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Abstract—This paper addresses adaptive beamforming in
multi-group multicasting networks where groups of users sub-
scribe to independent services that are simultaneously served
by the base station. Beamformers are designed to maximize
the minimum signal-to-interference-plus-noise ratio (SINR) of
the users in all groups subject to a total transmit power
constraint. By combining multi-group multicast beamforming
with Alamouti space-time block coding, the degrees of freedom
in the beamformer design is doubled resulting in drastically
improved beamforming performance. In our paper we extend
recent approaches in [1] and [2] for rank-two beamforming,
originally devised for single-group multicasting networks that
are free of multi-user interference, to multi-group multicasting
networks, where multi-user interference represents a major
challenge. Simulation results demonstrate that the proposed
approach significantly outperforms the existing approaches.

Index Terms—Adaptive beamforming, multicasting, orthogo-
nal space-time block coding (OSTBC), semi-definite relaxation
(SDR), inner approximation

I. INTRODUCTION

In order to fulfill the growing demand for data rates and

spectral efficiency in future wireless multimedia broadcast and

multicast services [3], transmit beamforming techniques have

been extensively studied in recent years [4], [5]. As compared

to the single-group multicast transmit beamforming where a

single group of users receives the same information symbols

[6], [7], the spectral efficiency in multi-group multicast trans-

mit beamforming can be further improved by serving several

groups of cochannel users simultaneously [8]-[15].

The seminal work on multi-group multicast beamforming

[8] deals with two quality-of-service (QoS) based problems:

the problem of minimizing the total transmit power while

satisfying the minimum SINR requirements of all receivers;

and a max-min fair problem of maximizing the minimum

SINR of all users in different groups subject to a total

transmit power constraint. The latter problem is investigated

in this paper. The QoS based beamforming problems are

proven to be NP-hard and a semidefinite relaxation (SDR)

based approach is developed in [8] to address the problems.

Recently, an iterative inner approximation approach involving

sequential convex optimization has been proposed in [15] to

solve the latter problem more efficiently. As in the single-

group multicasting case, when the number of users is large, the

flexibility of designing spatially selective beamformers in the

conventional adaptive beamforming approaches in [8] and [15]

can be rather limited, and new techniques for improving the

beamforming performance are of great practical importance.

In this paper, we apply the general-rank beamforming

approach to solve the problem by combining multi-group

multicast beamforming with orthogonal space-time block cod-

ing (OSTBC). Similar as in conventional beamforming we

assume that the channel state information (CSI) of all users

is available at the transmitter side. This approach follows the

general idea of [1] and [2], originally proposed for single-

group multicasting networks where multiuser interference is

absent. As compared to the rank-two beamforming approaches

in [1] and [2], we consider the multi-group network where

multi-user interference is dominant. In this approach, transmit

beamforming is used jointly with Alamouti OSTBC to serve

the users [16], hence the users of each group are generally

served with up to two beamformers over two consecutive time

slots using the Alamout code. Due to the orthogonality of the

code, the decoding complexity at the receivers is not increased

and symbol by symbol detection can be performed. The use

of two beamformers per group doubles the degrees of freedom

in the beamformer design and offers improved beamform-

ing performance. Interestingly our QoS based max-min fair

beamforming design results in identical SDR formulations as

in the conventional beamforming approach. However, unlike

in the conventional approach where only rank-one solutions

are optimal, here SDR solutions involving a rank smaller

or equal to two are proven to be optimal for the original

problem. Furthermore, following the approach of [15], in this

paper we propose an iterative inner approximation technique

for general rank-beamforming that is more computationally

efficient as compared to the SDR based outer approximation

technique. Simulation results show that the proposed approach

significantly outperforms the existing approaches.

II. CONVENTIONAL MULTI-GROUP MULTICASTING

Consider a wireless communication system where a base

station equipped with an antenna array of N elements simul-

taneously transmits information to M single-antenna users. We

consider the case that there are 1 ≤ G ≤ M user groups in

total, {g1, . . . , gG}, where gk is the index set of the users

intended to receive the multicasting stream for the kth group,

and k ∈ K where K= {1, . . . , G}. We assume that each user

belongs to only one group and decodes the corresponding

single data stream. Thus, we have gk ∩ gl = φ for any

l 6= k, and ∪kgk = {1, . . . ,M}, treating the symbols of the

remaining groups as noise.

In conventional multi-group multicast beamforming, a sin-

gle weight vector is designed to transmit information intended
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for each group, thus there are G beamformers in total [8]. Let

us denote w∗
k and sk as the N×1 weight vector that is steered

towards the kth group and the zero-mean mutually statistically

independent signal with unit power intended for the kth group,

respectively. The N × 1 transmit signal vector is
∑G

k=1 skw
∗
k

and the total transmit power equals
∑G

k=1 ‖wk‖
2
. Then, the

signal received by the ith user in the kth group is given by

[8]

yi = skw
H
k hi

︸ ︷︷ ︸

signal

+
∑

l6=k

slw
H
l hi

︸ ︷︷ ︸

interference

+ ni
︸︷︷︸

noise

(1)

where hi and ni denote the N×1 downlink channel vector and
the additive white receiver noise with variance σ2

i at the ith

user in the kth group, respectively. Based on (1), the SINR of

the ith user can be derived as
|wH

k hi|
2

∑
l 6=k|wH

l
hi|

2
+σ2

i

. The problem

of finding the weight vectors that maximize the minimum

SINR of all users subject to the power constraint Pmax can be

formulated as [8]

max
wk,t

t

s.t.

∣
∣wH

k hi
∣
∣
2

∑

l6=k

∣
∣wH

l hi
∣
∣
2
+ σ2

i

≥ t, ∀i ∈ gk ∀k, l ∈ K

G∑

k=1

‖wk‖
2
≤ Pmax. (2)

Problem (2) is a quadratically constrained quadratic program-

ming (QCQP) problem and it is NP-hard which inditates

that in general the problem has no closed-form solution

[8]. In [8], the SDR framework is employed to approximate

problem (2) by a semidefinite programming (SDP) problem.

The Gaussian randomization technique along with the power

control involving linear programming in each randomization

instance is then applied on the SDR solution to obtain rank-

one beamforming solutions. As an alternative to the generic

SDR technique, a computationally efficient iterative inner

approximation technique has been proposed in [15], which in

each iteration involves first order Taylor approximation of the

originally non-convex constrains around the feasible solution

obtained from the previous iteration.

III. PROPOSED APPROACH

The central idea of the general-rank beamforming approach

proposed in this work is to combine multi-group multicast

beamforming with the concept of OSTBC based symbol

transmission. In this contribution, we apply the Alamouti code

which achieves full rate transmission. In correspondance to the

2× 2 Alamouti code matrix that is applied at the transmitter,

a pair of weight vectors instead of a single one is used to

transmit the data streams to the designated multicasting groups

over two consecutive time slots. We remark that the approach

proposed in this paper can also be extended to combine with

higher-order OSTBC, however, this extension is associated

with a reduced transmission rate as full rate full diversity

OSTBC only exist for two transmit antennas [17].

A. Rank-two Beamforming Model

Denote sk = [sk1, sk2]
T as the symbol vector for the kth

group. In the Alamouti OSTBC, two symbols are transmitted

within two time slots, and its code matrix for sk is given by

[16]

X (sk) =

[
sk1 sk2
−s∗k2 s∗k1

]

. (3)

Unlike conventional Alamouti transmission schemes where the

code matrix in (3) is transmitted from two transmit antennas

over two consecutive time slots, here the code is transmitted

from all N transmit antennas at the base station using two

different beamformers, i.e., wk1 and wk2, which form two

virtual antennas over which the code is transmitted. Defining

the beamforming matrix Wk = [wk1,wk2], the transmitted

signal in each time block is given by
∑G

k=1 X (sk)W
H
k .

Assuming the block fading channel model, the received

signal vector of the ith user in the kth group in two consecutive

time slots of one transmission block is given by

yi = X (sk)W
H
k hi

︸ ︷︷ ︸

signal

+
∑

l6=k

X (sl)W
H
l hi

︸ ︷︷ ︸

interference

+ ni
︸︷︷︸

noise

(4)

where yi = [yi1, yi2]
T , ni = [ni1, ni2]

T , and yij and nij

denotes the received signal and the additive white noise of

the ith user at the jth time slot, respectively. It is clear

that (4) has a similar structure as (1). Using the equivalent

channel representation for OSTBC [17], equation (4) can be

equivalently written as

ỹi = X (WH
k hi)sk

︸ ︷︷ ︸

signal

+
∑

l6=k

X (WH
l hi)sl

︸ ︷︷ ︸

interference

+ ñi
︸︷︷︸

noise

(5)

where ỹi = [yi1,−y∗i2]
T and ñi = [ni1,−n∗

i2]
T . As a

common approach to decode the received symbols in OSTBC,

the Maximum-Likelihood decoding problem for detecting the

symbols of the ith user can be formulated as

min
sk∈Ak

∥
∥ỹi −X (WH

k hi)sk
∥
∥
2

= min
sk∈Ak

∥
∥
∥
∥

1

αi
X (WH

k hi)
H ỹi − sk

∥
∥
∥
∥

2

(6)

where αi = hHi WkW
H
k hi, and Ak is the vector constellation

of sk. By left-multiplying the decoding matrix
X (WH

k hi)
H

αi
on

both sides of (5), we have

ŝk=
1

αi
X (WH

k hi)
H ỹi

=sk+
1

αi
X (WH

k hi)
H(
∑

l6=k

X (WH
l hi)sl)

︸ ︷︷ ︸

ŝ
(I)
k

+
1

αi
X (WH

k hi)
Hñi

︸ ︷︷ ︸

ŝ
(N)
k

.

(7)
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Taking into account that the symbols in sk are assumed to be

statistically independent and making use of the orthogonality

property of X (WH
k hi), we have

E{ŝk ŝ
H
k }= I+

∑

l6=k h
H
i WlW

H
l hi

hHi WkW
H
k hi

I+
σ2
i

hHi WkW
H
k hi

I

=
hHi WkW

H
k hi+

∑

l6=k h
H
i WlW

H
l hi+σ2

i

hH
i WkW

H
k hi

I. (8)

where E{·} denotes the statistical expectation and I is the

2 × 2 identity matrix. From the diagonal structure of (8), we

observe that there exists no inter symbol interference, thus sk
can be decoded using a simple linear symbol-wise decoder.

According to (7), the covariance of the desired signal at the

ith user is

E{sks
H
k } = I, (9)

the covariance of the interference at the ith user is

E{ŝ
(I)
k ŝ

(I)H
k } =

∑

l6=k h
H
i WlW

H
l hi

hHi WkW
H
k hi

I, (10)

and the covariance of the noise at the ith user is

E{ŝ
(N)
k ŝ

(N)H
k } =

σ2
i

hH
i WkW

H
k hi

I. (11)

Based on (9), (10) and (11), the SINR of the ith user can be

written as

SINRi =
hHi WkW

H
k hi

∑

l6=k h
H
i WlW

H
l hi + σ2

i

. (12)

The total transmit power in the jth time slot in each block is

given by

Pj =E{(

G∑

k=1

[X (sk)]jW
H
k )(

G∑

k=1

[X (sk)]jW
H
k )H)}

=
G∑

k=1

tr(WkW
H
k ) (13)

where [X (sk)]j denotes the jth row of the code matrix X (sk)
in (3), tr{·} denotes the trace of a matrix, and where we make

use of the statistical independence of the transmitted symbols

among users and the orthogonality of the code matrix.

B. Beamformer Optimization

We consider a QoS based max-min fair beamforming ap-

proach in which the minimum SINR of all users is maximized

subject to the constraint of total transmit power per time slot

[8]. We remark that it is fair to consider the constraint of

the total transmit power per time slot here because the power

constraint in (2) in the conventional problem is the power

per time slot as well. Using (12) and (13), the beamforming

optimization problem can be presented as

max
Wk,t

t

s.t.
hH
i WkW

H
k hi

∑

l6=k h
H
i WlW

H
l hi + σ2

i

≥ t, ∀i ∈ gk ∀k, l ∈ K

G∑

k=1

tr(WkW
H
k ) ≤ Pmax. (14)

Following the SDR approach, let

Xk = WkW
H
k =

2∑

j=1

wkjw
H
kj , ∀k ∈ K. (15)

Then problem (14) can be rewritten as

max
Xk,t

t

s.t.
hHi Xkhi

∑

l6=k h
H
i Xlhi + σ2

i

≥ t, ∀i ∈ gk ∀k, l ∈ K

G∑

k=1

tr(Xk) ≤ Pmax,

Xk � 0, rank{Xk} ≤ 2, ∀k ∈ K. (16)

where Xk � 0 constrains Xk to lie in the set of positive

semidefinite Hermitian matrices. Substituting the rank-one

matrix Xk = wkw
H
k in the conventional beamforming problem

(2) and comparing the resulting problem with (16), we observe

that both problems are identical up to the non-convex rank

constraints, i.e., the rank-one constraints in the reformulation

of (2) and the rank-two constraint in (16). As the set of rank-

two matrices includes the set of rank-one matrices, we observe

that the general-rank beamforming solutions of (16) generally

yield improved QoS as compared to the rank-one beamforming

solutions of (2). It follows from the discussion above that the

SDR technique applied to both (2) and (16) results in the same

convex optimization problem given by

max
Xk,t

t

s.t.
hHi Xkhi

∑

l6=k h
H
i Xlhi + σ2

i

≥ t, ∀i ∈ gk ∀k, l ∈ K

G∑

k=1

tr(Xk) ≤ Pmax,Xk � 0, ∀k ∈ K (17)

which can be solved efficiently by performing a one-

dimensional bisection search over t as in [8] with the aid

of currently available convex optimization tools such as CVX

[18]. The computational complexity of the semidefinite pro-

gramming procedure is O(G3N6+MGN2) in each bisection

search step, which is the same as in the conventional SDR

approach in [8]. We remark that due to the difference in the

rank constraints, generally the SDR of (16) is tighter than that

of (2).

Denote {X⋆
k}

G
k=1 as the optimal solution to (17), the optimal

value associated with it can serve as the upper bound to the
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original problem (14) and it is used to evaluate the approx-

imation quality of the proposed approach as shown in the

simulation. When rank(X⋆
k)≤2, ∀k, the optimal weight vector

solutions to the problem (14) can be obtained by computing the

principal components of {X⋆
k}

G
k=1 straightforwardly. However,

if there exists at least one X⋆
k with rank(X⋆

k)>2, and if

M≤G+7, rank reduction techniques proposed in [19] can be

applied to obtain optimal rank-two solutions to the problem

(14). The Proof of this statement is omitted here for brevity.

However, the proof follows the line of arguments in [2] where

similar conditions have been derived for the single-group

multicasting problem. Conversely, if M>G+7, a modified

randomization technique is proposed in this paper for the rank-

two case to compute the final solutions, which follows the

general procedure of the randomization techniques proposed

in [8] and [1].

Let us denote w
(r)
k1 and w

(r)
k2 as the candidate weight vectors

for wk1 and wk2 in the r-th randomization instance, respec-

tively. If rank(X⋆
k)≤2, w

(r)
k1 and w

(r)
k2 are computed as the prin-

cipal components of X⋆
k; conversely, if rank(X

⋆
k)>2, we first

perform an eigen-decomposition on X⋆
k as X⋆

k = UkΣkU
H
k ,

then choose w
(r)
k1 = UkΣ

1/2
k er, and w

(r)
k2 = UkΣ

1/2
k fr where

er and fr are N×1 vectors containing the realizations of i.i.d.

complex circular Gaussian distributed random variables with

zero mean and unit variance. Then the global power control

procedure over all groups involving bisection search and linear

programming is performed to compute a candidate set of

weight vector solutions. Let pk1 and pk2 denote the power

scaling factors corresponding to w
(r)
k1 and w

(r)
k2 , respectively.

The power control problem can be stated as

max
pkj≥0,t

t

s.t.
pk1β

(r)
k1i + pk2β

(r)
k2i

∑

l6=k(pl1β
(r)
l1i + pl2β

(r)
l2i ) + σ2

i

≥ t, ∀i ∈ gk∀k, l ∈ K

G∑

k=1

(pk1α
(r)
k1 + pk2α

(r)
k2 ) ≤ Pmax, ∀ j = 1, 2 (18)

where α
(r)
kj :=

∥
∥
∥w

(r)
kj

∥
∥
∥

2

and β
(r)
kji :=

∣
∣
∣w

(r)H
kj hi

∣
∣
∣

2

, ∀j = 1, 2.

Among all sets of candidate solutions obtained, the set with

the largest SINR value is selected as the final solution.

As an alternative to the SDR based approach, we propose a

computationally more efficient approach to obtain approximate

solutions iteratively by performing sequential convex opti-

mization, similar as in [15]. Towards this aim, let us consider

problem (14), which can be written as

max
wkj ,t

t

s.t. −
∣
∣wH

k1hi
∣
∣
2
−
∣
∣wH

k2hi
∣
∣
2
+ t

∑

l6=k

(
∣
∣wH

l1hi
∣
∣
2
+
∣
∣wH

l2hi

∣
∣
2
)

+ tσ2
i ≤ 0, ∀i ∈ gk ∀k, l ∈ K

G∑

k=1

(‖wk1‖
2
+ ‖wk2‖

2
) ≤ Pmax. (19)

In order to solve the non-convex problem in (19), the general

idea is to introduce an iterative procedure in which in the

(p + 1)-th iteration, wkj and t are replaced by w
(p)
kj +∆wkj

and t(p)+∆t, ∀k ∈ K,∀j ∈ {1, 2}, where w
(p)
kj and t(p) are the

beamforming weight vector and the SINR level obtained from

the p-th iteration, respectively. By neglecting the non-convex

terms −(
∣
∣∆wH

k1hi
∣
∣
2
+
∣
∣∆wH

k2hi
∣
∣
2
) and ∆t

∑

l6=k(
∣
∣∆wH

l1hi

∣
∣
2
+

∣
∣∆wH

l2hi
∣
∣
2
− 2ℜ{∆wH

l1hih
H
i w

(p)
l1 + ∆wH

l2hih
H
i w

(p)
l2 }) in the

SINR constraint in (19), the problem in the (p+1)-th iteration

can be approximated as the following convex problem

max
∆wkj ,∆t

∆t

s.t. −
∣
∣
∣w

(p)H
k1 hi

∣
∣
∣

2

−
∣
∣
∣w

(p)H
k2 hi

∣
∣
∣

2

+ t(p)σ2
i

+∆t
∑

l6=k

(
∣
∣
∣w

(p)H
l1 hi

∣
∣
∣

2

+
∣
∣
∣w

(p)H
l2 hi

∣
∣
∣

2

) + ∆tσ2
i

+t(p)
∑

l6=k

(
∣
∣
∣(w

(p)
l1 +∆wl1)

Hhi

∣
∣
∣

2

+
∣
∣
∣(w

(p)
l2 +∆wl2)

Hhi

∣
∣
∣

2

)

≤ 0, ∀i ∈ gk ∀k, l ∈ K
G∑

k=1

(
∥
∥
∥w

(p)
k1 +∆wk2)

∥
∥
∥

2

+
∥
∥
∥w

(p)
k2 +∆wk2)

∥
∥
∥

2

) ≤ Pmax.

(20)

Problem (20) can be classified as an inner convex approx-

imation problem. Following from the inner approximation

property, this iterative procedure results in a sequence of

non-decreasing minimum SINR values. The proposed iterative

approximation scheme is initialized with randomly gener-

ated weight vectors. With the increase of the iteration p,

as soon as the increment of the obtained SINR between

two consecutive iterations is below a certain threshold, i.e.,

t(p+1) − t(p) < ǫ, we terminate the iteration. We remark

that it can be proven that the iteration algorithm is always

feasible and convergent, but not necessarily to an optimal point

[15]. The complexity of the rank-two inner approximation

procedure is O((M+1)1/2(M+2GN+2)(2GN+1)2), while
in the rank-one case as shown in [15] the complexity is

O((M+1)1/2(M+GN+2)(GN+1)2).

IV. SIMULATION RESULTS

We assume Rayleigh fading channels with i.i.d. channel

coefficients of unit-variance. The noise variance σ2
i = 1 for

all i = 1, . . . ,M . We consider the case that N = 4, G = 2
and M = 30 with 15 users in each group. Gray-coded QPSK

are transmitted to each group of users.

In our simulation example, we compare the proposed rank-

two beamforming approaches with the state-of-the-art ap-

proach proposed in [15]. In Fig. 1, the worst SINR among all

users for different prescribed transmit powers is displayed. All

results are averaged over 500 Monto-Carlo runs. Five curves

are depicted in Fig. 1, where the curve labeled ‘SDR upper

bound’ stands for the upper bound on the SINR provided by

the SDR solutions, ‘Method of [15]’ refers to the inner convex
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approximation approach for the rank-one beamforming prob-

lem with random initialization as proposed in [15], ‘Method of

[15] with SDR’ stands for the rank-one beamforming approach

in which SDR is employed in the initialization step and the

inner approximation method in [15] is applied only if optimal

rank-one solutions are not obtained in the initialization step,

‘Proposed (SDR+Randomization)’ refers to the proposed SDR

based rank-two beamforming approach with 100 randomiza-

tion instances in each run, and ‘Proposed (Inner approx.)’

stands for the proposed rank-two beamforming approach with

iterative inner approximation. We set the threshold value for

iteration termination to ǫ = 10−4. As shown in Fig. 1, ‘Pro-
posed (Inner approx.)’ achieves slightly improved performance

as compared to ‘Proposed (SDR+Randomization)’, and both

curves are very close to ‘SDR upper bound’ and achieve better

performance than all the rank-one approaches. This result can

further be observed from Fig. 2 in which the histogram of

the obtained rank of the solution {X⋆
k}

G
k=1 of problem (17) is

displayed versus the total transmit power. As shown in Fig. 2,
rank-two solutions are obtained in most of the considered

transmit power values. ‘Proposed (SDR+Randomization)’ can

achieve optimal solutions for both rank-one and rank-two

cases, and ‘Proposed (Inner approx.)’ performs well due to

its rank-two approximation. Fig. 3 compares the convergence

rates of ‘Proposed (Inner approx.)’ and ‘Method of [15]’ when

Pmax = 10dB. We observe that both rates are almost the same,

but ‘Proposed (Inner approx.)’ achieves a better SINR value

after the first iteration as compared to ‘Method of [15]’.
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