL)‘FC;L—C;-}-Cé—CIQ. (71)

As indicated the predicted velocities will in general not fulfill the continuity equa-
tion.

Corrector step

Now continuity is enforced by adjusting the pressure to get a correct cell-face mass
flux. The cell-face velocity fulfilling the continuity equation is given by

"o (Sa—mom_ZAnbUsb>

Apyu

v (any) lloen. (Pi-r2)
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+
o
3
<
amny
3‘.0:
)
5%
N——
+
)
Y
N
—~
PL.U\
PN
>,
SN—"

V;I (SV mon;lp‘%:AnbV >e

+ <A11,V> (agy), (PE‘ PP)

+ (o), (Pre = Pie) + (ac), (P = P
1% =

+ (A;W)e [(agz)e (Pfé - PII;)

" "

+ (ons), (Pre = F) + (ac2), (P = P - (72)

where the velocities and corresponding pressure fulfilling the continuity constraint
are indicated by " . The following relationship exists between the predicted (') and
the corrected (") variables

"

vl o= U+U°,
v o= Ve,
w'o= wW+we,
P = P +pP°. (73)

Subtracting the equation for the predicted cell-face velocities (69) from the
equation for the corrected cell-face velocities (72) and using (73) yields

v = (FEla )+( =) lee), (75— P5)

Apu Arv),

b ), (P~ i)+ (o), (P~ PG
o= (P () lew e =P
b (am), (P = i)+ (o), (e~ )
we = (- AP”jVW ) + (i) e, (P = P)

+ (Otnz)e (Prie _Psce) + (a(z)e (Ptce _Pbce)] -

The first term on the right-hand sides of the former equations (— Y~ AnsUS,/Ap)
etc. will be dropped, this is done in order to allow a decoupled solution method to
be used for the flow equations. Keeping the terms (— > A,,US,/Ap) etc. in the
equations, a direct coupled solution of the problem would result, see [42] for more
details. The approximated equations for the cell-face correction velocities are now
given as

v = () [, (P - )
+ (anz)e (Pnce _Psce) + (Oégw)e (Ptce _Pbce)] )
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) (agy), (P5 — Pp)

V:=(
(

+ (any), (Pre = P) + (agy), (PL — B)]
we = () ) (ac:), (P - P§)
+ (O‘WZ) (Pre — Pg.) + (aCz)e (P, — Pbce)] . (74)

The same procedure can be applied to the cell centre velocities to get a correction
equation for these

1
UICZ‘ = [(aﬁw) P (Oégw) qu}
Apu

+  (ane), Pr — (age), Py + (a¢a), P — (acz), Pbc] )

Vi = Ai,v [(ago), P = (¢a),, P
b () P = (), B+ (aga), Y = (), Y]
We = o llae), P - (o), P
+  (ana),, PS = (ana), PS + (a¢a), Pf — (aca), P - (75)

The pressure equation, which in practice will be a pressure correction equation,
can now be derived from the continuity equation. Expressing the cell-face fluxes
by the correct cell-face velocities, indicated by ", inserting these into the discrete
continuity equation and using (73), we get

Ci+C,—CL—C,+Ci+C, —Cs—Co+Ci+CL—Cy —Cy =0,
or after rearranging and using (71)
CS—Co +Cf —C:+Cf — Cy = Smass - (76)

The right-hand side of the equation is the mass deficit, Smass, generated when
the momentum equations are solved. When performing the pressure correction, the
Smass term is therefore already known, and if no mass deficit exists no pressure
correction will result.

The cell face correction flux for the east cell face can be expressed using (74)
and (31), namely

+ (amy)e7 (PR — P5) + (PNp — Psp))

+  (agy)e

e = n l(a@)e( ) ((@e(re - P

+ (ane)e 3 (P~ PY) + (P — Pii)
+ (aca)e (P = P§) + (P = Poe) )
+ (e (o) ((aa)e(s - Pp)

1

i

1

i

((Ps— P§) + (Pl — PgE)))
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oee(5) ((oenirs -7
+ <anz)e§<(PN - P§) + (Pig — PSp)
1

# (0c)e g (PF~ F5)+ (Phs —~ F5w)) |

Similar expressions can be derived for the remaining cell face fluxes and after
rearranging we end up with

c¢ = H1,P;— H1.P§

+ M1,P§ — M1,P§ + M1,P§p — M1,Pp,

+ M2,P§ — M2,P§ + M2,P§p — M2, P,
C¢ = H1,P%— H1,PS,

+ M1,P§ — M1,P§ + M1, Py — M1, Py,

+ M2,P§ — M2,P§ + M2, P§y — M2,Pgy
Cc¢ = H1,P§— H1,P&

+ M1,P§ — M1,P§, + M1,P§ 5 — M1,Pgy,

+ M2,P§ — M2,P§ + M2,P§y — M2, P ,
C¢ = H1,P%— H1,PS

+ M1,Pg — M1,Pfy + M1,PSy; — M1,PSy,

+ M2,P§ — M2,P§, + M2,P§s — M2,P§s ,
Cc¢ = H1,P— H1,PS

+ M1,P§ — M1,P§, + M1;P{, — M1,P§y,

+ M2,P§ — M2,P§ + M2,P§y — M2,P§g ,
Cc¢ = H1,PS— HI1,PS

+ M1,PS — M1,PS, + M1,PS%, — M1,P5,,

+  M2yP5 — M2,PS + M2,PS, — M2,Ps .

The constants H1, M1 and M2 are given by

_ 2 1 2 1 2 1
Hle = pe| g, Ary ) T\ an, ) T\ ap ;

1 1 1
H1, = waz( )+a2( >+a2( ) ,
P ( “\Apu Y\ Apy “\Ap,w "
1 1 1
H1 — 2 2 2
o <a77z <AP,U> o (AP,V> e (AP,W>>n 7
1 1 1
H]-s = s 2 2 2 )
(e (mg) + () + ()
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1 1 1
H1 = 2 - 2 - 2
b Pb (acz(Ap7U> +Oé<y<AP7V> +a<Z(AP,W>>b )

1 1 1 1
. = (o () oo () e (25)
1 1 1 1
M1, = pr Qg z Ol Ary + QgyOy Ary + gz Apo
7 ) 7 w
1 1 1 1
M1, = an (agwanm<AP U) +a§yany(AP V) +a§zanZ<AP W)) ,
? ? ) n
1 1 1 1
M1, = 1Ps (agzanz (AP U) + QeyOpy (AP V) + g0, (AP W))
1 1 1 1
M1, = Zpt Q¢ g Ong Ay + agyany Apy + ag. Ao ,
7 7 ) t
1 1 1 1
M, = Zpb <0[§I%z (AP U) T eyiny (AP V) gz (AP W)) ’
bl b b) b
1 1 1 1
M2 = g (““a‘”” (Ap U) e (Ap v) et (Ap W>>
7 ) ) e
1 1 1 1
M2, = pr <a§zaCz (AP U) +a5ya<y<AP V) +a§zaCz(AP W)) >
) b ) w
1 1 1 1
M2n = an (agzagw (AP U) + Oégyagy (Ap V) + Oégzagz <AP W)) )
1 1 1 1
M2, = Zps (Oégzaggc (AP U) + QeyQey (AP V) + Qe 0, (AP W)) ,
7 ) ) s
1 1 1 1
M2t = Zpt (agza(w <AP U) + OeyOley (Ap V) + Qg0 (AP W)) )
bl b bl t
1 1 1 1
M= g (aéz% (377) +oaea () +oceec (ﬂ))
9 b b b

Inserting the correction cell face fluxes into the continuity correction equation
(76) and rearranging to get an equation of the form

ApPp+ > AnPS, = Smass (77)

we get the following expressions for the influence coefficients.

Ap = Hl.+ M1, — Ml,+ M1, — M1, ,
Aw = Hl,— M1, + M1, — M1, + M1, ,
Ay = Hl,+ M1, — M1, + M2, — M2, ,
As = Hly—Mly+ M1, — M2, + M2, ,
Ap = Hl;+ M2, — M2, + M2, — M2, ,
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Ag = Hl,— M2, + M2, — M2, + M2, ,

Ang = M1, 4+ M1, ,
Asg = —-Ml.—Ml,,
App = M2, + M1, ,
Apg = —-M2.—- M1y,
Anw = —Mly — M1, ,
Asw = M1, + M1, ,
Arw = —-M2,—-M1;,
Apw = M2, + M1, ,
Ary = M2, + M2,
Agy = —-M2,— M2,
Ars = —M2,— M2,
Ags = M2, + M2
Ap = =) Ap. (78)

5.4 Solution of the pressure correction equation

As the solution of the pressure correction equation takes most of the total solution
time, it will need special attention. As seen from (77) and (78) the computational
molecule for the pressure is a nineteen-point molecule. This implies that the matrix
system to be solved is a nineteen-band diagonal matrix.

As either a line solver will be used in alternating lines, or a plane solver on
alternating planes, a technique must be chosen that reduces the computational
molecule.

Choosing an explicit treatment for all of the M1 and M2 terms (cross-terms),
as in the case of the momentum equations, could be one solution. One major
difference between the momentum equations and the pressure equation, is that
the pressure equation has to be solved within a certain tolerance in order to make
the algorithm converge. The explicitly treated source term would then have to
be updated within the inner iteration of the pressure equation, making it rather
expensive in terms of computer time. Instead, an alternative practice is used,
shown to be working well in previous studies [45], [47] and [30].

In this practice the cross terms are simply dropped, giving a seven-diagonal
system without the need for updating the source term within the inner iteration.

The reason why this approximation is working can be seen from the following
facts. When the mesh is moderately nonorthogonal the cross-terms (M1 and M2 in
(78)) will be small and even zero for an orthogonal mesh. Secondly as the solution
converges either within the inner iteration of a single time-step or for the outer
iteration of a steady-state calculation, the mass deficit will become smaller and
thereby reducing the inaccuracies introduced by neglecting the cross-terms. When
the solution has converged, no correction is needed, and the reduced pressure
correction equation is equal to the full pressure correction equation. The reduced
equation has the following form

ApPp + ZAanﬁb = Smass , (79)
The coefficients of the reduced equation are given by

Ap = Hl.,
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Aw = H1,,

Ay = H1,,
As = H1,,
Ar = Hl,
AB = H]-b )
Ap = =) An,
Smass = is given by (71). (80)

After solving the pressure equation (79), the cell centre pressure can be corrected
using (73). In this process it is necessary to use underrelaxation [42], and (73) is
changed to

P' =P + Qretaa PC , With aperas <1 . (81)

The cell-centre velocities will be corrected using (73) and (75). Finally the cell-
face fluxes will be corrected according to the reduced pressure equation, using the
following expression

C! =C.+ Ap (Pp — Pp) ,

Cy=Cy+Aw (Pp - Pyy) ,

Cn=Ch+An (Py - Pp) ,

Cy =C;+As (Pp—Fs) ,

Ci =Ci+ Ar (P; — Pp) ,

Cy =Cy+ Ap (P — P§) . (82)

After this correction, the cell centre velocities will in general not fulfill the
momentum equations. To make the field satisfy both the momentum equations
and the continuity equation simultaneously, the process is started all over again.
The time dependent part of the source terms Syy_mom, Sv_mom and Sw_mom,
along with the part of the central coefficients dependent on time ("A—Jt) are not
changed during this process. When both the momentum equations and continuity
equation are fulfilled, a new time-step can be taken. The final value of the cell face
fluxes will be stored and used to calculated the convective terms in the transport
equations.

5.5 Closure

The derivation of the pressure correction equation based on the discrete continuity
equation using Rhie/Chow interpolation, was described. It was argued that the 19
band diagonal matrix (in 3D) resulting from this derivation could be approximated
by a seven band diagonal diagonal matrix. The expressions to correct the cell
centre velocities and the cell face fluxes according to the pressure correction were
also given.

The convergens criterium used for the pressure correction equation in the present
work was a reduction by a factor 100 of the mass deficit.
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6 Boundary conditions

6.1 Introduction

Before the solution of the derived discrete equations can be attempted, the spec-
ification of boundary conditions at the domain boundaries must be addressed.
Here physical boundary conditions as wall boundaries, inlet and outlet as well as
boundary conditions of more computational nature as periodic boundaries and
symmetry conditions will be discussed.

As the program is able to handle both steady-state and transient computations,
a connection between the underrelaxation used in steady-state calculations and
the time step used for transient computations will be shown. This simple relation
between underrelaxation and time step, will then be used in the transient calcu-
lations to derive optimum time steps at each time level during the calculation.

6.2 Generalized boundary conditions

The main part of the physical boundary conditions used in the present study is
either a prescription of a value at the cell face, or a prescription of the gradient at
a cell face. Exceptions from this are cyclic boundary conditions, the treatment of
the pressure, and the treatment of the turbulent wall boundary conditions. The
different types of boundary conditions will be dealt with in this chapter, except
the turbulent wall boundary conditions which will be dealt with in the following
chapter.

Specifying boundary conditions we will use the same practice for the boundary
conditions as for the inner part of the domain, meaning that we will use linear in-
terpolation between cell centres to obtain values at cell faces, and central difference
between cell centres to obtain gradients at cell faces.

Dirichlet condition

Starting with the prescribed value at the cell face (Dirichlet condition) taking an
east cell face as an example, and using linear interpolation with an interpolation
factor equal to one half, we get
_¥E +¢p
¢ 2
9B = 20 — ¢P - (83)

= constant

Adjusting the discrete finite-volume equation in order to reflect the boundary
conditions can now be done by inserting the expressions for g into the finite-
volume equations and rearranging. For a prescription of the east cell-face value
(83) results in

Appp + Ag (2. — op) + Awow + Anon + Asps + Aror + Appp = S,
Appp + Apop + Ayow + Avon + Asps + Aper + Agpep = S, .

where
A'P = Ap—Ag,
St{a = S(p - 2AEQOe )
AIE‘ = 0, (84)

and the unmentioned coefficients have been left unchanged.
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Neumann condition

For the second type of boundary condition, the prescribed gradient (von Neumann
condition) using central differences we get, again at an east face

(5¢)
—_— = @E — $p = constant
on/,

0
Yr = (5_:>e +¢p . (85)

Adjusting the discrete finite-volume equation in order to reflect the boundary
conditions, can now be done by inserting the expressions for g into the finite
volume equations and rearranging. For a prescribed gradient at a cell face (85),
we get

0
Apop + AE [(6—2) + CPP:| + Awow + Anpn

+ Asps + Aror + Appp = S,
Apop + Appr + Awow + Avpn + Asps + Aror + Appp = S,, -

where

Alp Ap+ Ag ,

Oy

Ay = 0, (86)

and the unmentioned coefficients have been left unchanged.

6.3 Inlet

At an inlet, the values of the variables must be known, and for a laminar calculation
the three velocity components must be known. In addition, the value of turbulent
kinetic energy and dissipation of turbulent kinetic energy must be known when
turbulent calculations using the &k — € model are performed.

The inlet values can be known either from measurements or from theoretical
considerations. For a turbulent calculation sufficient data for k£ and e will often be
unavailable, and in lack of better information the theoretical equilibrium profile
will often have to be used instead.

For an inlet at an east wall we thus have an expression equal to (83) with ¢, =
¥inlet Which results in the following changes to the discrete equations according
to (84)

Al =Ap — Ap
Sclp =Sy — 2AEPinlet >
p=0. (87)
6.4 Outlet

At an outlet the assumption of a fully developed flow will be used. For high
Reynolds number flows this assumption will be in good agreement with the physics,
but at low Reynolds numbers the parabolic nature of the flow is weakened making
the assumption less accurate. However, by placing the outlet far downstream of
the region of interest, the errors introduced by imposing the slightly incorrect
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boundary condition can be minimized. The assumption of a fully developed flow
corresponds to zero normal-gradient at the outlet.

For an east wall the outlet condition is equal to (85) with (0¢/dn). = 0 and
results in changes of the discrete equations according to (86)

AIPZAP—l-AE,
S(;,:Sw,
AL =0. (88)

In order to guarantee convergence of the pressure correction algorithm, global
continuity must be ensured. As the fluxes are fixed at inlets, walls, symmetry
planes etc., we will scale the mass fluxes at the outlet to ensure the fulfilment, of
the requirement of global continuity.

After applying the fully developed assumption, velocities and density are ob-
tained at the outlet boundary. Calculating the outlet mass flux from these values,
the sum of the outlet mass fluxes will in general not equal the sum of the mass
fluxes going into the domain. To ensure this the velocities at the outlet are scaled
by the ratio between the inlet and the outlet mass fluxes.

6.5 Symmetry plane

At a symmetry plane the normal gradient and the flux through the plane are zero.
For a vector, taking the velocity as an example, the symmetry condition implies
the following bindings on the three Cartesian velocity components. The normal
velocity at the symmetry plane must be zero, and in addition the normal gradient
of each of the two tangential components must be zero.

Vo = 0,
v
o -V (59

For a scalar variable the condition is less complex and simply states that the
normal gradient of the variable must be equal to zero at the symmetry plane.

Op
B =
The symmetry condition could be implemented for arbitrary planes, but in most
practical cases the symmetry planes are coplanar with the Cartesian planes. As the
restriction to Cartesian symmetry planes offers a simplification of the boundary
condition for vector quantities and only minor restrictions, we will choose to allow
Cartesian symmetry planes only.
For a vector variable at an east wall parallel to the Cartesian z-plane, the
symmetry condition, here choosing the velocity as the variable, will result in the
following three conditions on the three Cartesian velocity components

0. (90)

v. = 0,
oV
(%)e =0
ow
- — X 1
(5n), =0 @

The condition on the U-momentum equation is equal to (83) with ¢, =U, =0
and results in a change of the discrete equation according to (84)

IP=AP_AE7
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Sbfmom = Su-mom ,
L=0. (92)
The conditions on V and W-momentum equations are both equal to (85) with
(0/0n)e = 0 and result in changes of the discrete equations according to (86)

p=Ap+Ag,
S{/—mom = Sv-mom ,
5=0, (93)
and
»=Ap+ Ag,

Sw—mom = Sw-mom ,
s =0. (94)
For a scalar variable at an east wall parallel to the Cartesian z-plane, the sym-
metry condition will result in the following condition

(Z—DE =0. (95)

This condition is equal to (85) with (0¢/0n). = 0 and results in change of the
discrete equation according to (86)

AI]3=AP+AE7
S, =18, ,
L =0. (96)

6.6 Wall boundary

At a wall, different conditions exist for different variables. Here we will concentrate
on the boundary condition on the velocity, as the pressure, pressure correction,
and turbulent quantities are dealt with else where.

The physical condition on the velocity at a wall, is a no-slip condition ensuring
the velocity to be zero at the wall. At an east wall this results in the following
expressions for three Cartesian components of the velocity

U.=0,
Ve=0,
We:(];

all of the Dirichlet type (83), with ¢, = 0, corresponding to the following adjust-
ment of the discrete equation according to (84).
U-momentum

p=A4Ap—Ap,
St mom = Su-mom ,
=0, (97)
V-momentum
»=Ap— Ag,
Sy _mom = Sv—mom ,
=0, (98)
and W-momentum
p=Ap—Ag,

Sézvfmom = Sw-mom ,
=0 (99)
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6.7 Pressure and pressure correction

Boundary conditions for the pressure and pressure correction must be given at all
external boundaries.

Pressure correction

The boundary condition for the pressure correction is of the von Neumann type
(85). This can be deduced in the following way.

At the time of pressure correction the fluxes at all external boundaries must be
known, for inlets, walls, symmetry boundaries and outlets. As the fluxes thus are
known already, no flux correction is needed at the domain boundaries. Looking
at the expression for the flux correction (82) the requirement that the flux must
be left unchanged at the boundaries implies that the gradient of the pressure
correction is zero.

Taking an east face as an example, this results in adjustment of the following
coefficient in the discrete equation in accordance with (86), where (8/0n). has
been used

Ap = Ap+Ap,

s =8
Ay = 0. (100)
Pressure

Even though the boundary condition for the pressure correction is a specification
of zero pressure correction, it can be seen from a simple example that the same
condition cannot be applied to the pressure. In order to get the correct pressure
source in the momentum equations, the following practices will be used for the
pressure.

We take a fully developed flow between two infinite plates, with the flow going
from west to east, with walls at the top and bottom boundaries and extending
infinitely in the north and south direction. Looking at the outlet boundary at the
east face, the pressure gradient here cannot be zero as it is the driving force for
the flux over the outlet. In fact the condition in this special case is a zero second
derivative of the pressure or constant gradient over the outlet.

As the pressure has no equation of its own, the boundary condition will be on
the variable instead of on the coefficients. In the general case, the pressure at the
boundaries will be calculated using second-order extrapolation from the known
values in the inner part of the domain. At an east face this results in

P, = %Pp - 18—0PW + gPWW . (101)

For the fully developed flow between infinite plates, the practices mentioned

above will result in the correct boundary condition.

6.8 Periodic boundaries

The cyclic or periodic boundary condition is often used for fully developed flows,
as a mean to reduce the computational domain. Typical areas of application are
complex heat exchangers, or flow in complex channels such as the flow shown in
Fig. 5.

For the flow in a channel with transversal ribs as the one shown in Fig. 5,
the flow will be fully developed after passing of the initial developing zone. For
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Figure 5. Channel with transversal ribs on one wall. When the initial developing
region is passed and the flow has become fully developed, a periodic element can be
identified, where all variables except the pressure has the same value at boundary
1 and 2.

the fully developed region a periodic element can be identified for which the flow
pattern is repeated, thus the boundary condition at position 1 in Fig. 5 is given
by the state of the variables at position 2 and vice versa.

This coupling can be programmed directly into the equation system, which re-
sults in an implicit application of the cyclic boundary condition. This approach
gives a fast convergence, but unfortunately it destroys the band structure of the
equation matrix, and in addition this approach is difficult to program in a general
fashion. For the last two reasons, this approach will be abandoned and an alter-
native practice will be used, even though it is known that this alternative practice
will not converge as fast as the implicit implementation.

Instead of the implicit method we will use an explicit implementation, this
method will not change the structure of the equation matrix, and it can be imple-
mented in a general fashion. This technique relies on the iterative solution strategy
by explicitly moving all of the variables (except the pressure and pressure correc-
tion, which are specified in the standard way) from position 2 to position 1 and
vice versa after every iteration until convergence. For a transient calculation this
procedure may prove inconvenient, but for a steady-state calculation it should be
applicable.

6.9 Time step and underrelaxation

Using the decoupled SIMPLE strategy or other algorithms of the same family
(PISO, SIMPLEC etc.) underrelaxation of the discrete equations becomes neces-
sary. We will show the well-known connection between the underrelaxation factor
used for steady-state calculations and the time step entering the time dependent
terms in the transient equations.

For a transient calculation the U-momentum has the following form, see (63-64)

ApULFAt Z Anp = Sy—mom ,

where

J
AP = Z_Anb+ pZtP )
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rJp
Sv-mom = Sy mom + pA—thv : (102)
and S};_om represents the part of the source term that does not depend on
time.
For a steady-state calculation, following Patankar [42], we have

ApUp + Z AnpUnp = Su—mom ,

where
1
Ap = —Ap——
P Z " relax

relax
SU—mom = Sb_m()m + Z _Anb

_— 1
1 —relax ’ (103)

and a typical value of relax around 0.8.

From this it is easily seen that the following relation exists between the time
step used in a transient calculation and the underrelaxation used in a steady-state
calculation

ppJp relax
At = .
=Y A 1 —relax

For a transient calculation the cell holding the smallest time step will be found,
and this time step will then be used for all cells, as a result all variables will be
evaluated at the same time level.

For a steady-state calculation where the time evolution of the flow is of no
interest, one can use the maximum allowable time step in every cell, thereby
losing the true transient behaviour, but instead gain is obtained by reducing the
number of iterations or ‘distorted time step’ necessary to reach the steady-state
situation.

(104)

6.10 Closure

The necessary boundary conditions for inlet, outlet, symmetry, walls, and periodic
boundaries have been described. Nearly all the boundary conditions treated here
are of either the Dirichlet type or of the von Neumann type, the exceptions are
the pressure boundary condition and the periodic boundary condition.

We discussed how to determine the time step in case of transient calculations,
and in this connection the well-known steady-state iteration method was men-
tioned.

The final boundary condition to be discussed before all remedies necessary for a
functional finite volume code has been addressed, is the turbulent wall boundary
conditions for the k — € model which is the subject of the following chapter.
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7 Turbulent wall treatment

7.1 Introduction

The treatment of the wall boundary condition in connection with turbulent flows
demands some special considerations. The treatment of laminar wall boundary
conditions is found in the previous chapter.

The two aspects of turbulent flow near a wall dictating a special treatment are
the strong gradients of the variables typical found near the walls and the fact that
the local Reynolds number will become low as the wall is approached.

The problem of low local Reynolds number is a consequence of the high Reynolds
number assumption used to neglect terms from the k and € equations during
derivation. Special so-called low Reynolds number versions of the k — ¢ models
exist, which are applicable near walls.

The problem of large gradients of the variables near the walls is primarily a
problem of the calculation time for the model going up, as the mesh is refined
near walls in order to resolve the gradients.

Thus, the problem could be solved using a low Reynolds number version of
the k — e model and a very fine mesh near the walls. Even though this approach
has been shown to work for industrial flows with smooth walls, the wish to make
predictions in the atmospheric boundary-layer over rough walls seems to be im-
possible choosing this technique. The reason for this is the need to resolve the
laminar sublayer of the individual roughness elements. For a flow over a hill the
domain is typical of the size of 10 km, while the roughness elements have sizes of
about 5-10 cm, resulting in the number of cells exceeding the storage capacity of
modern computers.

Instead we will choose a technique where the calculation of the flow near the
walls is abandoned, thus both circumventing the problem of the low Reynolds
numbers and the need for fine meshes to resolve the strong gradients.

This alternative approach is to use the standard high Reynolds number k& — €
model together with a model for the behaviour of the flow near the walls, known
as the logarithmic wall-law. In the logarithmic wall-law method the steep gradient
region near the walls is excluded from the computations, and instead the near
wall flow is modelled by assuming one-dimensional Couette flow. By modelling
the near-wall flow, the fine mesh needed here can be avoided, cutting down the
execution time, and at the same time avoiding the low Reynolds number region
allowing the use of the standard k¥ — e model.

7.2 Logarithmic law-of-the-wall

The logarithmic law-of-the-wall can be derived for a boundary-layer flow, where
the variation in the flow direction is negligible, following Tennekes and Lumley
[57]. In this special case we have 0/0x = 0 except for the favourable pressure
gradient driving the flow, which in fact is a one-dimensional Couette flow.

The three scales entering the general rough wall flow are the viscous length
expressed as the ratio between the kinematic viscosity and the wall friction velocity
v/U,, the roughness height z, and the height of the boundary layer 4.

Performing asymptotic matching of the expression valid for the surface layer and
the outer layer (or core region for internal flow), we get the logarithmic wall-law

U 1

— =21 + . 1

o= g loe (y*) + f(R.,) , (105)
or

U 1 Y

—=—log, [~ 2) 1

TR (zo> +9(R.,) (106)
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- [Tw
! p
R. = 2oUr
14
yU-
yt = o (107)

Now we have a model describing the mean velocity profile in the vicinity of the
wall for the general case of rough wall flow. To be able to use the k — € model we
must have corresponding models for the equation of turbulent kinetic energy, and
the equation of dissipation of turbulent kinetic energy.

k-equation

Using the assumption of a steady flow with negligible development in the flow
direction, the equation for turbulent kinetic energy reduces to

a (Y
tay = €

T 8—U = €
w ay =
Prod =, (108)

stating that in these conditions an equilibrium exists between the production
(Prod) and dissipation (€) of turbulent kinetic energy. Approximating the shear
stress in the vicinity of the wall to be constant and equal to the wall stress 7,y &

Tw = prOU [y, equation (108) gives

2
Prod = 1, (T—w> . (109)
24

Alternatively we can use the definition of the eddy diffusivity, v;, and (108) to

get
2
Tw
Vg | — = €
( PVt )

6p2 Vg

3
I

1
Tw = pcik. (110)
Also the dissipation near the wall can be estimated from (108), using the knowl-
edge of the logarithmic profile (105 -106) to calculate the gradient 8U /9y = U, /ky,
this yields

=u (3,
k2 (U \?
ezc_(_T)
€ \ Ky

k
KY

If the wall stress 7, is known, (110) may serve as a boundary condition for
the turbulent kinetic energy equation. This condition can be relaxed by using an
assumption of zero diffusion of kinetic energy to the wall, and instead using (109)
and (111) to estimate the production and dissipation near the wall. Using the

last approach, the value near the wall is not fixed but only the production and
dissipation of turbulent kinetic energy are specified to be in balance.

=

T bl
lee

C

E =

(111)
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e-equation

In a numerical calculation of turbulent flow the e-equation is often neglected at
the point near a wall, and the value here is instead fixed by the value given by
(111). This is done because the e-equation is known to be in error near the wall,
where the assumption of high local Reynolds number used during the derivation
is often not fulfilled.

Smooth wall

In the case of flow over a smooth wall the roughness length is equal to zero, thereby
reducing the number of scales entering the problem to two. Looking at (105) and
specifying that f(R,,) — 5.5 when the roughness Reynolds number goes to zero,
the expression reduces to the well-known logarithmic wall-law for flow over smooth
surfaces

U 1

—=-1 + . 112

o = 2log. () +55, (112)
or

U 1

— = —log,(Ey") ,E=9.0. 11

o = lose(ByT) , E =90 (113)
Rough wall

For R,, — o0, g(R;,) is independent of R,, and becomes a constant. Often, the
position of the wall y = 0 is not known accurately enough to bother with the
additive constant; instead, it is absorbed in the definition of z, according to [57].
The logarithmic law of the wall for rough wall flow then reads

U 1 Y

— =1 = . 114

o= 2o, (L) (14)
This profile is often used all the way down to y/z, = 1 (where U = 0 when the
additive constant is ignored), even though the profile is derived assuming that
y/z, = 00.

7.3 Coding of the logarithmic wall law

In the following we will discuss the coding of the logarithmic wall law for the case of
smooth wall flow. First the boundary conditions for the momentum equations, then
the boundary conditions the for kinetic energy equation and finally the treatment
of the dissipation. In the end the analog results for the rough wall case will be
listed.

Momentum equations

As we do not want to abandon the momentum equation in the near wall cell and
fix the velocity according to the logarithmic law of the wall, we rewrite (113) using
that 7, = pU?

U U 1
22T - Zlog (Eyt
U - og.(Ey™)
1
Zv, = Log@E
r K
S prUU
Y log.(BEyt)
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Tw

13
log, (Eyt) -
Normally this expression is used in the fully turbulent region (y* > 11.6)
whereas the expression used for the laminar sublayer (y* < 11.6) is given by

Tw = AU , where A = (115)

Tw =AU, where \ = 5 . (116)

Integration of the wall stress over the cell face gives the force, Ty,, that must
replace the diffusive terms from the ordinary procedure (I?)

Tw = /deA = AUArea

In the general three-dimensional case the velocity U is the tangential velocity
17} in the near-wall point P, and the friction force is assumed to be directed in
the opposite direction of this tangential velocity. In order to include the force
in the momentum equations it must be decomposed in the Cartesian directions.
Decomposing the friction force T,, is done by decomposing the tangential velocity
V, into Cartesian components, using

Vi = Vit = V.
Here Y;Ot is the Vglocity vector and V_';L is the normal component of the velocity
vector V,, = (7 - Vio¢) giving that
Vi = Vior — 1(1 - Vior).
In Cartesian components we have
Vi = (1 =nHU — ninaV — nynsW,
Viz = —nanaU + (1 — nd)V — nansW,
Vis = —nangU — nonsV + (1 — n3)W.
When this is inserted in the expression for the friction force we get
Tw1 = Mrea((1 — n])U — ninaV — ningW),
Tw2 = Mrea(—ninaU + (1 — n3)V — nanzW),
Tw3 = Area(—ninsU — nangV + (1 — ng)W)

In the code, the boundary condition is then specified by setting the diffusive
fluxes I% = I 4 I9¢ equal to zero, the convective flux is already zero as there is
no flow through solid walls, and replacing these by the friction force, T_';U, found
from the logarithmic conditions. Following standard linearization practice we get

U-momentum equation:

Ay = Ap+ Mrea(l —nd) ,
Sy_mom = Su-mom + Mrea(—ninaV —ninzsW) .
V-momentum equation:
Ay = Ap+ Mrea(l-n3),
Sy _mom = Sv—_mom + Area(—ninU —ninsW) .

W-momentum equation:

Al Ap + Mrea(1 —n2) ,

Sw_mom = Sw-mom + Area(—nin3U —ninaV) . (117)
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k-equation

For the turbulent kinetic energy equation we will retain maximum flexibility by
using the assumption of zero diffusion at the wall, and specifying the production
and dissipation of kinetic energy according to (109) and (111).

For the mean production in the near wall cell we have from (108) that

Yn
Prod = 1 / Tw a—Udy.
Yn — Yo Jy, Oy

Taking the integration from the lower limit of the logarithmic layer, meaning
yo = v/U,E for the smooth wall, to the top of the near wall cell y,,. Assuming
the stress to be constant in the near-wall cell, we have

S— T,
Prod = —=—(U(yx) — U(yo))-
Yn — Yo
Using that y, = 2yp and yp >> y, we get
Prod = i7'wU(yp) . (118)
2yp

Here we used that
Ulyn) _ loge(E2yp) _ loge(Byy) +10ge(2) _ L _loge(2)
Ulyp) — loge(Ey;) loge(Eyy) loge(Eyy)
For the mean dissipation in the near-wall cell we have (111)
3
L1 /y cﬁk%dy
Yn —Yo Jy, KY

Again we take the integration from the lower limit of the logarithmic layer, and
assuming k to be constant over the near-wall cell we get

=a. (119)

3
1 ¢ k?

Yn — Yo K

Again using y, >> y,, and the approximations in (119) we get

i+ +_ U
0 h = —. 12
Sur cpk2U , where U A (120)

(loge(yn) — loge(yo))-

€

_ Q
= —

In the computer code this is implemented by setting the diffusion flux I? =
Ign + I4. equal to zero at the wall, and replacing the generation term in the
kinetic energy equation and the dissipation term by (118) and (120), respectively.

As the boundary conditions state only that the production equals the dissipation
of turbulent kinetic energy, the constant a/2 can be dropped from the expressions
for production and dissipation.

e-equation

The equation for the dissipation of kinetic energy is abandoned in the near-wall
cell as earlier described. This is implemented in the computer code by a simple
variation of the standard way of fixing the value in the inner of a domain, see [42],

3 3
2.8
cpkz

S =Ap ,
KY

Ay =0. (121)

The advantage of using this approach instead of the usual multiplication with
a large value is primarily seen for unsteady calculations, where the use of the
standard approach would result in an erroneous time stepping for the dissipation
equation in the wall cell.
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Rough wall

The derivation carried out for the smooth wall flow can easily be carried out for
the rough wall flow. The derivation for the rough wall flow will not be given here
as there are only minor differences to the smooth wall derivation.

The difference between the smooth wall and rough wall expressions is mainly
caused by the different expressions for the wall stress, which in the rough wall case
are given by

prU;

log, (%) '

Here no special treatment of the laminar sublayer is necessary, as the roughness
elements penetrate the laminar sublayer reaching out in the fully turbulent region.

Using the expression for A from (122), the boundary conditions for the rough
wall case is identical to the expressions (117), (118), (120), and (121).

Tw = AU , where A = (122)

7.4 Closure

The turbulent boundary conditions for the high Reynolds number k-e¢ model were
derived based on the assumption of a one dimensional Couette flow. The bound-
ary conditions were stated both for flow over smooth and rough walls found in
atmospheric flows.

It was found that the difference in between the two cases was minor concerning
the changes that have to be made in the computer code, actually the only difference
is the way of evaluating A and the inclusion of the laminar sublayer for the case
of flow over smooth walls.

The calculations performed have proved that the present implementation of the
turbulent boundary conditions is very robust and gives reasonably good results.

The reasonably good results obtained for separating flows are quite surprising
as the Couette flow assumption used for deriving the logarithmic wall law is not
fulfilled. If one would like to have the ability to compute strongly separating flows
more accurately, the use of the low Reynolds number version of the k — ¢ model
could be a possibility for smooth wall flows. For flow over rough walls, as earlier
discussed, this choice is not possible with the present computer capacity and a
different path must be sought.
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8 (Geometric quantities

8.1 Introduction

When the differential equations are discretized, information about several geomet-
ric quantities is needed, cell-volumes, cell-face areas etc.

For the formulation used in the present study, all the necessary geometric in-
formations can be derived from the cell vertices coordinates. This means that the
user must supply the code with the coordinates of the cell vertices in form of
a mesh file, the remaining geometric information necessary is then derived from
these coordinates by the code.

The calculations of the different geometric quantities needed, will be given in
this chapter. The calculation of the following geometric information used within
the code is described :

Cell volumes

Cofactors or cell-face areas

Normal vectors

Normal distance between cell face and cell centre

Linear interpolation factors

8.2 Volume calculation

The three-dimensional computational cells have the form of hexahedrons, each
composed of eight corners joined by straight lines. The discrete volumes

/ J dédnd¢ = Vol ,

can be computed by a method suggested by Kordulla and Vinokur [20].

The practice given by [20] is to decompose the computational cell into six non-
overlapping tetrahedras, for which a simple expression for the calculation of the
individual volumes exist, and thereafter to sum the volumes of these six tetrahe-
dras to get the volume of the computational cell.

Decomposing a cell is done by cutting it with three planes, where each of the
planes goes through four of the cell vertices. To ensure for a general double curved
surface that the cell volumes are non-overlapping, a cell face shared by two cells
must be split into triangles in exactly the same way for both cells. A simple way
to obtain this, is to use the same three planes for all cells, the planes used here
will be a plane through the vertices a, ¢, h and f, a plane through the vertices a,
d, e, and h, and a plane through the vertices a, b, g, and h, see Fig 6 and 7.

The volume of a tetrahedrons is computed by the expression:

1 -
Vol = =i+ (b x &)
ol = zad ¢
where the three vectors d, b and ¢ distend the tetrahedra and form a right-hand

system. Looking at Fig. 7, the volume of the computational cell can be computed
as:

Vol =
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Figure 6. Three-dimensional computational cell, with lines drawn for decomposing
it into siz tetrahedras.

Figure 7. The sixz tetrahedras resulting from the decomposition of the computational
cell.

8.3 Cofactors

The discrete version of the cofactors, a, can be identified with the projected area,
except for the sign.
For a finite cell face, the discrete version of the expression for the cofactors (24)
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will, in general, not fulfill this requirement, and another practice must be used.

Instead of using the discrete expressions for the cofactors we will calculate the
projected areas using vector algebra, and afterwards choose the sign to get the
right value.

To calculate the area of the cell face on Fig. 8, we will split the cell face into
two triangles acd and abd. Using the same splitting as used for the cell-volume
computation, it is ensured that the area of a cell face shared by two neighbouring
cells will be equal, even for a general double-curved surface.

Figure 8. A cell face split into two triangles for area calculation.

The areas of these triangles can be computed as

1 -
Area1=§|adxd’c| ,

Area, = = | ab x ad | .

N | =

The area of the cell face is then
]_ - - - -
Area—§(|adxac|+|abxad|)

Being aware that both a?i, ac, ad x d¢ and a7), a?l, ab x ad are right hand systems,
we have

lad x de| + |abxad| = |adxdt +abxad |
= |adxdt —adx ab|

Il
e
SN
X
@)
S

]_ - -
Area:§|adxcb|
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Choosing the vectors ad and cb such that the resulting vector is pointing into
the cell, the following sign convention is used. If we are looking at a south, west
or bottom wall of a cell, the cofactors are positive if the normal vector of the
projected area is pointing in the direction of the corresponding Cartesian axis,
and negative in the opposite case. To ensure that the cofactors shared by two cells
have the same sign, the opposite convention is used for north, east and top walls.

Using the following relations between cofactors and projected areas with the
above-mentioned sign convention the expressions for the cofactors are at hand,
realizing that projecting on the z-plane the y and z components of the vectors are
used, projecting on the y-plane the x and z component of the vectors are used,
and projecting on the z-plane the z and y components of the vectors are used.

Ogp = &-face projected on z-plane
agy = —&-face projected on y-plane
o, = &-face projected on z-plane
Ope = n-face projected on z-plane
ony = —n-face projected on y-plane
Oy, = 1-face projected on z-plane
oy = (-face projected on z-plane
o¢y = —(-face projected on y-plane
o, = (-face projected on z-plane

To save space in the code, only the discrete analog of the primary cofactors will
be stored, a¢,, agy and ag, at &-faces, ayg, any, and a,, at n-faces and a¢,, acy
and oy, at (-faces.

The remaining six discrete cofactors at each cell face will then be interpolated
between the primary discrete cofactors when needed. For the east &-face we have,
see Fig. 9

(i), = 3 (), + (an), + (@) + (01

where i can be x, y or z.
The equivalent expressions for the remaining cell faces are straightforward.

8.4 Normal vector

In general the normal vector will be varying from point to point, but in most
cases this variation will be small over a cell face. As a consequence a mean normal
vector can be calculated as the vector product of the two cell face diagonal vectors
ad x b?:, see Fig 8.

Nzaaxbz,

. N

m=—".
| N |

When the unit mean normal vector 7 is calculated, the normal distance from
the wall to the cell centre of the first inner cell can easily be calculated as the
scalar product of the unit mean normal vector and the vector pointing from the
cell face midpoint B to the cell centre P

on =1 -BP .

The cell-face midpoint is calculated as one fourth of the coordinate values of the
four vertices enclosing the cell-face, and the cell-centre is calculated as one eighth
of the coordinate values of the eight vertices enclosing the computational cell.
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Figure 9. Interpolation of (au;), from the surrounding four ou;, where i can be z,
y or z.

8.5 Interpolation factors

Whenever a value of a variable is needed at the centre of a cell face, interpola-
tion between cell-centre values will be used. In the present implementation linear
interpolation is used for this purpose with an interpolation factor of one half.

Taking a two-dimensional example Fig. 10, the error introduced by using a
interpolation factor of one half instead of the proper interpolation factor will be
examined.

L [
(p] (‘pw (p2
L 1 L 2

Figure 10. Interpolation between cell centres for a two-dimensional non skewed
mesh.
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Using linear interpolation the following expression for the cell face value, @,,,
can be derived
ol = (1 - ﬁ) o1+ ﬁ@z : (123)
Using the alternative procedure, by taking the cell face value to be equal to the
mean of the two neighbouring cell centre values, we get
half _ 1

w 5 (L +e2) - (124)

Assuming the linear interpolation to give the correct answer, we get the following

expression for the relative error introduced by using the mean value
din—ghor B+ -3 (1+8) (14 %)
ou" By ’

where La/L; is the cell expansion ratio, which typical is kept within the range
of [0.9,1.10] in regions of strong gradients. And ¢2/; is the ratio between the
values at the cell centres, typical much smaller that one hundred for the main
part of the computational domain.

Looking at Fig. 11, it is seen that for the range of parameters just mentioned,
the introduced error is at most a few procent.

When the mesh is skewed even the linear interpolation does not give the correct
answer, and as most meshes used in practical computation are skewed, the gain of
using the more complicated ‘correct’ linear interpolation is believed to be minor.

(125)

O.] T T T T T T T T
phiy/phi; =1.0 —
phiy/phiy =2.0 —-
phiz/phi; =5.0 -~
005 | phlz/phll = 1000 -
o -~
° -
= ‘
= . -
o) .
~ -0.05 E
01 F T -
_0'15 1 1 1 1 1 1 1 1

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
Cell expansion ratio

Figure 11. The relative error (olin — phalf) /plin introduced by using mean values
instead of linear interpolation shown as a function of the cell expansion ratio
Lo/ Ly for four different values of @ /1.

8.6 Closure

The cell-volume and the primary cofactors will be computed only once, namely
at the start of the calculation, and then stored for use during the remaining com-
putation. This is done to achieve a good performance of the program, as these
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quantities are needed several times when the transport equations are assembled,
and knowing that the evaluation of these quantities is very time consuming.

For the remaining geometric information, the secondary cofactors, the normal
vectors, and distances between cell-face centres and cell centres, the main consid-
eration will be saving space instead of attaining maximum speed. Therefore these
will be computed whenever needed during computation, increasing the computa-
tional time at the expense of saving space.

The linear interpolation will be replaced by the mean value, as it was found
that the error introduced by this practice was of minor importance.

Different techniques to obtain the meshes necessary for the present method, used
to describe the geometry and obtain the geometric quantities, will be discussed in
the following chapter.
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9 Multiblock concept

9.1 Introduction

When working with a standard structured mesh, only simple geometries repre-
sented by a ‘box’ in computational space (£, 1, ¢) can be handled. Consequently,
the geometrical flexibility is rather limited, and mesh generation for moderate
complex domains can be a very difficult task.

To avoid this well-known limitation of structured meshes, we choose to work
with block structured meshes. The implications of this choice will be explained in
the present chapter.

Even though a separate two-dimensional multiblock code was initially developed
in order to become acquainted with the multiblock philosophy, the present two-
and three-dimensional codes are based on the Basis2D/3D platform developed at
the Department of Fluid Mechanics at DTU by Michelsen [33].

The following sections will discuss the details of the Basis2D/3D platform, rel-
evant to the development of finite volume codes.

9.2 Multiblock meshes

In order to circumvent the fact that the computational domain must be hexahe-
dral, the multiblock technique makes use of one, two or several of these individual
computational domains together with a communication technique to exchange
information between the individual domains.

The use of the block-structured approach can be illustrated most easily by an
example. Considering the flow over a backward facing step, see Fig. 12, the proce-
dure is as follows. First, the physical domain is partitioned into three subdomains,
the inlet part and the upper and lower outlet part. The individual subdomains are
subsequently meshed separately. As a consequence of the partitioning of the flow
domain, simple rectangular meshes can be constructed in the individual subdo-
mains in contrast to the curvilinear mesh that would have been used for a single
block domain.

In order to fulfill the Basis2D/3D standards, the block splitting must obey
certain rules. The first rule is that all blocks must be cubic in the computational
space (quadratic in two dimensions), meaning that the number of cells in the &,
1 and (¢ directions must be identical, and secondly that the the individual blocks
must be of the same size. At block/block interface the mesh-lines must be co-
continuous.

The requirement that the cell vertices must coincide at block/block interfaces
is not a limitation for a cell centered finite-volume method as used in the present
approach. Instead, it may be seen as a way of ensuring that the conservative
property of the method is retained.

Even though the demand for equally sized cubic blocks in the computational
space is not a limitation from a theoretical point of view, it may result in a
large amount of small blocks degrading the efficiency of the method in extremely
complex cases.

9.3 Block communication

Having subdivided the domain into subdomains, the block to block communication
becomes a crucial part of the method.

Following the requirements of the Basis2D /3D standard for the domain subdi-
vision, the block communication becomes very robust and transparent.
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1

Figure 12. Backward facing step, in the upper half the geometry is shown together
with the division into subblocks (I, II and III), and in the lower part the finite
volume mesh is shown.

The communication between blocks is based on two elements, a single layer of
cells around the blocks, the so-called ghost cells, see Fig. 13, and a communication
table taking care that the correct values are installed in the ghost cells.

We will distinguish between three types of ghost cells, normal ghost cells, edge
ghost cells, and corner ghost cells, see Fig. 13.

Corner ghost cells

The difference schemes used in the present three-dimensional code do not use
information from the corner ghost cells. We will use this knowledge and exclude
the corner ghost cells from the discussion to follow, as the corner ghost cells
influence only the post-processing of the present code.

It appears from the construction of a two-dimensional case from a three-di-
mensional one by taking a slice for constant ¢ that only normal and edge ghost
cells exist for the two-dimensional case. As the corner ghost cells do not influence
the three-dimensional case, the communication principle can be illustrated by the
more simple two-dimensional case without loss of generality.

Normal ghost cells

The communication for normal ghost cells turns out to be simple. We only have to
ensure that the values from the first inner column of the neighbouring block will
be installed in the normal ghost cells, see Fig. 14. In the final code this updating
of the normal ghost cells is accomplished by a single subroutine call.
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Figure 13. The figure shows the ghost cells. The block without ghost cells is shown
at 1), the normal ghost cells are shown at 2), the edge ghost cells are shown at 3),
and finally the corner ghost cells are shown at 4).

NN

Figure 14. Movements necessary to install the right values in the normal ghost
cells for block 1.

Edge ghost cells

The treatment of edge ghost cells is more difficult than the normal ghost cells.
This problem is related to the calculation of cross-term gradients in connection
with complex topologies.

Again using the above three-block configuration, see Fig. 15, the calculation of
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the cross-term gradient §/9n at the east face of the north-east cell of block I, and
the cross gradient 0/0¢ at the north face of the north-east cell in block I will be
examined.

Figure 15. Calculation of cross-term gradients. The left-hand side of the figure
shows the necessary movements to calculate the cross-term gradients 0/0n at the
eastern face of the north-eastern cell of block I. The right hand-side of the figure
shows the necessary movements to calculate the cross-term gradients 0/0¢ at the
northern face of the north-eastern cell of block 1.

From Fig. 15 it is seen that the calculations of the two cross-term gradients
demand that the edge ghost cell holds two different values. It may be noted that
this problem is non-existent for the normal ghost cells.

Directional splitting of the cross-term calculation

In order to save communication the following observation is utilized. The 8/9n
cross-terms are needed only at the &-faces, whereas the 0/0¢ cross-terms are
needed only at the n-faces. By use of this knowledge the cross-term calculations
can be split by directions thereby minimizing communication. One communication
call will ensure the installation of the appropriated value in the ghost cells in order
to compute the 8/0n cross-terms at the &-faces, followed by the calculation of the
0/0n cross-terms. A second communication call will ensure the installation of the
appropriated values in the ghost cells in order to compute the §/9¢ cross-terms
at the 7-faces, followed by the calculation of the 8/0¢ cross-terms.

In the three-dimensional case this practice is easily extended. It is noted that
even though the 98/0n and 0/9¢ cross-terms are needed at the {-faces, the edge
ghost cells holding the values for the §/9n and 0/0( cross-terms are different. The
communication routines can therefore still be split by directions, i.e. one call to
make the cross-term calculation correct for the £-faces, one call for the n-faces,
and one call for the (-faces.
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The values of the edge ghost cells are needed only in connection with the as-
sembling of the cross-terms for the various equations and in connection with the
Rhie/Chow interpolation. Treating the cross-terms explicitly, the communication
necessary to compute them can be limited to three calls for each transport equa-
tion, plus three calls in connection with the Rhie/Chow interpolation.

9.4 Communication tables

The communication tables necessary to provide the information for the four dif-
ferent communication calls (three in two dimensions) must be constructed before
the communication can be performed.

The simplest way of constructing this table is to code the communication ta-
ble by hand for each special case. This approach was chosen in connection with
the original two-dimensional multiblock test code. A more advanced but similar
approach is found in Rizzi et al. [48], where the block connectivity is user specified.

The need to install the right elements into the edge ghost cells, can be very
complex even for two-dimensional cases. It requires a good understanding of the
actual mesh configuration and communication technique by the user. For three-
dimensional cases the communication gets even more complex, and the risk of
errors becomes more pronounced.

For a test code this approach may be adequate and economical, but if the goal
is a production code, the need for fast reliable answers makes this strategy unde-
sirable. In this case it may prove worthwhile to program a preprocessor capable
of constructing the communication tables solely from the information about the
coordinates of the cell vertices.

Based on the ‘relatively simple’ configurations (equally sized cubic blocks, with
co-continuous mesh lines over block boundaries) used within the Basis2D/3D
framework, it has been possible to construct a robust preprocessor. The Ba-
sis2D/3D preprocessor use information about the coordinates of cell vertices only,
whereby the mesh file is the only information needed in order to calculate the
communication tables. On the basis of the coordinates of the cell vertices the pre-
processor checks that the mesh fulfills the Basis2D /3D standard, and if no errors
are found in the mesh, the block connectivity is computed and a communication
table is written to a file, see [33]. Together with the file holding the communication
table the mesh file is then used by the application program when the Navier-Stokes
computations are performed.

9.5 Boundary conditions

Another aspect of the present codes, both the test code developed and the final
two and three-dimensional codes using the Basis2D/3D platform, is the use of
attributes in order to specify boundary conditions.

For a cell face at the block boundary, a table holds the attribute value telling
what kind of physical condition is needed at this face location.

The physical boundary condition inlet, outlet, wall, etc., already programmed
in the code is then chosen for a face position according to the value of the at-
tribute. In this way a boundary condition once programmed will never need to be
reprogrammed.

For the two-dimensional test code the attribute table was simply programmed
for every single case, following the approach of the communication table. In the
Basis2D/3D environment the attributes for every single vertex is given together
with the coordinate information in the mesh file [33]. The Basis2D/3D platform
then interprets this information and constructs the attribute tables for the cell
faces.
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Using the approach of storing the information about the boundary condition
together with the coordinates of the vertices in the mesh file, all the essential
information for a specific problem is in fact gathered in a single file. In a test
situation one can easily run a series of different test cases without changing a
single line of the code, simply by use of the mesh files and the communication
files generated by the preprocessor. Actually it has proven very efficient to store a
series of test cases in the form of the mesh file together with the computed results.
Having made changes or small adjustments to the code, one simply runs through
the batch of test cases checking the result with the values earlier obtained.

9.6 Mesh singularities

In some cases the use of mesh singularities can be advantageous, allowing a face
of a mesh block to collapse into a point or line. As an example one can think of a
polar mesh in two dimensions where a polar singularity exists at the centre of the
polar mesh, see Fig. 16.

Using a cell centred finite-volume method, the appearance of mesh singularities
do not pose problems, again taking the two-dimensional polar mesh as an example,
see Fig. 16. The mesh singularity is located at the western block face where the
block face has degenerated into a point. As the cell-face ’area’ at the western face
thereby has become equal to zero, the influence coefficient at the western face
is already equal to zero, and no special treatment of the boundary condition is
needed.

west
south north

west east

east

north
south

Figure 16. Polar mesh with mesh singularity, the left part of the figure shows the
physical mesh and the right part shows the mesh in transformed space. The mesh
singularity is located at the western block face, where the block face has degenerated
to a point. As the western cell face thereby vanish, no special treatment of the
boundary conditions is needed.

9.7 Solution strategy

The solution of the transport equations in a three-dimensional multiblock config-
uration will be obtained using a TDMA solver successively applied in alternating
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directions, see also the section concerning the Schwarz Alternating Method in the
chapter about multigrid. Using a TDMA successively applied in alternating direc-
tions in three dimensions, the possibility of twelve different sweep directions exists.
Analyzing the possible sweep directions, one discovers that only six of these are
essentially different.

By combining one TDMA line block with two sweep directions, the following
six combinations have been chosen for the three-dimensional solver

bottom-west to top-east

top-east to bottom-west ’

& — line-block : {
bottom-south to top-north
top-north to bottom-south

1 — line-block : { ,
south-west to north-east

— line-block :
¢ — line-bloc { north-east to south-west

In order to solve a multiblock configuration the six sweep-directions will be used
in the following way. Taking the sweep bottom-west to top-east for a &-line-block
as an example, a two-step procedure is applied to all blocks. First a single sweep
is made for all planes within a block, then a communication among all the blocks
is performed using the standard communication call in order to ensure that the
latest information is installed in all ghost cells. This communication call concludes
the two-step procedure and the remaining block is treated using the same two-step
procedure. When all blocks have been treated, the remaining five sweep-directions
are applied in the same fashion.

As all cross-terms are treated explicitly, only the normal ghost cells need to be
correctly installed during the solution procedure, limiting the communication to
a single call when a block have been sweept.

The procedure may not be fully optimal, as the blocks always are solved in all
directions irrespective of the coupling strength. But as the procedure has proven
to be robust and computationally cheap, the gain of adding some logic in order
to choose between the solution directions does not seem worthwhile.

9.8 Closure

The few components necessary to alter a single block code to a multiblock code
have been described. Of these components only the ghost-cell layer and the com-
munication table are essential. The attribute table used to specify the boundary
conditions and the treatment of mesh singularities could be used in a single block
code as well.

Even though the steps necessary to transform a single block code into a multi-
block code are few, the changes may be difficult if the code were not originally
developed for later implementation of a multiblock scheme. The two final codes
were developed as single block codes, bearing in mind that later on they would be
changed into multiblock codes, in fact only a few communication calls had to be
added in order to use the code as a multiblock code.

As stated earlier, the multiblock capacity was originally added to the code in
order to obtain geometric flexibility, but as a consequence of storing the informa-
tion on the boundary conditions together with the coordinates of the cell vertices,
the Basis2D/3D strategy has proven very powerful for debugging and developing
codes as it allows many different cases to be calculated without changing one single
line of the code.
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10 Multigrid and Grid Sequence

10.1 Introduction

As mentioned earlier the solution of the pressure correction takes up a large por-
tion of the solution time, even when the mass defects are only reduced one order
of magnitude. To diminish this time and to allow mass defect reduction of two or
three orders, a multigrid method was implemented in the two-dimensional multi-
block test code.

In this chapter a CG multigrid method using a fixed V-cycle and a TDMA solver
as basic smoother will be described. The components of the multigrid method will
be addressed. Difficulties associated with combination of the multigrid method
and the multiblock concept will be discussed. In this connection the Schwarz
Alternating Method (SAM) will be introduced.

Inspired by the achievements of the multigrid method for the solution of the
pressure correction equation, the overall method or outer loop was accelerated
using a grid sequence. This was done only for the final codes implemented in the
Basis2D/3D environment. Most of the tasks necessary for the grid sequence could
be taken care of by standard Basis2D/3D subroutine calls.

The coupling between the Schwarz Alternating Method, used for multiblock
configurations, and the multigrid technique is also discussed.

Finally, the grid sequence technique is described. This method uses the same
tools as the multigrid method and is easily implemented when the multigrid rou-
tines are available.

10.2 Multigrid

In the following the correction grid (CG) multigrid method used for the solution
of the linear pressure correction equation will be described.

It is well-known that standard smoothers as TDMA, point Gauss-Seidel etc.
reduce the residual fluctuations on the scale of the mesh faster than the longer
wavelengths. As a consequence the convergence stalls after the initial period when
most of the shortwave fluctuation on the mesh scale has been removed. In a multi-
grid method the original fine mesh is used together with a series of coarser grids or
meshes. By transferring the solution between these meshes of different coarseness,
long wavelengths are smoothed on coarse meshes, while the shorter wavelengths
are smoothed on the fine meshes.

The CG multigrid method developed for the two-dimensional multiblock test
code consists of the following parts, a relaxation, a restriction, and a prolongation
operator, together with a criterion to decide when to shift between the meshes.

The coarser meshes are constructed by standard coarsening, removing every
second cell in all directions. In two dimensions this results in the coarse mesh cell
being assembled of four fine mesh cells, see Fig. 17.

When descending the mesh levels i.e. restricting, it is necessary to transfer the
mass source or right-hand side together with the coefficients only, as the equation
solved is a correction equation.

When ascending the mesh levels i.e. prolongating, we need information on the
pressure correction obtained on the coarse mesh only, and the prolongation oper-
ator thus only needs to operate on the pressure correction.

Restriction operators

Restriction of the mass source :
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Figure 17. Construction of the coarser meshes by standard coarsening removing
every second cell.

The restriction of the mass source from the fine to the coarse mesh is simply
obtained by a summation of the mass sources from the four mesh cells on the fine
mesh constituting the coarse mesh cell,

S, 5) = Sar(isg) + Shr(i+1,5) + Sip(i,j + 1) + Spp(i + 1,5 +1) .
Restriction of the coefficients :

Looking at Fig. 18 it is easily seen that the following relation must be true for
the eastern face
ce=ch+0h,
stating that the flux through the coarse mesh face is equal to the sum of the fluxes
through the fine mesh faces constituting the coarse cell face. Now we express the
mass fluxes by the pressure differences over the face, as proposed by Michelsen [32]
Cﬁ = AS(P}I; - P1€1) = ASAPF

el »
CeF2‘ = Ag(sz _P113:‘2) = AszPepz )
CY = AS(P§ — PS) = ACAPS .
Using the approximation that APY = APZL . and that the spacing is doubled in

the coarse mesh with respect to the fine mesh, we get
AP ~2APY ~2APE |
Inserting this in the expression for the cell face fluxes we get
1

The generalization of this expression to the remaining faces is straightforward
and will not be given here.

A prolongation operator

The prolongation of the coarse mesh results to the fine mesh needed when ascend-
ing the mesh levels, is in fact an interpolation between the coarse mesh values. The
interpolation will be performed in transformed space, where bilinear interpolation
is sufficient, see Fig. 19, and expressions of the following form can be derived

(i, f) = 99°(i, j) +36°(6,5 —1) + 31¢g(i —Lj)+¢-1,j-1)
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Figure 18. The coarse cell flur (CC ) is equal to the sum of the fluzes over the two
fine cell faces CE and CL, constituting the eastern face of the coarse cell.

o—
(1)
[
(i_lvj'l) (1’.]_1)

Figure 19. When prolongating coarse mesh quantities to the fine mesh, the pro-
longation is performed by a simple bilinear interpolation between the coarse mesh
values. The fine cell value is indicated by the square and the coarse cell values are
indicated by the four dots.

A relaxation operator

The relaxation operator or basic smoother used in the present multigrid method
is the TDMA solver successively applied in alternating direction. The efficiency
of the TDMA applied successively in alternating direction is reduced when the
cell aspect ratio becomes large. As the present multigrid method was intended
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primarily for testing purposes, this was not considered to be a major problem. If an
efficient solver is needed even on meshes with large aspect ratios, a more advanced
solver than the TDMA could be implemented as were done by Michelsen [34] in
connection with the Basis2D/3D platforms.

Multigrid cycle

The multigrid cycle, i.e. the pattern in which the mesh levels are visited during
solution, has to be decided. Two main options exist, using either a fixed cycle, or
alternatively, making the cycle dependent on the behaviour of the convergence. In
the present implementation a fixed V-cycle was chosen, following the discussion
of Michelsen [31]. The number of smoothing sweeps performed on each level when
descending and ascending the mesh can be seen in Fig. 20.

2 = meshlevel 1

< meshlevel 2

= mesh level 3

< meshlevel 4

- mesh level 5

Figure 20. The fixed V-cycle for the multigrid solver, the number of relazation
sweeps performed on a given mesh level are indicated.

10.3 Schwarz Alternating Method

The solution of the multiblock domain is obtained using the Schwarz Alternating
Method (SAM), see Schwarz [51]. SAM is a technique for solving a large domain as
a coupled problem of several small domains, where the small domains may overlap.
In the present work the domain decomposition technique was used to overcome
the limited geometric flexibility of the standard structured mesh. Another frequent
reason for applying domain decomposition is the wish to use parallel computers.

SAM can be applied in two different ways, i.e. multiplicative or additive SAM
respectively. In the multiplicative SAM the individual domains (including the
overlap) are solved in a sequential fashion, meaning that the individual domain
always uses the latest information in the overlap region. In the additive SAM,
all blocks are solved using the old information for the overlap region followed by
an update of the overlap region when all blocks have been solved. The fact that
all blocks use the old information, allows the blocks to be solved simultaneously,
making this technique very well suited for parallel processing.

Combining the multigrid method with the Schwarz method, one will naturally
arrive at either a simultaneous or a sequential Multigrid within Multiblock strat-
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egy. If we relax the demand of the Schwarz method so that the individual blocks
are not solved but only relaxed during each visit, we can arrive at two additional
techniques, a simultaneous or a sequential Multiblock within Multigrid strategy. A
schematic representation of the four different strategies is shown in Fig. 21, where
the treatment of a domain decomposed into two subdomains and using three mesh
levels in the multigrid method is shown.

Multigrid within Multiblock Multiblock within Multigrid
(Additive SAM) (Simultaneously)
3@ 3 L]
D1 2 |® D1 2 _|@
1@ 1@
t t
1|® 1@
D2 2 |® D2 2 _|®
3 (@ 3 Ld
Multigrid within Multiblock Multiblock within Multigrid
(Multiplicative SAM) (Sequentially)

3 3
DI 2 |® DI 2
1@ 1

1

o =

D2 D2

3

Figure 21. Four different ways of solving multigrid in connection with a multiblock
configuration. The figure shows the solution of a two-domain configuration having
three multigrid levels. Above the time axis domain 1 (D1) is shown, and below
domain 2 (D2) is shown. The vertical columns indicate events where information
is exchanged only within the individual domains, whereas information is exchanged
between the domains when shifting to a new time column.

Using the multigrid within multiblock strategy, the individual blocks are solved
simultaneously or sequentially. The simultaneous approach is identical to the ad-
ditive SAM, whereas the sequential approach is identical to the multiplicative
SAM. For the additive SAM it is said by Wei [63] that the use of the simultaneous
Multiblock within Multigrid gives a better convergence than the standard additive
SAM. In the same way the use of the sequentially Multiblock within Multigrid
an improvement is found in convergence compared to the multiplicative SAM by
Michelsen [34].

In the present work the sequential Multiblock within Multigrid domain decom-
position technique was implemented. For the momentum equation an equivalent
technique was used on a single grid, where the sweep directions of the TDMA take
the place of the mesh levels in the multigrid method.

Domain overlap

Another important aspect of the Domain Decomposition Technique is the overlap
between the individual blocks. In connection with the treatment of the momen-
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tum equations (and additional transport equations), an overlap of a single cell is
sufficient, using the TDMA solver.

A single cell overlap definitely proves ineffective when solving the pressure cor-
rection equation using the multigrid solver described in the present chapter. In-
stead a large overlap between the blocks is used, and relying on the results of
Wei [63], an overlap of half a block is used.

10.4 Grid sequence

In the final two- and three-dimensional codes, where the multigrid solver and
necessary tools for the SAM were supplied by the Basis2D/3D platforms, a grid
sequence was implemented for the flow solver using the standard multigrid tools.

A grid sequence can be seen as an easy way to get a good start guess. In the
present codes all information on boundary conditions and initial flow fields are
given for the finest mesh level. The grid sequence is started by restricting this
information to the coarsest mesh 4. The problem is then solved on the coarse
mesh, typically using a convergence criterion that is one hundred times larger
than the convergence criterion on the fine mesh. When the convergence criterion
is fulfilled, the coarse mesh solution is interpolated to the next mesh where the
solution is continued. This procedure is continued until the fine mesh is reached,
and the original convergence criterion is fulfilled.

Using the grid sequence technique, there is no need for a very accurate start
guess on the fine mesh, a constant field will often suffice. The start guess obtained
by the grid sequence typically reflects a lot of features of the final solution, for
example recirculating regions and qualitatively correct velocity profiles.

As the standard coarsening in three dimensions reduces the number of mesh
cells by a factor of eight (a factor of four in two dimensions), the work needed for
solving the coarse mesh levels is only a fraction of the fine mesh solution. A 50%
reduction in overall computing time has been recorded in 3D, using the three level
grid sequence.

10.5 Closure

The multigrid solver implemented in the two-dimensional multiblock test code
was described. The basic description of the restriction and prolongation tools is
adequate for the final two- and three-dimensional code implemented in the Ba-
sis2D/3D environment as well. The acceleration obtained by the multigrid method
is primarily a result of the coarse mesh levels permitting smoothing of longer wave-
lengths of the residual fluctuations than does a single grid solver.

The Schwarz Alternating Method was briefly described, and the problem of
degradation of the multigrid convergence when used in a multiblock environment
without overlap was mentioned.

Finally, the grid sequence technique was described. This technique removes the
need of a good starting guess in order to obtain a fast solution, as the solutions
of the coarse mesh levels provide this at very low computational expense.

4For the present code it is possible to use up to three mesh levels, depending on the number
of cells in the finest mesh.
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11 Mesh generation

11.1 Introduction

The meshes necessary to obtain flow solutions can be generated in many different
ways, only the few methods used in the present work will be discussed here.

For geometrical simple configurations, such as flow around a sphere and flow in
a driven cavity, a simple analytical prescription suffice to generate a mesh.

For more general geometries, such as flow over natural terrain and flow over
surface mounted obstacles, the analytical prescription technique is not adequate.
For this type of flow cases many advanced methods exist for mesh generation,
e.g. elliptic mesh generation (Thompson et al. [59]), hyperbolic mesh generation
(Steger and Chaussee [53]), (Steger and Sorenson [54]), conformal mapping [59],
and variations of transfinite interpolation [59].

Three of the mentioned techniques have been used for mesh generation in the
present work. For simple geometries analytical mesh generations have been used.
To generate meshes over smoothly varying terrain, where the hyperbolic mesh
generation is fast and produces meshes of a good quality, this method has been
used. For flow around surface mounted obstacles and for the staggered tube bank
in two dimensions, a simple variant of the transfinite interpolation technique has
been used with good results.

In the following the coordinate variation in the transformed space will be given
by £ € [1,ni], n € [1,nj], and ¢ € [1,nk].

The generation of meshes by an analytical prescription will not be addressed
here as the method is straightforward to apply, instead the effort will be concen-
trated on the two remaining techniques.

11.2 Hyperbolic mesh generation

Hyperbolic mesh generation is based on a hyperbolic equation system, which is a
system of equations that can be solved in a marching fashion.

The hyperbolic technique is well suited for geometries where the mesh quality
near the surface is of primary concern, and where the exact location of the far-field
mesh is unimportant.

To illustrate the method, mesh generation over a natural terrain is described.
For this problem the mesh must be fine enough near the surface to represent
the steep variation of the variables located here. Far away from the surface the
gradients of the solution are very weak, and the cells can be larger. The actual
location of the mesh points in the far-field is unimportant as long as the domain
boundary is so far away that it will not disturb the flow near the wall.

First, mesh points are distributed over the terrain surface, z(&,n,¢) , y(&€,n,(),
z(&,m,¢) for ¢ = 1. Then the hyperbolic equations are solved to obtain z(&,7, (),
y(&,m,Q), z(&,m,C) for ( = 2 with the appropriated boundary conditions at the
horizontal boundaries. This practice is then repeated for { = [3,nk] where nk is
the number of planes in the (-direction.

Hyperbolic equations

To obtain the three equations defining the hyperbolic equation system the grid
lines are assumed to be orthogonal in two directions, and the cell volumes are
defined by some given function.

& L ¢,
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n L ¢,
Vol = f(&n,Q),
or
Texe +yeyo +2¢2¢ =0,
TnTe + YnYe + 2n2c =0,
TelnZ¢ — TeYcan — TnYe2c + TnYcze + TYean — TcYnze = VOl(E,1, () -

These equations are linearized around the present plane, and in matrix notation
the following equations result

Cre + Br, + Ar¢ = h (126)
where
_ ¢ Ye z¢ |
A= Ty Yn Zn )
Y¢rn — YnZE  TnRE — Tgr,  TgYp — Thyg |
I 0 0 ]
B=| v 2|
Yerg —ygre wgal —alxg WY — TEYe
| e Ye z ]
¢ = 0 0 0 ,
| Y2l —Yery  Tlzn — Tpzé Tpyé — TlYy
[ et i+ 22
h=| apx? +ygue + 2728 |
Vol + 2Vol°
- o
Te= | ye | >
|z
- o T
Ty = Yn ,
L *n J
o T
T¢=1 v | - (127)
| z¢

The r¢ and r, vectors are evaluated using central differences in the plane, and
the r¢ vector is evaluated using forward difference between the present plane and
the new plane.

The terms 2, y¢, 20 and ), y) and 2] are evaluated using central differences
in the present plane, where the © indicates that the evaluation is performed in the
present plane (by known values). Knowing the volumes in the present plane, the
three governing equations can be solved simultaneously to give the values of mg, yg
and z¢.
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Figure 22. Hyperbolic mesh of two hills in tandem. Upper left picture shows the

initial point distribution at the surface ((-plane). Upper right picture shows the
northern and eastern vertical boundaries resulting from the hyperbolic mesh gener-

ation. Lower left picture shows the vertical mesh slice over the hill peaks (r-plane).

Lower right picture shows the vertical slice between the hills (£-plane).

Solution of the equation system

The equation system (126) can be solved inverting a 3 x 3 block penta diagonal

system. This approach will not be used here, instead an approximated equation
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system will be used to obtain a first estimate for the coordinates of the new layer,
followed by a correction using a point Gauss-Seidel solver applied successively in
alternating directions.

The system approximated by using values from the present layer for 7¢ and 7,

Are =h—Cr — BrY .

This system can be solved using Cramers rule to obtain a first estimate of the
coordinates for the new layer. Eventually, some smoothing of the new layer can
be performed, using a simple weighting of the neighbouring coordinates.

Now 7¢ and 7, are recalculated using information partly from the present layer
and partly from the new layer, followed by use of the Gauss-Seidel solver. Re-
calculation of 7¢ and 7, and the application of the point Gauss-Seidel sweeps are
continued until equations (126) have converged. When the new layer has converged
the procedure can be repeated again for the next layer and so on.

Boundary conditions and volume function

We still need to state the boundary conditions for the edges of the slice and the
volume function.

When generating meshes over natural terrain, von Neumann conditions are used
for the vertical coordinate, and the horizontal coordinates are allowed to slide along
prescribed lines.

A good volume function is essential to generate a good mesh, actually most
of the grid control is connected with this function, although some control can be
achieved by the point distribution at the bottom surface.

The cell volume function for generating meshes over natural terrain is con-
structed using the following ideas. In the far-field the grid cells should be of the
same size, and the grid slices should be horizontal. To obtain equal sized cells in
the far-field requires, a weighting between the actual cell size and the mean cell
size of the present plane. In order to make the mesh planes horizontal a forcing
function is used, making the cells grow fastest where the plane elevation is lowest.

f(iaja k) = (aVOICell + (1 - Ol) ZVOlcell) g(iaja k) )
where the forcing function ¢(i, 4, k) is given by

.. Zmaz — 2
g(laJa k) = 2 s
hmaz?,; + Zmaz — Zmin

and Zmqee and 2, are the maximum and minimum 2 values of the previous plane,
and hmaxey is the maximum height of the cells in the previous plane. The square
of the maximum cell height entering the denominator makes the forcing function
become weaker when the difference in elevation of the plane is small compared to
the maximum cell height.

If the grid must expand away from the surface, the volume can be multiplied
by an exponential factor

expand(k) = (1 +¢)* |
where ¢ is a small number.
The volume function used to generate an expanding grid is

f@i,5,k) = <aVOlcell +(1-0a) ZVolceu) g(i, j, k)expand(k) .

The hyperbolic technique has some attractive features. It is fast using only a
fraction of the time needed for elliptic techniques, and it is able to make meshes
with good orthogonality and smoothness.

The drawback of the method is the lack of control of the outer boundary, but
concerning flow over natural terrain and other external flows this is no major
drawback.
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11.3 Mesh generation by transfinite interpolation

For domains where the lack of outer boundary control cannot be accepted, other
practices must be advised.

A method giving reasonably good grids in many cases is a simple version of
transfinite interpolation. Basically this method is a two-step procedure. First the
coordinates are distributed on the surfaces of the mesh block, thereafter an inter-
polation is performed to obtain the values of the coordinates in the inner part of
the domain.

The distribution of the mesh points at the block surface can either be done
by analytical methods, or the two of the three coordinates can be distributed by
analytical means followed by a bilinear interpolation of the third coordinate.

When the coordinates of the cell vertices have been specified at the six surfaces
of the domain, the coordinates of the interior points are found from interpolation
between the surface points, using the following formulas

(i, j,k) = 2(1,5,k) + fi;x [2(nd, j, k) = 2(1,5, k)] ,

y(i,5, k) = y(i, k) + ;5 [y(i,ng k) — y(i, 1, k)]

20, 5,k) = 2(i,5,1) + £ [2(0, 5, nk) = 20,5, 1)] - (128)
The interpolation functions used in the expressions are given by

T (nJ _j)fil,Lk + (.7 - 1) z'l,nj,k

)

i’jvk - nj —_ 1
s (k=R + E-DF;
fiia = nk—1 !
5 (ni— i)f13,j,k +(i—1) 7?{ka 129
B0,k T ni — 1 ’ ( )

The interpolation functions at the six surfaces fil,k etc., are simply calculated
by interpolation between the prescribed coordinates

z(i,1,k) —z(1,1,k)

lelk = ; ’
z(ni, 1,k) —z(1,1,k)
L _ x(i,nj,k)—l’(l;njak)
bnik ™ p(ni,ng, k) — z(1,nj, k)
> y(i,5,1) —y(,1,1)

i,j,l - y(l,nj, ].) - y(la 1, ]‘) ’
o wlisgnk) —y(i,1nk)
bmk y(la nj7 nk) - y(7” ]"nk) 7

z(]-;ja k) - z(]-aja 1)
z(]-aja nk) - z(]-aja ]-) ’

3
fl,j,k =

3 z(ni,j, k) —Z(niana 1)
o . 130
nidk = (i, j,nk) — 2(ni, j, 1) Y

All mesh control is achieved through the point distribution on the domain
boundaries. Attraction of mesh lines toward solid surfaces is easily obtained by
the surface point distribution.

The method is very fast, as no equation system has to be solved, the internal
coordinates can be obtained simply by evaluating explicit expressions. A drawback
of the method is the lack of orthogonality in all but very simple cases as in the
case of quadratic and polar meshes. As the present method does not need the
mesh to be orthogonal, this is no serious drawback.
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11.4 Closure

Three methods have been used to obtain meshes in the present work: analytical
prescription, hyperbolic and transfinite interpolation techniques.

The analytical method is mentioned only as the application is straightforward.
The analytical technique has been used to generate mesh around half a cylinder,
see Chapter 12. The two remaining techniques were discussed is some detail, and
the advantages and main limitations were stressed. For the hyperbolic technique
the main limitation is the lack of control of the location of the outer boundary,
and for the transfinite interpolation technique the main limitation was the lack of
orthogonality.

Other transfinite interpolations techniques exist, where a good degree of or-
thogonality can be obtained, but as the mesh generation was not the main topic
a further investigation of these techniques did not take place.

In connection with the use of multiblock codes, it is interesting that the trans-
finite interpolation can easily be used for generating multiblock meshes. As all
coordinates are specified at the block surfaces, the domain can be divided into
subdomains where the transfinite technique can be used to obtain meshes for the
individual domains. As the coordinates are specified at the block surfaces, it is eas-
ily ensured that the coordinate lines are co-continuous over block/block interfaces,
even though the higher derivatives may be discontinuous.
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12 2D test cases

12.1 Introduction

To verify the correctness of the code, some standard test cases have been calcu-
lated. These represent a wide range of flows. The laminar and the turbulent part
of the code were tested. The ability to work with Cartesian, general orthogonal,
and general non-orthogonal grids was tested as well. The implemented domain
decomposition method was also tested. The test cases were:

e Laminar steady-state Driven Square Cavity flow at Reynolds number 100 in
a Cartesian grid.

e Laminar steady-state separation over a circular cylinder at Reynolds number
40 in orthogonal grid (polar coordinates).

e Turbulent steady-state channel flow at Reynolds number 61000 in a rectan-
gular grid.

e Turbulent steady-state flow trough Staggered tube banks at Reynolds number
140000 in a general non-orthogonal grid.

e Turbulent steady-state flow over Backward-facing step at Reynolds number
140000 in a 3 domain rectangular grid.

For every test-case a table is given, here IP and JP refers to the number of
points in &- and n-direction in the individual grid blocks, NB is the number of grid
blocks. Re refers to the Reynolds number. Tran/Sted is whenever the calculation
is transient or steady-state. DS is referring to the kind of differencing used, where
CDS is central differencing scheme and UDS is upwind differencing scheme. It
gives the number of iterations, and CPU(s) is the CPU time in seconds.

All calculations, except the driven cavity, were stopped when the maximal nor-
malized residual was less than 10~*, for the driven cavity the computation was
stopped when all residuals had been reduced by a factor 10~%.

The calculations were performed on an IBM 320h RISC 6000 work-station, with
a peak Mflop rate of 50.

12.2 Driven Square Cavity

The laminar Driven Square Cavity was selected as the first major test case. This
case does only use the laminar Cartesian parts of the code. The very basic ele-
ments, the Rhie-Chow interpolation, boundary conditions, and multigrid scheme
can therefore be tested whitout any disturbance from the curvilinear parts.

Table 3. Computational parameters for Driven Square Cavity flow.

IP JP NB Re Tran/Sted DS It CPU(s)
64 64 1 100  Sted  CDS 493 306

As the flow is expected to separate in the bottom corners of the cavity, the
ability to calculate separation will be tested.
The Reynolds number is based on the lid velocity and the cavity height

_ rigH
u

Re
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Figure 23. Driven Square Cavity, Re=100. U-velocity at x/xi,:=0.5, V-velocity
at Y /Yiot =0.5.

Figure 24. Stream lines for Driven Square Cavity at Re=100. The separated regions
in the bottom corners are clearly seen.

The south, east and west boundaries were specified to be wall boundaries, the
north boundary was specified to be a wall moving with velocity Uj;q.

The results were compared to the calculation of Ghia [11], and according to
Fig. 23, the agreement is quite good. The basic elements of the code are found to
be working, and the code is able to calculate separation, see Fig. 24.
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12.3 Flow over a circular cylinder

The next part of the code to be tested was the general orthogonal laminar part.
To do this, the separated flow over a circular cylinder in polar coordinates was
choosen.

The Reynolds number is based on the diameter of the cylinder and the free
stream velocity

D
Re = PU=D
W

To save computing time the flow was assumed to be symmetric, and only half
of the domain was calculated.

Table 4. Computational parameters for flow over cylinder.

IP JP NB Re Tran/Sted DS It CPU(s)
64 64 1 40 Sted UDS 269 597

To minimize the influence of the free stream boundary condition, the outer
boundary was placed 30 diameters from the cylinder. The inflow boundary condi-
tion was specified over the upstream 90 degrees of the outer boundary, meaning
that the velocity was set to free stream velocity here. Over the downstream 90
degrees of the outer boundary, outlet condition was specified, assuming fully de-
veloped flow.

On the cylinder surface, the no-slip boundary condition was specified, and on
the horizontal pieces of the boundary, symmetry conditions were applied.

From the calculation, the pressure drag coefficient and the friction drag coeffi-
cient were calculated by the following formulas

_ [ Psinéds
P pUZR

_ [ 1ocosfds
77 T OUZLR

The nondimensionalized surface pressure was also extracted from the calcula-
tion, by the formula

Py, — P,
P = 27200
Eono
The separation angle was determined, as the point on the cylinder where the
streamline 1 = 0 originates.

Table 5.

L .
Cp Cp —FMC Bsepar
present computation 1.06 0.55 4.07 53.0
Dennis and Chang  0.99 0.52 4.69 53.8

The results were compared to the calculation of Dennis and Chang [9] and for
the drag coefficients and separation angle the error was less than 5%; for actual
values see Table 5. The nondimensionalized recirculation length Ly qcipe/R was
found to be about 15% too short, the numerical diffusion of the upwind scheme
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Figure 25. Surface pressure for flow over cylinder, Re=40.
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Figure 26. Flow over cylinder, detail of grid.

in regions where the grid is not aligned with the flow may be the cause of this.

In the separated region the flow travels through cells under an angle of about 45

degrees, giving rise to strong numerical diffusion.

From Fig. 25 it is seen that similar agreement is found for the surface pressure

distribution.
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Figure 27. Flow over cylinder at Re=40, streamlines near cylinder.

Figure 28. Flow over cylinder at Re=40, velocity vectors near cylinder.

12.4 Turbulent channel flow

To test the basics of the implemented k — € model, the orthogonal part of the
turbulence equations and the implemented wall law, fully developed turbulent
flow in a straight channel was computed, in at Cartesian grid.
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The Reynolds number is based on the half width of the channel and the maxi-
mum flow velocity

Re = PUcenterD )
7

Table 6. Computational parameters for turbulent channel flow.

IP JP NB Re  Tran/Sted DS It CPU(s)
16 16 1 61000 Sted UDS 242 35
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Figure 29. Turbulent fully developed channel flow, Re=61000.

The calculation was started with constant value profiles for velocities, and tur-
bulent quantities.

U=Un,

V=0,

k = turbin x Ufn , turbin = 0.01 ,
2.3

e= Gk 095
Kl

To get a fully developed flow, the outlet profile from the previous iteration was
used as inlet profile for the next iteration. The inlet was moved for the first time
after 10 iterations, and then after every iteration until convergence was reached.
The outlet boundary condition was specified as fully developed flow, and the
logarithmic law was used at the walls.

The calculation was compared to the experiment of Laufer [21], and good agree-
ment was found for the mean velocity. The agreement for shear stress and turbulent
kinetic energy is not as good, the computed shear stress is about 20% higher than
the one calculated from the measured mean velocity distribution.

The fully developed profiles are shown together with the experimental values
on Fig. 29.
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12.5 Staggered tube bank

Turbulent flow over staggered tubes was choosen to test the general nonorthog-
onal part of the k — e model. The more general form of the turbulent boundary
conditions could be tested as well, because turbulent boundary conditions had to
be applied on surfaces that were not parallel to either the z- or y-axis.

Symmetry

I
I
Inlet |
|
I

Wall H
Wall

Figure 30. Anti-symmetric unit of staggered tube bank

The Reynolds number of the flow is based on the diameter of the tubes and the
maximum velocity in the minimum gab between the tubes

— pUma:cD
M

Re

Table 7. Computational parameters for staggered tube bank.

IP JP NB Re Tran/Sted DS It  CPU(s)
64 32 1 140000 Sted UDS 2314 2660

The calculation domain is a basic anti-symmetric unit of the staggered tube
bank, see Fig. 30.

The condition for using the anti-symmetric unit instead of the whole tube bank
is that the flow is fully developed. This can be achieved experimentally by using
a bank of many tubes assuring that the entrance region does not influence the
domain in question.

Inlet boundary conditions were specified as constant value profiles for all vari-
ables

U=Uin7
V=0,
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k = turbin x U2, , turbin = 0.1 ,

Cik
€ =
Kl

,1=0.01.

1 T T T T T T T T

Present computation —
0.8 Peric computation o

06 | 1
04 F .

0.2 | 7

1-(P-Po)/(.5%tho*Uo**2)

_0'8 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 . 140 160 180
degrees from forward stagnation point

Figure 31. Pressure distribution at tube surface for staggered tube bank, Re=140000
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Figure 32. Staggered tube bank, grid.

To reach the fully developed flow condition the outlet conditions were moved to
the inlet, as described in the case of turbulent channel flow. The only difference
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Re=140000

2

Figure 33. Staggered tube bank, streamlines

Re=140000

2

Figure 34. Staggered tube bank, velocity vectors

demanding

Y

was the anti-symmetric periodic nature of the computation domain

the profile coordinate to be reversed.

Outlet conditions were specified as fully developed, counting on the parabolic

nature of the flow.

At the horizontal lines, symmetry conditions were applied, and on the tube

-827(EN)
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~

Figure 35. Staggered tube bank, pressure contours, Re=140000

N

Figure 36. Staggered tube bank, kinetic energy, Re=140000

walls turbulent boundary conditions were used. The computational mesh used for
the calculation was not constructed with the transfinite method described in the
chapter dealing with mesh generation, instead the mesh was generated by a more
advanced transfinite method allowing some control of the gradients at the surfaces,
the mesh generation code using this approach was supplied by Hvid [17].
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The results were compared to the calculation of Peric [45]. On Fig. 31 the
obtained surface pressure distribution is shown together with the results of [45].
The agreement is quite good, only the non smooth behaviour near § = 90 degrees
is not so good. This discontinuity is caused by the pressure distribution being
assembled from the wall-pressure from the two tubes connected to each other at
6 = 90.

The three isolines plots on Figs. 33, 35 and 36 are in good agreement with the
results of [45], not shown here. The most obvious difference is the lack of separation
in the present computation. This can be explained by numerical diffusion in the
upwind scheme suppressing the separation, and the log-law being in error in this
low velocity region.

12.6 Backward facing step

Finally, the multi-domain facility of the code had to be tested. The turbulent
backward facing step is well suited for this purpose.

The test case of Kim [19] was selected, unfortunately the original reference was
not available but sufficient data could be taken from Hackmans calculation of the
same test case [12].

Table 8. Computational parameters for backward facing step.

IP JP NB Re Tran/Sted DS It CPU(s)
32 32 3 140000 Sted UDS 649 1290

Block 1 2h Block 2

Block 3 h

Figure 87. Geometry and block configuration for backward facing step

The geometry is shown on Fig. 37, along with the block configuration. The
Reynolds number is based on twice the step height and the mean inlet velocity

o

The inlet profiles upstream from the step are not available in [12], instead the
calculation was started far upstream from the step, about fourteen step heights,
with constant value profiles for all variables.

U=Uyp,

Re =
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V=0,
k = turbin x U2, ,where turbin = 0.0001 ,

3.3
e=% , where [ =10 x h .
Kl

The turbulence intensity was then adjusted to get the profile correct at the step
corner, see Fig. 39. This procedure resulted in an inlet turbulence intensity equal
to 0.0001.

Turbulent boundary conditions were applied on the walls, and the outlet con-
dition was assumed to be fully developed flow. Placing the outlet about fourteen
step heights from the step, the parabolic nature of the flow assures that the outlet
condition should not influence the upstream flow.

To use the multi-domain feature of the code, a three domain rectangular grid
was generated instead of a single domain curvilinear, grid see Fig. 37 and Fig. 40.

2 E— | T T T T T T
1.5+ E
1E X/H=0 X/H=13  X/H=2.67 | X/H=5.33
= | D |
= 0.5 i i i b
s ;i i o :
¢ x
¢ !
0 z ,ﬁ* o 8
) L B
o
05 i B/ x ]
i 5 %
-1 | 4 | L | 3 |
0 1 2 4 5 6 7 8
U/Uref + const

Figure 38. Velocity profiles behind the step at different X/H, Re=140000. The
constants added are, const=0. for x/H=0., const=2. for x/H=1.3, const=4. for
x/H=2.67, const=6. for ©/H=5.33,

The results are compared to the data of [19]. The profiles one step height behind
the step, are in good agreement with the measurements, but further downstream of
the step the agreement gets worse, see Fig. 38. The reasons for this are partially the
former mentioned numerical diffusion, and partially the turbulence model giving
wrong spreading of turbulent kinetic energy in the recirculation bubble.

On Fig. 41 and Fig. 42 the streamlines and velocities are shown, the domain
boundaries are drawn to show that no discontinuity arises at the block interfaces.

The nondimensionalized recirculation length 5.96 is close to the findings of [12]
for grids of the same density.
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Figure 39. Turbulent kinetic energy profiles behind the step at different z/H,
Re=140000. The constants added are, const=0. for x/H=0., const=.05 for
x/H=1.8, const=.1 for x/H=2.67, const=.15 for z/H=5.33.

Figure 40. Backward facing step, grid detail.
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Figure 41. Backward facing step streamlines, Re=140000.
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Figure 42. Backward facing step, velocity vectors, Re=140000.
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12.7 Closure

As the test cases considered in the present chapter span a wide range of flow
situations, from laminar flows in Cartesian meshes, to highly turbulent flows in
general non orthogonal meshes and as the results are in good agreement with the
literature, it may be concluded that the code is working well and able to calculate
a wide variety of flows.

Even though the code was found to be working fine, one major problem con-
nected to the accuracy of the code has to be addressed. This problem is connected
to the use of the UDS scheme when the cell Peclet number exceeds 2, giving rise
to large numerical diffusion when the flow is inclined with the mesh lines. As a
consequence of this problem, the second order accurate SUDS scheme, and the
third order accurate QUICK scheme was implemented as described in Chapter 4.
As the main goal of the test cases was to prove that the code was working, and
the accuracy was of minor interest, the test cases will not be recalculate in order
to show the better accuracy of the higher order schemes.
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13 Flow over a surface mounted
cube

13.1 Introduction

The thick boundary-layer flow around a cube was selected as a three-dimensional
test case. This flow allows the codes ability to compute three-dimensional massive
separation to be tested in a situation that resembles atmospheric conditions. The
flow is highly complex, and several recirculation regions exist as well as a horse-
shoe vortex that wraps around the cube.

The fact that the separations in the present case are fixed by the sharp edges
of the cube makes it simple compared to flow over streamlined bodies.

A large number of investigations of the flow around surface mounted objects
have been performed in the past, ranging from purely theoretical considerations,
see Ferziger [10], Hunt et al. [16], Hunt et al. [15], Hosker [14], over numerical
calculations, see Murakami et. al. [37], Murakami and Mochida [38], Murakami et.
al. [39], Baetke et. al. [2], Paterson and Apelt [44], Stathopoulos and Baskaran
[52], Panneer Selvam [40], Zhang [66], Mikkelsen and Livesey [35], to wind
channel and full scale atmospheric measurements, see Robins and Castro [49],
Castro and Robins [6], Martinuzzi and Tropea [27], Schofield and Logan [50],
Levitan and Mehta [24], Levitan and Mehta [25].

13.2 Problem description

The onset flow is perpendicular to the cube front face see Fig. 43, making the
problem symmetric around the zz-plane going through the centre of the cube.

Figure 43. Problem setup showing the position and orientation of the coordinate
system and the onset flow.

In the present computation the symmetry of the problem will be used, consid-
ering the flow around the half of cube only, using a symmetry condition at the
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centre plan. For inclined flows this would have been impossible and a complete
cube must have been used.

We will specify the variables according to an equilibrium profile at all free
surfaces of the computational domain except for the boundary downstream of the
cube.

The practice of using equilibrium profiles at all free surfaces is not correct as the
presence of the cube will affect the surrounding flow. However, if the boundaries
are moved far away from the cube, the approximation will become better and the
introduced error will be small.

In the present calculation, the effect of different locations of the outer bound-
ary was briefly investigated, using two computational domains of different sizes.
Baetke et al. [2] also investigated this aspect and found minimal difference between
their largest and next largest domain. Both of the domains used in the present
investigation are greater than the largest domain used by [2]. The smallest of the
present domains, mesh A covers —9.5 < £ < 9.5, -85 <y <0,and 0 < 2 < 9.
The slightly larger domain in mesh B covers —12.5 < z < 12.5, —12.5 < y < 0.0,
and 0 < z < 12.0. In mesh A, as well as in mesh B, the cube centre is placed in
(z,y,2)=(0,0,0).

At the downstream boundary the flow is assumed to be fully developed, and
zero normal-gradient is specified. This may not be physically true, but for large
Reynolds numbers the influence from the downstream boundary on the upstream
flow will be small.

The Reynolds number was based on the onset velocity at cube height, the cube
height, and the molecular viscosity

_ pUHH
o
At all solid walls, the bottom surface and the cube walls, the rough-wall version
of the logarithmic law of the wall is used.
For the velocities the use of equilibrium boundary layer profile at the air/air
interfaces implies use of the logarithmic profile

U(z) = L n (i) . (131)

K 20

Re

Combining the equation for the Reynolds number and the equation for the
velocity profile gives the following equation for the friction velocity

R
U, = _ fepk .
pH In (%)
The equilibrium profiles of turbulent kinetic energy and dissipation of turbulent
kinetic energy are given by

U2

JC,

(132)

k=

(133)

and
CM3/4k3/2
Kz )

13.3 Inlet profiles

After the general discussion of the appropriated inlet profiles, the values used in
the actual computations will be addressed.

Unfortunately, the agreement between the theoretical profile and the measured
profile is not very good in the lower part of the boundary layer, see Fig. 44. In

€ =
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order to eliminate the differences between the measured and calculated velocity
fields, the inlet velocity will be specified instead according to

U(z) = a(z/8)"%, (134)
where « is a proportionality constant and Jg is the boundary-layer height. As seen

from Fig. 44 this profile is in good agreement with the actual measurements of
Castro and Robins [6].

Input profile

10 T T T T T T T

9 Castro and Robins < —
U/U, = log(Z/Zy)Nog(10xH/Zg) -
8 I U/U, = (Z/(10xH))**.28 ------ S
7r J
6 J
< 5 ¢ _
4 r 3 -
3r J
2 F s i
1r © J
o -

0 o 1 1 1 1 |

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
U/U,

Figure 44. Inlet profiles, the discrepancy between the logarithmic profile and the
measured profile is obvious. The profile used in the simulation is shown for com-
parison.

As the derivation of the profiles for the turbulent quantities (k,¢,v;) is based
on equilibrium assumptions, the logarithmic velocity profile will be used in the
derivation of these, even though this is not consistent with the velocity profile
used.

In the experimental work [6] all of the pressure measurements were performed for
Re > 10°, and it was stated that above this value no Reynolds number dependency
was experienced. For the measurements in the wake, the flow was found to be
independent of the Reynolds number for Re > 3.10*. In the present simulation a
Reynolds number of Re = 10° was used in order to allow use of both the pressure
and wake measurements.

The roughness length of the floor in [6] was equal to zp = 0.02 x H, but no infor-
mation on the cube-face roughness was given. In the computation, the roughness
of the cube will be set equal to zg = 0.0002 x H.

Using (132) the Reynolds number and the roughness length we get a friction
velocity equal to U, = 0.16.

The turbulence intensity in the experiment was \/E/ Ug = 0.27. Using this value
and (133), we get the following value for C),

Uz 2 Uz 2
O = (7) - ((0.27UH)2) =003

When C), is changed into this value, the C,; constant of the & — e model must
also be changed, see Chapter 2. The dependency of C¢; on changes of C), can be
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found from a simple assumption concerning boundary layer flow, see Arpaci and
Larsen [1], giving the following expression

I‘J2

172 >
w O

using standard values for C.» and o, a value of C; = 1.19 is found. The resulting
constants of the k — e model are listed in table 9.

Cel = CeQ -

Table 9. Model constants in the k — € model

K Cp Cel 062 Ok O¢
04 003 1.19 190 1.00 1.30

Table 10. Inlet profiles for the different variables for the model run.

Variable Inlet profile Constants

U U(z) = a(z/80)%% a=299,6 =10x H
v 0.0

w 0.0

k k(z) =UZ/\/Cy U, =0.16

¢ e(z) = C* K32 ) (k)

vy vi(2) = kU, 2

13.4 Computational mesh

The simple geometry of the problem is well suited for a rectangular grid, stretched
from the solid surfaces.

Using the multiblock facility of the code the domain is divided into 11 blocks
of 16 x 16 x 16 cells. This configuration has a length of three blocks in the x-
direction, a width of two blocks in the y-direction, and a height of two blocks
in the z-direction. This would add up to twelve blocks, but as no mesh block is
necessary where the cube is located, the number is reduced to eleven blocks.

A perspective view of the mesh near the cube is shown in the top left part of
Fig. 45, and different slices of the mesh can be seen in the other parts of Fig. 45.
From this figure the stretching of the mesh towards the solid surfaces and the size
of the total domain can also be seen.

The physical dimensions of the domain have already been discussed in connec-
tion with the location of the outer boundary, and only the blockage ratio will be
discussed. The blockage ratio is defined as the ratio between the frontal area of
the cube and the cross-sectional area of the flow domain or wind tunnel. In the
experiment of [6] the ratio was 0.7%. In the present computations the ratio was
0.65% for mesh A, and 0.36% for mesh B, indicating that the blockage ratio should
have less influence in this computation than in the measurements.

13.5 Results

In order to evaluate the quality of the simulation, both qualitative and quantitative
results will be addressed. To give an idea of the complexity of the flow, particle
traces around the cube is shown in Fig. 46.
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Figure 45. Computational mesh, top left showing a close view of the mesh near
the cube, top right showing a xz-plan through the centre of the cube, bottom left
showing a yz-plan through the centre of the cube, and bottom right showing a
xy-plan through the centre of the cube.

In the following discussion the pressure coefficient C}, will be defined by

_ P_POO(H)
" 3pUH)

The reference velocity used to normalized the velocity and the turbulent kinetic
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Figure 46. Particle traces around the cube. The particles are released at (r,y)=
(-1,0.1) for z in the range [0.1,1.0] with increments of 0.1. At the top of the figure
the traces are shown in a perspective view. In the middle the traces are seen in
sideview along the y-axis. The traces are shown viewed from above the cube in the
bottom of the figure.

energy, is the upstream velocity at height 10 x H
Urey = Uo(10 x H) .

From the plots of the pressure coefficients on the cube surface Figs. 47 and 48,
only a minimal difference is found between the simulation on mesh A and mesh
B. As the difference between the results from mesh A and B is small compared to
the differences between the simulated and the measured values, only the results
from mesh A will be shown in the following.

Surface pressure

The overall form of the pressure distribution resembles the measured distribution
quite well, but some differences exist. From Fig. 47 it is seen that on the top of the
cube along line B the calculated pressure restitutes much faster than the measured
pressure, indicating that in the simulation no recirculation is found on the top of
the cube.

Another aspect is the distinct underprediction of the pressure coefficient on the
cube beyond z = 0.0. One explanation for this could be the assumption behind
the logarithmic wall law being in error, because no favourable pressure gradient
exists in this region.
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Figure 47. Pressure distribution. The positions along the four lines A, B, C,
and D are indicated on the cube in the top right corner. Where C, = (P —

Poo(H))/(1/2pU?(H)).
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Figure 48. Pressure distribution. The positions along the four lines A, B, C,
and D are indicated on the cube in the top right corner. Where C, = (P —

Poo(H))/(1/2pU?(H)).
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Figure 49. Slice in the xz-plane for y/H = 0.0, showing the large separated region
behind the cube. Also the lack of separation on top of the cube can be seen.

Recirculating regions

As indicated by the pressure distribution along line B at Fig. 47, the small recir-
culation bubble separating from the front of the roof is not found in the present
computation, see also Fig. 49. The main reason for the lack of separation on the
roof is believed to be the poor resolution of the computation grid near the walls.
The measured recirculation bubble is about 0.3 x H long and the height of the
reversed region is 0.05 x H only. With the present mesh, only one cell will be
located within the reversed region.

The simulation, lacking the separation on top of the cube, correctly predicts the
boundary layer to separate from the back edge of the roof. However, the length
of the recirculating region is too long compared with measurements. As the wake
development is affected by the upstream turbulence, the specification of the inlet
turbulence become rather important. The assumption that the inlet turbulence is
an equilibrium profile, may have been too rude an approximation. Experiments
with the level of kinetic energy in the inlet were performed, and they showed that
it actually was possible to influence the wake development.

Another aspect influencing the wake development is the blockage ratio, where an
increased blockage ratio results in shorter wakes. A direct comparison between the
blockage ratios in the experiment and in the calculation is not possible, because in
contrast to the experiment no boundary layer is formed at the outer boundaries
in the simulation.

As the blockage ratio for both mesh A and B is less than that of the measure-
ments, and as no boundary layer is formed at the outer boundaries, the separation
bubble will be expected to be longer than what is found in the experiment.

At the sides of the cube the simulation predicts recirculation bubbles, separating
from the front of the cube, see Fig. 52. Near the bottom of the cube the bubbles
do not reattach to the side-wall, but continue into the separated region behind the
cube. At a larger distance from the bottom surface the bubbles start reattaching
to the side-walls, and for heights larger than about z/H = 0.75 the separation
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Figure 50. Slices in the zz-plane. The position of the slices are from top left to
bottom right picture, y/H = 0.00, y/H = —0.13, y/H = —0.38, y/H = —0.50. It
is seen that the horse-shoe vortex in front of the cube is losing its strength as the

side of the cube is approached.

bubbles disappear. No measurements are available for this flow region, and in [6]
it is stated only that the region is similar to the separated region on top of the

cube.
In front of the cube a recirculating region or a horse-shoe vortex is generated.

The strength of the vortex is largest at the centre of the cube and reduces as
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Figure 51. Slices in the yz-plane, the position of the slices are from top left to the
bottom right picture, x/H = —0.50, 2/H = 0.00, z/H = 0.50, z/H = 0.99. The
pictures show the secondary motion within the recirculation bubbles on the side

and behind the cube.

the sidewalls of the cube are approached, see Fig. 50. In Fig. 51 the cube is seen
from behind along the z-axis, showing the secondary motion. In this figure the
horse-shoe vortex is not visible, but a vortex rotating in the opposite direction is
seen to be generated near the bottom corner of the cube.

As no measurements are reported for the flow development at the sidewalls of the
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Figure 52. A slice in the xy-plane. The position of the slices is from top left to
the bottom right picture, z/H = 0.25, z/H = 0.50, z/H = 0.75, z/H = 1.00. The
pictures show the recirculation bubble at the side of the cube.

cube, the correctness of the secondary motion cannot be verified. The secondary
motion is very weak, the vertical component is less than 5% of the onset flow in
the same height, which could make it difficult to measure or visualize.

Looking at Fig. 53, a very good agreement is found between the computed results
and the measurements over the centre of the cube. The agreement is still reasonable
at z/H = 1.0 in the recirculation region near the cube, further downstream in the
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Figure 53. A comparison of the computed velocity profile at different values of x/H
at the slice y/H = 0.0 with measurements from [6]. The constants added is 0.0 for
x/H = 0.0, 2.0 for x/H = 1.0, and 4.0 for x/H = 2.0. Where U,y = Uso(10x H)
has been used for normalization.
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Figure 54. A comparison of the computed velocity profiles at different z/H at
the slice z/H = 0.5 with measurements from [6]. The constants added is .75 for
x/H = .75, and 3.0 for x/H = 3.0. Where Urey = Uso(10 x H) has been used for
normalization.
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Figure 55. A comparison of the computed turbulence intensity profiles at different
xz/H at the slice y/H = 0.0 with measurements from [6]. The constants added is
-1.0 for x/H = 0.0, 1.0 for x/H = 1.0, and 3.0 for z/H = 2.0. Where U,y =
U (10 x H) has been used for normalization.

wake the agreement is less satisfactory.

The reason for the too slow wake development has been discussed at an earlier
stage and is assumed to be related to the level of turbulent kinetic energy in
the inlet. The behaviour found in the present case is opposite to the behaviour
normally found using the k& — e turbulence model, where it is known to give too
short recirculation regions.

The coarse meshes, used in the present computation, gives rise to numerical
diffusion to the solution, and thereby lowering the effective Reynolds number,
would also result in a too short recirculation bubble in contrast to the actual
findings.

Turbulent kinetic energy

As the individual Reynolds stresses do not appear in the k—e model, the turbulence
intensity will be approximated by \/E/ Urey using an assumption of isotropy (@ =
U = W). According to the measurements of [6], this approximation is rather poor,
but as no additional information is available it will be used anyhow.

Comparing the overall slope of the computed turbulence intensity profiles Fig. 55
with the measurements a reasonably good agreement is found. The main differ-
ence is the high turbulence intensity computed in the recirculation region behind
the cube. This phenomenon is also seen in the two-dimensional computations of
backward facing steps and is believed to be a consequence of the & — € model.

The location of the peak value of turbulent kinetic energy is well predicted
by the model, even though the peaks are not quite as narrow as shown by the
measurements. This smearing out of the peaks may be caused by a too coarse
mesh which is unable to resolve the strong gradients near the peak.
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13.6 Closure

From the results of the simulations it can be concluded that computation of the
flow around a surface mounted obstacle in a boundary layer similar to that in the
atmosphere is possible.

This statement is based on the fact that even though the simulation fails to
produce details, such as the separation on top of the cube, it captures all the
major structures of the flow. Also the quantitative agreement is reasonably good,
at least in the proximity of the cube.

To get a better result, it is believed that a finer mesh is necessary. Thus, use
of 243 or 323 blocks would allow a better resolution of the region near the cube
surfaces. Unfortunately, the computer resources at hand do not allow larger mesh
blocks than 163.

The computer time to obtain a convergent solution is another aspect. For the
present problem, the CPU time was about twelve hours on a IBM RS6000 220h
workstation. In case of a finer mesh, the execution time would increase making
the simulation rather time consuming.
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14 A two-dimensional Hill

14.1 Introduction

The estimation of wind resources at a given place is of great interest in connection
with siting of wind turbines, airports, and many other applications strongly depend
on the local wind climate.

The techniques available to obtain this information are full scale measurements,
wind tunnel measurements, and numerical modelling.

The first two techniques are expensive and will not be used in general in the
search for an optimal place for a wind turbine or an airport. Instead, these tech-
niques can be used for a refined study when a potential site is already found. The
final possibility, the numerical modelling in form of a linearized model is the stan-
dard approach dealing with the estimation of wind resources, often in the form of
creating a wind atlas, see Troen and Petersen [60].

The use of linearized models is both computationally cheap (can run on a stan-
dard PC) and accurate. The main limitation is the lack of ability to compute
separation caused by using the linearized equations and the restriction to gentle
terrain.

As a consequence, the use of nonlinear models, like the one developed in the
present study, may be of interest as a supplement to the linear models. The model
can be used in the special cases where the linear models are known to give wrong
results, but it can also be used when trying to improve linear models to incorporate
nonlinear separation phenomena.

The flows over Blashval, and that of Askervein, have become standard test cases
for linear flow models. The Blashval hill is a bell shaped 109 m high hill located
at North Uist in Scotland, see the description by Mason and King [28]. Askervein
hill is a 126 m high hill located at the Hebrides, the hill has a elliptical plane form
with a 1 km minor axis and a 2 km major axis, see Taylor and Teunissen [55].
The fact that Askervein hill has an elliptical plane form allows us to approximate
the flow over the central part of the hill to be two-dimensional when the flow is
directed along the minor axis. The Askervein hill will therefore be preferred in the
present study, as it in contrast to the Blashval hill allows us to use the assumption
of two-dimensional flow.

Askervein hill has been studied both by full-scale measurements, see Taylor
and Teunissen [55] and [56]; by wind tunnel measurements, see Teunissen and
Shokr [58], and Bowen and Teunissen [5]; by linear models, see Walmsley and
Salmon [62], Beljaars et al. [3] , Troen and Petersen [60], Zeman and Jensen [65],
and by nonlinear models, Raithby et al. [46].

14.2 Problem description

The topography of Askervein hill is described in [55], the contour lines of the hill
has been digitized from the map of [55], and the hill profile along line A was taken
out. A contour plot of the Askervein hill is shown in Fig. 56, and the hill profile
along line A is shown in Fig. 57.

Inlet profiles

In accordance with the model calculations of [46], a flow case corresponding to the
measurements named TU03-B of [55] was chosen. This run is a case with the wind
direction equal to 210 degrees or approximately along line A going from southwest
to northeast. The velocity profile at the reference site (RS) upstream of the hill
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Figure 56. Contour plot of Askervein hill having the x-axis pointing in the flow
direction (210 degrees) with the hill top at origo. The location of line A is indicated.
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Figure 57. Profile of Askervein hill along line A, the hill top is placed at z = 0.0.
was a logarithmic profile with a velocity of 8.9 m/s at a height of 10 m, and the

estimated roughness length (z¢) was equal to 0.03 m. The velocity profile is shown
in Fig. 58.
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Figure 58. Comparison of measured upstream profile at RS and the theoretical
logarithmic profile with U, = 0.61, and 2y = 0.03.

The turbulence intensity (vk/Uqg ) at RS was equal to 0.12. The turbulent
kinetic energy was specified according to a equilibrium profile, namely
U:
VC,.
and the constants C}, and C.; were adjusted to obtain the correct turbulence
intensity, see Chapter 2, resulting in the values shown in Table 11 for the k — €
model.

Also, the dissipation of turbulent kinetic energy was specified according to a
equilibrium profile resulting in the following profile

C3/43/2
() ==

k(z) =

Table 11. k — € model constants for flow over Askervein hill.

k  Cy o 0. Caq Co
040 0.11 100 130 1.54 1.92

Boundary conditions

The inlet was specified according to the profiles just given and the outlet was
assumed to be fully developed. The hill surface was modelled according to the
rough wall version of the logarithmic wall law, see Chapter 7. At the far-field or
top boundary a symmetry condition was used. At the top boundary a specification
according to the free stream profiles was also tried resulting in minor differences
for the case of the 1900 m heigh domain.

All computation were performed using the third-order accurate QUICK scheme
by Leonard [23].
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14.3 Domain and mesh investigations

In order to determine the necessary height of the computational domain and the
number of mesh points needed to resolve the flow, a series of computations were
performed. In order to compare the model runs against each other the calculated
speed-up in 10 m height above the terrain and the speed-up along a vertical line
located at the hill top were compared in the different cases. The speed-up is
defined as the difference between the actual velocity and the undisturbed velocity
normalized by the undisturbed velocity

U(zl) B U(zl)inlet
U(zl)z'nlet ’

where 2’ is the local height over terrain.

Speed-up =

Table 12. Naming convention for mesh independency test.

Name Number of cells Domain height [m] iterations CPU time [s]

case 1 32 x 32 1900 186 56
case 2 64 x 64 1900 333 310
case 3 128 x 128 2000 955 3610

Table 13. Naming convention for domain height independency test, case 2b is
identical to case 2.

Name  Number of cells Domain height [m] iterations CPU time [s]

case 2a 64 x 64 1200 374 353
case 2b 64 x 64 1900 333 310
case 2¢ 64 x 64 3000 426 386

First three computations were performed in a domain covering the region -
1500 m < < 1500 m and 0 m < y < 1900 m with the hill top located at z = 0.0.
In order to estimate the necessary number of computational cells, the number of
cells was varied over the following range 32 x 32 cells, 64 x 64 cells, and 128 x 128
cells, see Table 12.

Looking at Figs. 60 and 61 the results are seen to be approximately mesh inde-
pendent when the mesh has more than about 32 x 32 cells. In the lee of the hill
the results are slightly better for the 128 x 128 cell mesh (case 3) than for cases 1
and 2. As a three-dimensional prediction is planned, we will focus on the speed-
up near the hill top where a mesh of only 32 x 32 cells is sufficient to make the
results mesh independent, because this will allow the planned three-dimensional
computation to run on the computer available.

The influence of the height of the computational domain was investigated by
varying the height of the domain keeping the number of cells constant. Using the
results from the previous investigation, the number of cells was fixed to 64 x 64 cells
in order to ensure that the results will be grid independent even for the highest
domain. The following three domain heights were investigated, h = 1200 m, h =
1900 m, and h = 3000 m, see Table 13.

From Figs. 62 and 63 it is seen that the results are unaffected by the height of
the domain when the domain is higher than about 1200 m. From these two tests
we conclude that a 1900 m high domain with 32 x 32 cells will be adequate in
order to make the solution independent of the domain height and number of cells.
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The results computed from case 1 will thus be the ones compared to the measured
values.

Figure 59. Mesh from case 1 with 32 x 32 computational cells and a domain height
of 1900 m.

14.4 Comparison of measurements and
computations

One important difference must be made clear before the actual comparison of the
measured and computed results. The measurements are fully three-dimensional,
allowing the flow both to move vertically and horizontally around the hill. In con-
trast the model runs are two-dimensional, allowing only the flow to move vertically
over the hill, or in other words the two-dimensional hill is in fact a infinite fence
perpendicular to the flow direction.

From this difference one may expect that the speed-up at the hill summit will be
larger than that found for the three-dimensional measurements, and the tendency
towards separation will be greater in the lee of the hill.

Speed-up

The computed value of the speed-up for case 1 is about 1% too low compared
to the measured value, the computed value being equal to 0.87 in contrast to
the measured value of 0.88. The speed-up of the two-dimensional calculation is
thus equal to the measured value in contrast to expectations. The most obvious
explanation —besides the model computing wrong results— is that the high speed-
up at the hill top is caused by some local terrain effects (roughness change) not
represented in the model.

The speed-up upwind of the summit is quite good, and even for the coarse mesh
used in case 1 the agreement is good. In the lee of the hill the speed-up is predicted
to be too high, see Fig. 60 and also the velocity vectors in Fig. 64.
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Looking at the speed-up along a vertical line at the summit of the hill, the
computed speed-up is predicted to be correct in the range 10 to 30 m over the
terrain. The lower part being erroneous can again be explained by local terrain
effects near the summit of the hill not resolved by the model, and the outer part
may be explained by the two-dimensionality of the computed flow.
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Figure 60. Mesh independency test showing the speed-up at 10 m height over ter-
rain along line A for three different cases all with a constant domain height equal
to 1900 m.

Turbulence intensity

As for the computed speed-up, the computed turbulence intensity shows a good
agreement up to 100 m downstream of the hill top. After this point the turbulence
intensity is strongly underpredicted, i.e. about 30% to low at x = 400 m.

The logarithmic law derived for a favourable pressure gradient may be one
reason why the flow prediction is inaccurate in the lee of the hill where the pressure
gradient is non favourable.

14.5 Closure

For the speed-up near the summit, we found that the solution was mesh indepen-
dent already when the mesh had 32 x 32 cells. A domain height of 1900 m was
sufficient to make the calculation nearly independent of the domain height.

The computed speed-up at the hill top in 10 m height was found to be within 1%
of the measured value. As the computed case was two-dimensional in contrast to
the three-dimensional measurements, we may anticipate that a three-dimensional
computation will result in an underprediction of the speed-up, as the flow in this
case also will be able to pass horizontally around the hill.

In other words, even though the results at the hill top show a good agreement
with the measurements, the agreement is actually not very good as the speed-
up should have been larger than that found for the full scale three-dimensional
measurements.
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Figure 61. Mesh independency test showing the speed-up at along a vertical line at
the hill top (HT) for three different cases all with a constant domain height equal
to 1900 m.
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Figure 62. Domain height independency test showing the speed-up at 10 m height
over terrain along line A for three different cases all with 32 x 32 cells.

In the next chapter it will be shown what happens when the flow over the hill
is computed as fully three-dimensional.
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Figure 63. Domain height independency test showing the speed-up along a vertical
line at the hill top (HT), for three different cases all with 32 x 32 cells.

Figure 64. Details of the computed velocity field near the hill top, only every second
vector is shown in the horizontal direction.
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Figure 65. Comparison of the computed turbulence intensity for cases 1 to 8 and
the full-scale three-dimensional measurements along line A ot 10 m height above
terrain.
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15 A three-dimensional hill

15.1 Introduction

After having calculated Askervein hill using a two-dimensional approximation of
the actual flow, the hill will now be calculated for fully three-dimensional flow.
In the fully three-dimensional simulation a horizontal passage of the flow around
the hill is allowed, thereby removing the limitation inherent in the two-dimensional
simulation.
In the three-dimensional simulation it is possible also to investigate the change
of the wind direction when passing the hill, a possibility not present in the two-

dimensional simulation.
For information on previous computations of Askervein hill, see Chapter 14

dealing with the two-dimensional hill calculation.

15.2 Problem description

The topography of Askervein hill is described in [55], the contour lines of the hill
have been digitized from the map of [55], and thereafter grided using WASP, see
Mortensen et al. [36].

The x-axis of the mesh was aligned with the mean flow direction (210 degrees)
in order to minimize numerical diffusion, see Figs.66 and 56.

Figure 66. Contour plot of Askervein hill shown together with the mesh on the
bottom surface. The x-axis of the mesh was aligned with the mean flow direction
(210 degrees).

Inlet profiles

In accordance with the model calculations of [46], a flow case corresponding to
the measurements named TU03-B of [55] was chosen. This run is a case with the
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wind direction equal to 210 degrees, or approximately along line A going from
southwest to northeast, see Fig. 56. The velocity profile at the reference site (RS)
upstream of the hill was a logarithmic profile with a velocity of 8.9 m/s at a height
of 10 m, and the estimated roughness length (z9) was equal to 0.03 m.

U= log(Z)

The turbulence intensity (vVk/Ujg ) at RS was equal to 0.12. The turbulent
kinetic energy was specified according to a equilibrium profile, namely

Uz

V.

and the constants C}, and C.; were adjusted to obtain the correct turbulence
intensity, see Chapter 2, resulting in the values shown in Table 11 for the k — €
model.

Also the dissipation of turbulent kinetic energy was specified according to a
equilibrium profile resulting in the following profile

B 02/4]63/2
T kz

k(z) =

€(z)

Boundary conditions

The inlet was specified according to the profiles just given, the outlet was assumed
to be fully developed, and the far-field or top boundary condition was set according
to the equilibrium profile. The hill surface was modelled according to the rough
wall version of the logarithmic wall law, see Chapter 7, and symmetry conditions
were used at the two vertical planes parallel to the flow direction.

The computation was performed using the third-order accurate QUICK scheme
by Leonard [23].

Mesh and domain size

Having made a mesh and domain size independency test in the two-dimensional
case, we will use these results directly for the three-dimensional case according to
the following arguments. For the three-dimensional case, where both a horizontal
and vertical passage of the flow is allowed around the hill, the gradients in the mean
flow direction will be lower than for the two-dimensional case, thereby making the
needed mesh resolution smaller in the three-dimensional case. As the hill is less
steep in the cross-stream direction, we assume without any test that the resolution
used in the mean flow direction is sufficient also in the cross stream direction.

The same argumentation holds for the domain-size considerations, and we will
again use a domain with a height of 1900 m. The horizontal area covered is the
region -1500 m < z < 1500 m, -1700 m < y < 1700 m, with the hill top placed at
(z,y)=(0,0).

The mesh used in the present investigation was generated by the three dimen-
sional hyperbolic mesh generator described in Chapter 11.

15.3 Results

The computation of Askervein hill was performed on the 32 x 32 x 32 mesh, using
the grid sequence technique. The solution was initiated on the 8 x8 x 8 mesh, where
the residuals were reduced by a factor of 100. Then the solution was prolongated
to the 16 x 16 x 16 mesh and again the residuals were reduced by a factor of 100
with respect to the starting residual on the coarsest mesh. Finally, the solution
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Figure 67. Perspective view of the finite volume mesh 32 x 32 x 32 cells, showing
the hill surface, the northern wall, and the eastern wall i or outlet boundary.

was prolongated to the original mesh (32 x 32 x 32 cells) where the residuals were
reduced by a factor of 10000 with respect to the original residual on the coarsest
mesh. A plot of the convergence history is show in Fig. 68, the characteristic
jumps in the residuals are clearly seen when the solution is prolongated to the
finer meshes. The number of iterations needed to get a convergent solution was
equal to 164, and the CPU time used on a IBM RS6000 220h work-station was
3697 seconds.

To get an overview of the flow, two mesh slices through the three-dimensional
field are shown. A slice for constant £ indices (this plane approximates the z-plane
having y equal to zero) which should resemble the two-dimensional simulation from
the previous chapter, see Fig. 69. The speed-up near the hill top is easily seen as
well as the deceleration of the flow in the lee of the hill.

The second mesh slice is a plane having the { index constant in computational
space (this plane approximates the velocities at 10 m height above terrain), see
Fig. 70. From this figure one can see that the flow direction changes as the flow
passes the hill, and secondly, a separated region is visible in the lee of the hill near
its centre axis.

Speed-up

Looking at the speed-up at the hill top in the three-dimensional computation com-
pared to that of the two-dimensional computation, the speed-up is clearly reduced
in agreement with the expectations. The value of the speed-up at the summit 10 m
above the terrain is 14% too low in the three-dimensional computation, i.e. a value
of 0.76 in contrast to the measured value of 0.88. As for the two-dimensional case
the agreement is good upstream of the hill top, and in addition the agreement
downstream of the summit is found to be good also, see Fig. 71.

Taking the vertical profile of speed-up at the hill top, we observe that far away
from the surface (z > 30 m) the agreement seems quite good, in contrast to the
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Figure 68. Convergence history for the Askervein hill calculation, the residual

jumps connected to the mesh shifts in the grid sequence are clearly visible around
it. = 26 and it. = 40.

Figure 69. Velocity vectors for flow over Askervein hill near the summit for a
plane having the & index in the computational space constant and going through
HT ((x,y) = (0,0)). Only every second vector in the flow direction is shown.
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Figure 70. Velocity vectors for the flow over Askervein hill shown together with the
contour lines of the hill. The plane shown, having the { index in the computational
space constant, approximates the velocities in 10 m height above terrain.

overprediction found in the two-dimensional case, see Fig. 72.

In connection with the two-dimensional simulation, the perturbation of the far-
field velocity was assumed to be caused by the two-dimensionality of the flow,
resulting in too high speed-up in this region. The fact that this phenomenon is not
present in the three-dimensional simulation supports the theory that the missing
possibility for the flow to pass around the hill in the two-dimensional simulation
is the reason for the error.

Flow angle

The change in the flow direction as the flow passes the hill, shown by the flow angle,
is in good agreement with the measurements at the upwind side of the hill top. In
Taylor and Teunissen [56] the hill top measurement is said to be suspect. This may
allow us to exclude the hill top measurement and thereby obtain good agreement
over the total range of line A. In the lee of the hill a variation is observed on a
scale smaller than that resolvable by the measurements. Whether this actually is
a physical feature of the flow or an error in the computation can not be judged
from the present measurements. One possibility is that the flow is channeled by
the main hill and the small hill downstream of the main hill in easterly direction,
making a perturbation of the flow in the lee of the hill, see Fig. 70.

Turbulent kinetic energy

The behaviour of the computed turbulent kinetic energy is similar to that found in
the two-dimensional computation. A good agreement is found until about 250 m
downstream of the hill top, followed by a strong underprediction downstream of
this point. The underprediction is slightly more pronounced than was the case in
the two-dimensional computation, which is in good agreement with the fact that
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Figure 71. Speed-up over Askervein hill along line A, the two-dimensional results
shown are taken from case 1 in the previous chapter.
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Figure 72. Speed-up along a vertical line over the hill top of the Askervein hill, the
two-dimensional results shown are taken from case 1 in the previous chapter.

the speed-up is lower in the three-dimensional case leading to a lower production
of turbulent kinetic energy, see Fig. 74.

15.4 Closure

Based on the information gathered from the two-dimensional simulation, a finite
volume mesh for the three-dimensional flow over Askervein hill was generated
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Figure 73. Change of the wind direction over Askervein hill along line A shown

as a variation around the 210 degree direction, positive in the counter-clockwise
direction.
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Figure 74. The turbulence intensity over Askervein hill along line A, the two-
dimensional results shown are from case 1 in the previous chapter.

using the three-dimensional hyperbolic mesh generator.

The z-axis of the computational mesh was aligned with the mean flow direction,
in order to minimize the numerical diffusion.

As expected from the two-dimensional simulation, the three-dimensional sim-
ulation shows a too low speed-up at the hill top. Upstream of the hill summit
the agreement was found to be quite good, and additionally the speed-up was
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found to be well predicted in the lee of the hill, in contrast to the findings in the
two-dimensional simulation.

The shift of the wind direction as the flow passes the hill is very well predicted,
if one neglects the measurement at the hill top (said to be suspect in [56]). A
interesting feature is the variation of the flow angle in the lee of the hill seen on
a smaller scale than that reproduced by the measurements. This could in fact be
caused by the channeling between the main hill and the smaller hill downstream
of the main hill in the easterly direction.

The turbulent kinetic energy is again well predicted until about 250 m down-
stream of the hill top. Downstream of this point a considerable underprediction is
found.

The conclusion must be that the code is capable of computing flow over natu-
ral terrain, because the simulation reproduces many of the features found in the
measured flow. It is unsatisfactory that the speed-up is underpredicted at the hill
top. However, this will have to be investigated later.
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16 Conclusion

16.1 The developed code

A two- and a three-dimensional finite-volume code in general curvilinear coordi-
nates, have been developed. The codes are based on the Reynolds averaged in-
compressible isothermal Navier-Stokes equations and use primitive variables (U,
V, W and P) in a non-staggered arrangement.

The codes use Rhie/Chow interpolation [47] and the standard SIMPLE ap-
proach. In the inertial phase, a simple multigrid method was implemented in or-
der to obtain fast convergence of the pressure correction equation. Also a domain
decomposition technique was implemented, allowing greater geometric flexibility
than with a standard single block structured mesh. In the final codes, the Ba-
sis2D/3D platforms have been used, providing both the multigrid method used
for solving the pressure correction equation, and the domain decomposition tech-
nique.

All boundary conditions were implemented using an attribute technique, where
a value assigned to the cell face tells the code which physical condition is needed
at this location. All types of boundary conditions are programmed in advance,
allowing the user to change the boundary condition simply by changing the at-
tribute value. The attribute technique is very user friendly and fully integrated
with the Basis2D/3D platform.

Higher-order schemes (SUDS and QUICK) have been implemented as explicit
corrections to a first-order upwind difference scheme. The explicit implementation
makes the schemes more stable than would the natural implicit implementation.

In order to exploit the possibilities of the codes, it was necessary to develop
mesh generators capable of generating general curvilinear meshes. Two different
methods were implemented, a hyperbolic method and a variation of the transfinite
interpolation technique. The marching nature of the hyperbolic method is well
suited for generating meshes over natural terrain, where the actual position of the
far-field boundary is unimportant. In contrast to this, the transfinite interpolation
allows absolute control of the location of all block faces, and can be used where
this property is needed.

A simple point localization and interpolation scheme for use in general curvi-
linear coordinates, was developed in order to facilitate the interpretion of the
computed results. The method is based on dividing the computational cell into
six tetrahedrons for which the point localization is straight forward. The method
has been used to extract profiles from computed three-dimensional data fields, and
additionally it has been used to compute particle traces for flow around a surface
mounted cube.

16.2 Computed test cases

A series of test cases were calculated in order to test the different parts of the
developed code. Five of these test cases are described in the present report, namely

e Laminar steady-state Driven Square Cavity flow at Reynolds number 100 in
a Cartesian grid.

e Laminar steady-state separation over a circular cylinder at Reynolds number
40, in orthogonal grid (polar coordinates).

e Turbulent steady-state channel flow at Reynolds number 61000 in a rectan-
gular grid.
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e Turbulent steady-state flow trough Staggered tube banks at Reynolds number
140000 in a general non-orthogonal grid.

e Turbulent steady-state flow over Backward-facing step at Reynolds number
140000 in a 3 domain rectangular grid.

The test cases were designed to test different parts of the code, and as the
implementation of the two- and three-dimensional model is identical, only the two-
dimensional results are reported. From the successful calculation of these test cases
it was concluded that the codes were well functioning. In connection with the test
cases it was found that the accuracy of the implemented upwind difference scheme
was insufficient, and as a consequence higher-order schemes were implemented. For
the straight channel it was found that the k—e model computed wall shear stresses
about 20 % to high.

When the correctness of the codes had been verified, two large simulations were
performed to illustrate the application of the code to atmospheric conditions.

First, the flow over a surface mounted cube in a thick turbulent boundary-
layer was calculated and compared with the results of Castro and Robins [6]. The
simulations captured the major structures of the flow, e.g. the large separated
region behind the cube and the horse-shoe vortex in front of the cube. The pressure
distribution on the cube was relatively well predicted, even though the lack of
separation on top of the cube results in a too low value at this location. An
interesting secondary flow pattern was found on the side of the cube, unfortunately
this could not be verified as no measurements were reported for this location.

Secondly, flow over Askervein hill was investigated for a case corresponding to
the measurements of Taylor and Teunissen [55] referred to as TU03-B. First a
series of two-dimensional simulations were performed in order to find the height
of the domain and the number of mesh cells necessary to make the calculation
mesh and domain size independent. This resulted in a 1900 m high domain, with
32 x 32 cells. In the three-dimensional calculation the previous result was used,
and a mesh with 32 x 32 x 32 cells and 1900 m high was generated.

Looking at the speed-up prediction from the three-dimensional calculation at a
height of ten meters over terrain, an obvious problem exists near the hill summit
where the computed value was too low. Upstream and in the lee of the hill the
predicted speed-up was in good agreement with the measurements. The calculated
variation of the flow angle shows a good agreement with the measurements, except
near the hill top where the measurements are said to be suspect. The turbulent ki-
netic energy was well predicted until 250 m downstream of the hill top, whereafter
it was strongly under-predicted.

16.3 Future plans

Even though good results have already been obtained with the model, some of the
features implemented in the code have yet to be documented. The most important
part still needing verification is the transient module of the codes. In this connec-
tion it may prove worthwhile to implement a second-order accurate time-stepping
scheme instead of the first-order scheme implemented at the moment.

As indicated by the calculated test cases, a turbulence model with greater accu-
racy than that of the k¥ — e model is desirable. As an alternative a nonlinear k — €
model could be a possibility for both atmospheric and industrial flows. Addition-
ally, a low Reynolds number k& — € model could be interesting for separated flow
in connection with industrial flows.

To expand the range of application of the model, additional equations may be
implemented. For meteorological flows, an implementation of the energy equation
would allow the calculation of stratified flow. Also, an equation for transport of
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a passive scalar could be of interest in connection with pollution dispersion. As
the code is constructed in a modular way, the addition of extra equation can to a
large extent be accomplished using standard modules.
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Dansk sammendrag

Introduktion

Mange forskellige emner med tilknytning til emnet graenselagsmeteorologi studeres
i Afdelingen for Meteorologi og Vindenergi.

Et af disse emner er strgmning i komplekst terrzen, et emne med forbindelse til
mange praktiske problemer, feks. placering af vindmgller, forureningsspredning i
naturligt terrzen og i bymiljg.

I disse studier benyttes mange forskellige metoder, fra teoretiske studier, over
fuldskala malinger og vindkanal forsgg til numeriske strgmningsmodeller.

I grenselagsmeteorologi er der en lang tradition for at benytte lineariserede
strgmningsmodeller, se Jackson and Hunt [18], Mason and Sykes [29].I slutningen
af 1980’erne pabegyndtes et studie af anvendelsen af ikkelineariserede strgmnings-
modeller (CFD) i forbindelse med strgmning over komplekst terraen.

Projektet foregik i samarbejde med Afdelingen for Fluid Mekanik ved DTU og
Skibsteknisk Laboratorium. Ved Afdelingen for Meteorologi og Vindenergi var hov-
edformélet med studiet at undersgge muligheden for at anvende 2D /3D CFD koder
i retanguleere koordinater til beregning af strgmning over bakker. I dette studie
blev den kommercielle CFD kode KAMELEON kode benyttet (KAMELEON ko-
den er udviklet i Trondheim af Berge [4] og er af Patankar/Spalding typen). Der
blev anvendt to forskellige metoder.

Fgrst blev det forsggt direkte at anvende KAMELEON til at beregne ikke rek-
tanguleere geometrier. Bakkens ikkerektangulaeere form blev modelleret ved ud-
blokning i det rektangulaere net, hvorved bakkens overflade blev reprasenteret
ved en trappeformet kurve. Da det hovedsageligt er bakkens overflade, der styrer
strgmningen, kraever trappemetoden et meget fint net for at give gode resultater.
Resultaterne af denne undersggelse var da ogsa utilfredsstillende.

Herefter blev en metode forsggt, hvor geometrien af bakken ikke direkte blev
modelleret. Ved transformation fra et kurvelinigert til et rektangulaert koordinat-
system opstar der ekstra led i ligningerne. Hvis bakken er lille og krumningen der-
for ogsa er lille, kan disse ekstra led i ligningerne negligeres. I stedet blev bakken
modelleret ved at fastholde trykket svarende til potential strgmningslgsningen over
bakken. Metoden er ikke i stand til at repraesentere den vertikale strgmning over
bakken og er ude af stand til at beregne separeret strgmning. P& trods af disse
begraensninger var resultaterne lovende, se de Baas [7].

Emne for studiet

Det blev besluttet at fortsaette studiet af anvendelsen af CEFD til beregning af
atmosfeerisk strgmning. Ud fra erfaringerne med KAMELEON modellen var det
klart, at modellen skulle benytte generelle kurvelinizere koordinater og det hydro-
dynamiske tryk.

Modellen skulle veere i stand til at beregne smaskala® neutralt stratifiseret at-
mosfeerisk strgmning med separation. Den navnte begransning pa geometriens
stgerrelse tillader udeladelse af Corriolis effekter, og antagelsen om isoterm strgm-
ning g@r desuden implementering af energiligningen ungdvendig.

I afsnittet om resultater findes beskrivelser af anvendelse af modellen pa atmos-
feeriske strgmninger, foruden beregning af en serie testtilfaelde.

51 forbindelse med dette studie har sméskala omrider en udstraekning p&4 mindre end 10 km x
10 km.
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De udviklede koder

Det blev ud fra ovenstdende krav besluttet at udvikle en 2D og en 3D inkom-
pressibel isoterm Navier-Stokes kode i generelle kurvelinizre koordinater. Koderne
skulle benytte en cellecentreret formulering uden forskydning af de variable (co-
located arrangement), og primitive variable (U, V, W, og P) i et blokstruktureret
net. Tryk/hastigheds koblingen blev opnéet ved at benytte SIMPLE metoden i
henhold til Patankar og Spalding [43], koblet med Rhie/Chow interpolation, se
Rhie [47].

Turbulensen blev modelleret ved hjzlp af en standard hgj Reynolds tal k — €
model, med standard logaritmelovrandbetingelser. Den relativ simple k — € model
blev valgt, idet denne er velafprgvet, rimelig ngjagtig, og simpel at implementere.
Den mere sofistikerede Reynoldsspaendingsmodel blev ogsa overvejet, men opgivet
pa grund af den stgrre kompleksitet ved implementeringen og det faktum at resul-
taterne kun er marginalt bedre (i det generelle tilfzelde) end hvad der kan opnas
med en k — e model.

Ved at implementere to forskellige versioner af de tubulente randbetingelser
(glat og ru veeg), var det muligt at ggre modellen anvendelig bade til atmosfaerisk
og standard CFD anvendelser. Dette har den klare fordel, at de mange veldoku-
menterede test tilfaelde fra standard CFD anvendelser kan benyttes til verificering
af modellen.

For at opna et stgrre anvendelsesomrade for modellen end en simpel enkelt
blok struktureret kode tillader, blev en domane dekompositionsmetode studeret
og implementeret i en 2D test kode. Herved opndes, at geometrier, der ikke kan
transformeres til en kubus i det transformerede rum, alligevel kan behandles, feks.
strgmning over bygninger. I forbindelse med 2D test koden blev multigrid acceler-
ation af tryklgsningen ligeledes studeret. Der blev siledes implementeret en simpel
Correction Grid multigrid metode med en TDMA lgser som basis glatter og en
fast V-cycle med fem net niveauer. I de endelige 2D/3D koder blev disse teknikker
implementeret ved hjalp af Basis2D/3D platformene, udviklet af Michelsen [33].

En yderligere gevinst ved at benytte Basis2D/3D platformene var deres brug
af attributter, en teknik der ogsa var blevet afprgvet tidligere i forbindelse med
den to-dimensionale testkode. Attributterne er veerdier knyttet til hjgrnerne af
beregnings cellerne (og lagret sammen med koordinaterne i net filen), der forteeller
hvilken fysisk randbetinglse, der er behov for.

Attribut systemet tillader en fast implementering af alle randbetingelser, hvilket
begraenser muligheden for at introducere fejl i forbindelse med nye strgmnings-
tilfzelde. I det enkelte strgmnings tilfeelde veelges blandt de fast implementerede
randbetingelserne ifglge de givne attribut veerdier. Denne teknik muliggr kgrsel af
en hel serie test tilfzelde uden at skulle sendre en eneste linie kode, hvilket er meget
attraktivt i forbindelse med fejlfinding, og ligeledes i forbindelse med produktions
kgrsler.

For at kunne udnytte modellernes mulighed for at arbejde i generelle ikke or-
togonale kurvelinezre koordinater, blev der udviklet to typer netgeneratorer. Til
strgmning i naturligt terrzen, hvor den ngjagtige beliggenheden af top randen er
uden betydning, blev der udviklet en 2D og en 3D hyperbolsk netgenerator. Til an-
vendelse hvor der var behov for kontrol af alle blok flader, blev der implementeret
en simpel variant af transfinit interpolation.

For at kunne fortolke de beregnede resultater blev en interpolationsmetode for
generelle skave hexaedere udviklet. Metoden blev blandt andet brugt til at ud-
drage profiler fra 3D beregninger og til at beregne partiklerbaner i forbindelse med
greenselagsstrgmningen omkring en kubus.
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Resultater

De opnéaede resultater kan deles i to grupper, testtilfzelde og anvendelse. Fgrst blev
en serie testtilfaelde beregnet for at verificerer koden, alle de her dokumenterede
er 2D tilfelde. Generelt var der en god overensstemmelse mellem testdata og de
beregnede data, dog blev det klart, at det simple fgrsteordens upwind skema ikke
var tilstraekkelig ngjagtigt. Som fglge af dette blev der implementeret et anden-
ordens upwind skema (SUDS) og ligeledes et tredieordens QUICK skema. De
beregnede test tilfzelde vil blot blive naevnt her, men ikke yderligere kommenteret.
De beregnede tilfeelde var:

e Laminar stationer strgmning i kvadratisk dreven kavitet (Driven cavity) ved
Reynoldstal 100, i kartesisk net.

e Laminar stationger strgmning omkring en cirkuleer cylinder ved Reynoldstal
40, i polaere koordinater.

e Turbulent stationzer strgmning i ret kanal ved Reynoldstal 61000, i rektan-
guleert net.

o Turbulent stationeer strgmning i en forskudt rgr varmeveksler ved Reynoldstal
140000, i generelle ikkeortogonale kurvelinizere koordinater.

e Turbulent stationser strgmning over backward-facing step ved Reynolds tal
140000, i et 3 domaene rektangulaert net.

Anvendelsen har i det narverende arbejde knyttet sig til atmosferisk strgm-
ning, dette er et bevidst valg og ikke en begreensning i modellen. To tilfeelde
blev beregnet, strgmning omkring en kubus i et tykt turbulent graenselag [6], og
atmosfaerisk strgmning over Askervein [56].

For strgmningen over kuben var resultaterne gode. Saledes reproducerede bereg-
ningen mange af de stgrre flow strukturer omkring kuben, feks. det store seper-
arede omrade bag kuben, og hestesko hvirvlen foran kuben. Trykfordelingen pa
kubens overflade var generelt i god overensstemmelse med malingerne, dog var den
underestimeret pa toppen af kuben. Arsagen til den lave veerdi af trykket oven pa
kuben skyldes formodenlig, at simuleringen ikke fanger det lille seperarede omréade
her.

Strgmningen over Askervein var ligeledes vellykket, idet den beregnede speed-up
veerdi 10 m over terreen stemmer overens med malingerne, undtagen neer toppen af
bakken hvor veerdien var underestimeret. Den beregnede veerdi af vindens drejning
ved passage af Askervein, udviser ligeledes god overensstemmelse med malinger,
naer toppen hvor overensstemmelsen er darlig betvivler Taylor og Teunnissen [56]
rigtigheden af mélingen. For den turbulente kinetiske energi er resultaterne gode
indtil cirka 250 m nedstrgms for bakketoppen, hvorefter der optraeder en markant
underestimering,.

Fremtidsplaner

Selv om gode resultater saledes allerede er blevet opnaet med modellerne, er der
stadig nogle af de implementerede muligheder, der mangler at blive verificeret.
Den vaesentligste af disse er muligheden for transiente beregninger. I forbindelse
med dette kan det vise sig at veere interessant at implementere et anden ordens
ngjagtigt tidsskema i stedet for det nuvaerende fgrsteordens skema.

De beregnede tilfeelde peger desuden pa, at k — € modellen ikke er tilstraekkelig
i visse tilfzelde. Mere avancerede modeller, eksempelvis en ikkelineser k — € model
kunne veere en mulighed, bade for atmosfaerisk strgmning og standard CFD anven-
delser. Desuden kunne en lav Reynolds tal k¥ — € model vare en mulig forbedring
i forbindelse med standard CFD anvendelser.
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For at udvide modellernes anvendelsesomrade, kunne yderligere ligninger im-
plementeres. For meteorologiske strgmninger kunne implementering af energi-
ligningen veere interessant i forhold til stratifiseret strgmning. Ligeledes ville en
skalar transportligning veere interessant i forbindelse med forureningsspredning.
Implementeringen af yderligere ligninger kan i stor udstraekning foregd ved hjzlp
af eksisterende subrutiner, idet koden er opbygget i en modulaer struktur.
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A Scalar transport equations

A.1 Introduction

The partial differential equation governing the transport of a scalar quantity will
be treated in this appendix. Many physical phenomena can be described by a
scalar transport equation, an example is the energy equation. The turbulence
model used in the present study is another example of a system governed by scalar
partial differential equations, the finite-volume equivalent of these two equations
will be given as special cases of the generic scalar transport equation in the present
appendix.

A.2 Scalar equation

The steps necessary to obtain the finite-volume equivalent of the generic scalar
transport equation will be given including the transformation and the discritiza-
tion.

Cartesian equation

The generic scalar transport equation can be written in Cartesian coordinates in
the following way
0
9p¢  0pU$  0pVe  OpWo _ O [( &) 6_¢}
oy ) Ox
0¢ 0 0¢
) o) 2 (0 2) 5] 5o

ot ox Oy 0z ox
where S¢y represents any volume source that may be present.

(-

Transformed equation

Using the transformation relations given in Chapter 3, the Cartesian equation
can be transformed to a curvilinear coordinate system, resulting in the following
equation

9pJ$ , 0C1¢  0Csp  Cs¢ D [1 (/H&) 5 6_¢]

ot "ot "oy T ac o

o1 1) 0 [1 M 09

‘a—n_i(“ )ﬁ%] 6_4[3<“ ?>5<zac]
M1

—6—5_3(/#*‘%) ﬂ&y +5£z )]

o1

o |7 (1 5) (et + )

2[5 (e 2) ()] a5

The following definitions have been used

Ci = pUog+pVagy +pWag, ,
Co = pUay: +pVay, +pWay. ,
Cs = pUoacy +pVacy+pWa, ,
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/Bll = OggpOgqg + QeyQey + Qg Otz

Biz = 0ggOume + 0gyOpy + Qg 0y,
Biz = ogg0qp + aeycy + 000,
Po1 = el + apyogy + oz,
P2z = QnaOpg + apylny + Qnznsz,
B2z = OumpQig + QpyOcy + oo,
Bs1 = QgaQer + acyQey + oz,
B2 = Qcalng + QcyOny + acznez,
B3z = QcaQea +acyacy +acogs -

Discretized equation

Finally, the transformed equation can be discretized using the same procedure as
applied in Chapter 4. The resulting finite volume equation is

AP¢§3+At + A ¢t+At + AE¢tE-‘}—At + A ¢t+At + AN¢§\-;—At
+ AP At + ApgttAt = JSor + JSéy + JS¢r + JSoc

where
Aw = AW+ Ay
As = AP+
AB = A%n + A_CB 5
AT = A"Zi“n + A’% )
J
Ap = —AW—AE—As—AN—AB—ATerZtP ,
_ pppdh
JSér = = —
JS¢V = 0 )
JSor = —I¢% + I1¢% — I¢% + Ip% — I + I,
JS¢c = 0.

The expressions for the normal diffusive terms A% can be found in Chapter 4
along with the expressions for the convective terms A¢. The expressions for the
cross-diffusive terms are different from the ones given for the momentum equations
and will be given here

de _ -l Ht ¢ ¢
foe = _J(“%) (55y6n+5’=’26<>]
Igl = %(M M—> (55;, ¢+/8£zg?>:|
o o) e on )]
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A.3 k-equation

The transport equation for turbulent kinetic energy is a scalar partial differential
equation and can thus be discretized using the procedure just described for scalar
equations. The only terms needing special attention is the source terms. The par-
tial differential equation for turbulent kinetic energy can be stated in Cartesian
coordinates, namely

Opk n opUk + opVk n opWk 0 [(IH' &) %]

ot oz oy 0z ox o) Oz

8 okl o w\ k]
o\ 5 3] - (v ) 2] = 5w e

Production term

In Cartesian coordinates the production term Skp is given

Skp =
[rov\?
+,U %
YELATN
ox

+p

24
* [63} Ox

0z Oz

oo (524 ()4 (22
(%) (22
() 2 (5]

0z Oy

As the production term will be treated explicitly, we will simply compute the
individual velocity gradients OU/0z etc., and then insert these expressions in the
equation for the production term.

ou oV oU oW BVGW]

B—U l 8—Ua +6 o} +8U
oz J\ag™ " oy ’
W (Wt Wyt Ve,
oy T \ag™ T an ’
W (W s Wy W
52 — J\ag=t gyt ’
v _ 1fov OV, +3_Va
o J\ag =T gp T ¢ )
6—V = l 6—Voz +6—Va +8—Va
oV o _ 1fov. oV v
9z  JN\oE T oy 9 ¢F)
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All the gradients are evaluated in the centre of the cells by old values.

Dissipation term
In order to obtain a more stable equation, the dissipation term will be rewritten,
namely

k2

2
e = p°Cp,— ,
p p "

and linearized

kt
pe = p*C,—FKk!TAL.
ot

The discrete finite volume equation for the turbulent kinetic energy can thus be
expressed as

ApkF A+ A KiEAY + Apklhat + AgkBrat + ANEA!

+ Ak At + ApklFAt = JSky + JSky + JSkg + JSkc + JSkp |

where
Aw = AP+ 45,
Ap = AP +A%,
As = AF"+A4g,
Ay = A+ A%,
Ap = AR +A5,
Ar = AP+ A%,
Ap = —-Aw—-Ap—-As— Ay —Ap—Ar+ pIZ;P +p§3JpCuZ—t’: )
t
JSkr = %,
JSky = 0,
JSkr = —Ik% 4 Tk% — Tk 4 Tk® — Tkl 4 TR,
JSke = 0,
JSkp = : This term is given above.

A.4 ce-equation

The transport equation for dissipation of turbulent kinetic energy is a scalar partial
differential equation, and can thus be discretized using the procedure described in
the first part of this appendix. The only terms needing special attention are the

Risg-R-827(EN) 147



source terms.The partial differential equation for dissipation of turbulent kinetic
energy can be stated in Cartesian coordinates, namely

Ope  OpUe 0pVe OpWe 0 [( Mt) 66]

o.) Ox

ot T oz oy T 0z oz
0 e\ Oe bo) pe Oel €2
3 [(“*a) a—y] o [(“* at) a—] =Sep—pCay

Production term

The production term of dissipation of turbulent kinetic energy is modelled as
€
SGP = Cd%Skp .

The term representing the loss of isotropic dissipation will be linearized to obtain

a more stable discrete equation
2 t

€ _ € t+At
E = pCEQ EG -

The discrete finite volume equation for the dissipation of turbulent kinetic en-
ergy can thus be expressed as

t+At t+AL t+AL t+At t+At
Apel;" —l—AWev"’,' —}—AEeg +Ages+ —I—ANeJ{’,'

pCe2

+Apef A+ ApelAt = Ser + Sey + Ser + Sec + Sep

where
Ay = Afp + Ay,
Ap = AP 4+ A%,
Ag = AP+ 45,
Ay = A%+ A%,
Ap = A+ A%,
Ap = A+ A%,
Ap = —AW—AE—AS—AN—AB—AT+pJZP+pPJPC'ezz—tt,
Jpé
Sey = 0,
Sep = —Ied 4 Tede — Jele 4 [ede — [ede + Tefe
See = 0,

Sep = cdgsvcp .
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B Point localization

B.1 Introduction

After having computed a three-dimensional flow field, a technique is necessary to
reduce the flow field information in order to comprehend the information. Several
techniques exist for this purpose.

One can look at slices of the solution for constant values of one of the three
computational indices, or one can look at profiles along lines with two constant
computational indices.

In the general case, computational planes will be general curved surfaces, and
the lines will be curved, making the interpretation of the information more com-
plex. Often the position of the measurements do not coincide with either mesh
planes or lines, making the comparison of computed and measured values impos-
sible.

One solution to this problem is an interpolation tool able to provide values
between the computed values. In the present case this implies a tool capable of
localizing a point in a block structured mesh composed of general skewed hexahe-
drons, and performing interpolation in a single hexahedron.

Such a interpolation tool can be used to provide profiles along arbitrary curves,
or alternatively tracking particles in order to visualize complex flow fields. The
particle tracking possibility of the method was used in the present work in con-
nection with visualizing the flow around a surface mounted cube.

In the following the development of a localization and interpolation method
working in physical space will be described.

B.2 Point localization method

The general computational cell is a hexahedron with nonplanar cell faces, implying
that the face cannot be represented uniquely by a single normal vector.

Inspired by the volume calculation for the hexahedron, we will decompose the
hexahedron into six non-overlapping tetrahedrons. These six tetrahedrons have
planar faces, and can be represented uniquely by a single face normal. Now we
just have to investigate if the coordinate triple (zp, yp, 2p) of the point in question
is located within one of these six tetrahedrons, and if this is the case interpolate
within the actual tetrahedron.

Point in tetrahedron

To investigate if the coordinate triple is located within a given tetrahedron, the
following approach will be used. For each of the faces of the tetrahedron we cal-
culate the dot product of the face normal pointing into the tetrahedron and the
vector connecting one of the three face corner points with the point in question. If
the result is positive, the point is located on the positive side of the plane defined
by the direction of the face normal. Repeating this procedure for all four faces of
the tetrahedron, we know that the point is located within the tetrahedron if all
four dot products are positive, and the point is outside the tetrahedron if one or
more of the dot products are negative.

B.3 Interpolation tool

Taking a close look at the way the point is localized within the tetrahedron, we
will see that in fact we compute the volumes of the four subtetrahedrons when
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Figure 75. Subtetrahedras used when checking if the point is within the present
tetrahedron.
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performing the investigation.
These volumes can be used as weights when interpolating to point P. Looking
at Fig. 75, we get the following expression for the value at point P

pp =paVolgepp + ¢BVolacpp + ¢cVolagpp + ¢pVolapcp .

This means that no additional work is necessary to calculate the interpolation
weights as these are already at hand when the point is located.

B.4 Profiles and particle traces

The general point localization and interpolation method can easily be combined
with other routines in order to obtain profiles along lines and curves or to track
particles transported by the field for both transient and steady-state solutions.

B.5 Program listing

The actual subroutines used for point localization and interpolation are listed
below.

subroutine incell(cp,cl,c2,c3,c4,cb,c6,c7,c8

& ,tindex,weight,in_cell)
i
c Routine for checking if point (cp(1),cp(2),cp(3)) is located ¢
c within the cell bounded by the eight vertices ’cl’ to ’c8’. C
C The vertices are given in accordance with the following figure.c
c c
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/1 /1
/| /|
/| /|
cb-—-—---- c6 |
| c3-————|-- c4
I/ I/
k" /j |/
|/ |/
cl->—————- c2
i
or
corner 1 = bsw
corner 2 = bse
corner 3 = bnw
corner 4 = bne
corner 5 = tsw
corner 6 = tse
corner 7 = tnw
corner 8 = tne

If the point is located within a cell, the logical variable
’in_cell’ is set ’true’, and the tetrahedra indices is
returned in ’tindex’, and the necessary wieghts are returned
in ’weight’. These two arrays can then be used together with
the cell indices ’ip’, ’jp’, ’kp’, and ’np’ to performe the
interpolation.

The interpolation is performed in the following way

var=phi (ip+tindex(1,1),jp+tindex(1,2) ,kp+tindex(1,3))

o o0 o0 o0 o0 o0 o0 o0 o0 o0 0 000000 0000000000000 000O0000o00.0

o0 o0 o0 0 o0 0 0 00 0000000 0000000000000 000000000.0

& *weight(1)

&  +phi(ip+tindex(2,1),jp+tindex(2,2),kp+tindex(2,3))

& *weight(2)

&  +phi(ip+tindex(3,1),jp+tindex(3,2),kp+tindex(3,3))

& *weight(3)

&  +phi(ip+tindex(4,1),jp+tindex(4,2) ,kp+tindex(4,3))

& *weight(4)
€ m mm
c variables c
c cp(1) .. cp(3) : coordinats for point in question c
c c1(1) .. c1(3) : coordinats of the cell vertices c
c c2(1) .. c2(3) : -— || -- c
c c3(1) .. c3(3) : -— 1l - c
c c4(1) .. c4(3) : -—= Il - c
c c5(1) .. cb5(3) : -— || -- c
c c6(1) .. c6(3) : -— 1l -- c
c c7(1) .. c7(3) : -— Il - c
c c8(1) .. c8(3) : - |l -- c
c tindex : tetrahedron indices c
c weight : the four weights to be used in c
c interpolation c
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c in_cell : logical variable, ’true’ if point is found c
c within the cell c
c c
c Author : Niels N. S\{o}rensen c
c Last revision c
e b c

implicit none

real*8 cp(3),c1(3),c2(3),c3(3),c4(3),c5(3),c6(3),c7(3),c8(3)

integer tindex(4,3)

real*8 weight(4)

logical in_cell

logical in_tetra
c——=== initialize in_cell to false

in_cell=.false.
c-———- check if the point is within any of the six tetrahedras forming
c————- the cube

tindex(1,1)=0

tindex(1,2)=1

tindex(1,3)=0

call tetrahedra(cp,c3,cl,c2,c6,weight,in_tetra)

if (in_tetra)then
tindex(2,1)=0
tindex(2,2)=0
tindex(2,3)=0
tindex(3,1)=1
tindex(3,2)=0
tindex(3,3)=0
tindex(4,1)=1
tindex(4,2)=0
tindex(4,3)=1
in_cell=.true.
return

endif

call tetrahedra(cp,c3,cl,c6,c5,weight,in_tetra)

if (in_tetra)then
tindex(2,1)=0
tindex(2,2)=0
tindex(2,3)=0
tindex(3,1)=1
tindex(3,2)=0
tindex(3,3)=1
tindex(4,1)=0
tindex(4,2)=0
tindex(4,3)=1
in_cell=.true.
return

endif

call tetrahedra(cp,c3,c5,c6,c7,weight,in_tetra)

if (in_tetra)then
tindex(2,1)=0
tindex(2,2)=0
tindex(2,3)=1
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tindex(3,1)=1
tindex(3,2)=0
tindex(3,3)=1
tindex(4,1)=0
tindex(4,2)=1
tindex(4,3)=1
in_cell=.true.

return
endif

call tetrahedra(cp,c3,c6,c8,c7,weight,in_tetra)

if (in_tetra)then
tindex(2,1)=1
tindex(2,2)=0
tindex(2,3)=1
tindex(3,1)=1
tindex(3,2)=1
tindex(3,3)=1
tindex(4,1)=0
tindex(4,2)=1
tindex(4,3)=1
in_cell=.true.

return
endif

call tetrahedra(cp,c3,c6,c4,c8,weight,in_tetra)

if (in_tetra)then
tindex(2,1)=1
tindex(2,2)=0
tindex(2,3)=1
tindex(3,1)=1
tindex(3,2)=1
tindex(3,3)=0
tindex(4,1)=1
tindex(4,2)=1
tindex(4,3)=1
in_cell=.true.

return
endif

call tetrahedra(cp,c3,c2,c4,c6,weight,in_tetra)

if (in_tetra)then
tindex(2,1)=1
tindex(2,2)=0
tindex(2,3)=0
tindex(3,1)=1
tindex(3,2)=1
tindex(3,3)=0
tindex(4,1)=1
tindex(4,2)=0
tindex(4,3)=1
in_cell=.true.

return
endif
return
end
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subroutine tetrahedra(cp,cl,c2,c3,c4,weight,in_tetra)

Routine for checking if the point cp is within the tetrahedra
distended by vector cl-c2,cl-c3,cl-c4 (that forms a right hand
system). In case the point is within the tetrahedra the
variable ’in_tetra’ is set true, and the weights necessary to
performe interpolation in the tetrahedra is returned.

The algorithme used to check if the point is located within
the tetrahedron is based on the following. For each of the
four faces of the tetrahedron the vector product of the two
vectors distenting the face is calculated to give the normal
vector of the plane pointing into the tetrahedra. Then the
inner product between the normal vector and the vector
connecting the origin of the two face vectors with the point
in question is performed, if the result is positive for all
four faces the point is located within the cube, if one or
more of the inner products is negative the point is located

O o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 00000

outside the tetrahedron.

(e]

variables

cp(1) .. cp(3) : coordinats for point in question
cl(1) .. c1(3) : corrdinats of vertice of tetrahedra
c2(1) .. c2(3) : -— Il -

c3(1) .. c3(3) : -— Il -

ca(1) .. c4(3) : -— Il -

weight(1) to (4) : weights for interplation

O o o0 o0 o0 o0 o0 0

in_tetra : logical set true if point is in tetrahedra

implicit none

real*8 cp(3),c1(3),c2(3),c3(3),c4(3)

real*8 weight (4)

logical in_tetra

real*8 vpl(3),vp2(3),v1(3),v2(3),v3(3),v4(3),v5(3)
real*8 vres(3) ,norm,res

c———-- set in_tetra to false
in_tetra=.false.

c-——--- vector from point 1 to point p
vpl(1)=cp(1)-c1(1)
vp1(2)=cp(2)-c1(2)
vp1(8)=cp(3)-c1(3)

c-—--- vector from point 3 to point p
vp2(1)=cp(1)-c3(1)
vp2(2)=cp(2)-c3(2)
vp2(3)=cp(3)-c3(3)

c————-— calculate the three vectors distenting the tetrahedra
v1(1)=c2(1)-c1(1)
v1(2)=c2(2)-c1(2)
v1(38)=c2(8)-c1(3)
v2(1)=c3(1)-c1(1)
v2(2)=c3(2)-c1(2)
v2(8)=c3(3)-c1(3)
v3(1)=c4(1)-c1(1)
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v3(2)=c4(2)-c1(2)
v3(3)=c4(3)-c1(3)
c————- calculate the two vectors distenting face four
v4(1)=c2(1)-c3(1)
va(2)=c2(2)-c3(2)
v4(3)=c2(3)-c3(3)
v5(1)=c4(1)-c3(1)
v5(2)=c4(2)-c3(2)
v5(3)=c4(3)-c3(3)

c——--- check if point is within tetrahedra
c————- face 1 (distended by vl and v2)
call cross_product(vl,v2,vres)
call dot_product(vres,vpl,res)
weight (4)=res
c————- face 2 (distended by v3 and v1)
call cross_product(v3,vl,vres)
call dot_product(vres,vpl,res)
weight (3)=res
c-———- face 3 (distended by v2 and v3)
call cross_product(v2,v3,vres)
call dot_product(vres,vpl,res)
weight(2)=res
c————- face 4 (distended by v4 and v5)
call cross_product(v4,v5,vres)
call dot_product(vres,vp2,res)
weight(1)=res
c———-- check if point is within tetrahedra and in case this is true
c———-- set ’in_tetra’ to ’true’
if (weight (1) .ge.0.d0.and.weight(2).ge.0.d0.and
& .weight(3).ge.0.d0.and.weight(4).ge.0.d0)then
in_tetra=.true.
c———————- normalize weights
norm=weight (1) +weight (2)+weight (3)+weight (4)
weight (1)=weight (1) /norm
weight (2)=weight (2) /norm
weight (3)=weight (3) /norm
weight (4)=weight (4) /norm
endif
return
end

subroutine cross_product(vl,v2,vres)

G e e e e e e
Routine calculating the cross product of vector ’vl’ and
’v2’, and returning the result in vector ’vres’.

c

G m

c variables

c vl : vector 1.

c v2 : vector 2.

C vres : result of cross product (a vector)

c Author : Niels N. S\{o}rensen

(] Last revision : 9 oct. 94
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implicit none
real*8 v1(3),v2(3),vres(3)

c-—-——-= cross product
vres (1)=v1(2)*v2(3)-v1(3)*v2(2)
vres (2)=v1(3)*v2(1)-v1(1)*v2(3)
vres (3)=v1(1)*v2(2)-v1(2)*xv2(1)
return
end

subroutine dot_product(vl,v2,res)

G m
Routine calculating the dot product of vector ’vl1’ and ’v2’
c ’v2’, and returning the result in variable ’res’.
o
c variables
c vl : vector 1.
c v2 : vector 2.
c res : result of dot product
c
c Author : Niels N. S\{o}rensen
c Last revision : 9 oct. 94
o
implicit none
real*8 v1(3),v2(3),res
c————- dot product
res=v1(1)*v2(1)+v1(2)*v2(2)+v1(3)*v2(3)
return
end
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Abstract (Max. 2000 char.)

The present report describes the development a 2D and a 3D finite-volume code
in general curvilinear coordinates using the Basis2D/3D platform by Michelsen.
The codes are based on the Reynolds averaged incompressible isothermal Navier-
Stokes equations and use primitive variables (U, V, W and P). The turbulence is
modelled by the high Reynolds number k£ — € model.

Cartesian velocity components are used in a non-staggered arrangement following
the methodology of Rhie. The equation system is solved using the SIMPLE method
of Patankar and Spalding. Solution of the transport equations is obtained by a
successive application of a TDMA solver in alternating direction. The solution of
the pressure correction equation is accelerated using the multigrid tools from the
Basis2D/3D platform. Additionally a three-level grid sequence is implemented in
order to minimize the overall solution time.

Higher-order schemes (SUDS and QUICK) are implemented as explicit corrections
to a first-order upwind difference scheme.

In both the 2D and the 3D code it is possible to handle multiblock configurations.
This feature is added in order to obtain a greater geometric flexibility.

To mesh natural terrain in connection with atmospheric flow over complex ter-
rain, a two- and a three-dimensional hyperbolic mesh generator are constructed.
Additionally, a two- and a three-dimensional mesh generator based on a simple
version of the transfinite interpolation technique are implemented.

Several two-dimensional test cases are calculated e.g. laminar flow over a circular
cylinder, turbulent channel flow, and turbulent flow over a backward facing step,
all with satisfying results. In order to illustrate the application of the codes to
atmospheric flow two cases are calculated, flow over a cube in a thick turbulent
boundary-layer, and the atmospheric flow over the Askervein hill.
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