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Abstract

Ray tracing is a central tool for constructing mock observations of compact object emission and for comparing
physical emission models with observations. We present ARCMANCER, a publicly available general ray-tracing and
tensor algebra library, written in C++ and providing a Python interface. ARCMANCER supports Riemannian and
semi-Riemannian spaces of any dimension and metric, and has novel features such as support for multiple
simultaneous coordinate charts, embedded geometric shapes, local coordinate systems, and automatic parallel
propagation. The ARCMANCER interface is extensively documented and user friendly. While these capabilities
make the library well suited for a large variety of problems in numerical geometry, the main focus of this paper is
in general relativistic polarized radiative transfer. The accuracy of the code is demonstrated in several code tests
and in a comparison with GRTRANS, an existing ray-tracing code. We then use the library in several scenarios as a
way to showcase the wide applicability of the code. We study a thin variable-geometry accretion disk model and
find that polarization carries information of the inner disk opening angle. Next, we study rotating neutron stars and
determine that to obtain polarized light curves at better than a~1% level of accuracy, the rotation needs to be taken
into account both in the spacetime metric and in the shape of the star. Finally, we investigate the observational
signatures of an accreting black hole lensed by an orbiting black hole. We find that these systems exhibit a
characteristic asymmetric twin-peak profile both in flux and polarization properties.

Key words: accretion, accretion disks – gravitation – gravitational lensing: strong – methods: numerical –
polarization – radiative transfer

1. Introduction

Fully covariant radiative transfer in general relativity (GR)

presents distinct complications. Due to gravity, the path of a
wave front of radiation is curved even in vacuum. This leads to
gravitational lensing, which causes measurable effects from the
scales of the cosmic microwave background (Weinberg
et al. 2013) and galaxy clusters (Treu 2010) all the way to
supermassive black holes (SMBHs) in the centers of galaxies
(Luminet 1979), and down to single neutron stars (Pechenick
et al. 1983). Similarly, the rotation of spacetime itself, such as
around rotating Kerr black holes, can cause an observable
rotation of the direction of polarization of light. This
phenomenon is known as (gravitational) Faraday rotation
(Connors & Stark 1977; Stark & Connors 1977; Ishihara
et al. 1988). Finally, the observed intensity is also dependent on
the relative position and velocity of the observer with respect to
the elements of the emitting, absorbing, and scattering medium
—typically an astrophysical plasma—through which the light
has propagated (e.g., Gammie & Leung 2012). This depend-
ence is responsible for such effects as Doppler (de-)boosting,
via velocities of the emitter and observer, and gravitational and
cosmological redshifts, via relative positions in spacetime.

A full (classical) solution of the polarized radiative transfer
problem in GR requires simultaneously solving the Einstein
field equations, the magnetohydrodynamic equations of motion
of the radiating and interacting matter, and the curved-space
Maxwell equations. This is a formidable undertaking, also in
terms of computational resources, and significant progress has
been made only relatively recently (see Kelly et al. 2017 and
references therein). The problem becomes less taxing by
assuming that the radiation field makes a negligible contrib-
ution to both the spacetime curvature and the motion of the

interacting medium. In this case, the underlying spacetime
structure and the state of the interacting medium can be
specified by either analytic means or a separate numerical
computation. However, even in this case, the full curved-space
Maxwell equations need to be solved in the entire computa-
tional domain, which is still a computationally demanding task.
The situation is considerably simplified by the fact that the

exact time-dependent behavior of the electromagnetic E and B
fields is not usually required, and knowledge of the radiative
energy flow, i.e., the specific intensity, is enough. In this case,
it suffices to solve the usual radiative transfer equation while
taking into account GR. There are numerous approaches with
different limitations to solving the radiative transfer equation,
such as Monte Carlo (MC) methods or the method of
characteristics (see, e.g., Baron & Hauschildt 2004 and
references therein). One of the perhaps conceptually simplest
approaches is to use ray tracing. In ray tracing, a mock
observation can be constructed by connecting the observer to
the emitting region through null geodesics (when plasma
effects are unimportant; otherwise, see, e.g., Gedalin &
Melrose 2001 and Broderick & Blandford 2003) through either
analytic or numerical means. The bending of these geodesics
captures the lensing effects of the gravitational field. The
relativistic polarized radiative transfer equation can then be
solved along these geodesics to capture the remaining
relativistic effects. This process, called ray-tracing, is compu-
tationally efficient and naively parallelizable, enabling high-
resolution mock observations to be computed in seconds or
minutes on a standard desktop computer. However, straightfor-
ward ray-tracing methods are limited to problems where
scattering is not dominant. This is due to the fact that strong
scattering couples all directions and spatial locations of the
solution, whereas simple ray-tracing only samples the rays
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reaching the observer. In addition, if the radiative eigenmodes
propagate differently due to strong plasma effects, then all
eigenmodes must be propagated separately and similarly,
radiative transfer must be computed multiple times, increasing
the workload considerably.

Despite these limitations, using ray-tracing to compute mock
observations of highly relativistic objects has a relatively long
history. Already in Cunningham & Bardeen (1972), the light
curve of a star orbiting around a black hole was computed,
followed by studies of the effects of gravity on the observed
accretion disk spectra (Cunningham 1975, 1976). Polarization
effects of relativistic motion and strong gravity in the Kerr
solution were studied using ray-tracing in Connors & Stark
(1977), Stark & Connors (1977), and Connors et al. (1980).
The first resolved mock observation of an accretion flow
around a black hole was computed via ray-tracing remarkably
early as well, in Luminet (1979). Following these pioneering
studies, the ray-tracing approach was quickly adopted in
investigations of a great variety of relativistic phenomena,
including, but not limited to, hot spots and accretion columns
on rotating neutron stars (Pechenick et al. 1983; Riffert &
Meszaros 1988), the general mock observation problem in
the Kerr spacetime (Viergutz 1993), details of the resolved
black hole accretion disk structure (Fukue & Yokoyama 1988;
Bromley et al. 2001), accretion disk hot spots (Karas et al.
1992), accretion disk microlensing (Rauch & Blandford 1991;
Jaroszynski et al. 1992), accretion disk line profiles (Chen
et al. 1989; Ebisawa et al. 1991), optical caustics (Rauch &
Blandford 1994), and the shadow cast by the black hole event
horizon (Falcke et al. 2000).

In particular, the topics of the black hole shadow and
accretion flow as well as the observable polarization properties
of neutron stars are currently especially relevant. The interest in
black hole shadows and accretion flows is warranted by the
recent progress in programs for interferometric observations at
the event horizon scales of Sgr A*, the Milky Way SMBH, and
the SMBH in M87, the dominant galaxy of the Virgo cluster.
The event horizon is approached both in the submillimeter
wavelengths, via the Event Horizon Telescope (EHT) VLBI
program (Doeleman et al. 2009), and in optical wavelengths,
via the VLTI GRAVITY instrument (Eisenhauer et al. 2008).
The surging interest is evident also in the number of recent
studies focusing on the black hole shadow and accretion flow
modeling using ray-tracing, especially in the context of Sgr A*

(e.g., Atamurotov et al. 2016; Broderick et al. 2016; Chael et al.
2016; Dexter 2016; García et al. 2016; Vincent et al. 2016;
Gold et al. 2017; Porth et al. 2017; Mościbrodzka &
Gammie 2018).

Likewise, accurate modeling of the observable properties of
neutron stars is timely due to the current and near-future
increase in X-ray-sensitive space missions such as NICER

(Gendreau et al. 2012) and eXTP (Zhang et al. 2016), the latter
being also sensitive to polarization. In anticipation, a number
of recent papers have applied the ray-tracing approach to
model observations of neutron stars (e.g., Bauböck et al.
2015a, 2015b; Miller & Lamb 2015; De Falco et al. 2016;
González Caniulef et al. 2016; Ludlam et al. 2016; Nättilä &
Pihajoki 2018; Vincent et al. 2018).

It is evident even from the short review above that ray-
tracing is an important numerical tool, especially for general
relativistic radiative transfer in a variety of astrophysical
situations. However, the numerical means to compute curves

has an even wider applicability in the sense that in addition to
the path of light, curves also represent the timelines of massive
particles and observers in a spacetime. Furthermore, it is often
convenient to have various tensorial quantities such as local
Lorentz frames parallel transported (or more generally, Fermi–
Walker transported) along curves. It is also necessary to
perform various algebraic computations involving tensor
quantities, often mixing different coordinate systems.
To help facilitate numerical studies requiring curve and

tensor manipulations in any (semi-)Riemannian context, which
naturally includes GR, we have implemented ARCMANCER

(Pihajoki et al. 2018),3 a publicly available general ray-tracing
and tensor algebra library. From an astrophysical point of view,
ARCMANCER is useful for varied such tasks as radiative
transfer and mock observations, computing the paths of
massive charged particles in curved spacetimes, or calculating
the orbits of extreme mass-ratio inspirals (EMRIs). However,
the ARCMANCER library offers capabilities beyond purely
physically motivated applications. It can compute all kinds of
curves, both geodesic and externally forced, on Riemannian
and semi-Riemannian manifolds of any dimension and metric,
using multiple simultaneously defined coordinate charts to
circumnavigate coordinate singularities and to facilitate easy
input and output of data in any preferred coordinate system.
ARCMANCER can also be used to define tensors of any rank and
to perform tensor algebra, as well as, for example, to
automatically parallel propagate tensorial quantities along
curves. This last feature is particularly useful for problems of
radiative transfer, which we will mainly focus on in this paper.
In this paper, we present an overview of the ARCMANCER

library and its implementation. We show the results of various
code tests to establish the accuracy of the code and present
several astrophysical applications using the ARCMANCER

library. In this paper, the main focus of the tests and
applications is on general relativistic polarized radiative
transfer using ray-tracing exclusively. The generality of the
ARCMANCER library makes it straightforward to use for more
general purpose radiative transfer methods such as MC
radiative transfer or hybrid MC–ray-tracing schemes, and the
application of these will be demonstrated in future works.
This paper is organized as follows. In Section 2, we present

an overview of the ARCMANCER library and its capabilities. In
Section 3, we discuss how the various mathematical objects
and functionalities provided by the ARCMANCER library are
implemented. For convenience, these differential geometric
concepts are briefly reviewed in Appendix A, to which
Section 3 cross-references. Section 4 describes the implemen-
tation details of the radiative transfer scheme implemented in
ARCMANCER. In Section 5, we present a series of numerical
tests, measuring the accuracy of the numerics implemented in
ARCMANCER. These include a test of the radiative transfer
features, where the results obtained with ARCMANCER are
compared to another recent general relativistic code GRTRANS
(Dexter 2016). In Section 6, the ARCMANCER code is applied
to various astrophysical phenomena in order to showcase the
versatility of the code. Finally, in Section 7, we give
concluding remarks and discuss some future prospects
concerning the ARCMANCER library and the ray-tracing
approach in astrophysics. This paper has several appendices.
Appendix A presents a highly condensed review of the various

3 Codebase: https://bitbucket.org/popiha/arcmancer.
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differential geometric concepts used in the code. Appendix B
presents the general relativistic polarized radiative transfer
equation used in ARCMANCER, and how it relates to the usual
flat-space equation. Appendix C presents the built-in manifolds
and coordinate systems available in ARCMANCER. The reader
interested mainly in a broad overview of the code and its
astrophysical applications is urged to browse Sections 2, 5.2.2,
and 6. Those interested in technical details may want to read
through Sections 3–5, and the appendices as well.

Throughout the paper, we use a system of units where
= =G c 1, unless explicitly otherwise specified. For Lorent-

zian spacetimes, we use a metric signature +---( ) in the
paper, although ARCMANCER supports other signatures as well.
The abstract index notation (see Appendix A.2) is assumed
throughout.

2. Overview of the Code

The ARCMANCER library consists of a core library, written in
modern C++, a Python interface, and a suite of example C+
+-programs and Python scripts. The core library code, Python
interface, and example programs are all thoroughly documen-
ted. The code, the examples, and instructions for installation
and getting started are all freely available at the code
repository, https://bitbucket.org/popiha/arcmancer.4

The underlying idea behind the ARCMANCER library is to
provide all of the mathematical tools needed to perform a large
variety of relativistic computations that require numerical
tensor algebra and curve propagation. In addition, the library
and the Python interface are designed with easy extensibility in
mind. These design decisions make it possible to use
ARCMANCER for a wide variety of astrophysical problems,
including, for example, particle dynamics and radiative
transfer, as well as for problems in applied mathematics.

These design goals give ARCMANCER some distinct
advantages compared to existing “pure” ray-tracing codes such
as GRTRANS (Dexter 2016), GYOTO (Vincent et al. 2011),
KERTAP (Chen et al. 2015), GRAY (Chan et al. 2013, 2017), or
ASTRORAY (Shcherbakov & McKinney 2013). Namely, ARC-
MANCER can work in any dimension and with metric spaces
that are either Lorentzian, as in GR, or purely Riemannian. For
Lorentzian geometry, all types of geodesics—null, spacelike,
and timelike—are supported, as well as general curves of
indeterminate classification. ARCMANCER can also work with
spaces for which the geometry, through the metric, is available
only numerically, such as from a numerical relativity simula-
tion. In addition, ARCMANCER supports any number of
simultaneous coordinate systems with automatic conversion
of all quantities between coordinate systems. The use of
multiple coordinate systems makes it possible to input and
output data in whatever coordinates are most convenient for the
given problem. Furthermore, the simultaneous use of multiple
coordinates makes it possible for ARCMANCER to avoid
coordinate singularities and to automatically choose the
numerically most optimal coordinate system for propagating
a curve (see Section 3.5).

ARCMANCER provides full support for tensorial quantities of
any contra- or covariant rank (see Section 3.2). This support is
built on top of the Eigen Linear Algebra Library and includes

all of the usual tensor operations such as sums, products,
contractions of indices, and the raising and lowering of indices
with the metric. All of these operations are checked at compile
time so that mathematically malformed operations, such as
mixing points and vectors or contracting two similar indices,
are automatically detected. In addition, ARCMANCER can
automatically parallel transport all tensor quantities along
curves, so that, e.g., smooth local coordinates can be
constructed for an observer undergoing arbitrary geodesic
motion. This functionality also supports Fermi–Walker trans-
port for accelerating observers and fully general transport for,
e.g., accelerating and rotating observers.

ARCMANCER also provides support for including user-
defined embedded geometry (see Section 3.4). This feature can
be used, for example, to model surfaces of optically thick or
solid astrophysical objects, such as planets, photospheres of
stars or neutron stars, or optically thick accretion disks. The
surfaces are easy to define through level sets and can be given
tangential vector fields, which represent movement along the
surface, such as in the case of a rotating surface of a neutron
star or an optically thick accretion disk.
Finally, while ARCMANCER comes with a suite of built-in

spacetimes, coordinates, geometries, and radiation models,
the library is designed to be easily extensible by the user.
Several examples showcasing this easy extensibility are
bundled together with the ARCMANCER library. These
examples include such programs as simple black hole and
neutron star imagers, as well as a full postprocessor for two-
dimensional data produced by the GR magnetohydrody-
namics (GRMHD) code HARM (Gammie et al. 2003; Noble
et al. 2006).
In the following, we will discuss in more detail how the C++

library implements the mathematical concepts required for the
wide variety of applications described above.

3. Implementation of Differential Geometry
and Ray-tracing

The main aim of the ARCMANCER implementation is to provide
the user with C++/Python objects that match the mathematical
objects of differential geometry (see Appendix A) as closely as
possible. This approach makes converting mathematical formulae
to code straightforward. It also has the additional benefit of
eliminating errors stemming from code that expresses mathema-
tically invalid operations. These include, for example, assigning to
the components of a point from the components of a vector or a
one-form, since all can be expressed as a tuple of n numbers, or
assigning to the components of a vector from the components of a
vector defined at a different point, in a different chart, or even
defined on a different manifold. Likewise, for tensorial quantities,
an error such as contracting two similar indices is easily made if
working in terms of pure components.
The implementation in ARCMANCER guarantees that all

programmed operations correspond to mathematically valid
statements. This feature eliminates a large set of logical errors
of the kind described above—a major benefit, since currently
there are no codebase analysis tools able to identify errors of
this kind.
In the following, we describe how the mathematical objects

are implemented in the ARCMANCER code. To make the
exposition easier to follow, we have provided a list of the most
important C++ classes of the ARCMANCER library together
with their descriptions in Figure 1. The Python interface

4 The version of the code used to produce the results in this paper is version
0.2.0, which corresponds to the commit identifier 38b0879909990746f

28e09fb1f94167063608be9 at the master branch of the repository.
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provides corresponding counterparts to these classes, together
with some additional convenience classes. A listing of these
can be found in the documentation accompanying the code.

3.1. Manifolds and Charts

The most fundamental object in the ARCMANCER library is
MetricSpace<n,Signature>, representing an n-dimen-
sional (semi-)Riemannian manifold of a given signature.
Defining a new MetricSpace requires the specification of
dimensionality n, one or more charts, and functions returning
the components of the metric tensor field and its derivatives in
each chart. For four-dimensional semi-Riemannian spaces, the
metric signature must also be specified. ARCMANCER supports
both timelike +---( ) and spacelike -+++( ) signatures.

A chart is represented as a class chart, which in the
current implementation only contains a description and serves
to give meaning to a tuple of coordinate numbers. The points
on the manifold are implemented as a class Manifold-

Point<MetricSpace>. These can be constructed by
specifying n coordinates and the corresponding chart. After
this, the components of the point can be requested in any
available chart, and the object itself behaves much like the
mathematical idea of a point on a manifold (see Appendix A.1).

To transform the components of tensorial objects, the
transition functions and their Jacobians between the charts
must also be specified. For N different charts, this would
naively require -( )N N 1 transition functions and Jacobians to
be implemented. The amount of work increases quadratically.

However, when the domains of charts fi, fj, and fk overlap
suitably, the transition function from i-coordinates to j-
coordinates fulfills

f f f f f f=- - -◦ ◦ ◦ ◦ ( ), 1j i j k k i
1 1 1

and the Jacobian f f=
-( ◦ )J di j j i
1 decomposes similarly,

=   ( )J J J . 2i j k j i k

The ARCMANCER library uses the properties (1) and (2) to
build a directed graph of charts, wherein each chart is a node,
and the Jacobians and transition functions define the edges.
This makes it possible to introduce N charts while supplying
only the minimum number of -( )N2 1 transition functions and
Jacobians to make the graph connected. Then, when the
components of a point or a tensorial quantity are requested in a
different chart, the code walks through the graph, building the
transition function and Jacobian piece by piece using
Equations (1) and (2).
For a listing of the built-in metric spaces and chart

implementations provided with ARCMANCER, see Appendix C.

3.2. Tensors

The tensor algebra and calculus for tensors of arbitrary rank
(see Appendix A.2) are provided by the Tensor<Metric-

Space,IndicesK> template class. Here, MetricSpace
is the base manifold and IndicesK is an arbitrary
combination of index tags Cov and Cnt, for covariant or
contravariant index, respectively. The implementation is

Figure 1. Short descriptions of the most often-used classes in the ARCMANCER library.
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pointwise, using a set of +nk l components in a given chart to
specify a tensor of rank (k, l) on a manifold M with

=( )M ndim at a given ManifoldPoint.
As such, similarly to a ManifoldPoint, defining a tensor

at a point requires the input of +nk l components and the
corresponding chart. After this, the chart is abstracted away in
the sense that algebraic operations between tensors defined at
the same point can be performed irrespective of the chart the
tensors were originally defined in. The Tensor class provides
all of the usual algebraic tensor operations: sum of tensors of
the same rank, tensor product, contraction, and in addition,
raising and lowering of the indices using the underlying
MetricSpace structure. The implementation checks all
operations for index correctness at compile time so that, e.g.,
no contraction between indexes of same type is allowed. In
addition, during runtime, all operands are inspected to ensure
that they are defined at the same base point. These checks
guarantee that operations expressed in code correspond to
mathematical operations that are well defined.

The Tensor class also provides some elements of tensor
calculus. Namely, the class automatically computes the
derivatives required for parallel transporting a tensor along a
general curve. Given a curve tangent vector u a, the class can
compute the contractions with G ubc

a c required in the parallel
transport Equation (39).

3.3. Curves

Functionality for working with curves γ, including geode-
sics, is provided by the class ParametrizedCurve<Me-

tricSpace,TransportedType> along with a conven-
ience subclass Geodesic. Curves are implemented as
sequences of points l( )p, on a manifold, where λ is the curve
parameter and Îp M . More concretely, the implementation is
based on an ordered queue of objects of type Parametri-

zedPoint<MetricSpace,TransportedType>,
which combines a ManifoldPoint with a real value λ
specifying the position along the curve. In addition, the
ParametrizedPoint can include any arbitrary object A of
type TransportedType to be parallel transported along a
geodesic or Fermi–Walker transported along a forced curve.
The only requirement is that the object be representable as a
(chart-dependent) tuple of real numbers and that a function

G( )D u u f, ,A
a

bc
a c a yielding the derivatives g l l( ( ))/dA d is

provided. The function DA depends externally on the current
tangent vector of the curve u a, the contractions G ubc

a c, and
optionally the force f a. As mentioned above, the Tensor class
provides the derivative function automatically, and as such,
arbitrary tensors can be parallel transported along all generic
curves without any extra programming effort.

In practice, a curve is computed by specifying the initial
conditions in some given chart. These consist of the initial
point l Î ´( )p M,0 0 , the components of the curve tangent
vector Î( )u p T Ma

p0 0
, the components ( )A p0 of the possible

parallel transported object, and an optional force function f a.
The ARCMANCER library then computes points along the curve
for the desired interval ÌI containing l0 by solving the set
of equations (see Appendix A.4)

g l
l

=
( )

( )
d

d
u , 3a

l
l

= -G +
( )

( )
du

d
u u f , 4

a

bc
a b c a

l
l

= G
( )

( ) ( )
dA

d
D u u f, , 5A

a
bc
a c a

in a suitable chart (see Section 3.5 for details on the chart
selection).

ARCMANCER computes the solution using the integration
methods offered by the ODEINT C++ library (Ahnert &
Mulansky 2011). The default method is the Dormand–Prince
fifth-order Runge–Kutta method (Dormand & Prince 1980),
which offers error estimation and automatic step-size adjust-
ment, as well as a fair numerical performance in most cases.
The absolute and relative error tolerances and step-size and
iteration limits are fully user-configurable. After the computa-
tion is finished, the ParametrizedCurve class provides
access to the solution in any chart and for anyl Î I . Internally,
this is achieved through a cubic spline interpolation.

3.4. Surfaces

An interface for implementing hypersurfaces is available
through the class Surface<MetricSpace>. Surfaces are
useful for representing solid or highly optically thick objects, or
regions of interest. Examples include not only the surfaces of
neutron stars, white dwarfs, or planets, but also black hole
event horizons, optically thick accretion disks, or the limits of
computational domains. The ARCMANCER implementation of
surfaces is based on the concept of level hypersurfaces (see
Appendix A.5).
A new surface is implemented by supplying a real-valued

function S taking a ManifoldPoint as an argument, as well
as the gradient ¶ Sa . The surface is then defined as the set of
points Î ={ ∣ ( ) }p M S p 0 . In addition, a tangent vector field t a

on the surface must be defined. This field is primarily used to
represent the four-velocity field of observers fixed on the
surface and is required for, e.g., computations involving
rotating neutron stars (see Section 6.2).
The ARCMANCER library automatically detects intersections

of curves with surfaces and numerically finds the exact
(to within tolerance) intersection point. The intersections are
found by examining the sign of the product +( ) ( )S p S pk k1 for
two successive points +pk 1 and pk on a curve. If the product is
negative, the two points must lie in different regions bounded
by the surface. The exact intersection point is then found using
the so-called Henon’s trick (Henon 1982). The “trick” consists
of changing the independent variable γ, the curve parameter, in
Equations (3)–(4) to S, or the value of the surface function. The
transformed equations read

l
= ¶ -( ) ( )

d

dS
u S , 6b

b
1

g
= ¶ -( )

( ) ( )
d S

dS
u S u , 7b

b
a1

= ¶ -G +-( )
( ) ( ) ( )

du S

dS
u S u u f , 8

a
b

b bc
a b c a1

= ¶ G-( )
( ) ( ) ( )

dA S

dS
u S D u u f, , . 9b

b A
a

bc
a c a1

These equations can then be numerically propagated for a
single step of length - +( )S pk 1 starting from the point +pk 1 to
yield the intersection point to within numerical tolerance.
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3.5. Automatic Chart Selection

Perhaps the most novel and interesting feature of ARCMAN-

CER is the possibility to use multiple coordinate charts
simultaneously and seamlessly. The most immediate benefit
is that objects can be input and output in any available chart,
with all transformations handled automatically by ARCMAN-

CER. However, there are important computational benefits to
the free selection of coordinate charts as well. The most
obvious benefit is the fact that a given problem may be much
easier to solve numerically in some specific coordinates
compared to others. This is illustrated in Figure 2, where the
same null geodesic in an extremal Kerr spacetime is shown in
the outgoing Kerr–Schild (KS) coordinates, the ingoing KS
coordinates, and the Boyer–Lindquist (BL) coordinates (see
Appendix C.2.2). From the figure, it is easy to appreciate how
in the outgoing KS coordinates the geodesic is essentially
straight, and long integration steps can be taken. On the other
hand, in the ingoing KS coordinates and the BL coordinates,
the geodesic twists around the event horizon at an increasing
rate as the event horizon is approached. The magnitudes of the
derivatives with respect to the curve parameter increase
correspondingly, making the problem eventually numerically
impossible to solve.

The possibility to simultaneously use multiple charts makes
it possible to avoid the coordinate singularities present in any
single chart, such as the pole singularity in any spherical
coordinate system or the coordinate singularity at the event
horizon present in the usual Schwarzschild coordinates. In
addition, using multiple charts makes it possible to switch the
chart used for solving the equations of motion for a curve on
the fly, useful for situations such as the one depicted in
Figure 2. It is not obvious which chart is to be preferred, which

is why ARCMANCER currently implements several heuristics
for automatically choosing the numerically optimal chart.
The first heuristic consists of finding a chart fi where the

matrix of the components of the metric = ( )G gab has the
largest inverse condition number, defined as the ratio of
the smallest and largest singular values of the matrix, i.e.,

s s=- ( )Gcond 1
min max. This is based on two key observa-

tions. First, floating point addition and subtraction between
numbers of different magnitude cause a loss of precision.
Second, the equations of motion for a curve and for parallel
transport along it, Equations (3)–(5), contain a mix of the
components of the metric and its derivatives on the right-hand
side. As such, it would be intuitively advantageous to perform
the computations in a chart where the matrix formed by the
metric has eigenvalues that span as small a range as possible.
This is achieved by maximizing the inverse condition number.
In some cases, the condition number of the metric is not

enough to detect a computationally awkward chart. For
example, in the case of a Kerr black hole, the condition
number cannot differentiate between the ingoing and outgoing
KS charts. However, as is seen in Section 5.1.2, using one over
the other can cause a large difference in computation time and
accuracy for radial geodesics, depending on whether they are
falling toward or emanating from the event horizon. As such, a
further heuristic is needed.
If the condition number heuristic does not separate two

promising charts, the ARCMANCER code next tries to minimize
the maximal absolute value of the intrinsic derivatives,
-G u ubc

a b c, of the curve tangent vector u a. As such, this
heuristic needs to know the current curve tangent vector u a,
unlike the condition number test, for which only the current
point is required. For Cartesian coordinates in a Euclidean or
Minkowskian space, G º 0bc

a , so in effect this procedure looks
for the most Cartesian-like chart in which the metric looks most
Euclidean (or Minkowskian) in the direction of the current
curve tangent vector u a.
Formal proofs of the performance of these heuristics are

beyond the scope of this work, but the numerical results in
Section 5 indicate that they work reasonably well.

3.6. Local Lorentz Frames

For four-dimensional Lorentzian manifolds, ARCMANCER

provides a functionality to construct local Lorentz frames (see
Appendix A.6) through the class LorentzFrame<Metric-

Space>. The user supplies a timelike vector et and two
spacelike vectors ez and ex. From these, a complete Lorentz
frame { }E E E E, , ,t x y z is constructed by first normalizing et to
yield Et and then orthonormalizing ez and ex sequentially.
Finally, Ey is defined by the remaining orthogonal direction
through = E E E Ey

a
bcd
a

t
b

z
c

x
d, where abcd is the Levi–Civita

tensor, with the sign depending on the desired handedness
(positive for a right-handed frame).
The LorentzFrame object can be automatically parallel

transported along a ParametrizedCurve. In addition,
Tensor objects can be constructed from components given
with respect to a LorentzFrame. Likewise, the components
of any Tensor can be extracted in a given LorentzFrame

as well; see Equation (41).

Figure 2. A null geodesic emanating from near the event horizon of an extremal
Kerr black hole, shown in the outgoing and ingoing Kerr–Schild coordinates as
well as Boyer–Lindquist (BL) coordinates, in the xy projection. For BL coordinates,

the transformation q f q f q= +( ) ( )x y z M a, , sin cos , sin sin , cos2 2 was
used. The black line shows the location of the event horizon. The inset shows a
zoomed-in region from near the event horizon.
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3.7. Image Plane Generation

To produce mock observations, an observational instrument
must be emulated somehow. For ray-tracing purposes, this
usually means using an image plane. The image plane is
positioned near the object of interest, and only the rays
intersecting the plane orthogonally are considered. These rays
are then assumed to propagate in vacuum all the way to the
distant observer. This approximation ignores atmospheric and
instrumental effects, but these can be modeled afterwards using
dedicated tools if necessary.

There are three main sources of error when generating the
image plane: required deviations from perpendicularity,
perturbations caused by the curvature of the space, and the
assumption of vacuum propagation. The assumption of
perpendicularity is typically excellent. For distant objects, the
maximum deviation from perpendicularity qD is approximately
equal to the observed angular size of the object, or
qD ~ ( )L D2 , where L is the linear extent of the source

perpendicular to the line of sight and D is the distance. For
example, in the case of Sgr A*

(Sagittarius A
*

), we have
qD ~ -10 11, and for a typical galactic neutron star
qD ~ -10 17. The effects of the remaining spacetime curvature

at the image plane location can be estimated by looking at the
bending angle β that the image plane rays will make when
propagated to infinity. Sufficiently far away from the object so
that the Schwarzschild metric can be used, this angle turns out
to be (e.g., Beloborodov 2002) b ~ ( )GM c R2 2 , where M is
the total mass of the observed object and R is the radial distance
of the image plane from the object. Thus, for R GM c104 2,
we have b ´ -2 10 4, and so the effects of residual curvature
are negligible. The assumption of propagation in vacuum is
typically valid for objects that are not situated at cosmological
distances as far as light bending is concerned. However,
corrections for effects such as extinction, frequency dispersion,
or Faraday rotation may need to be added in further
postprocessing.

In many ray-tracing codes, the construction of image planes
is achieved by a assuming a flat space and explicitly
constructing the starting points and tangent vectors for a planar
configuration of geodesics (Broderick 2004; Cadeau et al.
2007; Dexter & Agol 2009; Vincent et al. 2011; Dexter 2016;
Chan et al. 2017). ARCMANCER provides a general purpose
tool for constructing plane-parallel initial conditions for
Lorentzian spacetimes in the class ImagePlane<Metric-

Space,DataType>. The user specifies a LorentzFrame

at the center of the plane and the extent and the resolution
(number of grid points) of the plane in the local Ex and Ey

directions. The local Lorentz frame is then parallel transported
to the desired grid points via spacelike geodesics, using the
ARCMANCER curve propagation functionality. Initial condi-
tions for curves passing through the plane are set up by
assigning the tangent vectors ( )u 0a to be spatially parallel to the
parallel transported Ez vector. The collection of parallel
transported frames defines a best local approximation to a flat
plane that is threaded by orthogonal curves and corrects the
effect of the bending β caused by the curvature to first order.
Thus, the ARCMANCER ImagePlane can safely be used in
regions where the curvature is small but non-negligible. The
method is also general purpose in the sense that it works
similarly in any coordinate system and only requires specifying
a local Lorentz frame at one point.

4. Implementation of Radiative Transfer

4.1. Fluid and Radiation Models

Radiative transfer functionality in ARCMANCER is built with
flexibility in mind. For this purpose, the interface declares two
types of functions. The first type of function is FluidFunc-
tion<MetricSpace,FluidData>, which maps points
on the base manifold MetricSpace to a user-defined set of
fluid variables FluidData, which represent local material
properties such as temperature or density. The only restriction
is that FluidData must include a single bulk fluid four-
velocity w a and a single reference direction (often magnetic
field) t a orthogonal to w a.
The second type of function is RadiationFunction<-

FluidData>, which computes the Stokes emissivity vector
J and the response matrix M (see Appendix B) from the given
FluidData, local fluid rest-frame frequency ν, and the rest-
frame angle θ between the reference direction t a and the current
direction of the light ray (the tangent vector k a).
This approach makes implementing different fluid and

radiation models rather straightforward. For example, the fluid
variables for a given point can be obtained from a GR
magnetohydrodynamics (GRMHD) simulation or from an
analytic model. The ARCMANCER suite includes an example
application which reads outputs from the HARM GRMHD
code (Gammie et al. 2003; Noble et al. 2006) and computes
mock observations using a thermal synchrotron radiation model
based on the results in Dexter (2016). See Section 5.2.2 for
computational results.

4.2. Solving the Radiative Transfer Equation

With ARCMANCER, a radiative transfer problem (see
Appendix B) is solved by first propagating a set of curves gi
(typically geodesics, unless plasma effects are significant)
along which the radiative transfer equation, Equation (52), is to
be solved as a curve integral. Usually, the most convenient
approach is to use an ImagePlane and let ARCMANCER
propagate the set of initial conditions backwards in time
through the region of interest. Each propagated curve must
include a parallel transported PolarizationFrame, a pair
of two orthogonal spacelike vectors  = { }v h,a a , also
orthogonal to the geodesic and the four-velocity of the
observer, representing the vertical and horizontal linear
polarization basis vectors of the observer at one end
g l =( ) pi obs obs of the curve. If using an ImagePlane, these
can be conveniently obtained from the Ex and Ey vectors of the
local Lorentz frame at each point.
The four-velocity ( )u pa

obs of the observer at pobs, the four-
velocity ( )w pa of the fluid at each point g l= ( )p i , and the
curve tangents ( )k pa and ( )k pa

obs define a connection between
the photon frequency n0 observed by  at pobs and the
corresponding photon frequency ν in the local rest frame of the
fluid at p. This is given by the redshift factor


n
n

= =
( ) ( )

( ) ( )
( )

u p k p

w p k p
. 10

a
a

a
a

obs obs 0

The initial conditions are set by defining initial invariant
specific intensities    n=n n

-{ ( ) }I 0
3

i0, 0
at the other end

pstart of the curve, one for each observed frequency n i0, of
interest. Often these can be set to zero, but, for example, in the
case of radiation emanating from optically thick or solid
surfaces, the initial intensity can be non-zero. Solving the
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radiative transfer equation itself proceeds in a manner
following Shcherbakov & Huang (2011). See Figure 3 for a
diagram of all the vectors and angles.

At each point Îp M during the calculation, the ARCMAN-
CER library evaluates the given FluidFunction to obtain
the fluid four-velocity w a and the rest of the fluid parameters in
the rest frame of the fluid. This includes the local reference
direction b a, which typically is the direction of the local
magnetic field. From these, the angle q ( )w b k; , between the
reference direction b a and the light ray tangent k a as seen in the
fluid rest frame is computed using Equation (45). This angle is
required by some radiation models, such as synchrotron
emission models. The reference direction also defines the local
vertical direction of polarization = ´ ´( )V k k b , where k

and b are the spatial parts of k a and b a, respectively.
The next step is to project the parallel transported polarization

frame  to the fluid rest frame using the screen projection
operator, Equation (44), yielding  =˜ { ˜ ˜ }v h,a

a , where

= ^˜ ( ) ( )v P w k v, , 11a
b
a b

= ^˜ ( ) ( )h P w k h, . 12
a

b
a b

Now we can compute the angle χ between the projected
parallel transported polarization frame { ˜ ˜ }v h,a

a and the
polarization frame of the fluid, defined by V , from

c =
- ˜

˜
( )

V h

V v
tan , 13

a
a

a
a

where = ( )VV 0,a .
Next, the angle θ and the fluid parameters are passed to the

RadiationFunction to obtain the Stokes emissivity and
the response (Müller) matrix nM in the fluid rest frame. These
are related to the parallel transported and projected polarization
frame ̃ using the angle χ and the transformation properties of
the Stokes components under rotation (e.g., Chandrase-
khar 1960). The emissivity vector nJ and response matrix nM

are transformed via cn n ( )J JR and c c-n  ( ) ( )M MR R ,

where

c
c c
c c

=
-

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

( )
( ) ( )

( ) ( )
( )R

0 0 0 0

0 cos 2 sin 2 0

0 sin 2 cos 2 0

0 0 0 0

14

gives the transformation of Stokes vectors under rotations of
the polarization plane. Finally, it can be shown that the Stokes
components in any two polarization frames  and ̃ related by
a screen projection are equal, so that the radiative transfer
equation to be solved along the geodesic is

   
l n
= -n

n n n
( ) ( )

( ) ( )
d

d
L
u p k p

, 15
a

a
obs obs

0

where

 n c=n n
- ( ) ( )JR , 162

 n c c= -n n( ) ( ) ( )MR R , 17

n n= ( ), 180

and L is the unit of length. For example, in problems related to
black holes, a typical choice is =L GM c2, where M is the
black hole mass. Internally, Equation (15) is solved using the
ODEINT Runge–Kutta–Fehlberg eighth-order method. How-
ever, for problems where the optical thickness is large,
Equation (15) can become stiff, and an implicit method would
provide better performance.

5. Code Tests

5.1. Curves, Parallel Transport, and Chart Selection

5.1.1. Geodesic Propagation

The accuracy of the basic curve propagation functionality
(Section 3.3) was verified by investigating curves on a two-
dimensional spherical surface. The computations were per-
formed both in two dimensions, using the intrinsic spherical
coordinate chart q f( ), , Equation (53), and in a three-
dimensional Euclidean slice at t=0 of the Minkowski space,
using the spherical coordinates q f( )r0, , , , Equation (55). To
force the curve to stay on the surface of a sphere in the three-
dimensional case, a constraint force = -( ) ( )f u u u0, , 0, 0a a

a

was specified. Here, u a is the curve tangent, in three-
dimensional spherical coordinates.
Numerical convergence was estimated using a single

geodesic curve g l( ) passing through q f p=( ) ( ), 2, 0 at
l = 0 with a tangent vector q f= =(˙ ˙ ) ( )u , 1.0, 0.3a . The
initial values were chosen so as to avoid a purely polar or
equatorial geodesic, but were otherwise chosen arbitrarily. The
geodesic was computed several times using a range of equal
relative and absolute numerical tolerances rel and abs from
10−20 to 10−2 in 40 steps. The differences between the
numerical results and the known analytical solution are shown
in Figure 4. We see that both in the intrinsic two-dimensional
and the constrained three-dimensional case, the numerical
curves converge toward the analytical solution linearly with the
tolerance parameters. The convergence saturates at tolerance
parameters ~ -10 15 when the relative precision floor of the
double precision floating point numbers is reached.

Figure 3. Definition of the angles θ and χ in the three-dimensional rest frame
of the fluid. Also shown are the local reference direction b, the direction of the
geodesic k and the local vertical polarization direction V . The vectors ṽ and h̃
are the spatial parts of ṽa and h̃a.
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5.1.2. Parallel Propagation in the Kerr Spacetime

The functionality for parallel transporting tensorial quantities
(see Sections 3.2 and 3.3) along a curve was assessed in the
context of a Kerr spacetime (see Section C.2.2) with a near-
extremal non-dimensional spin parameter c = 0.99 and mass
M=1. First, the initial conditions g q f=( ) ( )t r0 , , ,0 0 0 0

=
( )0, 10, 1, 0 and =( ) ( )u 0 1, 0, 0.01, 0.03a were fixed in the
BL coordinates (see Equation (56)). These initial values were
chosen to yield a generic timelike geodesic, and to avoid
special cases such as equatorial geodesics, but were otherwise
chosen arbitrarily. The geodesic was then augmented by
including the metric gab and a Lorentz frame { }E E E E, , ,t x y z as
quantities to be parallel transported. The geodesic was then
computed until l = 990 to yield several complete orbits
around the black hole, using tolerances  = = -10abs rel

10.
Finally, the parallel transported values were evaluated for
accuracy by comparing to analytic expectations.

Figure 5 shows the orbit of the geodesic. It also depicts
magnitudes of the maximum difference D∣ ∣gmax ab of the
components of the parallel transported metric with respect to
the analytic expression, both computed in the ingoing KS chart.
Also shown are the absolute values of all the pairwise inner
products of the parallel propagated Lorentz frame which should
be identically zero. From the figure, we see that the errors in all
of these conserved quantities increase in a secular fashion,
while the single step errors are below the set numerical
tolerance. This is an expected and well-known behavior for
non-symplectic numerical integration methods, such as the
fifth-order Dormand–Prince scheme used in ARCMANCER,
which does not respect the geometric structure of the phase
space (Hairer et al. 2008). Symplectic methods for the
inseparable Hamiltonians occurring in geodesic propagation
have been discovered recently (Pihajoki 2015), but these
are not yet available in ODEINT. In general, the secular

accumulation of integration error poses no problem for the
applications we demonstrate in this paper. However, for
integrations over long periods of time, such as for computing
dynamics of massive particles orbiting a black hole, a
symplectic method for inseparable Hamiltonians might need
to be implemented.
The accuracy and performance of both the curve propagation

and parallel transport functionality were also assessed as a
function of the geodesic and the coordinate chart. To this end,
we set up an image plane at q= = ( )r 10 , 500

5
0 in the BL

coordinates of a Kerr spacetime with c = 0.95 and M=1.
From the image plane, null geodesics were propagated
backwards from l = 0 to l = - r2 0 or until intersection with
a surface slightly outside the event horizon, defined by
=r r1.03 H , where rH is the event horizon radius. This radius

was chosen since the computation in the BL and ingoing KS
coordinates must be terminated before the event horizon itself
(see Figure 2). The geodesics were computed three times, each
time fixing the chart (automatic chart selection disabled) to
either ingoing KS, outgoing KS, or the BL chart. Standard
tolerances of  = = -10rel abs

10 were used. We then computed
the maximal absolute errors in the value of the curve
Hamiltonian, = =( )H x k k k, 0a

a , and the trace gaa of the
parallel transported metric along the geodesics and plotted
these on the image plane, in addition to the number of
integration steps N. The results are shown in Figure 6.
From the figure, it is evident that the outgoing KS

coordinates offer significantly better numerical performance
than the ingoing KS coordinates or the BL coordinates. This is
not surprising, since the outgoing KS chart is adapted to
radially outgoing null geodesics. As a consequence, the more
radial the geodesic is, the more nearly a straight line it is in the
outgoing KS chart. In the figure, this can be seen as the
remarkable decrease in the maximal error and the number of
computational steps for the geodesics starting near the origin of
the image plane (see also Figure 2). On the other hand, the BL
coordinates are seen to perform significantly worse. This is
related to both the fact that the geodesic “wraps around” the
black hole near the event horizon (see Figure 2), but also the

Figure 4. Differences between the analytic and the numerically computed
geodesic on a spherical surface, fulfilling q f p=( ( ) ( )) ( )0 , 0 2, 0 and
q f =(˙ ( ) ˙ ( )) ( )0 , 0 1.0, 0.3 . Top-left panel: results computed using the intrinsic
two-dimensional metric. Shows maximal numerical errors along the curve in
the coordinate position q f( ), and the tangent vector q f(˙ ˙ ), as a function of the
tolerance   = =abs rel . Bottom-left panel: results computed in a three-
dimensional space using a constraint force. Shows maximal numerical errors
along the curve in the coordinate position q f( )r, , and the tangent vector
q f(˙ ˙ ˙ )r, , as a function of the tolerance. Right panel: the orbit of the curve in the

two-dimensional spherical coordinate chart. The solid black line segments in
the top and bottom left-hand panels are guides to the eye and show the identity
function  =( )f .

Figure 5. Left panel: the absolute values of the errors accumulated during the
parallel transport of the metric gab and a local Lorentz frame { }E E E E, , ,t x y z ,
computed in the ingoing Kerr–Schild coordinates. Right panels: the orbit of the
geodesic along which the parallel transport was computed, shown in ingoing
Kerr–Schild coordinates using xy (top) and xz projections (bottom). The black
circle shows the location of the event horizon.
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fact that the condition number (the ratio of the maximum to
minimum singular value) of the matrix of the metric
components scales as ( )r2 (see Section 3.5). In addition, the
coordinates are singular at the poles. All of these factors
combine to make the BL chart the most numerically
disadvantageous of the three. Finally, the ingoing KS chart
fares worse than the BL chart for the conservation of the
Hamiltonian, but better for the trace of the metric tensor and
number of steps taken. This is understandable, since these
coordinates are adapted to radially ingoing null geodesics, and
outgoing geodesics “wrap around” the black hole near the
event horizon twice as fast compared to the BL coordinates.
This is partly offset by the fact that the condition number of the
metric components is better behaved than for the BL
coordinates. The “wraparound” behavior is suppressed near
the poles of the black hole, which in the figure can be seen as
the slight decrease in the error of the metric trace around the

“north” pole of the black hole for the BL and the ingoing KS
coordinates.
The accuracy in general is seen to be consistent with the

given numerical tolerances. The outgoing KS chart in
particular provides excellent accuracy, with results much
better than even the set tolerances for nearly radial
geodesics. In addition, there is a factor of ∼10 difference
in the number of steps taken between the outgoing KS chart
and the BL chart, which was also directly reflected in the
computational time. The results strongly suggest that the
outgoing KS metric should be preferred in all codes
computing mock observations using geodesics emanating
from the vicinity of a Kerr black hole. Likewise, for studies
of radiation scattering from a black hole, ingoing KS
coordinates should be used for computing the incoming
radiation and outgoing KS coordinates for the scattered,
outgoing radiation.

Figure 6. Maximum absolute errors and the number of computational steps taken along null geodesics computed in a Kerr spacetime with a dimensionless spin
parameter c = 0.95. The errors are shown on an image plane situated at =r M100

5 and an inclination of q = 500 , in Boyer–Lindquist coordinates. Geodesics were
computed froml = 0 tol = - r2 0 or until intersection with a surface at =r r1.03 H , where rH is the Kerr event horizon radius. The computation was performed three
times with the chart fixed to either the outgoing Kerr–Schild (left column) or Boyer–Lindquist (middle column) coordinates, or the ingoing Kerr–Schild coordinates
(right column). Top row: maximum error in the value of the Hamiltonian =H k ka

a, where k a is the tangent of the geodesic. Middle row: maximum error in the trace
g a
a of the parallel transported metric tensor. Bottom row: number of steps, N, taken by the curve integration routine.
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5.2. Radiation Tests

We assessed the accuracy and convergence properties of
the ARCMANCER radiative transfer functionality by post-
processing a general relativistic magnetohydrodynamics
(GRMHD) simulation and by comparing to an existing
polarized radiative transfer code GRTRANS (Dexter 2016).
To facilitate an easy comparison, we used the same simulation
data used to test GRTRANS, as the data are conveniently
distributed with the GRTRANS code.5 The simulation data
used were computed with the GRMHD code HARM
(Gammie et al. 2003; Noble et al. 2006) and describe an
axisymmetric optically thin accretion flow around a Kerr
black hole with a dimensionless angular momentum of
χ= 0.9375. The black hole mass M and its accretion rate Ṁ
were set to the GRTRANS defaults for HARM, = ´M 4

M106 and = ´ -Ṁ 1.57 10 g s15 1 = ´ - -
M2.49 10 yr11 1.

Assuming in addition that the source is at a distance of
D= 8 kpc, these values approximate Sgr A*

(Dexter 2016),
although for this particular data set at the observed frequency
of ν= 230 Ghz the total computed flux of~13 Jy (see below)

is roughly three times too large compared to the observed
value of ∼3–4 Jy (e.g., Bower et al. 2015). The radiative
model was taken to be relativistic thermal synchrotron
radiation, using the updated formulae in Dexter (2016). The
electron and proton temperatures in the plasma were assumed
equal, and the ideal gas equation of state was assumed, also
corresponding to GRTRANS.

All mock observations were computed using a square image
plane with physical dimensions Î -[ ]x y L L, , , where =L
M13 , in the local Lorentz frame of a stationary observer with
= ( )E 1, 0, 0, 0t (see Section 3.6 and Appendix A.6.1). The

negative z-axis is pointed toward the origin of the BL
coordinates. The image plane was set at a distance =r M104

and an inclination of q = 50 (in BL coordinates), as in Dexter
(2016). Geodesics from the image plane were then computed
backwards in time from the image plane and the radiative
transfer computed at the observed frequency of n = 230 GHz
along these geodesics to form the final image. Numerical
tolerances for both the geodesic computation and the radiative
transfer computation were set to 10−10. These tolerances
guarantee that the accuracy during radiation transfer is governed
by the chosen sampling rate l lD max, where lmax is the total
range of the affine parameter over which the radiation transfer is
computed. This ensures that the convergence and comparison
results are not affected by the characteristics of the sampling
induced by time-step control.

5.2.1. Flux Convergence

First, we investigated the convergence of the total flux in the
Stokes variables =n n n n n( )I I Q U V, , , as the maximum step
size lD in the affine parameter and the image size P in pixels
per side were varied. For each pixel i, we computed the
observed flux

=
D D

n n ( ) ( )F I x y
x y

D
, , 19i i i, 2

whereD = D =x y L P2 is the physical size of each pixel and
D is the (non-cosmological) distance of the target. From the

pixel-by-pixel fluxes, the total integrated fluxes = ån nF Fi i,

were then computed.
The convergence results are shown in Figure 7. The general

trend is that the benefits of a smaller step size saturate quickly
for smaller-sized images, where the spatial sampling noise
dominates. Similarly, increasing the image size is only effective
up to the point where the noise from sampling of the
small-scale structures starts to dominate. For this particular
case, the benefit of increasing the image size beyond P=316
pixels per side is already marginal. At this size, a 0.1%
convergence is achieved at a maximum relative step size
of l lD = ´ -3 10max

3.

5.2.2. Comparison to GRTRANS

In addition to ensuring the consistency and convergence of
the ARCMANCER results, we performed a comparison to a
publicly available radiative transfer code GRTRANS using the
same HARM data set as above. Both codes were used to
compute a square image 400 pixels wide, as above. GRTRANS
was configured to take 2000 steps, which according to Dexter
(2016) should net a relative accuracy for total flux at the 10−3

level. Similarly, ARCMANCER was constrained to take steps of
at most l lD = ´ -3 10max

3, which should guarantee a
relative accuracy of better than 10−3 by the convergence results
above.
The resulting Stokes intensity maps computed with ARC-

MANCER are shown in Figure 8. In addition, Figure 9 shows the
relative differences in the Stokes intensities as computed by
ARCMANCER versus GRTRANS. In the left panel of Figure 9,
we see that the unpolarized intensity predicted by ARCMANCER
is consistently higher, and there is a clear difference in the
polarized results, especially in the Q and U components.
The reason for this discrepancy was traced to two separate

numerical issues. First, GRTRANS uses values for the gravitational
constant G and Boltzmann constant kB that were truncated to three
significant figures, while in ARCMANCER the CODATA 2014
(Mohr et al. 2016) values are used up to the known experimental
precision. Second, GRTRANS uses an approximation for computing
the cylindrical Bessel functions used in the relativistic thermal
synchrotron radiation model, Equations (B4) and (B14) in Dexter
(2016). The GRTRANS code, as well as some other codes, such
as that in Mościbrodzka & Gammie (2018), use first-order
approximations for the cylindrical Bessel functions, but at least in
this example case the approximations are not always valid
throughout.
If the same physical constants and Bessel function

approximations are used in ARCMANCER, the agreement both
in unpolarized and polarized intensities is excellent, as can be
seen in the right panel of Figure 9. The unpolarized and
polarized total intensities agree with GRTRANS to a relative
level of~ -10 3, and the pixel-by-pixel errors are below percent
level on average. There are a small number of high difference
outliers located either at regions where the absolute intensity
values are very small or at the strongly lensed rings of
emissivity. The former outliers are caused by numerical noise
and the latter mainly by spatial sampling noise, since the small-
scale structure in these rings is not resolved while simulta-
neously the emission is highly boosted, amplifying the
differences. However, it can be seen from the results in
Figure 7 and the numerical total fluxes tabulated in Table 1 that
these pixels make no significant difference in the observed
integrated fluxes.

5 The data is found in the file dump040, found online at https://github.com/
jadexter/grtrans/blob/master/dump040.

11

The Astrophysical Journal, 863:8 (30pp), 2018 August 10 Pihajoki et al.

https://github.com/jadexter/grtrans/blob/master/dump040
https://github.com/jadexter/grtrans/blob/master/dump040


For an interesting test case, we also ran the same test
scenario with all polarization effects disabled. That is, we set

a= = ={ } { } { }j r 0Q U V Q U V Q U V, , , , , , in J and M so that only the
unpolarized degrees of freedom were propagated. As shown in
Table 1, the resulting total flux is ~13% higher than in the
polarized case. This suggests that creating mock observations
of unpolarized flux can be misleading if polarization effects are
completely ignored.

6. Applications

The capability of ARCMANCER to compute radiation transfer
through an emitting and absorbing relativistic fluid (plasma)
was showcased in the previous section. In the following, we

present further applications of ARCMANCER in different
scenarios. The focus is on leveraging the capability of
ARCMANCER to work with all kinds of emitting and absorbing
surfaces, both moving and stationary.

6.1. Effects of Thin Accretion Disk Geometry

ARCMANCER makes it easy to compute mock observations
of emitting surfaces with different user-defined geometries.
Here, this feature is demonstrated through a toy model by
computing the changes on the observed spectropolarimetric
features caused by varying the opening half-angle β of a
geometrically thin but optically thick accretion disk around a
Kerr black hole.

Figure 7. Convergence of total Stokes fluxes (see Equation (19)) at n = ´230 10 Hz9 over a mock observation image (see text) when the relative integration step size
l lD max and mock image size P (width and height, in pixels) are varied. All differences are relative to a data set computed with P=1500 and l lD = -10max

4.
Differences are shown as density maps with the numerical value inset, with one map for each Stokes flux component, I, Q, U, and V.
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Often (e.g., Vincent et al. 2011; Bambi 2012; Psaltis &
Johannsen 2012; Dexter 2016), a thin disk is modeled in mock
observation simulations as an infinitely thin equatorial plane
around the black hole. For α-disk models (Shakura &
Sunyaev 1973; Novikov & Thorne 1973), this is in many
cases a satisfactory approximation. This is because the maximal
angle made by the disk photosphere and the symmetry plane is
b ~ ( ˙ )marctan 0.2 , computed in the Schwarzschild coordinates,
where =˙ ˙ ˙m M MEdd is the black hole accretion rate in units of
the Eddington accretion rate ṀEdd. However, for an accretion
rate of =ṁ 0.3, this maximal angle is already b ~ 4 , which
can be expected to have observable consequences. This is since
the maximal β in the Shakura–Sunyaev solution is found at
= ( )r M27 2 , where M is the black hole mass, which is in the

bright inner region of the disk.
Instead of the geometry of the α-disk model, which has a

photospheric surface profile dependent on the accretion rate, we
use a disk defined by a hyperbolic surface in the outgoing KS

coordinates,

b
=

+ -
- -( ) ( )S t x y z

x y a

r

z

r
, , ,

tan
1, 20

2 2 2

min
2

2

min
2 2

where c=a M is the normalized angular momentum of the
black hole, β is the half-opening angle of the hyperboloid, and
rmin sets the inner boundary of the disk, here fixed to the
innermost stable circular orbit (ISCO) of the black hole. The
choice of this surface is motivated by the intention to
investigate only the effects of geometry on the observable
properties while keeping the emission properties of the disk
otherwise fixed.
To compute the mock observation, we first set up an image

plane with physical dimensions Î -[ ]x y M M, 40 , 40 at a
distance of =r M104 (in BL coordinates). From this surface,
null geodesics were propagated backwards until they
intersected the disk surface or the event horizon. A

Figure 8. Observed specific Stokes intensities for an accretion flow around a rotating black hole with mass = ´ M M4 106 , dimensionless spin parameter
c = 0.9375, and accretion rate of = ´ - -

Ṁ M2.49 10 yr11 1. The mock observation was computed at n = ´230 10 Hz9 , using ARCMANCER. The x and y axes are
in units of GM c2, whereas the intensity values are given in cgs units of - - - -erg s Hz cm sr1 1 2 1.
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Figure 9. Left column: pixel-by-pixel relative difference between the Stokes intensities computed using ARCMANCER and GRTRANS, Winsorized to 95th percentile.
ARCMANCER results computed using exact Bessel functions (see text). Right column: same as above, but using the GRTRANS approximations for the Bessel functions
and fundamental constants in ARCMANCER. Note the very different color bar normalization between the left and right columns.
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PolarizationFrame was parallel transported with the
geodesic to enable Faraday rotation effects to be captured.
Points that hit the disk were given a blackbody spectrum n ( )B T
with a temperature T matching the Novikov–Thorne disk
model (Novikov & Thorne 1973; Page & Thorne 1974), using
mass = M M10 , accretion rate =˙ ˙m M0.3 Edd, and dimen-
sionless viscosity parameter a = 0.1. The intensity and the
linear polarization of the point were computed based on the
electron scattering atmosphere model given in Chandrasekhar
(1960), using the impact angle θ between the geodesic and the
disk normal, computed in the rest frame of the rotating disk
surface. The exact solution requires solving an integral
equation. We instead used the Padé approximants

m m m
=

+ -
´

n

n

( )
( )

I

S

1 2.3 0.3

2 1.19167
21

2

m m
m m

=
+ -
+ +

( )P 0.117126
1 14.9165 15.8923

1 22.2420 44.8893
, 22

2

2

where m q= ( )cos for the intensity Iν, normalized by the source
function Sν (in this example, =n n ( )S B T ), and the polarization
fraction P, respectively. Both approximations are accurate to
within 2% over the range m Î [ ]0, 1 . It should be noted that the
combination of a blackbody spectrum and a beamed intensity
profile is not fully self-consistent, since a genuine blackbody
emitter is isotropic. However, the combination serves to
illustrate the effects of an anisotropically emitting surface. In
addition, the spectral shape for thin accretion disks around
stellar mass black holes is in any case well described using a
diluted blackbody (Davis et al. 2005).

To construct the image from these data, instead of running
full radiation transfer, the radiation was assumed to propagate
in vacuum. This is not a particularly good assumption
physically, since the thin disks are expected to have a tenuous,
hot corona (e.g., Liang & Price 1977; Czerny & Elvis 1987),
but it was made so as to not add additional uncertainties and
keep the focus on the effects of changing disk geometry. The
values of the intensity and polarization were directly transferred
to the image plane after scaling the intensity by the redshift
factor and rotating the polarization to match the rotation of the
parallel transported PolarizationFrame. This computa-
tion was repeated for seven values of the disk opening angle
from β=0°.001 to β=25° and three observer inclination
angles i=10°, 35°, and 60°. The results are collected in
Figures 10 and 11, which show mock images of the two
extreme cases (β=0°.001, β=25°) and the polarization
spectra for all the computation runs.

The effect of the disk opening angle is clearly seen in
Figure 10, which shows specific intensity maps as seen by an
observer at an inclination of = i 60 for the extreme opening
angles of β=0°.001 and β=25°. The intensity patterns differ
significantly, with most of the emission coming from the
opposite side of the disk for the disk with the larger opening
angle. In addition, the structure of the ring caused by radiation
that has traveled around the black hole once is noticeably
changed by the increased disk thickness (cf. Luminet 1979).
Despite the visual differences, Figure 11 shows that the shape
of the spectra obtained from the integrated emission is hardly
changed at all, and as such, the shape of the observed spectrum
is not very sensitive to the disk geometry in this example.
Figure 10 also shows a significant difference in polarization

patterns, with the large opening angle disk exhibiting a large
asymmetry between the upper and lower halves of the mock
observation image. This is caused by a purely geometrical
effect, wherein the geodesics emanating from the opposite side
of the disk from the observer’s point of view are more closely
aligned with the local disk surface normal. For the geodesics
coming from the observer’s side of the disk, the situation is the
opposite. The polarization fraction of the electron scattering
atmosphere model is strongly dependent on the angle of the
geodesic with respect to the disk normal, with stronger
polarization for lower incidence angles. The graphs of the
degree of polarization,

=
+ +

( )P
Q U V

I
, 23

2 2 2

and the polarization angle,

y = ( ) ( )U Q
1

2
arctan , 24

in Figure 11 show that, unlike for intensity, the polarization
asymmetry does not average out. Indeed, for the largest
observer inclination (60°) shown in Figure 11, we see that there
is a strong dependency of the degree of net polarization on the
disk opening angle β. A similar but weaker effect is seen also
for the observer inclinations i=10° and i=35°. Figure 11
also shows the behavior of the net polarization angle ψ. With
all observer inclinations, a similar behavior of rotation of the
polarization angle at high photon energies is seen. However,
for these model parameters, the rotation mainly occurs at the
high energy end of the spectrum, where the exponential cutoff
makes the effect hard to observe in practice.
The changes in polarization with observation frequency

described above, for β∼0, are consistent with those of
Schnittman & Krolik (2009), who studied an infinitely thin disk
using a Monte Carlo approach. However, for a physically more
realistic result, the accretion disk corona, as well as the
radiation returning to and reflecting from the disk, needs to be
taken into account, as in Schnittman & Krolik (2010). In
addition, here we have shown that the geometry of the optically
thick part of the disk cannot be ignored, which was an
assumption in Schnittman & Krolik (2010). Combining the
effects of the geometry with the effects of the corona and the
returning radiation is straightforward using ARCMANCER and
will be investigated in a future work.

Table 1

Total Integrated Fluxes as Computed with ARCMANCER in the Test Scenario
Depicted in Figures 8 and 9, Relative to the Values Obtained with GRTRANS

I Q U V

ARCMANCER

1.0083 0.98675 1.1671 1.0054

With GRTRANS compatibility
1.0009 1.0029 0.99690 1.0023

With no polarization
1.1264 0 0 0
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6.2. Neutron Stars

Another natural application of user-definable surfaces is the
imaging of neutron stars. A solid surface is an excellent
approximation for the radiating atmosphere of a neutron star,
since the atmospheric thickness is on the order of ∼10 cm,
whereas the radii of the neutron stars are in the range of
∼10 km (see e.g., Potekhin 2014 for a review). Thus,
terminating geodesics on the top of the atmosphere and using
a separate atmospheric model to provide the (angle-dependent)
specific intensity and polarization as initial conditions are
attractive possibilities.

The use of a numerical geodesic propagation code such as
ARCMANCER is further warranted due to the fact that a rotating
neutron star is not exactly spherical but oblate, and the
spacetime near the star cannot be exactly described by the Kerr
metric (Stergioulas 2003; Bradley & Fodor 2009; Urbanec
et al. 2013). Both complications are difficult to take into
account when using fully analytic approaches, such as in, e.g.,
Pechenick et al. (1983), Strohmayer (1992), Miller & Lamb
(1998), Poutanen & Gierliński (2003), and Lamb et al. (2009b),
where the neutron star is modeled as a spherical surface in a
Schwarzschild spacetime. The reason is twofold: the intersec-
tions of geodesics with the oblate surface are much more
involved to compute (but not impossible; see Morsink
et al. 2007; Lo et al. 2013; Miller & Lamb 2015; Stevens
et al. 2016), and since Carter’s constant (Carter 1968) of the
Kerr solution is not available, the geodesics themselves cannot
be analytically solved even in quadrature. Another benefit of
using a fully covariant approach throughout is that the pitfalls
of trying to combine special relativistic and general relativistic
effects separately in an ad hoc way (as done in e.g., Lo et al.
2013) are avoided. For example, see Nättilä & Pihajoki (2018)
and Lo et al. (2018) for a thorough discussion of an error in the
calculation of the observed flux in the ad hoc approach that has

gone undetected for years. Finally, incorporating polarization
in an analytic geodesic propagator is only possible for Kerr
(and Schwarzschild) spacetimes, but even then it is not trivial
(see Viironen & Poutanen 2004; Dexter 2016). However,
polarization data for this application are critical, since for small
hot spots there is a severe degeneracy in the unpolarized pulse
profile between the spot colatitude qs and the observer
inclination i (Poutanen & Gierliński 2003).
In this section, we use ARCMANCER to assess the effects of

the oblateness of the neutron star surface and the deviation of
the neutron star spacetime from the simple Schwarzschild
spacetime on the radiative transfer calculation. For this
purpose, we use the AlGendy–Morsink (AGM) form of the
Butterworth–Ipser spacetime (AlGendy & Morsink 2014;
see also Appendix C.3). The AGM spacetime describes the
surroundings of a rotating neutron star, taking into account the
oblate shape of the star. The spacetime is parametrized by
the dimensionless rotational parameter W = W -¯ R Me

3 2 1 2 and
the compactness parameter =x M Re, where Ω is the angular
velocity of the rotation as seen by a distant observer, and M

and Re are the mass and the equatorial radius of the star,
respectively. The oblate shape of the star is obtained from
Equation (69).
As an example case, we studied a rotating neutron star with

mass = M M1.6 , equatorial radius =R 12 kme , and
rotational frequency of n = 700 Hz, with pnW = 2 . The high
value of the spin was chosen to accentuate the effects of
oblateness, yielding from Equation (70) a flattening of
= - ~f R R1 0.09p e , where Rp and Re are the polar and

equatorial radii of the star, respectively. However, the high spin
value is still within the observed range for neutron stars
(Hessels et al. 2006). Similarly, the mass and the radius are
well within the observed and inferred limits (Özel & Freire
2016; Steiner et al. 2016; Alsing et al. 2018). Using

Figure 10. Specific intensity maps at n = ´8 10 Hz17 of a thin Novikov–Thorne model around a M10 Kerr black hole with a dimensionless spin parameter
χ=0.7. The disk model is computed with α=0.1 and =ṁ 0.3, and the observer inclination is = i 60 from the disk symmetry axis. The disk opening angles are
β=0°. 001 and β=25° for the left and the right panels, respectively. The direction of the observed linear polarization is shown by the gray lines, with the degree of
linear polarization proportional to the length of the line. Both panels are computed with a resolution of 600 pixels per side. The intensities are in cgs units, i.e.,
erg s−1 cm−2 Hz−1 sr−1.
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ARCMANCER, we computed surface maps of the flux and
polarization characteristics, again assuming that the emission
originates from an electron scattering atmosphere, using
Equations (21) and (22). This is a good approximation for
neutron stars where the emission originates from thermonuclear
outbursts on the surface (see e.g., Suleimanov et al. 2011 and
the references therein). However, we note that the results can
be extrapolated on a more qualitative level to shock-heated
accretion-powered hot spots as well (see, e.g., Basko &
Sunyaev 1976; Lyubarskii & Syunyaev 1982; Viironen &
Poutanen 2004). Otherwise, the radiation transfer is computed
as in Section 6.1.

The computations were repeated three times: for an oblate
star using the AGM spacetime (hereafter, AGM+Obl), for an
oblate star using the Schwarzschild spacetime (Sch+Obl), and
for a spherical star in the Schwarzschild spacetime (Sch+Sph).
The results are shown in Figures 12–15. Figure 12 shows the
behavior of n nI S , the specific intensity divided by the source
function, and the polarization over the star surface, computed
using the AGM spacetime at observer inclinations of = i 20 ,
50°, and 90°. The combination of Doppler boosting and the
strong angular dependence of the electron scattering atmos-
phere yields an intensity that varies significantly over the
neutron star surface. The net polarization is high only near the
edges, where the impact angle is large. Figure 12 also shows
two possible paths of constant colatitude hot spots, assuming
that the star is rotating around the vertical axis. From the figure,
it is then easy to appreciate that a rotating hot spot should
exhibit a large periodic variation in the observed polarization
angle. This variation can be directly seen in Figure 15, which is
consistent with the results in Viironen & Poutanen (2004).

Figure 13 shows the difference in normalized intensity
n nI S , degree of polarization, and polarization angle when
the computation is performed using the AGM metric versus the
Schwarzschild metric (i.e., AGM+Obl versus Sch+Obl). The
effects of the rotation become significant only near the star, and
consequently, the differences stay moderate for the most part,
below ∼10% for the intensity and below ∼2% for the degree of
polarization. There are areas of larger differences, but these are
concentrated on the edges of the visible disk of the neutron star,
and their total area is small. The differences in the polarization
angle are larger, around ∼20° overall. There are very large
differences near the point where the radiation was emitted
toward the zenith in the frame of the neutron star surface, but
this area corresponds to vanishing polarization, and as such,
these differences are unobservable.
In contrast, Figure 14 displays the same differences but

between computations performed using an oblate star versus a
spherical star, both in Schwarzschild spacetimes (i.e., Sch+Obl
versus Sch+Sph). The spherical star was given a radius equal
to the equatorial radius of the oblate star. In this case, the
differences in all quantities are much more pronounced. This is
not a surprise, since a change in the shape of the star affects the
redshift distribution on the surface due to variations in local
surface gravity. These differences become even more evident
when one looks at Figure 15, which shows two examples of
light curves and the time-varying degree of polarization and
polarization angle for a rotating hot spot. First, the pulse and
polarization profiles closely match those obtained by Viironen
& Poutanen (2004) for the Sch+Sph case and confirm that the
observational degeneracy in unpolarized flux between observer
inclination and spot colatitude is lifted by the polarization
measurements. However, from the figure, it can be seen that the

Figure 11. The mean intensity in cgs units (top panel), normalized degree of polarization (middle panel), and the polarization angle (bottom panel) as a function of
frequency, obtained from the integrated Stokes intensities of mock images of a Novikov–Thorne disk around a Kerr black hole, with parameters as in Figure 10. The
lines correspond to the different disk opening angles β, shown in the legend.
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approximation of a spherical star produces results that differ
significantly both in intensity and polarization properties from
the result obtained using an oblate surface. In addition, there is
a small but non-negligible difference between the results
obtained using the AGM metric versus a plain Schwarzschild
metric. Similar results for the unpolarized flux were obtained
already in Psaltis & Özel (2014), although for an isotropically
emitting atmosphere.

Based on our preliminary study, we can conclude that the
error introduced when computing the polarization angle with
the Schwarzschild spacetime approximation is largest when
both the observer inclination and the spot colatitude are small.
Likewise, the error in the degree of polarization is largest when
the spot is near the equator, i.e., spot colatitude is close to
∼90°. We conclude that to obtain polarized pulse profiles that
are accurate to below the ∼1% level, it is necessary that the
rotation and the geometric shape of the star are both accurately
modeled. In practice this means that the analytic results based

on the Schwarzschild spacetime such as in, e.g., Weinberg et al.
(2001), Viironen & Poutanen (2004), Lamb et al. (2009a), Lo
et al. (2013), and Miller & Lamb (2015) should be used with
caution. However, to actually reach the ∼1% level of accuracy,
other systematic errors in, e.g., modeling the emission from the
neutron star and its surrounding environment would also need
to be resolved.

6.3. Binary Black Holes

To further explore the possibility of using arbitrary metrics
and multiple surfaces that may also move, we consider a toy
model of an accreting black hole with a secondary black hole
companion. To set up the problem, we use an approximative
metric, constructed using the outgoing KS form of the Kerr
metric, Equations (57) and (60). In the limit of zero spin,
a=0, the metric is

h= + ( ) ( ) ( ) ( )x xg F M r l l, , 25ab ab a b

Figure 12. Surface maps of an oblate rotating neutron star with an equatorial radius =R 12 kme , mass = M M1.6 , and rotational frequency ν=700 Hz, computed
with ARCMANCER. The top row shows n nI S , or the specific intensity normalized with the source function (see Equation (21)) as a color map, while the direction of
linear polarization is indicated by black lines. The middle and bottom rows show the linear polarization fractions Q/I and U/I, respectively. The dashed and dotted
lines indicate contours of constant colatitudes of 20° and 50°, respectively (cf.Figure 15). Columns from left to right show results with observer inclinations of
= i 20 , 50°, and 90° with respect to the rotational axis of the star.
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where M is the mass of the black hole, = ( )x x y z, , ,

= -( ) ( )F M r
M
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and = + +r x y z2 2 2 2. To this form we add a perturbation
representing a distant second black hole moving at a slow
coordinate velocity. Taking the spatial position of the second
black hole to be a function ( )x t2 of the coordinate time, we set

h= +
+ - -

( ) ( ) ( )

( ) ( ) ( ) ( )

x x

x x x x

g F M r l l

F M r l l

,

, , 28
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where M1 and M2 are the masses of the primary and secondary
black holes, respectively, x2 is the spatial position of the
secondary black hole, and = -( )r x x2

2
2

2 + - +( )y y2
2

-( )z z2
2.

The metric(28) is not a solution of the vacuum Einstein field
equations, for which no exact dynamic binary black hole
solution is known.6 For example, the metric(28) does not
contain the gravitational wave component expected from the
motion of multiple gravitating bodies. However, in the limit
~M 02 and ~( )xd t dt 02 for all t, the perturbation caused by

the secondary is small and remains small, and the gravitational
wave component is negligible, and in this sense the approx-
imation is reasonable. For black hole binary systems with
smaller separations and larger velocities, a discretized metric
from a full GR simulation should be used with ARCMANCER.
More accurate analytical approximations, such as from
Mundim et al. (2014), can also yield satisfactory accuracy

Figure 13. Surface maps for a rotating neutron star with =R 12 kme , = M M1.6 , and ν=700 Hz, computed with ARCMANCER. The maps indicate relative
differences between a solution using the AlGendy–Morsink spacetime vs. using the Schwarzschild spacetime. The same oblate shape of the neutron star is used for
both metrics. The rows show the relative difference in normalized intensity (see Equation (21)) n nI S (top row), degree of polarization P (middle row), and
polarization angle ψ (bottom row). Columns from left to right show results with observer inclinations of i=10°, 50°, and 90°.

6 However, there are a number of known static solutions for multiple black
holes. Examples include any number of Schwarzschild black holes in a
collinear configuration (Israel & Khan 1964) or any number of maximally
charged Reissner–Nordström black holes in any configuration (Papapetrou
1945; Majumdar 1947).
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(Sadiq et al. 2018), but the approximative analytical metrics are
on the other hand algebraically complex.

We set = ´ M M5 101
6 , representing an SMBH, and

=M M0.052 1, which falls in the intermediate mass black hole
(IMBH) range. Otherwise, we set up the system as in
Section 6.1, by placing an image plane with physical
dimensions -[ ]M M50 , 501 1

2 at =R M107 1 at an observer
inclination of = i 60 . The secondary black hole is set on a
rectilinear coordinate path = +( )x x vt t2 2,0 2, where

d f d f
d f

= - -
´ +
(

) ( )

x L i i

L i i

sin cos cos , sin ,

cos sin cos , 29

v v

v

2,0

f f f= -( ) ( )v v i icos sin , cos , sin sin . 30v v v2 2

Here, δ is the apparent offset of the secondary’s path, =L
d-r2,0

2 2 is the orthogonal distance from the primary to the
image plane, r2,0 is the minimum distance between the black
holes, v2 is the velocity of the secondary, and fv is the angle
between the path of the secondary and the image plane

x-axis. For this particular example, we set =r M102,0
3

1, d =
- M4 1, f = 25v , and = ´ -v 3.162 10 2. These initial condi-
tions approximately correspond to an IMBH on a circular orbit
around an SMBH, a situation that could possibly follow a
merger of a more massive galaxy with a dwarf galaxy (Graham
& Scott 2013). In order to have something to make a mock
observation of, the primary black hole was given an infinitely
thin Novikov–Thorne accretion disk, with a = 0.1 and an
accretion rate =ṁ 0.01 in units of the Eddington accretion
rate. Geodesics were then propagated backwards in time from
the image plane starting at 150 different values of the
coordinate time, evenly distributed in -[ ]M M3000 , 30001 1 .
For each set of geodesics, mock images, integrated fluxes, and
polarization fraction and angle were computed.
The resulting light curves are shown in Figure 17, with

selected resolved frames shown in Figure 16. The main effect
of the passing secondary is a strong enhancement by a factor of
∼2 of the observed flux from the accretion disk of the primary,
caused by gravitational lensing. The flux curve has a clearly

Figure 14. Same as Figure 13, but showing the relative differences between an oblate neutron star surface, corresponding to the rotational rate of n = 700 Hz, and a
spherical surface, both in the Schwarzschild spacetime. The oblate surface has a flattening of ~f 0.09, so that the polar radius is~91% of the equatorial radius. The
spherical surface has a radius equal to the equatorial radius of the oblate surface.
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non-sinusoidal shape, where, after the main peak, there is a
pronounced shoulder. The double-peaked structure results from
the lensing of the two main visible arcs of the primary accretion
disk. The difference is that the major peak has a larger
contribution from the Doppler-boosted side of the primary
accretion disk. This asymmetry is also clearly visible in the
curves for polarization fraction P and angle ψ; see
Equations (23) and (24). The polarization fraction curve shows
a clear two-peaked shape, with a sharp peak followed by a
sharp trough. The polarization angle mirrors this behavior, with
a maximum rotation of ∼7°.

The light curves were also computed with a smaller value of
observer inclination of i=5°, also shown in Figure 17. The
results show that the double-peaked structure of the light curve is
more evident toward i=0°, whereas the relative amount of
polarized flux becomes significantly smaller. Both effects are to
be expected considering the increased symmetry when  i 0 .
The changes in the degree of polarization and the polarization
angle are more pronounced as well, but due to the negligible
relative amount of polarized flux, these are unlikely to be
detectable.

Over longer timescales, the recurrent lensing by the
secondary produces a periodic signal, which can be clearly
observable over the baseline brightness of the primary
accretion disk, as seen from Figure 17. However, the signal
is strongly non-sinusoidal, which may reduce observability in
periodicity searches based on periodogram techniques. On the
other hand, if a series of accretion disk lensing events was
observed, it should be possible to use lensing mock observation
simulations to obtain independent constraints on the secondary
black hole mass and the orbital parameters.

Finally, we note the interesting fact that the double-peaked
light curve is reminiscent of the light curve of the periodic
binary blazar OJ287, which exhibits a long succession of

strongly non-sinusoidal double-peaked outbursts every ∼12
years (Sillanpaa et al. 1988; Valtonen et al. 2008). Many
different physical mechanisms for the outbursts have been
proposed, such as tidally enhanced accretion rate (Sillanpaa
et al. 1988), accretion disk impacts (Lehto & Valtonen 1996;
Pihajoki 2016), and changes in the relativistic jet geometry
(Katz 1997; Villata et al. 1998). Accretion disk lensing adds yet
another possible outburst mechanism.

7. Conclusions

In this paper, we have presented ARCMANCER, a C++/
Python library for the numerical computation of curves and
tensor algebra in arbitrary Riemannian and semi-Riemannian
spaces. The library is designed to be easy to extend as well as to
incorporate in new or existing applications. ARCMANCER offers
several novel and useful features. Many of these are built
around ARCMANCERʼs seamless support of multiple simulta-
neous coordinate charts. For example, ARCMANCER offers
automatic conversion of coordinates and tensors of arbitrary
rank between different charts. This conversion works even in
the case where no explicit transformation is provided between
two given charts, as long as the graph formed by all of the
available charts and transformations contains a path connecting
the two charts. The coordinate chart support is also used in the
library to automatically pick the numerically most appropriate
chart to integrate the equations of motion for curves. ARCMAN-
CER can also be used for numerical tensor algebra, supporting
all usual tensor operations for tensors of arbitrary rank and
dimension. In addition, ARCMANCER can parallel propagate
arbitrary tensors and user-defined quantities along curves. In the
four-dimensional case, the ARCMANCER library contains a suite
of tools designed for solving problems of general relativistic
radiative transfer using the ray-tracing approach. These include

Figure 15. Pulse profiles for thermonuclear-powered hot spots rotating with the surface of a neutron star with =R 12 kme , = M M1.6 , and ν=700 Hz. The spot
has an angular radius of 5° and a constant colatitude of either 20° (left panel) or 50° (right panel). In both panels, the top row shows the integrated flux normalized to
the maximum value, assuming a constant spot temperature. The middle and bottom rows show the integrated polarization fraction and polarization angle, respectively.
Three cases are shown: oblate star in the AGM spacetime (blue curve), oblate star in the Schwarzschild spacetime (green curve), and spherical star in the
Schwarzschild spacetime (orange curve).
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a coordinate-invariant method for generating image planes, easy
interface for supplying user-defined fluid and radiation models,
and a support for geometric objects, which can be used, for
example, to model radiating surfaces or define limits of
computational domains. For convenience, the library can also
work with a Lorentzian metric signature. All of these features
are thoroughly documented in the code itself, in the
documentation automatically generated from the code and via
several example applications provided with the library. In
addition, the library Web site7 provides instructions for
installation and getting started.

In this presentation of the ARCMANCER library, we have
included a description of the internal workings of the code, as
well as numerous tests of the accuracy of the code. The
ARCMANCER code was found to fulfill theoretically expected
convergence properties. It also produced very similar results to

an existing ray-tracing code, GRTRANS, when applied to a
demanding mock observation scenario of a hot accretion flow
around a Kerr black hole. Notably, the code tests demonstrated
the critical importance of choosing the right coordinate system
for the chosen problem and the necessity of being able to
change coordinate systems during the numerical evolution of
the problem.
The code tests were followed by applications of the code to a

variety of astrophysical scenarios, showcasing the flexibility of
the ARCMANCER code. The first example application was an
investigation of the effect of the opening angle of an optically
thick but geometrically thin accretion disk to its observable
properties. While the unpolarized flux was essentially invariant
with respect to the disk opening angle, the degree of
polarization and angle of polarization were found to signifi-
cantly depend on it.
In the next application, ARCMANCER was used to study

observational properties of hot spots on rotating neutron stars.
We compared three different commonly used models. In the

Figure 16. Resolved mock observations at n = ´5 10 Hz16 of a simulated accreting binary black hole system with a primary of mass = ´ M M5 101
6 and a

secondary of mass =M M0.052 1 (see the text for orbital parameters). The primary has a geometrically thin and optically thick Novikov–Thorne accretion disk. The
images show intensity maps of the unpolarized Stokes I from the accretion disk, with the coordinate time increasing from left to right and top to bottom. The x and y

axes are in units of GM c1
2, and the intensities are in cgs units.

7 https://bitbucket.org/popiha/arcmancer
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Figure 17. Polarized light curves at n = ´5 10 Hz16 of a simulated accreting binary black hole system (see text) for observer inclinations of = i 60 (top two panels)
and 5° (bottom two panels). The horizontal time axis is shown in units of GM c1

3. Gray vertical lines indicate the times of the resolved frames shown in Figure 16.
Top and third panels show the integrated polarized fluxes of Stokes components I, Q, and U relative to the respective maximum flux, as a function of coordinate time.
Second and bottom panels show the polarization fraction P and polarization angle ψ as a function of coordinate time. For the bottom panel, the Q and U curves have
been smoothed with a nine-point second-order Savitzky–Golay filter (Savitzky & Golay 1964) to reduce the numerical noise in P and ψ curves caused by the very
small net polarization.
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AGM+Obl model, the neutron star surface was modeled using
a physical oblate shape with an exterior spacetime metric that
took the oblate shape and rotation into account. This physically
accurate model was compared with two more approximate
models: Sch+Obl, in which the exterior metric was changed to
a Schwarzschild metric, and Sch+Sph, in which in addition the
shape of the neutron star was taken to be spherical. Our results
show that the oblate shape of the star makes a large
contribution to the shape of both polarized and unpolarized
flux curves and must be taken into account. However, we also
find that in order to obtain polarized light curves with
accuracies better than the ∼1% level, the Schwarzschild metric
must be abandoned in favor of more physically motivated
alternatives.

Finally, we used ARCMANCER to create mock observations
of an accreting binary black hole system, consisting of a
primary black hole with an accretion disk, together with an
orbiting secondary black hole. The application demonstrated
how ARCMANCER can easily handle a more complex geometry
where light rays can be terminated on multiple surfaces (two
event horizons and one accretion disk), some of which may
move (the secondary event horizon). We found that the lensing
caused by the orbiting secondary can produce clearly
observable changes in the observed polarized and unpolarized
flux from the accretion disk of the primary black hole.
However, the changes in polarized flux are strongly dependent
on the observer inclination due to the geometry of the simple α-
disk model we used.

In the future, we expect to use the ARCMANCER library to
build a comprehensive radiative transfer application for
investigating complex accretion flows around compact objects.
In addition, the capabilities of the library itself will be
extended. Planned features include built-in support for outputs
of other GRMHD codes besides HARM, support for easy
serialization of the code data structures, and more built-in
radiation and fluid models. The coordinate chart system will
also be enhanced with support for defining domains for the
charts and improving the numerical behavior of chart-
dependent operations such as curve interpolation.

Ray tracing is expected to become even more important in
the future, driven by the increase in observational capabilities,
especially with respect to polarized light, together with the
ongoing prodigious increase in computational resources. We
are confident that ARCMANCER will prove to be a highly useful
and adaptable tool in this upcoming era.

P.P., M.M., and P.H.J. acknowledge support from the
Academy of Finland, grant No. 274931. This research has
made use of NASA’s Astrophysics Data System.

Software: Eigen (http://eigen.tuxfamily.org/), Boost (http://
www.boost.org/) Pybind11 (https://github.com/pybind/
pybind11), Numpy (van der Walt et al. 2011), Scipy (https://
www.scipy.org/), Matplotlib (Hunter 2007).

Appendix A
Differential Geometry and General Relativity

The ARCMANCER library has capabilities beyond ray tracing
and radiative transfer in four-dimensional Lorentzian space-
times. The library offers a variety of tools for computational
differential geometry in Riemannian or semi-Riemannian
manifolds of arbitrary dimension, within the constraints of
available memory and computing power. In the following, we

give a short, self-contained review of the concepts of
differential geometry that are implemented and used in the
ARCMANCER library. For practical reasons, the exposition is
kept brief and mathematical details are omitted where possible.
The discussion is styled after a number of texts, namely Lee
(2013, 2006), O’Neill (1983) and Choquet-Bruhat et al. (1982),
in which the interested reader can find the omitted details.

A.1. Manifolds and Coordinate Charts

The basic building block of differential geometry is the
manifoldM, which can be intuitively understood as a space which
locally “looks like” n, the n-dimensional Euclidean space. More
concretely, each manifold comes with an atlas of charts
(coordinate systems) f É M U:i i

n, defined on open sets Ui

of M. Using a chart f, an abstract point Îp M is transformed
into its coordinate representation ¼ Î( ( ) ( ))x p x p, , n n1 , where

p f= ◦x j j is the projection to the jth coordinate. We say that the
dimension of M is =( )M ndim and use the shorthand
f = ¼( )x x, , n1 . A change in coordinates then corresponds to
the transition map  f f -◦ :i j

n n1 , which changes a tuple of n
coordinates to another tuple of n coordinates describing the same
point. ARCMANCER requires the manifold M to be differentiable,
meaning that the maps f f-◦i j

1 are differentiable. However, in the
following we assume smooth (infinitely differentiable) manifolds.

A.2. Tensors

The tangent space of M at point p, written TpM, is the space
of all vectors tangent to M at p. If =( )M ndim , then TpM is an
n-dimensional real vector space. The dual space of TpM,
written *T Mp and called the cotangent space of M at p, is the
space of all linear maps w T M:p p . These linear maps are
called one-forms. For each chart f = ¼( )x x, , n1 , at point p we

can define the vectors ¶ ¶
¶

∣ ≔i p x p
i

, called coordinate vectors.

The vector ¶ ∣i p points toward the direction where the ith
coordinate increases at p. The complete set of coordinate
vectors, ¶ ¼ ¶{ ∣ ∣ }, ,p n p1 , forms a basis for TpM, called the
coordinate basis. Any vector Îv T Mp can be written in terms
of its components in this special basis as = ¶ ∣v vi i p, where now

Îvi are the components of v in the chart f and the Einstein
summation convention has been assumed. Likewise, there
exists a set of one-forms, ¼{ ∣ ∣ }dx dx, ,p

n
p

1 , called the
coordinate one-forms, which forms a basis for *T Mp and makes

it possible to write any one-form *q Î T Mp in terms of its
components as q q= dxi

i. The coordinate vectors and one-
forms obey d¶ =∣ ( ∣ )dxi p j p j

i , where d j
i is the Kronecker delta

symbol. Together, the coordinate vectors and one-forms are
called the coordinate frame. The tangent and cotangent spaces
can naturally have bases other than the coordinate bases as well
(see Appendix A.6), but the coordinate basis is the default basis
used in ARCMANCER.
A rank (k, l) tensor can then be defined as a multilinear map

* *´ ´
  

T T M T M: p p

k times

× ´ ´ 
  
T M T Mp p

l times

. In general, the

factors TpM and *T Mp may be in any order, and the ordering is
important, but for convenience, we will use the ordering given
above. A rank ( )0, 0 corresponds to a scalar quantity, rank
( )1, 0 tensors are equivalent to vectors, and rank ( )0, 1 tensors
to one-forms. The components of a tensor at p in the coordinate
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basis can be directly found from

= ¼ ¶ ¼ ¶++ +
+ +


 ( ∣ ∣ ∣ ∣ ) ( )T T dx dx, , , , , . 31i i
i i i

p
i

p i p i pk k l

k k k l
k1

1 1
1

Using the components, a tensor can be locally defined as an
expansion

= ¶ Ä Ä¶

Ä Ä Ä
++ +

+ +






 ∣ ∣

∣ ∣ ( )

T T

dx dx . 32

i i
i i

i p i p

i
p

i
p

k k l

k
k

k k l

1

1
1

1

If instead of the chart f = ¼( )x x, , n1 we wish to use another
(overlapping) chart y = ¼( )y y, , n1 to represent the tensor T,
the components Î++ +

Ti i
i i
k k l

k

1

1 of a tensor must be transformed
accordingly. The new components turn out to be

=+ +
- -

+ + + + +
+

+
+ 





( ) ( ) ( )T T J J J J , 33i i

i i
j j
j j

j
i

j
i

i

j

i

j1 1
k k l

k

k k l

k

k

k

k

k

k l

k l

1

1

1

1

1

1

1

1

where f= ¶ ¶-( )/J y xj
i i j1 are the components of the Jacobian

J of the function y f-◦ 1 at point p, and similarly for the inverse
of the Jacobian -J 1.

The definitions above generalize to vector, one-form, and
tensor fields, which can be understood as functions which, for
each point p of M, pick a specific vector, one-form, or tensor,
respectively. In physics-oriented GR literature, all tensorial
quantities are usually tensor fields. In addition, a convention
called the abstract index notation (Penrose & Rindler 1987) is
often used. In this convention, for example, a rank ( )2, 3 tensor
field T can be written as T cd

abe. The number and ordering of the
upper and lower indexes is taken only to signify the number
and ordering of the factors TpM and *T Mp in the definition,
Equation (32), of the tensor. This approach makes it possible to
write all coordinate-invariant tensor operations tersely, without
specifying any underlying basis. In this paper, we use the
abstract index notation wherever possible.

A.3. Metric

A manifold may have a special rank ( )0, 2 tensor field called
the metric, usually written gab. The metric defines the inner
product of vectors á ñ =v w g v wa a

ab
a b and consequently a norm

=  ∣ ∣v g v va
ab

a b on each TpM. Intuitively, the metric defines
the distance between nearby points x and + Dx x as the norm of
the tangent vector approximated by Dx. In physics, the
components of the metric are often written in the form of a
line element ds2, essentially an expansion in terms of coordinate
basis tensors, as = Äds g dx dxij

i j2 . The signature of the metric
is the pair (p, q) of the number of positive and negative
eigenvalues of the matrix of components of gab (in any basis),
respectively, assuming + =p q n. If q=0, the metric and the
manifold are said to be Riemannian. For signatures of -( )n 1, 1
or -( )n1, 1 , the metric and the manifold are said to be
Lorentzian. In particular, GR is defined in terms of a four-
dimensional Lorentzian manifold. In this paper, Lorentzian
metrics are always assumed to be of type -( )n1, 1 , and in
particular for GR, this implies the +---( ) metric convention.

A choice of metric also defines a unique metric-compatible
zero-torsion connection ∇, often called the Levi–Civita
connection. A connection in general can be roughly said to
characterize which vectors of the tangent spaces of two nearby
points are to be considered equal, or alternatively, to yield a
vector field  YX describing the rate of change of the vector
field Y in the direction of the vector field X, called the (natural)
covariant derivative of Y with respect to X. Written in terms of

the coordinate vector fields, the connection is  ¶ = G ¶¶ ( )j ij
k

ki
,

where Gij
k are the Christoffel symbols (of the second kind). This

work only uses the Levi–Civita connection, the zero-torsion
property of which can be written as G = Gij

k
ji
k , and the metric

compatibility as  =g 0c ab . In terms of the metric, the
Christoffel symbols read

G = ¶ + ¶ - ¶( ) ( )g g g g
1

2
. 34ij

k km
i jm j im m ij

The covariant derivative can be generalized for any tensor
field T. Using the Christoffel symbols, the covariant derivative
of T with respect to X can be written in component form as

 = 

= ¶ + G

+ + G - G

- - G

¶






















(

) ( )

T X T

X T T

T T

T . 35

X
i

b b
a a

i
i b b

a a
b b
c a

c i
a

b b
a c

c i
a

c b
a a

b i
c

b c
a a

b i
c

i l

k

l

k

l

k

l

k

k

k

l

k

l

k

l

l

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

In the abstract index notation, the covariant derivative is written
simply as  =  

T X TX
c

c b b
a a

l

k

1

1 . The term covariant derivative of
T, without additional qualifiers, is often used to refer only to the
vector field independent part 

Tc b b
a a

l

k

1

1 . If =T 0X , we say that
T is parallel (transported) along the vector field X. This concept
can be extended to the case where X is a tangent vector field of
a curve γ; see below.
For semi-Riemannian spaces, the metric also divides vectors

at a point into three categories. A vector Îv T Mp is said to be
timelike if the inner product g v vab

a b is positive, null if it is zero,
and spacelike otherwise. The same classification can be
extended to vector fields V if the sign of the inner product is
the same everywhere on M.

A.4. Geodesics and Other Curves

For ray-tracing mock observations, the notion of curves and
especially geodesics on a manifold is essential. A curve γ can
be thought of as a map g É I M: . The curve defines a
vector field u a through l g l l=( ) ( )u d d along the curve.
This vector field can be understood as the velocity vector field
of the curve. The curve itself is a solution of

l
l

=  = 
( )

( )
du

d
u u u . 36

a

u
a b

b
a

b

If in particular  =u u 0b
b

a , the tangent vector of the curve is
parallel transported along the curve, and we say that the curve
is a geodesic. Equation (36) can also be written as

 = ( )u u f , 37b
b

a a

where the vector field f a is analogous to a force that causes the
curve to deviate from a straight path along the manifold. For
geodesics, f a=0, corresponding to the notion of geodesics as
the straightest possible paths. Written in terms of components
in a specific chart, Equation (37) reads

l
l

= -G +
( )

( )
du

d
u u f . 38

a

bc
a b c a

In this form, the equation can be solved numerically, as long as
the solution stays within the domain of the chart.
Generic tensorial quantities can also be parallel transported

along the curve. For a rank k + l tensor field 
Tb b

a a

l

k

1

1 , the
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equation of parallel transport is

 =  =



 ( )T u T 0, 39u b b

a a c
c b b

a ac

l

k

l

k

1

1

1

1

which in component form can be found from Equation (35)
with the substitution =X ua. Equation (39) can likewise be
directly solved numerically.

Finally, curves for which the tangent vector field u a is
always timelike, spacelike, or null, are called timelike,
spacelike, or null, respectively. This characterization is
important for geodesics, for which the tangent vector field
can never change their timelike, spacelike or null character. As
such, geodesics always fall in one of these categories.

A.5. Level Hypersurfaces

Manifolds may contain many kinds of submanifolds. A
particularly useful class of submanifolds are those defined by
level sets of functions, called level hypersurfaces. If S M: is
a smooth map, then the sets = Î =-≔ ( ) { ∣ ( ) }S S c p M S p cc

1

are submanifolds ofM for each c in the codomain of S if ¹∣dS 0p

for all Îp Sc. We can subsume the constant c in the definition of
the function S and take c=0, which is always assumed in the
ARCMANCER code. Furthermore, with a slight abuse of notation,
we use the function S defining the hypersurface to refer to the
hypersurface itself.

A level hypersurface divides the manifold M into two
disconnected subsets corresponding to regions where the value
of S is either negative or positive. In some cases, these may be
conveniently taken to be the “outside” and the “inside” of a
region bounded by the level hypersurface.

A.6. Local Frames

Tensor fields can also be expressed in terms of bases other
than the coordinate basis. A local frame defined in an open set
ÉU M consists of n vector fields ¼{ }E E, , n1 that form a basis

for TpM at each Îp U . For each local frame, there is a
corresponding local coframe of one-form fields w w¼{ }, , n1 for
which w d=( )Ei j i

j. The components of a rank (k, l) tensor


Tb b

a a

l

k

1

1 in terms of these bases can then be defined through (see
Equation (31))

w w= ¼ ¼
 ( ) ( )T T E E, , , , , . 40j j
i i i i

j j
l

k k
l1

1 1
1

The transformation from the components of a tensor in a
coordinate frame to components in terms of a local frame can
be found by first writing the local (co)frame in terms of the
coordinate frame as = å ¶a

a
aE Ei i and w w= åb b

bdxj j .
Using the multilinearity of an arbitrary (k, l) tensor 

Tb b
a a

l

k

1

1 in
Equation (40) then yields

å å w w=

´ ¼ ¶ ¼ ¶
b a

b b
a a

b b
a a

  


( ) ( )

T E E

T dx dx, , , , , , 41

j j
i i i i

j jl

k

l

k

k

l

l

k
l

1

1

1

1

1

1

1

1
1

where = ¼ ¶ ¼ ¶a a
b b b b

a a
 ( )T T dx dx, , , , ,

l

k
k

l1

1
1

1
are the compo-

nents of the tensor in the coordinate frame. From a
computational perspective, it is useful to note that the set of
numbers aEi can be interpreted as a matrix, for which the

corresponding set wb
j forms an inverse matrix. Equation (41) is

seen to resemble Equation (33), with these matrices taking the
place of the Jacobians.

Orthonormal local frames define a set of convenient
projections of TpM onto orthogonal complements at each
point p. A collection of k non-null basis vectors  =

Î = ¼{ ∣ }E T M j k1, ,i pj
defines a projection onto the sub-

space of TpM spanned by  through

å¼ =
=

( )
( )

( )
( )P E E

E E

E E
, , . 42i i b

a

j

k
i
a

i b

i
c

i c1

k

j j

j j

1

Similarly, a projection onto the orthogonal complement of this
subspace is defined via

åd¼ = -^
=

( )
( )

( )
( )P E E

E E

E E
, , . 43i i b

a
b
a

j

k
i
a

i b

i
c

i c1

k

j j

j j

1

For Lorentzian spaces, direct projections with respect to a
null vector k a do not work. However, given a unit timelike
vector u a, a projection onto the space orthogonal to both u a and
k a can be given through

d

d

= - -

= - + +

^( )

( )

P u k
u u

u u

s s

s s

u k

K

k u

K

k k

K

,

, 44

b
a

b
a

a
b

c
c

a
b

c
c

b
a

a
b

a
b

a
b

2

where = ^( )s P u ka
b
a b and =K u ka

a. In four dimensions, the
operator ^( )P u k, b

a is a projection onto a two-dimensional
surface on which the observed components of polarization are
defined. In this context, ^( )P u k, b

a is known as the screen
projection operator (Gammie & Leung 2012).

A.6.1. Lorentz Frames and Observers

In the case of a four-dimensional Lorentzian manifold, an
orthonormal local frame is often called a (local) Lorentz frame
or a tetrad. The tetrad can in general consist of any permissible
combination of null, spacelike, and timelike vector fields.
However, in this work, we use the term Lorentz frame to mean
a mutually orthonormal combination of one timelike vector, Et,
and three spacelike vectors, Ex, Ey, and Ez, defined at a point.
Since parallel transport preserves inner products, a parallel
transported Lorentz frame is still a valid Lorentz frame.
Observers in GR are characterized by a timelike curve γ, a

world line. An observer’s rest frame can then be defined as a
Lorentz frame for which the timelike basis vector is given by
the observer’s four-velocity, or g l l= ( )E d dt , and the spatial
triad { }E E E, ,x y z defines the observer’s choice of spatial
coordinate system. The values of physical quantities as
measured by the observer are obtained by expressing them in
the observer’s rest-frame basis.
For example, an important feature of GR is that angles

between vectors at a point is observer dependent. The angle θ
between vectors x a and y a as measured by an observer with a
four-velocity u a is then

q =
- ^ ^

^ ^ ^ ^

( )
∣( )( )∣

( )u x y
x y

x x y y
cos ; , , 45

a
a

b
b

c
c

where =^ ^( )x P u xa
b
a b and =^ ^( )y P u ya

b
a b.
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Appendix B
Radiative Transfer

B.1. Geometric Optics

Briefly, a propagating monochromatic radiation front can be
modeled as a congruence of curves, each perpendicular to the
surface of constant phase. This is possible in the limit where the
wavelength of the radiation is much smaller than the scale of
variations in the radiation front (curvature, amplitude, polariza-
tion) and much smaller than the local “radius of curvature of
the space” µ -∣ ∣R bcd

a 1 2, where R bcd
a is the Riemann curvature

tensor.
Furthermore, if the contribution of matter is insignificant,

i.e., ~T 0ab , the result is that the propagation of radiation can
be modeled by solving an equation of radiative transfer along
null geodesics. If the integrated contribution of the intervening
matter is non-negligible, the radiation front normals will not be
geodesics in general, and there will be a matter-dependent
forcing term f a in Equation (37) (see, e.g., Broderick &
Blandford 2003, 2004).

B.2. Equation of Radiative Transfer

The classical equation of radiative transfer in Cartesian
coordinates is (Mihalas & Mihalas 1984)

a

¶
¶
+ 

= -

n

n n n

⎜ ⎟
⎛

⎝

⎞

⎠
ˆ · ( ˆ)

( ˆ) ( ˆ) ( ˆ) ( )

n x n

x n x n x n

c t
I t

j t t I t

, ;

, ; , ; , ; , 46

where jν is the total emission coefficient (emissivity) and an the
total absorption coefficient. Equation (46) describes the change
in specific intensity at a frequency ν in the direction n̂ at a point
x and time t. Often in astrophysical cases, the one-dimensional
time-independent case suffices, in which case Equation (46)
reduces to a more commonly seen form,

a= -n
n n n

( )
( ) ( ) ( ) ( )

dI s

ds
j s s I s , 47

where s is the distance along a radiation front normal.
Equations (46) and (47) do not take into account interference,
quantum effects, or, most importantly, polarization.

Polarization can be included by making the specific intensity
Iν vector-valued by introducing the Stokes intensities =nI
n n n n( )I Q U V, , , . Similarly, j is replaced by the vector

=n n n n n( ) ( )J j j j j, , , 48I Q U V, , , ,

of Stokes emissivities and α by the response (or Müller) matrix

a a a a
a a
a a
a a

=
-

-
-

n

n n n n

n n n n

n n n n

n n n n

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

( )M
r r

r r

r r

, 49

I Q U V

Q I V U

U V I Q

V U Q I

, , , ,

, , , ,

, , , ,

, , , ,

where the α-coefficients represent absorption effects, and the
r-coefficients relate to Faraday conversion and rotation. It
should be noted that different conventions for M exist, varying
by the sign of rU. The one-dimensional polarized equation of
radiative transfer is then

= -n
n n n

( )
( ) ( ) ( )

I
J M I

d s

ds
s s . 50

The general relativistic generalization of Equation (50) is (e.g.,
Gammie & Leung 2012)

l
= + ( )

dN

d
J H N , 51

ab
ab abcd

cd

where λ is the affine parameter along the curve representing the
propagating radiation front, N ab is the (complex-valued)
polarization tensor, J ab is the emissivity tensor, and H abcd is
the response tensor.
Directly solving Equation (51) requires integrating the 16

real independent components of N ab. This number can be
reduced to four by parallel transporting a polarization frame
along the geodesic. The frame consists of two orthogonal
spacelike vectors that are also orthogonal to the geodesic and
the observer four-velocity. Expressing all quantities in this
frame using the screen projection operator (44), Equation (51)
can be written as

   
l
= -n

n n n ( )
d

d
, 52

where  n=n n
- I3 ,  n= n

- JC 2 ,  n= - MC 1 , and C is a
constant related to the parametrization of the curve. An
observer with a four-velocity u a at one end of the curve,
where the tangent is k a, has n=C u ka

a
0 for an observed

frequency n0.

Appendix C
Built-in Manifold and Chart Support

ARCMANCER contains a number of predefined metric spaces
and spacetimes together with commonly used coordinate charts
for convenience. The number of implemented spaces and charts
is expected to grow, but the selection at the time of writing is
given in the following. We list all of the charts and the
representations of the metric, either as a line element or in
matrix form, in these charts for each implemented space. All
Lorentzian spacetimes are shown with the +---( ) metric
convention.

C.1. Riemannian Manifolds

C.1.1. Two-sphere

Spherical coordinates q f( ), —ARCMANCER uses two copies
of the spherical chart q f( ), to cover the entire two-sphere. The
metric, in either copy, is given by the usual

q q f= + ( )ds d dsin . 532 2 2 2

C.2. Semi-Riemannian Manifolds

C.2.1. Minkowski Spacetime

Cartesian coordinates ( )t x y z, , , — The Cartesian Min-
kowski coordinates are often in the literature denoted by hab,
and we use the same convention. The line element is diagonal,
given by

= - - - ( )ds dt dx dy dz . 542 2 2 2 2

Spherical coordinates q f( )t r, , , —

q q f= - - +( ) ( )ds dt dr r d dsin 552 2 2 2 2 2 2
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C.2.2. Kerr Spacetime

The Kerr spacetime (Kerr 1963) is an important solution to
the Einstein field equations, representing a rotating black hole
exactly and other rotating fluid bodies of finite size asympto-
tically. The Kerr spacetime is parametrized by the mass M and
the angular momentum J. Usually, J is given through the
normalized spin parameter =a J M , in which case
Î [ ]a M0, , or through the dimensionless spin parameter χ,

so that c Î [ ]0, 1 . The solution reduces to the Schwarzschild
spacetime when χ=0 and further to the flat Minkowski
spacetime when M=0.

Boyer–Lindquist coordinates q f( )t r, , , —Perhaps the clear-
est representation of the Kerr metric in BL coordinates is
through the matrix form

r
q

r
r

r

q
r

q
q

r

-
D

-

- + +
⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

( )

Mr Mra

a
r a

Mra

2
0 0

2 sin

0 0 0

0 0 0

sin
0 0 sin

2 sin

,

56

2

2

2

2

2

2

2
2 2 2

2 2

2

where r q= +r a cos2 2 2 2 and D = - +r Mr a22 2. The BL
form of the metric is singular when D = 0 or r = 02 . The

former condition corresponds to =  -r m m a2 2 2 , which
gives the locations of the inner and outer event horizons, where
the curvature is not singular. The condition r = 02 implies
r=0 and q =cos 0, and corresponds to the curvature
singularity.

Cartesian KS coordinates ( )t x y z, , , —The Cartesian KS
coordinates come in two flavors, ingoing and outgoing, adapted
to null geodesics that move radially inwards or outwards,
respectively. As such, they are a generalization of the ingoing
and outgoing Eddington–Finkelstein coordinates for a
Schwarzschild black hole. Of the two variants, only the
ingoing form is typically seen in the literature. The metric in
the ingoing KS coordinates is most easily written as a sum,

h= - ( ) ( )g F x y z a l l, , ; , 57ab ab a b

where η is the Cartesian Minkowski metric,

=
+

( ) ( )F x y z a
Mr

r a z
, , ;

2
, 58

3

4 2 2

=
+
+

-
+

⎛

⎝
⎜

⎞

⎠
⎟( ) ( )l

rx ay

a r

ry ax

a r

z

r
1, , , , 59a 2 2 2 2

and r is defined implicitly through + + =x y z2 2 2

+ -( )r a z r12 2 2 2 . The vector la is null with respect to both

hab and gab. The metric in the outgoing coordinates is similarly
given as a sum as in Equation (57), but with

= -
-
+

+
+

⎛

⎝
⎜

⎞

⎠
⎟( ) ( )l

rx ay

a r

ry ax

a r

z

r
1, , , . 60a 2 2 2 2

When numerically computing geodesics near a Kerr black hole,
it is crucial that the right form of the KS coordinates is chosen.
If the geodesic approaches the hole, the ingoing chart should be
used, and for a geodesic going away from the hole, the
outgoing chart should be used. Failure to do so has significant
computational penalties, as can be seen in Section 5.1.2. Note
that this implies that for a geodesic coming in toward a Kerr
black hole, passing by it, and then leaving, both ingoing and
outgoing charts should be used with a change of coordinates
near the closest approach.

C.3. AlGendy–Morsink (AGM) Spacetime

AGM coordinates q f( ¯ )t r, , , —The AGM spacetime and
coordinates (AlGendy & Morsink 2014) actually refer to a
specific choice of a Butterworth–Ipser (BI) spacetime, with the
accompanying coordinate chart (Butterworth & Ipser 1976).
The BI spacetime is a general representation of the spacetime
outside an axisymmetric rotating fluid body. The AGM
spacetime is a special case representing the spacetime around
a physically realistic oblate rotating neutron star. The AGM
representation is accurate up to second order in the dimension-
less rotation parameter W = W -¯ R Me

3 2 1 2, where Ω is the
rotational angular velocity of the star as seen by a distant
observer, Re is the equatorial radius of the star, and M is the
mass of the star. In BI coordinates, the generic axisymmetric
metric reads

where ν, B, ω, and ζ are the so-called metric functions or
potentials. The AGM metric is defined by using

n
b
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+
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2
2

where P2 is the second-order Legendre polynomial. The
constants q and β are the dimensionless moments of energy
density and pressure, respectively, and =j J M2 is the
dimensionless angular momentum. AlGendy & Morsink
(2014) found these constants to be well described across

w q w q

w q q
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various neutron star parameters and equations of state by the
approximate relations

= - + W( ) ¯ ( )j x x1.136 2.53 5.6 , 662

= - W- ¯ ( )q x0.11 , 672 2

b = W̄ ( )x0.4454 , 682

where =x M Re is called the compactness (parameter). Along
with the metric potentials, AlGendy & Morsink (2014) also
derived an equation for the shape of the surface of a rotating
neutron star, used in Section 6.2,

q q= + - + W( ) [ ( ) ¯ ] ( )R R x1 0.788 1.030 cos . 69e
2 2

From this, the flattening, also called the oblateness, of the star
is given by

p
p

=
-

= - W
( ) ( )

( )
( ) ¯ ( )f

R R

R
x

2 0

2
0.788 1.030 . 702

It should be noted that the quantities Re and q( )R are not
defined in terms of r̄ , but instead in terms of a radial
coordinate = n- ¯r Be r .

C.4. Hartle–Thorne Spacetime

The Hartle–Thorne spacetime (Hartle & Thorne 1968)
describes the spacetime around a rotating oblate star. The
original derivation was based on a perturbation of the non-
rotating Schwarzschild spacetime. In ARCMANCER, we use
instead a version based on a perturbation of the rotating Kerr
spacetime, given in Glampedakis & Babak (2006).

Glampedakis–Babak (GB) coordinates q f( )t r, , , —The GB
coordinates are based on the BL coordinates of the Kerr
spacetime. In these coordinates, in a parametrization used by
Bauböck et al. (2012), the metric is given by

hc= + ( )g g h , 71ab ab ab
Kerr 2

where g
ab
Kerr is the Kerr metric in BL coordinates (see

Equation (56)), and



q
q

=- - -
=- - -

-( ) [( ) ( )]

( )[( ) ( )] ( )

h M r r

h M r r

1 2 1 3 cos

1 2 1 3 cos , 72

00 1 2
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q
q q
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[( ) ( )] ( )

h r r

h r r

1 3 cos

sin 1 3 cos . 73

22 2 2
2

33 2 2 2
2

Here, M is the mass of the star, c = J M is the dimensionless
angular momentum and η parametrizes the mass quadrupole
moment c h= - +( )q 12 , so that η=0 corresponds to the
quadrupole moment of the Kerr spacetime. The functions 1,2

are given in Glampedakis & Babak (2006).
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