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�is brief proposes a general framework of the nonlinear recurrent neural network for solving online the generalized linear
matrix equation (GLME) with global convergence property. If the linear activation function is utilized, the neural state matrix
of the nonlinear recurrent neural network can globally and exponentially converge to the unique theoretical solution of GLME.
Additionally, as compared with the case of using the linear activation function, two speci	c types of nonlinear activation functions
are proposed for the general nonlinear recurrent neural network model to achieve superior convergence. Illustrative examples are
shown to demonstrate the e
cacy of the general nonlinear recurrent neural network model and its superior convergence when
activated by the aforementioned nonlinear activation functions.

1. Introduction

Solving the generalized linear matrix equation (GLME) and
its variants is an important issue which is widely encountered
in scienti	c and engineering areas (e.g., feedback control
system design [1], smart antenna array processing [2]). �e
well-known Lyapunov equation and Sylvester equation can
be regarded as main special cases of GLME with reduced
numbers of coe
cients and variable matrices, which have
drawnwidespread interest of researchers and engineers in the
past decades [3–7].Without loss of generality, in this brief, the
GLME problem is formulated as the following form:

�∑
�=1
� ���� = �, (1)

where � � ∈ ��×�, �� ∈ ��×�, and � ∈ ��×� denote
coe
cient matrices and � ∈ ��×� denotes the unknown
matrix to be obtained. Usually, it is complicated to analyze
what circumstances the solution of (1) would be under in
the traditional numerical way. To guarantee such GLME
(1) solvable with the unique theoretical solution, coe
cient
matrices � � ∈ ��×� and �� ∈ ��×� can be practically con-
	gured with their eigenvalues all being positive or negative
simultaneously. In many cases, the number of solutions of

(1) can be multiple or even none, depending on what kind
of combinations matrices � � and �� would make to associate
with the unknown matrix �. A lot of conventional serial
approachesmay be not e
cient enough to solve onlineGLME
due to their inherent drawbacks, and parallel computational
approaches seem more preferable [8–13].

Regarded as another promising approach for parallel
computation, dynamic neural networks based on analog
solvers have been exploited comprehensively in computa-
tional intelligence 	elds [12, 14–16]. Di�erent from a number
of conventional numerical methods, approaches based on
dynamic neural networks can be more realizable on speci	c
parallel and distributed so�ware or/and hardware architec-
tures [17, 18].�is could highly enlarge utility of current neu-
ral networks towards various potential application domains
towards high-performance computing. One basic type of
dynamic neural networks, recurrent neural networks, which
is analogous to the natural transient and steady process, has
been applied in online parallel computing tasks with large-
scale analog/digital circuit prototypes [19].

Ourmain contribution in this brief is to develop a general
framework of recurrent neural networkmodel to solveGLME
(1). Since nonlinear phenomena occur frequently in neural
network hardware implementation [19], the proposed general
nonlinear framework may be more suitable for analog-based
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computation.�e neural state of the general recurrent neural
network can globally converge to the theoretical solutions.
If the general recurrent neural network is activated by the
linear function, the exponential convergence can be achieved.
On the other hand, certain nonlinear forms of such general
neural networkmay be able to obtainmore accurate solutions
and faster convergence as compared with its linear model, so
we propose two speci	c nonlinear activation functions for the
general recurrent neural network model to achieve superior
performance to solve GLME (1).

2. General Recurrent Neural Network Solver

In this section, we present and analyze the general model of
recurrent neural network to solve GLME (1). If such model
is activated by the linear function, state matrix �(	) ∈ ��×�
of the general recurrent neural network can globally and
exponentially converge to the unique theoretical solution�∗ ∈ ��×�. By exploiting speci	c nonlinear odd monotoni-
cally increasing activation functions, superior convergence is
expected to be achieved. In the ensuing subsections, we will
discuss their convergence properties of the general nonlinear
recurrent neural network model together with its linear
form.

2.1. General Nonlinear Neural Network Model. In this brief,
the general nonlinear recurrent neural network model is
proposed to solve GLME (1) as follows:

�̇ (	) = −� �∑
�=1

[���F( �∑
	=1

� 	� (	) �	 − �)��� ] , (2)

where operator F(⋅) : ��×� → ��×� denotes a nonlinear
activation function array, with its each scalar-valuedmapping
unit �(⋅) : � → � being a monotonically increasing odd

activation function, and subscript (⋅)� denotes transpose of
matrix/vector. Such recurrent neural network model (2) can
be generalized as the extended nonlinear version of recurrent
neural network in [16] and the ensuing linear model. For the
general nonlinear recurrent neural network model (2), we
would have the following theorem.

�eorem 1. �e neural state matrix �(	) ∈ ��×� of general
nonlinear recurrent neural network model (2), starting from
any initial value �(0) ∈ ��×�, can globally converge to the
theoretical solution(s)�∗ ∈ ��×� of GLME (1).

Proof. Firstly, we de	ne the distance between the neural state

and the theoretical solution as �̃(	) = �(	) − �∗ ∈ ��×�.
Accordingly, by substituting �(	) = �̃(	) + �∗ ∈ ��×�
into neural network model (2), it can be further equivalently
transformed as

̇̃� (	) = −� �∑
�=1

���F( �∑
	=1

� 	�̃ (	) �	)��� . (3)

Next, the corresponding Lyapunov-function candidate is
de	ned as follows:

�(�̃ (	) , 	)(3) = ������̃ (	)�����2
 = �����vec (�̃ (	))�����22 , (4)

where operators ‖ ⋅‖
, ‖ ⋅‖2, and ⊗, respectively, denote Frobe-
nius norm of matrix, two norms of vector, and Kronecker
product between matrices and vec(�̃(	)) ∈ ��� generates a
new column vector obtained by stacking all column vectors

of �̃(	) ∈ ��×� together.
�e time derivative of �(�̃(	), 	)(3) is

�̇ (�̃ (	) , 	)(3) = 2 vec (�̃ (	))� vec ( ̇̃� (	)) . (5)

Considering the following vectorization equality based
on (2),

vec ( ̇̃� (	)) = −�( �∑
�=1

�� ⊗ ���)

⋅F(( �∑
	=1

��	 ⊗ � 	) vec (�̃ (	))) ,
(6)

we can further derive (5) as

�̇ (�̃ (	) , 	)(3) = −2� vec (�̃ (	))�( �∑
�=1

�� ⊗ ���)

⋅F(( �∑
	=1

��	 ⊗ � 	) vec (�̃ (	)))

= −2�[( �∑
�=1
��� ⊗ � �) vec (�̃ (	))]

�

⋅F(( �∑
�=1
��� ⊗ � �) vec (�̃ (	))) .

(7)

For nonlinear activation function array F(⋅), its indi-
vidual scalar-valued entry �(⋅) is odd and monotonically
increasing, which can guarantee

�� (�) = {{{
> 0, � ∈ �, � ̸= 0;
= 0, � ∈ �, � = 0. (8)

�us, �̇(�̃(	), 	)(3) ⩽ 0, which implies that �̃(	) ∈ ��×�
could globally converge to zero matrix 0 ∈ ��×� according to
Lyapunov theory [20]; that is, state matrix�(	) ∈ ��×� of (2)
globally converges to the theoretical solution(s) �∗ ∈ ��×�
of GLME (1). All of these above complete the proof.

According to �eorem 1, the general nonlinear neural
network model (2) can be activated by a number of odd
monotonically increasing functions to solve GLME (1) which
is with existent theoretical solutions (unique or multiple),
which will broadly enlarge the utility domain of (2) towards
manifold model generation. As we may know, nonlinear
elements are frequently encountered in analog/digital circuit
prototypes of neural networks [19, 21]; involving nonlinear
activation functions can be bene	cial to potential design
and implication. On the other hand, faster convergence is
indeed required for solving GLME (1) when the linear model
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might not satisfy increasing computational requirements.
With expectancy, the nonlinear neural network model (2)
can attain superior convergence to that of (10) if proper
activation functions are exploited. Before inducing the supe-
rior nonlinear-function activated models, we herein address
the linear model of the general nonlinear recurrent neural
network and discuss its convergence property.

2.2. Linear Neural Network Model. To solve GLME (1),
we 	rstly de	ne a scalar-valued error function "(	) =‖∑��=1 � ��(	)�� −�‖2
/2 ∈ [0, +∞) associated with (1), where
operator ‖ ⋅ ‖
 denotes the Frobenius norm. In order to
eliminate error function "(	) to zero as 	 increases, gradient-
descent manner is adopted:

�̇ (	) = −� %" (	)%� (	) , (9)

where design parameter � > 0 scales the convergence rate.
According to preliminaries on matrix-di�erential theory

[22], (9) is further expanded to the following dynamic form:

�̇ (	) = −� �∑
	=1

�∑
�=1

���� 	�(	) �	��� + � �∑
�=1
��� ���� . (10)

For linear model (10), we would have the following
theorem.

�eorem 2. If the linear neural network model (10) is
employed to solve GLME (1), starting from initial condition�(0) ∈ ��×�, the state matrix �(	) ∈ ��×� of (10) can
globally exponentially converge to unique theoretical solution�∗ ∈ ��×�.
Proof. Using the transformation �̃(	) = �(	) − �∗ ∈��×� between �(	) and �∗ with initial condition �̃(0) =�(0) − �∗ ∈ ��×�, dynamic equation (10) is further derived
equivalently as the following:

̇̃� (	) = −� �∑
	=1

�∑
�=1

���� 	�̃ (	) �	��� + � �∑
�=1
��� ����

− � �∑
	=1

�∑
�=1

���� 	�∗�	���
= −� �∑
	=1

�∑
�=1

���� 	�̃ (	) �	���
+ � �∑
�=1

��� (� − �∑
	=1

� 	�∗�	)��� .

(11)

With ∑��=1 � ��∗�� = � considered, (11) can be simpli	ed
as

̇̃� (	) = −� �∑
	=1

�∑
�=1

���� 	�̃ (	) �	��� . (12)

Similarly, we de	ne the following Lyapunov-function
candidate:

�(�̃ (	) , 	)(10) = ������̃ (	)�����2
 ⩾ 0, (13)

with its time derivative being

�̇ (�̃ (	) , 	)(10) = trace[
[
(%� (�̃ (	) , 	)

%�̃ (	) )
� ̇̃� (	)]

]
= trace(−2��̃� (	) �∑

	=1

�∑
�=1

���� 	�̃ (	) �	���)

= −2� ����������
�∑
�=1
� ��̃ (	) ��

����������
2



⩽ 0.

(14)

�ere exists a positive scalar 3 > 0 [23] being the minimum

eigenvalue of (∑��=1 ��� ⊗ � �)�(∑��=1 ��� ⊗ � �) satisfying
����������
�∑
�=1
� ��̃ (	) ��

����������
2



⩾ 3 ������̃ (	)�����2
 (15)

if the unique solution condition of GLME (1) holds. �us, we
can have

�̇ (�̃ (	) , 	) ⩽ −2�3� (�̃ (	) , 	) ; (16)

that is,

�(�̃ (	) , 	) ⩽ exp (−2�3	)� (�̃ (0) , 0) , (17)

which could be further equivalently rewritten as

����� (	) − �∗����
 ⩽ exp (−�3	) ����� (0) − �∗����
 . (18)

By Lyapunov theory [20], (14) and (18) indicate that state
matrix �(	) ∈ ��×� of (10) can globally and exponentially
converge to the unique theoretical solution �∗ ∈ ��×� of
GLME (1). �e proof is thus complete.

It is worth noting that if GLME (1) is with multiple
theoretical solutions �∗ ∈ ��×�, scalar 3 equals zero. In this
situation, the linear model (10) at least could guarantee its
global convergence but is not able with explicit exponential
convergence rate.

3. Superior Convergence with Specific
Nonlinear Activation Functions

According to �eorem 1, �e odd monotonically increasing
activation function is able to guarantee global convergence
of the general recurrent neural network (2). If the linear
activation function is adopted, the general recurrent neural
network model reduces to the linear model (10). Such
linear model (10) possesses global exponential convergence
property. In order to achieve superior convergence to global
exponential convergence of the linear model (10), speci	c
types of nonlinear activation functions should be chosen
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Figure 1: �e general recurrent neural network model (2) utilizes
the three types of activation functions: linear, power sum (6 = 3),
and hyperbolic sine (8 = 3).

properly. Owing to the aforementioned considerations, two
types of nonlinear activation functions, power sum and
hyperbolic sine functions, are proposed to activate the general
recurrent neural networkmodel (2). Figure 1 shows the curve
plotting of the three aforementioned activation functions
used in (2). Correspondingly, we will have the following
theorems on the two neural network models’ convergence
properties.

�eorem 3. If the general recurrent neural network (2) is

activated by the power sum function �(�) = ∑��=1 �2�−1, the
state matrix �(	) ∈ ��×� of (2) can globally and superiorly
converge to the unique theoretical solution �∗ ∈ ��×�, as
compared with linear model (10).

Proof. In order to prove the convergence property of (2)

activated by the power sum function�(�) = ∑��=1 �2�−1 under
this situation, we de	ne the following Lyapunov-function
candidate:

�ps (�̃ (	) , 	) fl �(�̃ (	) , 	)(3) = � (�̃ (	) , 	)(10) , (19)

with its time derivative being

�̇ps (�̃ (	) , 	) = −2�Δ�F (Δ) = −2���∑
=1
Δ � (Δ )

= −2���∑
=1
Δ  �∑
�=1

(Δ )2�−1

= −2���∑
=1

�∑
�=1

(Δ )2� ⩽ −2���∑
=1

(Δ )2

= �̇ (�̃ (	) , 	)(10) ,
(20)

where

Δ = [Δ 1, Δ 2, . . . , Δ , . . . , Δ��]� ∈ ��� (21)

and Δ  ∈ � denotes the @th element of vector (∑��=1 ��� ⊗� �)vec(�̃(	)) ∈ ���. �is implies that when power sum
functions are used, (2) possesses global convergence to zero
matrix, with larger Lyapunov-function vanishing rate (i.e.,
faster convergence), as compared with the situation of (10).
�e proof is thus complete.

�eorem 4. If the general recurrent neural network (2) is
activated by hyperbolic sine function �(�) = exp(8�)/2 −
exp(−8�)/2 with coe	cient 8 ⩾ 1, the state matrix �(	) ∈��×� of (2) can globally and superiorly converge to the unique
theoretical solution �∗ ∈ ��×�, as compared with the linear
model (10).

Proof. Similarly, the following Lyapunov function is de	ned
to investigate convergence:

�hs (�̃ (	) , 	) fl �ps (�̃ (	) , 	) = � (�̃ (	) , 	)(10) , (22)

and its time derivative is

�̇hs (�̃ (	) , 	) = −2���∑
=1
Δ � (Δ )

= −���∑
=1
Δ  (exp (8Δ ) − exp (−8Δ ))

= −2���∑
=1

+∞∑
�=1

(8Δ )2�(2B − 1)! ⩽ −2���∑
=1

(Δ )2

= �̇ (�̃ (	) , 	)(10) ,

(23)

which indicates that when the hyperbolic sine activation
function is employed, the nonlinear recurrent neural network
model (2) possesses global convergence as its state matrix is
approaching zero, with larger Lyapunov-function vanishing
rate (i.e., faster convergence) as compared with the situation
of linear model (10). �ese complete the proof.

4. Illustrative Examples

In this section, three examples are presented to illustrate the
e
ciency of the general nonlinear recurrent neural network
(2) with its speci	c models under di�erent types of activation
functions (linear, power sum, and hyperbolic sine activation
functions) for online solving GLME (1).
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Figure 2: Solution error ‖�(	) −�∗‖
 synthesized by (2) for GLME
(24) with the unique theoretical solution�∗, starting from the same
randomly generated initial state�(0) ∈ �2×2.

Example 1. Let us consider the following GLME with D = 2:
�1��1 + �2��2 = �, (24)

where

�1 = [2 1
1 3] ,

�2 = [6 2
3 4] ,

�1 = [5 3
3 4] ,

�2 = [6 2
5 8] ,

� = [3 4
5 6] .

(25)

GLME (24) has unique theoretical solution

�∗ = [−0.0023 0.0308
0.0395 0.1019] , (26)

since the eigenvalues of coe
cient matrices �1, �2, �1, and�2 are all positive values. We employ the general recurrent
neural network model (2) with � = 1 activated by linear
function, power sum function with 6 = 4, and hyperbolic
sine function with 8 = 3.

From Figure 2, we could observe that the solution errors‖�(	)−�∗‖
 decline to almost zero at around 0.02 s and faster
convergence to the solution can be achieved with power sum

and hyperbolic sine activation functions used in (2). �ese
can demonstrate the e�ectiveness of the general recurrent
neural network model (2) for solving GLME (24).

Example 2. Let us consider the following GLME with multi-

ple theoretical solutions�∗ ∈ �2×2:
�̃1��̃1 + �̃2��̃2 = �̃, (27)

where

�̃1 = [ 1 0
−1 1] ,

�̃2 = [2 0
0 1] ,

�̃1 = [0 0
0 1] ,

�̃2 = [0 1
0 0] ,

�̃ = [0 3
0 5] .

(28)

We use linear model (10) with design parameter � = 1 to
solve GLME (27). �e trajectories of entries of state matrix�(	) ∈ �2×2 are shown in Figure 3. From Figure 3, we could
see that, starting from two di�erent initial matrices �(0) ∈�2×2, the state matrices �(	) ∈ �2×2 of linear model (10),
respectively, converge to two di�erent trajectories (or say two

di�erent theoretical solutions�∗ ∈ �2×2). �is indicates that
the choices of the initial value impact greatly the steady-state
results of the recurrent neural network (2) and determine
the starting points of convergence for solution of GLME
(27), if multiple theoretical solutions exist for GLME (27).

Correspondingly, the residual errors ‖�̃1�(	)�̃1+�̃2�(	)�̃2−�̃‖
 synthesized by (10) can always diminish to zero within
	nite time from twenty di�erent initial values, as illustrated
by Figure 4.

Example 3. Let us consider the following GLME in a larger
dimension with D = 10:

10∑
�=1
� ���� = �, (29)

where coe
cient matrices � � ∈ �10×10, �� ∈ �10×10, and � ∈�10×10 are all positive-de	nite randomly generated and fall

within interval [−2, 2] ∈ �10×10. We exploit nonlinear neural
network models (2) activated by power sum and hyperbolic
sine functions and the linear model (10) to solve GLME (29)
with design parameter � = 1. From Table 1, we could observe
that general recurrent neural networkmodels (2) activated by
power sum and hyperbolic sine activation functions exhibit
faster error diminishing speed than that of the linear model
(10), with all of their residual errors reaching the level of
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Figure 3: Trajectories of statematrix�(	) ∈ �2×2 for solvingGLME (27) with themultiple theoretical solutions�∗, starting from two di�erent
initial states�(0) ∈ �2×2.
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Figure 4: Residual error ‖�̃1�(	)�̃1+�̃2�(	)�̃2−�̃‖
 synthesized by
(2) for solution of GLME (27), starting from twenty di�erent initial
states�(0) ∈ �2×2.

10−7 within 1 s. From computational results of these three
examples above, we could see that the proposed general
nonlinear recurrent neural network can solve the GLME (1)
problem well.

Table 1: Performance of the general recurrent neural networkmodel
(2) with three di�erent activation functions (linear, power sum, and
hyperbolic sine) for solving GLME (29).

Residual error
�����∑10�=1 � ��(	)�� − ������


Time 	 (s) Linear Power sum Hyperbolic sine	 = 0 s 37.4543 37.4543 37.4543	 = 0.1 s 0.9886 0.3678 0.5242	 = 1 s 4.6368 × 10−7 9.7531 × 10−8 3.0543 × 10−7

5. Conclusion

In this brief, we present a general recurrent neural network
model for solving GLME. �e general nonlinear model of
recurrent neural network possesses global convergence prop-
erty in 	nding solutions of GLME. By using speci	cally pro-
posed nonlinear activation functions, superior convergence
can be achieved, as compared with the linear model which
is with exponential convergence rate. Illustrative results are
shown to demonstrate the e�ectiveness and superiority of
nonlinear recurrent neural network models for solution of
GLME.
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