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1. Introduction

It is well-known that many problems in physics, economics, mechanics and calculus of variations can be
formulated using integral functionals and that many real life phenomena are characterized by functions that are
not differentiable in the classical sense. In the literature there are different approaches to deal with the non-
differentiability of the admissible functions in problems involving integral functionals. In this paper, we are
concerned with the quantum approach.

The word quantum is usually referred to the smallest discrete quantity of some physical property and it comes
from the Latin word ”quantus”, which literally means how many. The quantum calculus is usually referred in
mathematics as the calculus without limits and it replaces the classical derivative by a difference operator. One type
of quantum differential operator is the Hahn quantum derivative introduced in 1949 by Hahn [13]. This operator
has been a useful tool in the construction of ortogonal polynomials and in approximation problems [5, 12, 18, 23].

The Hahn calculus has its begining only in 2009 with the Ph.D. thesis of Aldwoah [1], where the author solved an
open problem with 60 years: the construction of the inverse operator of Hahn’s derivative and the development of
the calculus associated with this operator. One year later, the Hahn variational calculus started with the publication
of Malinowska and Torres [20]. Due to its importance, new results in Hahn quantum variational calculus have been
published in the literature [8, 19]; we also recommend the book [21] for more details on the topic. We refer the
interested reader to [2, 3, 4, 7, 10, 22] for details in calculus of variations based in different quantum operators.
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Recently, Hamza et al. [14] defined the general quantum difference operator by

Dβ [f ] (t) =


f (β (t))− f (t)

β (t)− t
, t ̸= β (t) ,

f ′ (t) , t = β (t) ,

where β : I → I is a strictly increasing continuous function with a unique fixed point s0 ∈ I , where I is a
subinterval of R, and such that (t− s0)(β(t)− t) 6 0 for all t ∈ I , and developed the general quantum calculus
which generalizes the well-known q-quantum calculus (also known in the literature as Jackson’s calculus) [16] and
Hanh’s quantum calculus [9, 13].

The main purpose of this paper is to study different types of variational problems involving the general quantum
difference operator: the basic problem and the isoperimetric problem, with and without fixed boundary conditions,
for problems of the calculus of variations with a Lagrangian that may depend on the endpoints conditions and a
real parameter.

The structure of the paper is as follows. In Section 2 we present the necessary definitions and results for the
general quantum calculus. Our results are given in Section 3: the general quantum Euler-Lagrange equation for
the basic problem (Theorem 11), the transversality conditions for the basic problem with free boundary conditions
(Theorem 15), necessary optimality conditions for the isoperimetric problem (Theorem 18 and Theorem 19) and a
sufficient optimality condition (Theorem 14). To finalize the paper we present some illustrative examples and some
concluding remarks.

2. Preliminaries

In this section we start with the definition of the general quantum derivative. Let I ⊆ R be an interval, f : I → R be
a real function and β : I → I be a strictly increasing and continuous function that has a unique fixed point s0 ∈ I
that satisfies the following inequality:

(t− s0) (β (t)− t) 6 0 for all t ∈ I, (1)

where the equality holds only if t = s0. Hamza et al. [14] defined the general quantum difference operator by

Dβ [f ] (t) =


f (β (t))− f (t)

β (t)− t
, t ̸= s0

f ′ (s0) , t = s0

provided that f ′ (s0) exists (and is finite) in the usual sense. One says that f is β- differentiable on I if f ′ (s0) exists
and we call Dβ [f ] (t) the β−derivative of f at t.

We remark that the general quantum difference operator Dβ can also be defined for strictly increasing and
continuous functions β that have a unique fixed point s0 and satisfy (t− s0) (β (t)− t) > 0, for all t ∈ I (see [14]).

It is clear that every choice of the function β gives a new difference operator and that this operator generalize the
well-known Jackson and Hahn operators: if β(t) = qt, for some q ∈]0, 1[, then we obtain the Jackson q-difference
operator [16]; if β(t) = qt+ ω, for some q ∈]0, 1[ and ω > 0, then we obtain the Hahn’s quantum difference
operator [13]. For a general introduction to the q-calculus and the Hahn’s calculus, we refer the reader to the
book [17] and to the Ph.D. thesis [1], respectively.

In the following, we present the notions and results from the general quantum difference calculus that are needed
in this paper. We proceed with some basic properties of the general quantum difference operator.

Theorem 1 ([14])
Let f and g be β-differentiable on I and k ∈ R. One has:

1. Dβ [f + g] (t) = Dβ [f ] (t) +Dβ [g] (t) ;
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2. Dβ [kf ] (t) = kDβ [f ] (t) ;
3. Dβ [fg] (t) = Dβ [f ] (t) g (t) + f (β (t))Dβ [g] (t)

= Dβ [f ] (t) g (β (t)) + f (t)Dβ [g] (t) ;

4. Dβ

[
f

g

]
(t) =

Dβ [f ] (t) g (t)− f (t)Dβ [g] (t)

g (t) g (β (t))
,

provided g (t) g (β (t)) ̸= 0;
5. f (β (t)) = f (t) + (β (t)− t)Dβ [f ] (t) ;
6. If Dβ [f ] (t) = 0, for all t ∈ I , then f(t) = f(s0), t ∈ I .

It is clear that if f is β-differentiable, then f is continuous at s0. We note here that there exist discontinuous
functions that are β-differentiable (for an example see [14]), something that cannot happen in the classical theory
and can be seen as an advantage of the general quantum calculus.

In what follows, let us denote

βk(t) = β ◦ β ◦ . . . ◦ β︸ ︷︷ ︸
k times

(t) and β0(t) = t, t ∈ I.

The following lemma is a useful property of function β.

Lemma 1 ([14])
The sequence of functions {βk(t)}k∈N0

converges uniformly to the fixed point s0 on every compact interval J ⊆ I
containing s0.

Now we present the definition of β−integral.

Definition 2 ([14])
Let a, b ∈ I and a < b. For f : I → R the β-integral of f from a to b is given by∫ b

a

f (t) dβt =

∫ b

s0

f (t) dβt−
∫ a

s0

f (t) dβt

where ∫ x

s0

f (t) dβt =

+∞∑
k=0

(
βk (x)− βk+1 (x)

)
f
(
βk (x)

)
, x ∈ I

provided that the series converges at x = a and x = b. f is called β−integrable on I if the series converge at a and
b, for all a, b ∈ I .

The following result is also very useful.

Theorem 3 ([14])
If f → R is continuous at s0 ∈ I , then f is β-integrable on I .

Remark 1
The β-integral generalizes the Jackson q-integral and the Hahn integral. When β (t) = qt for q ∈ ]0, 1[, we obtain
the Jackson q-integral [17]: ∫ b

a

f (t) dqt =

∫ b

0

f (t) dqt−
∫ a

0

f (t) dqt

where ∫ x

0

f (t) dqt = x (1− q)

+∞∑
k=0

qkf
(
xqk

)
, x ∈ I.

When β (t) = qt+ ω, for q ∈ ]0, 1[ and ω > 0, we obtain the Hahn integral [1]:∫ b

a

f (t) dq,ωt =

∫ b

ω0

f (t) dq,ωt−
∫ a

ω0

f (t) dq,ωt
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where ∫ x

ω0

f (t) dq,ωt = (x (1− q)− ω)

+∞∑
k=0

qkf
(
xqk + ω [k]q

)
, x ∈ I,

and where ω0 =
ω

1− q
and [k]q =

1− qk

1− q
.

The β-integral has the following properties:

Theorem 4 ([14])
Let f, g : I → R be β−integrable on I , a, b, c ∈ I and k ∈ R. Then,

1.
∫ b

a

(f + g) (t) dβt =

∫ b

a

f (t) dβt+

∫ b

a

g (t) dβt;

2.
∫ b

a

(kf) (t) dβt = k

∫ b

a

f (t) dβt;

3.
∫ a

a

f (t) dβt = 0;

4.
∫ b

a

f (t) dβt = −
∫ a

b

f (t) dβt;

5.
∫ b

a

f (t) dβt =

∫ c

a

f (t) dβt+

∫ b

c

f (t) dβt.

In what follows, for a given s ∈ I , we denote

[s]β :=
{
βk (s) : k ∈ N0

}
∪ {s0}.

and for s0 ∈ [a, b] ⊆ I ,
[a, b]β := [a]β ∪ [b]β ;

[a, b]β is called the β-interval with extreme points a and b.

Theorem 5 ([14])
Let f, g : I → R be β-integrable functions on I and let a, b ∈ I such that a < s0 < b. If |f (t)| 6 g (t) for all
t ∈ [a, b]β , then

1.

∣∣∣∣∣
∫ b

s0

f (t) dβt

∣∣∣∣∣ 6
∫ b

s0

g (t) dβt;

2.
∣∣∣∣∫ a

s0

f (t) dβt

∣∣∣∣ 6 −
∫ a

s0

g (t) dβt;

3.

∣∣∣∣∣
∫ b

a

f (t) dβt

∣∣∣∣∣ 6
∫ b

a

g (t) dβt.

Consequently, if g(t) > 0, for all t ∈ [a, b]β , then the inequalities∫ b

s0

g(t)dβt > 0 and
∫ b

a

g(t)dβt > 0

hold.

Remark 2
We remark that:

1. The last result is also true if a 6 s0 < b or a < s0 6 b;
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2. It may happens that g > 0 and
∫ b

a

g (t) dβt < 0. For example, for the function g : I → R defined by

g (t) =


λ1 for t ∈ [a]β

0 otherwise

for some fixed λ1 ∈ R+ and a > s0, we have∫ b

a

g (t) dβt =

+∞∑
k=0

(
βk (b)− βk+1 (b)

)
g
(
βk (b)

)
−

+∞∑
k=0

(
βk (a)− βk+1 (a)

)
g
(
βk (a)

)
= −λ1 (a− s0) < 0.

Hamza et al. also have proven the Fundamental Theorem of β-calculus.

Theorem 6 (Fundamental Theorem of β−calculus [14])
Let f : I → R be continuous at s0. Let F : I → R be the function defined by

F (x) =

∫ x

s0

f (t) dβt.

Then, F is continuous at s0. Furthermore, Dβ [F ] (x) exists for every x ∈ I and

Dβ [F ] (x) = f (x) .

Conversely, if f is β-differentiable on I , then∫ b

a

Dβ [f ] (t) dβt = f (b)− f (a)

for all a, b ∈ I .

Next, we present the β-integration by parts which is essential to prove our main results.

Theorem 7 (β−integration by parts [14])
If f, g : I → R are β-differentiable and Dβ [f ] and Dβ [g] are continuous at s0, then∫ b

a

f (t)Dβ [g] (t) dβt = f (t) g (t)
∣∣∣b
a
−
∫ b

a

Dβ [f ] (t) g (β (t)) dβt, a, b ∈ I.

The next result is a main tool to obtain necessary optimality conditions for our variational problems.

Lemma 2 (Fundamental lemma of the general quantum variational calculus [14])
Let f : [a, b]β → R be continuous at s0. Then,∫ b

a

f (t) η (β (t)) dβt = 0

for all functions η : [a, b]β → R continuous at s0 with η(a) = η(b) = 0 if and only if f (t) = 0 for all t ∈ [a, b]β .

The following definition and lemma are important for the proofs of our results.

Definition 8
Let s ∈ I and g : [s]β ×

]
−θ̄, θ̄

[
→ R. We say that g (t, ·) is differentiable at θ0 uniformly in [s]β if for every ε > 0

there exists δ > 0 such that

0 < |θ − θ0| < δ ⇒
∣∣∣∣g (t, θ)− g (t, θ0)

θ − θ0
− ∂2g (t, θ0)

∣∣∣∣ < ε

for all t ∈ [s]β , where ∂2g denotes the partial derivative of g with respect to the second variable.
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Lemma 3 ([14])
Let s ∈ I . Assume that g : [s]β ×

]
−θ̄, θ̄

[
→ R is differentiable at θ0 uniformly in [s]β and that G (θ) =∫ s

s0

g (t, θ) dβt, in a neighborhood of θ0, and
∫ s

s0

∂2g (t, θ0) dβt exist. Then, G is differentiable at θ0 with

G′ (θ0) =

∫ s

s0

∂2g (t, θ0) dβt.

3. Main results

The main objective of this section is to introduce the general quantum variational calculus. For this purpose we
consider the following generalized variational problem:

L [y, ζ] =

∫ b

a

L (t, y (β (t)) , Dβ [y] (t) , y(a), y(b), ζ) dβt −→ extremize (2)

where by extremize we mean minimize or maximize, ζ is a real parameter, and y ∈ Y , where

Y :=
{
y : I → R| y and Dβ [y] are bounded on [a, b]β and continuous at s0

}
endowed with the norm

∥y∥ = sup
t∈[a,b]β

|y (t)|+ sup
t∈[a,b]β

|Dβ [y] (t)| .

We will consider problem (2) with or without fixed boundary conditions and also with an isoperimetric restriction.
The Lagrangian function L is assumed to satisfy the following hypotheses:

(H1) (u0, u1, u2, u3, u4) −→ L (t, u0, u1, u2, u3, u4) is a C1
(
R5,R

)
function for any t ∈ I;

(H2) t −→ L (t, y (β(t)) , Dβ [y] (t) , y(a), y(b), ζ) is continuous at s0 for any y ∈ Y;
(H3) functions t→ ∂i+2L (t, y (β(t)) , Dβ [y] (t) , y(a), y(b), ζ), i = 0, 1, . . . , 4 belong to Y , for all y ∈ Y;

where ∂iL denotes the partial derivative of L with respect to its ith-coordinate.
The motivation to study generalized variational problems where the Lagrangian depends on the state values can

be found in economics problems ([24]); the dependence of a real parameter is important, for example, in physical
problems ([15]).

In Section 3.1 we derive optimality conditions for problem (2) in the class of functions y ∈ Y satisfying the
boundary conditions:

y (a) = α and y (b) = γ (3)

for some fixed α, γ ∈ R. Then we consider problem (2) without fixed boundary conditions. In this case, two
additional necessary conditions, usually called natural boundary conditions or transversality conditions, are
obtained. Finally, in Section 3.2 we study problem (2) in the class of functions y ∈ Y satisfying the integral
constraint

I [y, ζ] =

∫ b

a

F (t, y (β (t)) , Dβ [y] (t) , y(a), y(b), ζ) dβt = τ (4)

for some τ ∈ R.

3.1. Generalized quantum variational problems

We begin this section with some basic definitions that are useful in what follows.

Definition 9
We say that y is an admissible function for problem (2) if y ∈ Y; y ∈ Y is said an admissible function for problem
(2)-(3) if y satisfies the boundary conditions (3). We say that a function η ∈ Y is an admissibile variation for
problem (2)-(3) if η (a) = η (b) = 0.
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Definition 10
We say that (y∗, ζ∗) is a local minimimizer (resp. local maximizer) for problem (2) ((and (2)-(3)) if y∗ is an
admissible function and there exists γ > 0 such that

L [y∗, ζ∗] 6 L [y, ζ] (resp. L [y∗, ζ∗] > L [y, ζ])

for admissible function y and ζ ∈ R with ∥y∗ − y∥ < γ and |ζ − ζ∗| < γ.

In what follows and in order to simplify expressions, we introduce the notation

[y; ζ]β (t) := (t, y (β (t)) , Dβ [y] (t) , y(a), y(b), ζ) .

Therefore,

L [y, ζ] =

∫ b

a

L [y; ζ]β (t) dβt.

For an admissible variation η, an admissible function y, a real parameter ζ, and a real δ, we define the function
ϕ : ]−ϵ̄, ϵ̄[ → R by

ϕ (ϵ) = L [y + ϵη, ζ + ϵδ] .

The following result is an immediate consequence of Lemma 3.

Lemma 4
For an admissible variation η, an admissible function y, and δ ∈ R, let

g (t, ϵ) = L [y + ϵη; ζ + ϵδ]β (t)

for ϵ ∈ ]−ϵ̄, ϵ̄[. Assume that:

(i) g (t, ·) is differentiable at 0 uniformly in [a, b]β ;

(ii)
∫ a

s0

L [y + ϵη; ζ + ϵδ]β (t)dβt and
∫ b

s0

L [y + ϵη; ζ + ϵδ]β (t)dβt exist for ϵ in a neighborhood of 0;

(iii)
∫ a

s0

∂2g (t, 0) dβt and
∫ b

s0

∂2g (t, 0) dβt exist.

Then,

ϕ′ (0) =

∫ b

a

(
∂2L [y; ζ]β (t) · η (β (t)) + ∂3L [y; ζ]β (t) ·Dβ [η] (t)

+∂4L [y; ζ]β (t) · η(a) + ∂5L [y; ζ]β (t) · η(b) + ∂6L [y; ζ]β · δ
)
dβt.

We can now prove a necessary condition for an admissible pair (y∗, ζ∗) to be a local extremizer of problem
(2)-(3).

Theorem 11 (General quantum Euler-Lagrange equation)
Under hypotheses (H1)-(H3) and (i)-(iii) of Lemma 4 on the Lagrangian function L, if the pair (y∗, ζ∗) is a local
extremizer for problem (2)-(3), then (y∗, ζ∗) satisfies the β-Euler-Lagrange equation

Dβ [∂3L] [y; ζ]β (t) = ∂2L [y; ζ]β (t) , t ∈ [a, b]β (5)

and ∫ b

a

∂6L [y; ζ]β (t) dβt = 0. (6)
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Proof
Let (y∗, ζ∗) be a local extremizer for problem (2)-(3), η an admissible variation and δ ∈ R. A necessary condition
for (y∗, ζ∗) to be an extremizer is given by ϕ′ (0) = 0. Therefore, by Lemma 4,∫ b

a

(
∂2L [y∗; ζ∗]β (t) · η (β (t)) + ∂3L [y∗; ζ∗]β (t) ·Dβ [η] (t)

+∂4L [y∗; ζ∗]β (t) · η(a) + ∂5L [y∗; ζ∗]β (t) · η(b) + ∂6L [y∗; ζ∗]β · δ
)
dβt = 0.

Using β-integration by parts and observing that η(a) = η(b) = 0, we obtain∫ b

a

∂3L [y∗; ζ∗]β (t) ·Dβ [η] (t) dβt = ∂3L [y∗; ζ∗]β (t) · η (t)
∣∣∣b
a
−
∫ b

a

Dβ [∂3L] [y∗; ζ∗]β (t) · η (β (t)) dβt

= −
∫ b

a

Dβ [∂3L] [y∗; ζ∗]β (t) · η (β (t)) dβt

and therefore∫ b

a

(
∂2L [y∗; ζ∗]β (t)−Dβ [∂3L] [y∗; ζ∗]β (t)

)
η (β (t)) dβt+

∫ b

a

∂6L [y∗; ζ∗]β (t) · δ dβt = 0.

Taking δ = 0 and using the arbitrariness of η, we can conclude by Lemma 2, that

∂2L [y∗; ζ∗]β (t)−Dβ [∂3L] [y∗; ζ∗]β (t) = 0,

for all t ∈ [a, b]β . Taking the admissible variation to be null we obtain∫ b

a

∂6L [y∗; ζ∗]β (t) · δ dβt = 0

and, by the arbitrariness of δ, we get ∫ b

a

∂6L [y∗; ζ∗]β (t) dβt = 0,

as intended.

In the particular case where the Lagrangian function L does not depend on the state values y(a) and y(b), and on
the real parameter ζ, we obtain the following necessary optimality condition for the simplest variational problem,
where the Lagrangian L satisfies conditions (H1)-(H3) and (i)-(iii) of Lemma 4, adapted to the case where L
depends only on the arguments (t, y(β(t)), Dβ [y] (t)).

Corollary 1
If y∗ is a local extremizer to problem

L [y] =

∫ b

a

L (t, y (β (t)) , Dβ [y] (t)) dβt −→ extremize

satisfying the boundary conditions (3), then y∗ satisfies the Euler-Lagrange equation

Dβ [∂3L] (t, y (β (t)) , Dβ [y] (t)) = ∂2L (t, y (β (t)) , Dβ [y] (t)) (7)

for all t ∈ [a, b]β .

Remark 3
If we specify the function β and consider the simplest problem of calculus of variations, we obtain the following
necessary optimality conditions, proven in [6] and [20], respectively:
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1. if β (t) = qt, for q ∈ ]0, 1[, then we obtain the q-Euler-Lagrange equation

∂2L(t, y (qt) , Dq[y](t)) = Dq[∂3L](t, y (qt)) , Dq[y](t));

2. if β (t) = qt+ ω, for q ∈ ]0, 1[ and ω > 0, then we obtain the Hahn’s quantum Euler-Lagrange equation

∂2L(t, y (qt+ ω) , Dq,ω[y](t)) = Dq,ω[∂3L](t, y (qt+ ω) , Dq,ω[y](t)).

Definition 12
We say that a pair (y, ζ) is an extremal to problem (2)-(3) if (y, ζ) satisfies the β-Euler-Lagrange equation (5) and
condition (6).

In order to prove a sufficient optimality condition for problem (2)-(3), that is useful in the search of extremizers,
we introduce the following definition.

Definition 13
Given a function L : I ×R5 → R, we say that L (t, u0, . . . , u4) is jointly convex (resp. jointly concave) in
(u0, . . . , u4) if and only if ∂iL, i = 2, . . . , 6, are continuous and satisfy the following condition:

L (t, u0 + u0, . . . , u4 + u4)− L (t, u0, . . . , u4) >
(resp. 6)

6∑
i=2

∂iL (t, u0, . . . , u4)ui−2

for all (t, u0, . . . , u4), (t, u0 + u0, . . . , u4 + u4) ∈ [a, b]β ×R5.

Theorem 14 (Sufficient optimality condition)
Suppose that a 6 s0 < b or a < s0 6 b and let L (t, u0, . . . , u4) be jointly convex (resp. jointly concave) in
(u0, . . . , u4). If (y∗, ζ∗) is an extremal, then (y∗, ζ∗) is a global minimizer (resp. global maximizer) to problem
(2)-(3).

Proof
Without loss of generality, let us consider that L is jointly convex in (u0, . . . , u4). For any admissible variation η
and δ ∈ R, it follows that

L [y∗ + η, ζ∗ + δ]− L [y∗, ζ∗]

=

∫ b

a

(
L [y∗ + η; ζ∗ + δ]β (t)− L [y∗; ζ∗]β (t)

)
dβt

>
∫ b

a

(
∂2L [y∗; ζ∗]β (t) · η (β(t)) + ∂3L [y∗; ζ∗]β (t) ·Dβ [η] (t)

+ ∂4L [y∗; ζ∗]β (t) · η(a) + ∂5L [y∗; ζ∗]β (t) · η(b) + ∂6L [y∗; ζ∗]β (t) · δ
)
dβt.

Using integration by parts, the fact that η(a) = η(b) = 0 and observing that (y∗, ζ∗) satisfies the β-Euler-Lagrange
equation and condition (6), we get

L [y∗, ζ∗] 6 L [y∗ + η, ζ∗ + δ]

as intended.

Remark 4
We emphasize that condition a 6 s0 < b or a < s0 6 b is mandatory in Theorem 14 in order to apply Theorem 5.

Another important question is to find optimality conditions that extremals has to satisfy in the case we have no
boundary constraints on the set of admissible functions.
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Theorem 15 (Natural boundary conditions)
Under hypotheses (H1)-(H3) and (i)-(iii) of Lemma 4 on the Lagrangian function L, if the pair (y∗, ζ∗) is a local
extremizer for problem (2), then (y∗, ζ∗) satisfies the β-Euler-Lagrange equation (5) and condition (6). Moreover,

1. if y (a) is free, then the natural boundary condition

∂3L [y∗; ζ∗]β (a) =

∫ b

a

∂4L [y∗; ζ∗]β (t) dβt

holds;
2. if y (b) is free, then the natural boundary condition

∂3L [y∗; ζ∗]β (b) = −
∫ b

a

∂5L [y∗; ζ∗]β (t) dβt

holds.

Proof
Let η ∈ Y and δ ∈ R be arbitrary. A necessary condition for (y∗, ζ∗) to be an extremizer is given by

ϕ′ (0) = 0

where ϕ(ϵ) = L[y∗ + ϵη, ζ∗ + ϵδ]. By Lemma 4, we conclude that∫ b

a

(
∂2L [y∗; ζ∗]β (t) · η (β (t)) + ∂3L [y∗; ζ∗]β (t) ·Dβ [η] (t)

+ ∂4L [y∗; ζ∗]β (t) · η(a) + ∂5L [y∗; ζ∗]β (t) · η(b) + ∂6L [y∗; ζ∗]β (t) · δ
)
dβt = 0

and using integration by parts we obtain

∂3L [y∗; ζ∗]β (t) · η (t)
∣∣∣b
a
+

∫ b

a

(
∂2L [y∗; ζ∗]β (t)−Dβ [∂3L] [y∗; ζ∗]β (t)

)
dβt

+

∫ b

a

(
∂4L [y∗; ζ∗]β (t) · η(a) + ∂5L [y∗; ζ∗]β (t) · η(b)

)
dβt

+

∫ b

a

∂6L [y∗; ζ∗]β (t) · δ dβt = 0.

Since no boundary conditions are imposed, η do not need to vanish at the endpoints. However, this last equation
must be satisfied for all η ∈ Y and in particular for the functions that do vanish at the endpoints. Using the same
arguments used in the proof of Theorem 5 we conclude that (y∗, ζ∗) satisfies the general Euler-Lagrange equation

∂2L [y∗; ζ∗]β (t) = Dβ [∂3L] [y∗; ζ∗]β (t) , t ∈ [a, b]β

and condition
∫ b

a

∂6L [y∗; ζ∗]β (t) dβt = 0.

1. Suppose that y(a) is free. If y(b) is fixed, then η(b) = 0; if y(b) is free then we can restrict to all functions
η ∈ Y such that η(b) = 0. In this case, using general quantum Euler-Lagrange equation and taking δ = 0, we
conclude that

∂3L [y∗; ζ∗]β (a) · η (a) =
∫ b

a

∂4L [y∗; ζ∗]β (t) · η(a) dβt.

From the arbitrariness of η it follows that

∂3L [y∗; ζ∗]β (a) =

∫ b

a

∂4L [y∗; ζ∗]β (t) dβt.
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2. Suppose that y(b) is free. If y(a) is fixed, then η(a) = 0; if y(a) is free then we can restrict to all functions
η ∈ Y such that η(a) = 0. In this case, using general quantum Euler-Lagrange equation and choosing δ = 0,

it follows that ∂3L [y∗; ζ∗]β (b) = −
∫ b

a

∂5L [y∗; ζ∗]β (t) dβt.

The proof is complete.

For the special case where β(t) = qt+ ω, for some q ∈]0, 1[ and ω > 0, and the Lagrangian L does not depend
on the real parameter ζ, we obtain the following result of the Hahn variational calculus, where we suppose that L
satisfies conditions (H1)-(H3) and (i)-(iii) of Lemma 4 adapted for the case that L depends only on the arguments
(t, y (qt+ ω) , Dq,ω[y](t), y(a), y(b)). In order to simplify the expressions, we denote

[y]q,ω (t) := (t, y (qt+ ω) , Dq,ω[y](t), y(a), y(b))

and
[a, b]q,ω := {qna+ ω[n]q} ∪ {qnb+ ω[n]q} ∪ {ω0}

(see Remark 1 for more details).

Corollary 2 ([19])
If y∗ is a local extremizer for problem (2), then y∗ satisfies the quantum Euler-Lagrange equation

∂2L [y]q,ω (t) = Dq,ω[∂3L] [y]q,ω (t), t ∈ [a, b]q,ω.

Moreover,

1. if y (a) is free, then the natural boundary condition

∂3L [y]q,ω (a) =

∫ b

a

∂4L [y]q,ω (t) dq,ωt

holds;
2. if y (b) is free, then the natural boundary condition

∂3L [y]q,ω (b) = −
∫ b

a

∂5L [y]q,ω (t) dq,ωt

holds.

In the particular case where the Lagrangian function L does not depend on the state values y(a) and y(b), and
on the real parameter ζ, and under appropriate assumptions on the Lagrangian, we obtain the following necessary
optimality conditions.

Corollary 3
If y∗ is a local extremizer to problem

L [y] =

∫ b

a

L (t, y (β (t)) , Dβ [y] (t)) dβt −→ extremize,

then y∗ satisfies the Euler-Lagrange equation

Dβ [∂3L] (t, y (β (t)) , Dβ [y] (t)) = ∂2L (t, y (β (t)) , Dβ [y] (t))

for all t ∈ [a, b]β and
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1. if y (a) is free, then the natural boundary condition

∂3L (t, y (β (t)) , Dβ [y] (t)) (a) = 0

holds;
2. if y (b) is free, then the natural boundary condition

∂3L (t, y (β (t)) , Dβ [y] (t)) (b) = 0

holds.

Remark 5
Note that the sufficient condition for optimality presented in Theorem 14 is still valid for variational problems with
free boundary conditions.

3.2. Generalized quantum isoperimetric problems

In this section we consider problem (2) when we are in presence of an integral constraint. This kind of variational
problems is know in the literature as isoperimetric problems. The problem that consist in the search of a closed
plane curve of a given perimeter which encloses the greatest area is a well-known example of an isoperimetric
problem.

The quantum isoperimetric problem that we consider here consists in extremizing the functional

L [y, ζ] =

∫ b

a

L (t, y (β (t)) , Dβ [y] (t) , y(a), y(b), ζ) dβt (8)

in the class of functions y ∈ Y satisfying the boundary conditions (3) and the integral constraint

I [y, ζ] =

∫ b

a

F (t, y (β (t)) , Dβ [y] (t) , y(a), y(b), ζ) dβt = τ (9)

for some fixed value τ ∈ R.
Before presenting necessary optimality conditions for such kind of variational problems, we first give some basic

definitions.

Definition 16
We say that a pair (y∗, ζ∗) is a local minimizer (resp. local maximizer) to the isoperimetric problem (8)-(9) if
there exists γ > 0 such that L [y∗, ζ∗] 6 L [y, ζ] (resp. L [y∗, ζ∗] > L [y, ζ]) for all functions y ∈ Y and all ζ ∈ R
satisfying the integral constraint (9) with ∥y∗ − y∥ < γ and |ζ∗ − ζ| < γ.

Definition 17
We say that (y, ζ) is a normal extremizer to the isoperimetric problem (8)-(9) if (y, ζ) is a local extremizer to
problem (8)-(9) that is not an extremal to functional I; if (y, ζ) is a local extremizer and an extremal to functional
I we say that (y, ζ) is an abnormal extremizer.

Now we are ready to prove necessary optimality conditions for isoperimetric problems, with and without fixed
boundary conditions, for the particular case of normal extremizers.

Theorem 18 (Necessary optimality conditions for normal extremizers to isoperimetric problems)
Let us suppose thatL and F satisfy hypotheses (H1)-(H3) and (i)-(iii) of Lemma 4. If (y∗, ζ∗) is a normal extremizer
to the isoperimetric problem (8)-(9), then there exists a real number λ ∈ R such that (y∗, ζ∗) satisfies the following
conditions

∂2H [y; ζ]β (t) = Dβ [∂3H] [y; ζ]β (t) , t ∈ [a, b]β

and ∫ b

a

∂6H [y; ζ]β (t) dβt = 0,

where H = L− λF. Moreover,
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1. if y(a) is free, then

∂3H [y∗; ζ∗]β (a) =

∫ b

a

∂4H [y∗; ζ∗]β (t) dβt;

2. if y(b) is free, then

∂3H [y∗; ζ∗]β (b) = −
∫ b

a

∂5H [y∗; ζ∗]β (t) dβt.

Proof
Let us suppose that (y∗, ζ∗) is a normal extremizer for the isoperimetric problem (8)-(9). Let us define two real
functions ϕ, ψ : R2 → R by

ϕ (ε1, ε2) = L [y∗ + ε1η1 + ε2η2, ζ∗ + ε1δ1 + ε2δ2]

ψ (ε1, ε2) = I [y∗ + ε1η1 + ε2η2, ζ∗ + ε1δ1 + ε2δ2]− τ,

where η1 is an arbitrary variation, η2 is a fixed variation (that we will choose later), δ1 is an arbitrary real number
and δ2 is a fixed real number (that we will choose later).

Note that

∂2ψ (0, 0) =

∫ b

a

(
∂2F [y∗; ζ∗] (t) · η2 (β (t)) + ∂3F [y∗; ζ∗] (t) ·Dβ [η2] (t)

+∂4F [y∗, ζ∗] (t) · η2 (a) + ∂5F [y∗; ζ∗] (t) · η2 (b)

+∂6F [y∗; ζ∗] (t) · δ2
)
dβt.

Using integration by parts formula we get that

∂2ψ (0, 0) =

∫ b

a

(
∂2F [y∗; ζ∗] (t)−Dβ [∂3F ] [y∗; ζ∗]β (t)

)
· η2 (β (t)) dβt

+

∫ b

a

(
∂4F [y∗; ζ∗] (t) · η2 (a) + ∂5F [y∗; ζ∗] (t) · η2 (b) + ∂6F [y∗; ζ∗] (t) · δ2

)
dβt

+ ∂3F [y∗; ζ∗] (t) · η2(b)− ∂3F [y∗; ζ∗] (t) · η2(a). (10)

Since (y∗, ζ∗) is not an extremal of I, then it can happen three cases:

(i) ∂2F [y∗; ζ∗]β (t) ̸= Dβ [∂3F ] [y∗; ζ∗]β (t) and
∫ b

a

∂6F [y∗; ζ∗]β (t) dβt = 0;

(ii) ∂2F [y∗; ζ∗]β (t) = Dβ [∂3F ] [y∗; ζ∗]β (t) and
∫ b

a

∂6F [y∗; ζ∗]β (t) dβt ̸= 0;

(iii) ∂2F [y∗; ζ∗]β (t) ̸= Dβ [∂3F ] [y∗; ζ∗]β (t) and
∫ b

a

∂6F [y∗; ζ∗]β (t) dβt ̸= 0.

Let us suppose we are in case (i). If we restrict η2 to those functions such that η2(a) = η2(b) = 0, we get from
(10) that

∂2ψ (0, 0) =

∫ b

a

(
∂2F [y∗; ζ∗]β (t)−Dβ [∂3F ] [y∗; ζ∗]β (t)

)
· η2 (β (t)) dβt.

Since ∂2F [y∗; ζ∗]β (t)−Dβ [∂3F ] [y∗; ζ∗]β (t) ̸= 0, then we can choose η2 such that ∂2ψ (0, 0) ̸= 0. Since
ψ (0, 0) = 0, then by the Implicit Function Theorem there exists a function h, defined in a neighborhood V of
0 such that h (0) = 0 and ψ (ε1, h (ε1)) = 0 for any ε1 ∈ V . This means that there exists a family of pairs (y, ζ)
where {

y = y∗ + ε1η1 + h(ε1)η2
ζ = ζ∗ + ε1δ1 + h(ε1)δ2
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that satisfies the isoperimetric constraint. Moreover, (0, 0) is an extremizer of ϕ subject to the constraint ψ = 0 and
∇ψ (0, 0) ̸= (0, 0) . Therefore, there is a Lagrange multiplier λ ∈ R such that

∇ϕ (0, 0) = λ∇ψ (0, 0) .

Restricting η1 to those such that η1(a) = η1(b) = 0 we conclude that

∂1ϕ (0, 0) =

∫ b

a

(
∂2L [y∗; ζ∗]β (t)−Dβ [∂3L] [y∗; ζ∗]β (t)

)
· η1 (β (t)) dβt

and

∂1ψ (0, 0) =

∫ b

a

(
∂2F [y∗; ζ∗]β (t)−Dβ [∂3F ] [y∗; ζ∗]β (t)

)
· η1 (β (t)) dβt.

Therefore∫ b

a

(
(∂2L [y∗; ζ∗]β (t)−Dβ [∂3L] [y∗; ζ∗]β (t))− λ(∂2F [y∗; ζ∗]∗ (t)−Dβ [∂3F ] [y∗; ζ∗]β (t))

)
· η1 (β (t)) dβt = 0,

and Lemma 2 proves that

∂2L [y∗; ζ∗]∗ (t)−Dβ [∂3L] [y∗; ζ∗]β (t) = λ(∂2F [y∗; ζ∗] (t)−Dβ [∂3F ] [y∗; ζ∗]β (t))

for all t ∈ [a, b]β . Then
∂2H [y∗; ζ∗]β (t) = Dβ [∂3H] [y∗; ζ∗]β (t)

for H = L− λF and all t ∈ [a, b]β , proving that H satisfies the general quantum Euler-Lagrange equation.
Since, by hypothesis, ∫ b

a

∂6L [y∗; ζ∗]β (t) dβt = 0 and
∫ b

a

∂6F [y∗; ζ∗]β (t) dβt = 0

then it is obvious that ∫ b

a

∂6H [y∗; ζ∗]β (t) dβt = 0.

Let us now consider the case (ii). If in equality (10) we restrict η2 to those such that η2(a) = η2(b) = 0 we get

∂2ψ(0, 0) =

∫ b

a

∂6F [y∗; ζ∗]β · δ2 dβt.

Since ∫ b

a

∂6F [y∗; ζ∗]β (t) dβt ̸= 0

we can choose δ2 such that ∂2ψ(0, 0) ̸= 0. Applying the Implicit Function Theorem and the Lagrange multiplier
rule, is possible to prove that there exists a real constant λ such that for H = L− λF , we have∫ b

a

∂6H[y∗; ζ∗]β dβt = 0.

Since,
∂2F [y∗; ζ∗]β (t)−Dβ [∂3F ] [y∗; ζ∗]β (t) = 0, t ∈ [a, b]β

and
∂2L [y∗; ζ∗]β (t)−Dβ [∂3L] [y∗; ζ∗]β (t) = 0, t ∈ [a, b]β
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it follows that
∂2H [y∗; ζ∗]β (t)−Dβ [∂3H] [y∗; ζ∗]β (t) = 0, t ∈ [a, b]β .

Finally, suppose we are in case (iii). The proof that (y∗, ζ∗) satisfies the Euler-Lagrange equation with respect
to H is similar to the case (i), if we consider in this case δ2 = 0. The proof that (y∗, ζ∗) satisfies the equality∫ b

a

∂6H [y; ζ]β (t) dβt = 0 is similar to the case (ii), considering here η2 = 0.

Now we will prove the natural boundary conditions.

1. Suppose that y(a) is free. If y(b) is fixed, then η1(b) = 0; if y(b) is free then we can restrict to all functions
η1 ∈ Y such that η1(b) = 0. Therefore,

∂1ϕ (0, 0) =

∫ b

a

(
∂2L [y∗; ζ∗]β (t)−Dβ [∂3L] [y∗; ζ∗]β (t)

)
· η1 (β (t)) dβt

+

∫ b

a

(
∂4L [y∗; ζ∗]β (t) · η1(a) + ∂6L [y∗; ζ∗]β · δ2

)
dβt

− ∂3L [y∗; ζ∗]β (a) · η1 (a)

and

∂1ψ (0, 0) =

∫ b

a

(
∂2F [y∗; ζ∗]β (t)−Dβ [∂3F ] [y∗; ζ∗]β (t)

)
· η1 (β (t)) dβt

+

∫ b

a

(
∂4F [y∗; ζ∗]β (t) · η1(a) + ∂6F [y∗; ζ∗]β · δ2

)
dβt

− ∂3F [y∗; ζ∗]β (a) · η1 (a) .

Since ∇ϕ (0, 0) = λ∇ψ (0, 0) , H satisfies the general quantum Euler-Lagrange equation and∫ b

a

∂6H [y∗; ζ∗]β (t) dβt = 0, then

∂3H [y∗; ζ∗]β (a) · η1 (a) =
∫ b

a

∂4H [y∗; ζ∗]β (t) · η1(a) dβt.

From the arbitrariness of η1 it follows that

∂3H [y∗; ζ∗]β (a) =

∫ b

a

∂4H [y∗; ζ∗]β (t) dβt.

2. Suppose now that y(b) is free. Using similar arguments as the ones used in 1. we prove that

∂3H [y∗; ζ∗]β (b) = −
∫ b

a

∂5H [y∗; ζ∗]β (t) dβt.

The proof is complete.

The previous result can be generalized for the case of abnormal extremizers to isoperimetric problems as follows.

Theorem 19 (Necessary optimality conditions for normal and abnormal extremizers to isoperimetric problems)
Let us suppose that L and F satisfy hypotheses (H1)-(H3) and (i)-(iii) of Lemma 4. If (y∗, ζ∗) is an extremizer to
the isoperimetric problem (8)-(9), then there exist two constants λ0, λ ∈ R, not both zero, such that (y∗, ζ∗) satifies
the conditions

∂2H [y; ζ]β (t) = Dβ [∂3H] [y; ζ]β (t) , t ∈ [a, b]β
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and ∫ b

a

∂6H [y; ζ]β (t) dβt = 0,

where H = λ0L− λF. Moreover,

1. if y(a) is free, then

∂3H [y∗; ζ∗]β (a) =

∫ b

a

∂4H [y∗; ζ∗]β (t) dβt;

2. if y(b) is free, then

∂3H [y∗; ζ∗]β (b) = −
∫ b

a

∂5H [y∗; ζ∗]β (t) dβt.

Proof
The proof is similar to the proof of Theorem 18, but in this case we apply the abnormal Lagrange multiplier rule.
This result ensures the existence of two constants λ0 and λ, not both zero, such that λ0∇ϕ (0, 0) = λ∇ψ (0, 0) .
The rest of the proof is straightforward, so it will be omitted.

In the case where L and F do not depend on y(a), y(b) and ζ, and under appropriate assumptions on those
functions L and F , we obtain the following result for the simplest quantum isoperimetric problem.

Corollary 4
If y∗ is a local extremizer to problem

L [y] =

∫ b

a

L (t, y (β (t)) , Dβ [y] (t)) dβt −→ extremize,

subject to the integral constraint

I [y] =

∫ b

a

F (t, y (β (t)) , Dβ [y] (t)) dβt = τ, (11)

then there exist two constants λ0, λ ∈ R, not both zero, such that y∗ satisfies the quantum Euler-Lagrange equation

∂2H (t, y(β(t)), Dβ [y] (t)) = Dβ [∂3H] (t, y(β(t)), Dβ [y] (t)) ,

for all t ∈ [a, b]β , where H = λ0L− λF. Moreover,

1. if y(a) is free, then ∂3H (a, y(β(a)), Dβ [y] (a)) = 0;
2. if y(b) is free, then ∂3H (b, y(β(b)), Dβ [y] (b)) = 0.

Remark 6
Again, if we restrict ourselves to the particular case where β(t) = qt+ ω, for some q ∈]0, 1[ and ω > 0, Theorem
29 and Theorem 30 generalize, respectively, Theorem 3.9 and Theorem 3.10 of [19] for the Hahn calculus of
variations.

4. Illustrative examples

In this section we present some examples in order to illustrate our results. Although, to the best of our knowledge, a
general result guarantying the existence of solutions of nonlinear second order β-difference equations, as well as a
method to construct these solutions, have not yet been presented, we show here one example where it is possible to
exhibit one solution to this kind of difference equations. For the particular case of second order linear homogeneous
β-difference equations with constant coefficients, we refer the reader to [11] for the general solution.
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Example 1
Consider β(t) = ln t+ 1, where I = [1,+∞[. We remark that β is a strictly increasing and continuous function
that has a unique fixed point that is s0 = 1. Moreover, β satisfies inequality (1) where the equality holds only if
t = s0. Note also that β(t) 6 t for all t ∈ I . Consider the following problem

L[y] =
∫ 3

1

(Dβ [y])
2 − 1)2 · (y(β(t)))2 dβt −→ minimize

over all y ∈ Y satisfying the boundary conditions y(1) = 0 and y(3) = 3.
The quantum Euler-Lagrange equation (7) takes the form

2Dβ

[(
(Dβ [y](t))

2 − 1
)
· (y(β(t)))2 ·Dβ [y](t)

]
(t) = y(β(t)) ·

(
(Dβ [y](t))

2 − 1
)2

. (12)

Consider

y∗(t) =

 0 if t ∈ [1, 2]

t if t ∈ ]2,+∞[ .

Note that

Dβ [y∗](t) =


0 if t ∈ [1, 2]

t
t−β(t) if t > 2 ∧ β(t) 6 2

1 if t > 2 ∧ β(t) > 2

and therefore y∗ is an admissible function satisfying (12) (we remark that for all t such that t > 2 and β(t) 6 2,
y(β(t)) = 0).

Noting that s0 = 1, we can conclude by Theorem 5 that L[y] > 0. Since L[y∗] = 0, it follows that y∗ is indeed a
minimizer. Note that the minimizer y∗ is not continuous while in the classical calculus of variations we deal with
functions that are necessarily continuous.

Example 2
Let β : R → R be such that β (t) = qt+ ω for q ∈ ]0, 1[ and ω > 0. We remark that β has a unique fixed point that
is s0 =

ω

1− q
. Consider the following problem

L [y, ζ] =

∫ 1

0

L[y; t]β dβt −→ minimize

where
L[y; t]β = 2y(qt+ ω) + (Dβ [y] (t))

2
+ (y(1)− 2)2 + (1− ζ)2

in the class of admissible functions y ∈ Y that satisfy the boundary condition y(0) = 0. If (y∗, ζ∗) is a local
minimizer to this problem, then, by Theorem 15, (y∗, ζ∗) satisfies the following conditions:

(i) Dβ [∂3L] [y∗; ζ∗]β (t) = ∂2L [y∗; ζ∗]β (t) ⇔ Dβ [Dβ [y∗]] (t) = 1;

(ii)

∫ 1

0

∂6L [y∗; ζ∗]β (t) dβt = 0 ⇔ ζ∗ = 1;

(iii) ∂3L [y∗; ζ∗]β (1) = −
∫ 1

0

∂5L [y∗; ζ∗]β (t) dβt⇔ Dβ [y∗](1) = 2− y∗(1).

It is easy to check that

y∗(t) =
1

q + 1
t2 −

(
ω

q + 1
− c

)
t+ d

Stat., Optim. Inf. Comput. Vol. 6, March 2018



ARTUR M. C. BRITO DA CRUZ AND NATÁLIA MARTINS 39

where c, d ∈ R, is a solution to the Euler-Lagrange equation given in (i). Since y∗(0) = 0, we conclude that d = 0.
Observing that

Dβ [y∗](t) =
1

q + 1
(t+ qt+ ω)−

(
ω

q + 1
− c

)
,

then the natural boundary condition (iii) gives

c =
q + ω

2(q + 1)
.

Hence, the pair (y∗, 1) where

y∗(t) =
1

q + 1
t2 −

(
ω

q + 1
− q + ω

2(q + 1)

)
t

is a candidate to be a local minimizer for the problem. Moreover, since the Lagrangian function is jointly convex,
Theorem 14 guarantees that (y∗, 1) is a global minimizer.

Example 3
Suppose now that we want to minimize the following functional

L [y, ζ] =

∫ 1

0

(
2y(qt+ ω) + (Dβ [y] (t))

2
+ ζy2(0) + (y(1)− 2)2 + (1− ζ)2

)
dβt

where β (t) = qt+ ω for q ∈ ]0, 1[ and ω > 0, in the class of admissible functions y ∈ Y and ζ ∈ R.
If (y∗, ζ∗) is a local minimizer to this problem, then, by Theorem 15, we conclude that:

(i) Dβ [∂3L] [y∗; ζ∗]β (t) = ∂2L [y∗; ζ∗]β (t) ⇔ Dβ [Dβ [y∗]] (t) = 1;

(ii)

∫ 1

0

∂6L [y∗; ζ∗]β (t) dβt = 0;

(iii) ∂3L [y∗; ζ∗]β (0) =

∫ 1

0

∂4L [y∗; ζ∗]β (t) dβt;

(iv) ∂3L [y∗; ζ∗]β (1) = −
∫ 1

0

∂5L [y∗; ζ∗]β (t) dβt.

Again, it is easy to check that

y∗(t) =
1

q + 1
t2 −

(
ω

q + 1
− c

)
t+ d

where c, d ∈ R, is a solution to the Euler-Lagrange equation given in (i). In order to determine the values of c, d, ζ∗
we will use condition (ii) and the natural boundary conditions (iii)− (iv). Using condition (ii) we conclude that

ζ∗ =
d2 + 2

2
.

The natural boundary condition (iii) allows us to conclude that c =
d3 + 2d

2
. Finally, using the natural boundary

condition (iv) we get that d(d2 + 3) =
q + ω

q + 1
. Hence, the pair

(
y∗,

d2 + 2

2

)
, where

y∗(t) =
1

q + 1
t2 −

(
ω

q + 1
− d3 + 2d

2

)
t+ d and d(d2 + 3) =

q + ω

q + 1
,

is a candidate to be a local minimizer for the problem. Note that if we restrict our problem for the case where the
parameter ζ belongs to R+, then the Lagrangian function L is jointly convex, and therefore, from Theorem 14, we

can conclude that
(
y∗,

d2 + 2

2

)
is a global minimizer.
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5. Conclusion and perspectives

In this paper we introduced the quantum variational calculus based on the general quantum differential operatorDβ .
We proved necessary optimality conditions of Euler-Lagrange type and natural boundary conditions for generalized
problems of the calculus of variations where the Lagrangian function not only depend on time t ∈ [a, b], function
y and the quantum derivative Dβ [y], but also on a real parameter ζ and the state values y(a) and y(b). We also
provided a sufficient optimality condition.

There is still a lot of work to do in order to develop this new variational calculus. For example, one interesting
direction is to extend our results to the higher-order case. In our opinion, the main difficulty is to prove the higher-
order fundamental lemma of the calculus of variations because of the generality of the function β (see Lemma 3.8
of [8] for the particular case of Hahn’s variational calculus). Another open question is to consider problems of the
general quantum variational calculus with time delay. Here, the main difficulty is that the chain rule, as known
from classical calculus, does not hold for the general quantum derivative.
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