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A General Reduced Order Model to Design and Operate 
Synthetic Jet Actuators 

Tim Persoons1 

University of Dublin, Trinity College, Dublin 2, Ireland 

Synthetic jets are used in various applications from flow control to thermal management 

of electronics. Controlling the jet operating point using a simple voltage to velocity 

calibration becomes unreliable in case of external pressure field disturbances or varying 

actuator characteristics. This paper presents a general lumped parameter model for a 

synthetic jet actuator with electromagnetic or piezoelectric driver. The fluidic model 

accurately predicts the synthetic jet operating point (i.e. Reynolds number and stroke 

length) based on the measured cavity pressure. The model requires only two empirical 

coefficients characterizing nozzle fluid damping and inertia. These can be obtained via 

calibration or estimated from pressure loss correlations and the governing acoustic radiation 

impedance. The model has been validated experimentally for a circular and rectangular 

orifice. The effect of nozzle damping on the nonlinear system response is discussed. 

Analytical expressions are given for the two resonance frequencies characterizing the system 

response, as a function of the diaphragm and Helmholtz resonance frequencies. The optimal 

design of an impinging synthetic jet actuator is discussed in terms of the thermal and 

acoustic efficiency. Guidelines for selecting the optimum combination of diaphragm and 

Helmholtz resonance frequency are presented and compared to previous studies. 

Nomenclature 

A = cross-sectional area (m2) 

a = radius (m) 

Bl = electromagnetic force factor (Tm) 

C = damping coefficient (Ns/m) or capacitance (F) 
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c = speed of sound (m/s) 

d = hydraulic diameter (m) 

e = voltage (V) 

F = force (N) 

i = current (A) 

j = imaginary unit ((-1)1/2) 

K = stiffness (N/m) 

k = wave number (2πf/c) (m-1) 

M = mass (kg) 

f = frequency (Hz) 

L = length (m) or inductance (H) 

P = power (W) 

p = pressure (relative to ambient) (Pa) 

R = resistance (Ω) 

r = distance from source (m) 

s = Laplace variable (jω) (s-1) 

U = velocity (m/s) 

x = position (m) 

Z = impedance, acoustic (Ns/m) or electrical (Ω) 

Greek symbols 

ζ = critical damping ratio 

μ = dynamic viscosity (Ns/m2) 

ν = kinematic viscosity (m2/s) 

ρ = density (kg/m3) 

ω = angular velocity (2πf) (rad/s) 

Subscripts 

0 = back side of component or jet characteristic 

1 = front side of component 

A = acoustic 

a = ambient 

c = cavity 

d = diaphragm 

e = electrical 

f = fluid 

H = Helmholtz resonance 

n = nozzle 

T = thermal 
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I. Introduction 

 synthetic jet consists of a train of vortices that form by successive ejection and suction of fluid across an 

orifice, creating a directional flow without net mass input yet with a non-zero momentum flux. The flow is driven by 

periodic pressure variations generated in a cavity with a movable diaphragm. A free axisymmetric synthetic jet flow 

is characterized by two parameters: the stroke length 0L d  and the Reynolds number 0Re U d ν= , where d is the 

nozzle hydraulic diameter and 0 0U L f= . The stroke length L0 is the average distance traveled by fluid ejected 

during one half period or 
1/(2 )

0
0

( )
f

t
L U t dt

=
= ∫ , where U(t) is the area-averaged orifice velocity [1,2]. The 

dimensionless stroke length 0L d  is the inverse of a Strouhal number ( ( ) 1

0 0L d fd U
−= ) and determines the flow 

characteristics especially at low values of 0L d . Based on an analytical derivation [3], no vortex detaches from an 

axisymmetric sharp-edged orifice unless 0 0.5L d > . The threshold value is geometry dependent, e.g. for a two-

dimensional sharp-edged orifice 0L d π>  [3], with even higher values reported for a rounded edge [4,5]. It is well 

understood that 0L d  and Re are the main parameters governing a synthetic jet flow [2].  

 Controlling the synthetic jet operating point therefore requires knowledge of the jet velocity. This cannot be 

conveniently measured in industrial applications, and requires advanced methods such as laser-Doppler 

anemometry, particle image velocimetry or hot-wire anemometry. Typically a calibration is performed to determine 

the relationship between excitation voltage and jet velocity. However, this relationship is subject to actuator 

degradation and other external influences. To overcome this problem, a calibration of cavity pressure versus velocity 

is recommended instead [1,6,7].  

 Smith and Glezer [1] use a synthetic jet to deflect a primary stationary jet, and also characterized the synthetic jet 

with a pressure-velocity calibration, recording several calibration curves for different frequencies. For a pair of 

adjacent synthetic jets, Smith and Glezer [6] observed that the velocity is influenced by the presence of the adjacent 

jet, and therefore recommend a pressure-velocity calibration. Persoons et al. [8,9] studied the heat transfer 

characteristics of a pair of adjacent impinging synthetic jets. Due to the interfering pressure fields, a pressure-

velocity calibration [7] is needed to maintain a constant Reynolds number when operating the jets at different 

phases. 

A 
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 Crittenden and Glezer [10] describe a compressible flow synthetic jet based on a piston-crank arrangement, 

characterizing the jet performance with cavity pressure measurements. A numerical quasi-static model is solved to 

predict the pressure-velocity relation, assuming adiabatic state changes in the cavity and one-dimensional 

compressible isentropic flow in the orifice, neglecting friction and additional losses. The model agrees satisfactorily 

with measured pressure data.  

 Lockerby and Carpenter [11] propose a computational approach for predicting the pressure-velocity relationship 

for micro-scale synthetic jets. Their numerical model assumes isothermal state changes in the cavity and laminar 

fully developed compressible flow in the orifice. Rathnasingham and Breuer [12] propose a simple analytical model 

similar to the one used in this paper, except their model assumes inviscid orifice flow without losses, satisfying the 

Bernoulli principle. These models [10-12] have a limited validity by not accounting for realistic nozzle damping, as 

shown in Sect. III.B. 

 McCormick [13] and Gallas et al. [14] present lumped parameter models for a synthetic jet actuator with 

loudspeaker and piezoelectric actuator respectively, in order to predict the jet velocity from the excitation voltage. 

The model by Gallas et al. [14] accounts for nonlinear nozzle damping, yet its effect on the results is not explicitly 

shown. Based on this model, Oyarzun and Cattafesta [15] used numerical techniques to optimize the response of a 

synthetic jet actuator, providing experimental validation of the optimized designs. Their results demonstrate that the 

nozzle dynamics must be well understood to achieve accurate results. 

 Kordik et al. [16] use a similar two-mass lumped parameter model to predict the system resonance frequencies of 

a synthetic jet actuator. Two resonances are identified which depend on the Helmholtz and diaphragm resonance 

frequencies, which was also found by Gallas et al. [14] and is confirmed in the present study (Eq. (26)). Although 

not considering nozzle damping, Kordik et al. [16] report a good agreement with experimental data. 

 Kooijman and Ouweltjes [17] present a lumped parameter model with nonlinear nozzle damping, to predict the 

jet momentum flux and sound radiation. The model is solved numerically in the time domain using a finite 

difference method, which allows for simulating non-harmonic excitation signals. A good agreement with 

experimental data is achieved only using the nonlinear damping model. Unfortunately since the results are limited to 

a single amplitude, the effect of nonlinear nozzle damping is not discussed at length. 

 Some studies use more advanced numerical techniques to derive reduced order models for synthetic jet actuators 

and their interaction with boundary layer flows. Redionitis et al. [18] used proper orthogonal decomposition to 
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extract a reduced order model based on computational fluid dynamics simulations and experimental data obtained 

using particle image velocimetry. The study provides some useful insights but is limited to a small range of 

operating conditions. While intrinsically embedded in the data analysis, the effect of orifice damping and inertia has 

not been singled out. Yamaleev and Carpenter [19] used the one-dimensional Euler equations to obtain a quasi one-

dimensional model to characterize the behavior of synthetic jet actuators with a more complicated three-dimensional 

geometry. Their results are validated against experimental data and full Navier-Stokes simulations. The proposed 

quasi one-dimensional model predicts the behavior reasonably well for the chosen test cases, yet the nonlinearity of 

the system has not been discussed in detail. Filz et al. [20] propose neural networks to predict the interaction of a 

synthetic jet actuator with an orifice set at an oblique angle to the cross-stream boundary layer. Also for applications 

in feedback flow control, Kim et al. [21] use system identification methods to develop a dynamic model of a 

synthetic jet.   

These studies [18-21] address the issue of interaction between a synthetic jet and a boundary layer, which is 

beyond the scope of the present study. For a comprehensive review of reduced order models for synthetic jets in 

quiescent flow, the reader is referred to Raju et al. [22]. However, none of these studies have clearly illustrated the 

effect of nozzle damping on the system response.  

 Therefore, this paper aims to establish a general lumped parameter model for a synthetic jet actuator operating in 

quiescent flow, and experimentally validate it for a circular and rectangular orifice. Since the nozzle flow dynamics 

are crucial in obtaining accurate results [15], this paper will pay specific attention to the effect of nozzle damping on 

the system response. As part of the overall model, the fluidic model enables robust control over the synthetic jet 

operating point (i.e. Reynolds number and stroke length), independent of external influences (e.g. varying 

electromechanical characteristics or interfering pressure fields). The model parameters should be easily obtained 

from geometric, material and electromechanical properties. Furthermore, the model should require only a limited 

number of empirical coefficients, which are determined via calibration or estimated from correlations or models. 

II. Physical Model 

 This section describes a lumped parameter model of a synthetic jet actuator relating the electrical excitation to 

the synthetic jet velocity. The overall system response of a synthetic jet can be expressed as the transfer function 

below, representing the fluidic efficiency as the ratio of jet momentum flux to electrical input power: 
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ρ ρ ⎛ ⎞∝ = ⋅ ⎜ ⎟
⎝ ⎠

 (1) 

where each variable corresponds to the lumped element indicated by the subscript (e.g. n for nozzle, d for 

diaphragm, c for cavity). A similar expression describes the thermal efficiency of an impinging synthetic jet (Sect. 

III.D). 

 Sections II.A and II.B discuss the coupling between the mechanical and fluidic model, and the effect of the 

electromechanical actuation. However these can be skipped without a loss of continuity. Section II.C describes the 

fluidic model 
n c

cU pρ  proposed here to control the operation of a synthetic jet actuator. 

A. Mechanical and Fluidic Model Coupling 

 Figure 1 indicates the relevant nomenclature for the diaphragm and synthetic jet actuator. The specifics of the 

motor (typically an electromagnetic or piezoelectric driver) are discussed in Sect. II.B. For the oscillating 

diaphragm, a lumped parameter approximation is valid up to the fundamental resonance frequency of the diaphragm. 

The effect of higher order vibration modes is not considered. The mechanical force balance of the diaphragm is 

( ) ( )2

,1 ,0d d d d d d d dM s C s K x F p p A+ + = − −  (2) 

where s jω=  is the Laplace variable, and Md, Cd and Kd are the equivalent diaphragm mass, damping and 

stiffness. Fd is the force exerted by the motor on the diaphragm. 

 

(a) (b) 

Fig. 1  Schematic diagram of an actuated diaphragm (a) mounted in an infinite baffle or (b) coupled to a 
cavity and nozzle in a synthetic jet actuator. 
 

 

 The pressure difference ,1 ,0d dp p−  between front and back of the diaphragm is governed by acoustic pressure 

variations due to the motion in the surrounding fluid. These can be expressed as acoustic impedances: 

Kd, Cd 

Motor 
Fd, xd 

e, i 
pd,0 pd,1 

Md 

LnLcKd, Cd

Md 

Motor 
Fd, xd 

e, i 
pd,0 pd,1 

pc 

Un, xn
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( ) ( ),1 ,0 ,1 ,0d d d d d d d d
p p A Z Z x s p A− = + + Δ  (3) 

where the stationary pressure difference Δpd is neglected hereafter. 

1. Acoustic Impedance for Radiation 

 For an oscillating diaphragm exposed to a free field (Fig. 1a), the radiation impedance Zd acts as a pure inertia if 

( )1/250 df c A<  (see App. A, Eq. (A3)) [23,24]. Table 1 lists typical values of the coefficient β determining the 

added fluid mass ( )1/2
4f d dM A Aρ β π=  on a single side of an oscillating diaphragm.  

Table 1  Added fluid mass coefficient β contributing to the acoustic radiation impedance (ka < 0.25) on a 

single side of an oscillating diaphragm in different boundary conditions ( ( )( )1/ 2
4

f
M A Aβ ρ π=  (see Eq. 

(A3)). Data adapted from [24,25]. 

 
Circular plate [24] 

Rectangular plate 

(aspect ratio 32) [25] 

Infinite baffle 

(one side) 
β = 4/(3π) ≅ 0.4244 β ≅ 0.224 

Unflanged pipe 

(outer side) 
β ≅ 0.307  

Free mounted 

(1/2 of both sides) 
β ≅ 0.212  

 

Combining Eqs. (2,3) and neglecting Δpd, the radiation can be lumped into an equivalent diaphragm mass: 

2

1d

d d d d

x

F M s C s K
=

′ + +
 where 

d d f
M M M′ = +  according to Eq. (A3) (4) 

2. Acoustic Impedance for Cavity and Nozzle 

 In a synthetic jet actuator, the diaphragm is coupled to a cavity (Fig. 1b). The influence of the diaphragm motion 

on the cavity pressure pc can also be expressed as impedance 
c c d d

Z p A U= , to be substituted in place of Zd,1 in Eq. 

(3). The conservation of mass in the cavity yields 

( )c

n n

V
A U

t

ρ
ρ

∂
= −

∂
 or 

2

1 c n d d n

c n

p A A x x

t V A t tcρ
⎛ ⎞∂ ∂ ∂

= −⎜ ⎟∂ ∂ ∂⎝ ⎠
 (5) 

where the speed of sound is defined as c p ρ= ∂ ∂  assuming adiabatic state changes. The nozzle and cavity can be 

regarded as a pure acoustic mass oscillating against a pure compliance when the wavelength is much greater than the 

characteristic dimensions [24]. In terms of frequency, 
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( ),max ,max

1

16 max ,
c n

c
f

L L
<  (6) 

where Lc,max and Ln,max represent the largest linear dimensions of cavity and nozzle respectively.  A geometric 

sensitivity study by Kordik et al. [16] shows that the behavior is dominated by the cavity volume, not its shape. 

Under these assumptions, the conservation of momentum in the nozzle yields 

( )
2

,1 ,02

damping driving pressure
inertia

n

n n n n n n n

x
A L C U p p A

t
ρ

∂
= − − −

∂
 

(7) 

where the damping force (CnUn) generally comprises both viscous friction and other pressure losses (e.g. boundary 

layer development, contraction and expansion losses) as discussed in Sect. II.C. The driving pressure in Eq. (7) is 

determined by the cavity pressure and the radiation impedance at the nozzle edges: 

( )( )2

,1 ,0n n n n n n c n
A L s C Z Z s x p Aρ + + + =  (8) 

Substituting the impedances Zn,1 and Zn,0 in Eq. (8) with their low frequency approximations for ( )1/250
n

f c A<  (see 

App. A) yields 

( )2

n n n n c n
A L s C s x p Aρ ′ + =  where 2 4

n n n
L L Aβ π′ = +  (9) 

The added mass coefficient β (i.e. the average of βn,0 and βn,1 on both nozzle edges) can be estimated e.g. from Table 

1, yet typically it should be determined via calibration. Substituting Eq. (9) into Eq. (5) yields the cavity impedance: 

( )
( )

2 2

2

c n nc d d

c

d n n n c

K M s C sp A A
Z

U A s M s C s K

′ +⎛ ⎞
= = ⎜ ⎟

′ + +⎝ ⎠
 (10) 

where n n nM A Lρ′ ′=  and Kc represents the cavity stiffness 2 2

c n c
K c A Vρ= . The cavity acts as a driven Helmholtz 

resonator, with resonance frequency fH 

1 1

2 2

c n n

H

n n v

K A Lc
f

M L Vπ π
′

= =
′ ′

 (11) 

The effect of the cavity is incorporated via Zc in the diaphragm equation of motion (Eq. (2,3)): 

( )2

,0

1d

d d d c d d

x

F M s C Z Z s K
=

+ + + +
 with Zc according to Eq. (10)  (12) 

where Zd,0 is the radiation impedance for the back of the diaphragm and Zd,1 has been replaced by Zc. 
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B. Electromechanical Actuation 

 Commonly used drivers for synthetic jet actuators are loudspeakers or piezoelectric membranes. Figure 2 depicts 

the equivalent circuits to model the response of both actuators. 

 

(a) (b) 

Fig. 2  Equivalent electrical circuits of (a) loudspeaker voice coil and (b) piezoelectric membrane, where Zl 
comprises the combined diaphragm radiation and cavity impedance. 
 

 

1. Loudspeaker Voice Coil 

An electromagnetic coil exerts a force dF Bl i=  on the diaphragm, where the current i is  

emf d

e e e e

e e e Bl x s
i

R L s R L s

− Δ −
= =

+ +
 (13) 

Combining 
dF Bl i=  with Eqs. (12,13) yields the electrical impedance: 

( )
( ) ( )

( )

2

2

impedance for
rigid diaphragm

d d l d emf

e e e

d d l d

M s C Z s K Ke
Z R L s

i M s C Z s K

+ + + +
= = +

+ + +
 with 

( )2

emf

e e

Bl s
K

R L s
=

+
 (14) 

where the load impedance ,0l c d
Z Z Z= + . Combining Eqs. (12,14) and 

d e
F e Bl Z=  yields 

( ) ( )2

1 emfd

d d l d emf

Kx

e Bl s M s C Z s K K
=

+ + + +
 (15) 

 Appendix B shows that this simple model accurately predicts the measured electrical impedance and sound 

pressure level (SPL) for the loudspeaker used in Sect. III. The peak impedance and SPL occur at the mechanical 

resonance frequency of the diaphragm: 

1

2

d

d

d

K
f

Mπ
=

′
 (16) 

where dM ′  includes the added fluid mass due to acoustic radiation. 

Cee 

i 

α 

Fd

Md Cd Kd
-1

 

Zl 

sxdis 

ip 

Re Le 

e 

i 

Fd 

sxd Md Cd Kd
-1

Zl
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2. Piezoelectric Membrane 

 Commercial synthetic jet actuators use piezoelectric actuation because of their low mass and high electrical 

efficiency. Typically a planar extending piezoelectric element is fixed to a flexible substrate, thereby amplifying the 

displaced volume. The equivalent electrical circuit (Fig. 2b) consists of a parallel coupled electrostatic capacitance 

Ce and mechanical impedance, and is similar to the lumped parameter model by Gallas et al. [14]. The impedance 

represents membrane stiffness, inertia and damping, and depends on the materials and mounting. The electrical 

impedance and deflection are 

( ) ( )
( ) ( )

2
1

2 2

impedance for
rigid diaphragm

d d l d

e p

d d l d e

M s C Z s Ke
Z C s

i M s C Z s K Cα
− + + +

= =
+ + + +

 and 

( )2

1d s

d d l d

x i

e e s M s C Z s K

α
α

= =
+ + +

 

(17) 

where Ce is the electrostatic capacitance and α is proportional to the piezoelectric constant d31, stiffness Kd and 

geometric parameters. The acoustic radiation in ( ),0l c d
Z Z Z= +  can again be lumped into d d fM M M′ = + . 

Considering only the fundamental vibration mode, a piezoelectric driver has a resonance and anti-resonance 

frequency: 

1

2

d

d

d

K
f

Mπ
=

′
 and 

2

,

1

2

d e

d anti

d

K C
f

M

α
π

+
=

′
 (18) 

corresponding to a local minimum and maximum impedance, respectively.  

C. Fluidic Model: Cavity Pressure to Nozzle Velocity 

 The transfer function of cavity pressure to nozzle velocity 
n c

U p  can be obtained from the derivation in Sect. 

II.A. This pressure to velocity model is proposed here to control the operation of a synthetic jet actuator instead of a 

classic voltage to velocity (
n

U e ) approach, which is subject to potential actuator degradation and other external 

influences. 

 Substituting Eq. (10) in Eq. (9) yields the ratio of diaphragm to nozzle volume velocity: 

2

2

n n n n n n c d c

d d d d d c n d n n c

cZ

U A x A A x p A K
s

U A x A A p A sx M s C s K

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟ ′ + +⎝ ⎠ ⎝ ⎠

 
(19) 
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Combining Eqs. (19,10), the transfer function of cavity pressure to nozzle velocity becomes 

1

n n d n

d

c d c d n n

cZ

cU U U c A
c A

p U p A M s C

ρ ρ
ρ

−=

= =
′ +

 
(20) 

 The damping force (CnUn) can be modeled as a linear and quadratic term in Un corresponding respectively to 

viscous friction and inertial pressure losses due to flow contraction and expansion and boundary layer development: 

ndst

2

2  order damping1  order damping
(inertial losses)(viscous friction)

2

2

nn

n n n n n n

UL
C U fRe A U K A U

d

ρμ
= +  

(21) 

where d is the nozzle hydraulic diameter and fRe  is the product of Fanning friction factor and Reynolds number 

(e.g. 16fRe =  for fully developed laminar flow in a circular duct). In this oscillating flow fRe  and K do not 

necessarily equal their respective stationary flow values and may contain multidimensional flow effects, so they 

should be determined via calibration [7] as described further in Sect. III. 

 Using numerical simulations, Raju et al. [26] studied the frequency dependence of the forces acting on the fluid 

in the nozzle. The viscous friction term is proportional to the Stokes number 21
2 fdπ ν  yet is normally very 

small. The inertial pressure loss term is constant up to a Stokes number of about 10, corresponding to a quasi-steady 

oscillatory flow regime [27]. At higher frequency, the nonlinear damping term decreases [26]. 

 If viscous friction dominates (e.g. very long nozzle, or high viscosity) Cn becomes independent of Un: 

st1  order
damping 1

2

n c

c n n H

cU V

p A L s

ρ
ω ζ

=
′ +

 (22) 

where the Helmholtz frequency ( )H n n n c
c L A L Vω ′ ′=  and the critical damping ratio 

( ) ( )22 2
n n n H

fRe L A d Mζ μ ω′= . Equation (22) corresponds to Eq. (6) in Persoons and O’Donovan [7]. However 

for short nozzles which are most common in synthetic jet actuators, the inertial losses dominate [26]. With a 

velocity-dependent damping coefficient 1
2n n n

C K A Uρ= , the nonlinear transfer function becomes: 

nd2  order
damping

1
2

n n

c n n n n

cU c A

p A L s K A U

ρ ρ
ρ ρ

=
′ +

 (23) 

Using the derivation in App. C, this is equivalent to 
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nd2  order
damping

222 4

2

2

2 1n c

c n n

cc

H H n n

cU V

p A L
pV

K
A L c

ρ

ω ω
ω ω ρ

=
′

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞
+ + ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ′⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

and 
( )1

2

arctan
n c

H

U p

n n H
K U L

ω ω
φ φ

ω
⎛ ⎞

− = − ⎜ ⎟⎜ ⎟′⎝ ⎠
 

(24) 

 This is the most appropriate model to control the operation of a synthetic jet actuator, and has proven successful 

in several studies using adjacent synthetic jets [8,9]. It is valid up to the geometry-dependent limit frequency defined 

by Eq. (6). Simple software tools to determine the empirical model coefficients K and β for Eq. (24) and evaluate the 

model are available from the author. 

III. Experimental Validation 

 The model validation uses experimental data obtained with a loudspeaker-actuated synthetic jet, using two 

nozzle geometries. Section III.B focuses on the fluidic model (Eq. (24)) which uses the cavity pressure to predict the 

synthetic jet velocity. Sections III.C and III.D validate the electromechanical model and the overall system 

efficiency. 

A. Experimental Approach 

 

 
Fig. 3  Schematic diagram of instrumented synthetic jet actuator with (a) circular and (b) rectangular 
orifice (not to scale). Instrumentation includes (i) a hot-wire anemometer probe, (ii) cavity pressure 
microphone and (iii) laser displacement sensor. 
 

 

 Figure 3 shows a diagram of the synthetic jet actuator used to validate the model. The semi-cylindrical cavity 

(75mm diameter, 113
c

V = cm3) is machined from solid acrylic (PMMA). The top of the cavity consists of a 

pd,1 

Ln
xd pd,0 

pc Un, xn

e 

i (iii) 

(ii) 

(i) 

(a) (b) 

Vc 
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loudspeaker (Visaton FR8, 4Ω, 10W) driven by an audio amplifier (SoundLab G097, 90W, 100dB signal-to-noise 

ratio, total harmonic distortion <0.1%). The current i is measured using a shunt resistor (100mΩ, ±1%). Two 

interchangeable orifice plates are used ( 10
n

L = mm) with a sharp-edged (a) circular orifice (5mm diameter) and (b) 

a 30:1 aspect ratio rectangular slot (1.5mm by 45mm in cross-section). The side-orifice layout (Fig. 3) facilitates 

measurements with two adjacent synthetic jets [8,9]. The orifice exit condition approximates an infinite baffle. 

 The jet velocity is measured using a hot-wire probe (Dantec 55P11, platinum-plated tungsten wire, 5μm 

diameter by 1.25mm long), operated in a constant temperature anemometer (Dantec 54T30, bridge ratio 20:1, 

resistance overheat ratio 1.8, 10kHz low pass filter). The probe is in line with the orifice center at 0.5mm (0.15d) 

from the orifice outlet to avoid velocity decay. For fully developed oscillating flow in a circular duct and a Stokes 

number 2
n

fA ν  between 5 and 50, the area-averaged velocity Un is 0.55 to 0.95 times the centerline velocity 

[14,27]. However Ln is much shorter than the minimum hydraulic development length (which exceeds 200mm), thus 

the measured centerline velocity is a reasonable estimate of Un. The cross-flow position of the probe minimizes its 

flow disturbance. The calibration is performed in this position in a low turbulence wind tunnel against a pitot-static 

tube. A King’s law relation is least-square fitted to the calibration points, resulting in an R2 value of 99.9%.  

 The cavity pressure pc is measured using a microphone (G.R.A.S. 40BD with 26CB CCP preamplifier, 

1.6mV/Pa, 40-174dB, 4Hz-70kHz). The deflection of the loudspeaker diaphragm xd is measured with a laser 

displacement sensor (Keyence LK-G157, range ±40mm, linearity ±0.05%) focused on the back of the speaker 

diaphragm. A National Instruments cDAQ-9178 data acquisition system with NI-9263 module generates the sine 

wave excitation for the speaker. All analog signals (e, i, Un, pc, xd, ambient and jet temperature) are acquired using 

the same system with NI-9205 and NI-9213 modules, and are phase locked to the actuator excitation signal. For 

each operating point, the signals are phase-averaged over 10 periods to achieve an uncertainty level below 5% 

(based on a 95% confidence level) on the phase-averaged velocity and pressure waveforms.  

B. Validation of the Fluidic Model (Un/pc) 

 Figure 4 shows the phase-resolved evolution of pc, Un and Ud within a single period for the synthetic jet with 

circular orifice, at four operating frequencies. The nozzle velocity is only shown during the ejection phase ( 0
n

U > ) 

to avoid the directional ambiguity of hot-wire anemometry. Based on the measured cavity pressure magnitude 
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( )m

c
p , Eqs. (24,19) are used to predict the nozzle and diaphragm velocities Un and Ud, represented by the dashed 

and dotted lines in Fig. 4. The measured velocities 
( )m

n
U  ( ) and 

( )m

d
U  ( ) are normalized to the magnitude 

predicted by Eqs. (24,19). 
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Fig. 4  Phase-resolved evolution of the normalised cavity pressure pc ( ), nozzle velocity Un ( ) and 
diaphragm velocity Ud ( ) (lines represent the model; markers represent experimental data) for a 
synthetic jet actuator with circular orifice at |pc| = 500Pa and (a) f = 0.125fH, (b) f = 0.5fH, (c) f = fH, (d) f = 
2fH. 
 

 

 The agreement between measured and predicted velocity is very good, except for a small deviation at the start of 

the ejection phase. Well below the Helmholtz frequency (
H

f f ) the pressure and both velocities are in phase 

(Fig. 4a). As the frequency increases, the phase lag between the nozzle and diaphragm velocity increases to 90° at 

resonance (
H

f f= ) and 180° for 2
H

f f≥ . The phase lag between the nozzle velocity and cavity pressure rises 

from zero (
H

f f ) to 90° for 2
H

f f≥ .  

 While the data in Fig. 4 are obtained for a single cavity pressure magnitude ( 500
c

p = Pa), similar 

measurements are taken for each orifice at a series of cavity pressures from 10Pa to 1000Pa and a range of 

frequencies 0.025 2
H

f f≤ ≤ . Based on the measured ratio of 
n c

U p , the model in Eq. (24) is least-square fitted 

to the data. Persoons and O’Donovan [7] have shown that the linear damping model does not predict experimental 
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data very well. As such, the appropriate fitting parameters are (i) the nonlinear damping coefficient K and (ii) the 

added mass coefficient β.  

 Table 2 lists the least-square fitted parameters K and β for the two orifices used here. Although the quasi-steady 

flow regime is restricted to a low Stokes number ( 21
2 10fdπ ν < , or 40f < Hz) [26,27], Persoons and 

O’Donovan [7] had already shown that the value of K is comparable to the pressure loss coefficient for steady flow 

through the nozzle, ( )2 2
n

p UρΔ , comprising inertial losses such as contraction and expansion loss and boundary 

development. This is reconfirmed here by the pressure loss coefficients in Table 3 determined experimentally for the 

circular and rectangular nozzles, showing an average deviation of 13% between corresponding values in Tables 2 

and 3. Values of K presented by Raju et al. [26] are about 50% of those in Tables 2 and 3, which could be partly due 

to geometric differences (e.g., fillets, cavity shape). 

The least-square fitted values for β in Table 2 are about 30% higher compared to the values for infinite baffle 

conditions (Table 1) on both sides of the orifice. This discrepancy is likely because more fluid within the cavity is 

contributing to the added fluid mass in this particular configuration. For an orifice located in the wall directly 

opposite the diaphragm, the β value is closer to the infinite baffle value [7]. Similar to the theoretical values in Table 

1, the rectangular slot has a lower added mass coefficient than the circular orifice. 

Table 2  Model coefficients for both nozzles, obtained by fitting Eq. (24) to experimental data: (i) damping 

coefficient K and (ii) added mass coefficient ( ) ( )1
2 4

n n n n
M M A Aβ ρ π′= −  

 
Circular orifice 

(R2 = 99.8%) 

Rectangular slot 

orifice (30:1) 

(R2 = 99.5%) 

Nonlinear damping 

coefficient K 
1.251 (± 0.15) 1.552 (± 0.20) 

Added mass 

coefficient β 
1.039 (± 0.21) 0.615 (± 0.07) 

Table 3  Pressure loss coefficient for steady flow through each nozzle ( )2 2
n

p UρΔ  (to be compared to K 

values in Table 2) 

 
Circular orifice 

Rectangular slot 

orifice (30:1) 

Steady flow pressure 

loss ( )2 2
n

p UρΔ  

1.14 (± 0.12) 

(R2 = 99.1%) 

1.34 (± 0.14) 

(R2 = 99.9%) 
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In summary, the estimates of K (based on the steady flow pressure loss; Table 3) and β (based on the acoustic 

radiation impedance; Table 1) are in reasonable agreement with the least-square fitted values in Table 2. Deviations 

of only 13% for K and 30% for β are remarkable considering the complex geometry and flow phenomena involved. 

As such, the model parameters K and β can be estimated with reasonable accuracy without needing a reference 

velocity measurement, yet for best accuracy experimental validation as described here is still recommended. 

 Figure 5 shows the comparison of the fluidic model 
n c

U p  (Eq. (24) with K and β from Table 2) to 

experimental data obtained at a range of cavity pressures between 10 and 1000Pa. The upper graphs show the 

magnitude in decibel. The lower graphs show the phase angle, where negative values represent phase lag between 

numerator (Un) and denominator (pc). The agreement is excellent for the magnitude for frequencies up to the 

Helmholtz resonance. The uncertainty is higher for the phase angle although the trend is clear: near zero phase lag 

for 
H

f f  and the phase lag between Un and pc approaches 90° for 2
H

f f> . 

 For reference, the dashed lines in Fig. 5 represent the undamped model. In this hypothetical case, the nozzle fluid 

acts as an undamped acoustic mass and Eq. (20) reduces to ( )n c n
cU p c L sρ ′= . This corresponds to the limit 

condition for high frequency or very low cavity pressure. 
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Fig. 5  Validation of the fluidic model Un/pc (Eq. (24) with K and β from Table 2) (lines) versus 
experimental data (markers) for a synthetic jet actuator with (a) circular and (b) rectangular orifice of 
aspect ratio 30:1. Markers represent cavity pressure magnitudes ( ) 10Pa, ( ) 20Pa, ( ) 50Pa, ( ) 
100Pa, ( ) 200Pa, ( ) 500Pa, ( ) 1000Pa. 
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 The model in Eq. (24) can now be used to determine the Reynolds number and stroke length of the synthetic jet 

flow using only the cavity pressure measurement: 

( ) 4
n d

U A
Re

ρ π π
μ

=  and 0

n
U

L
f

π
=  with  

222 4

2

2

2 1c c

n

n n

cc

H H n n

p V
U

c A L
pV

K
A L c

ρ
ω ω

ω ω ρ

=
′

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞
+ + ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ′⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (25) 

where 1
0n

U Uπ = , the characteristic velocity for synthetic jets assuming sine wave excitation. 

 As discussed in Sect. II.A, the validity range is determined by the geometry-dependent limit frequency in Eq. 

(6), not by the Helmholtz resonance. For both actuators, the cavity diameter (75mm) determines the upper validity 

frequency (280Hz), or respectively 1.7 and 0.97 times the Helmholtz frequency for the circular and slot orifice. 

 The transfer function 
n d

U U  (Eq. (19)) can also be validated using the measured rate of deflection of the 

diaphragm 
d

x t∂ ∂ . Figure 6 shows a reasonable agreement between the experimental data and the model. As in Fig. 

5, the dashed curves represent the model without damping, which exhibits an unbounded response at the Helmholtz 

resonance frequency. 
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Fig. 6  Transfer function Un/Ud (Eq. (19) with K and β from Table 2) (lines) versus experimental data 
(markers) for a synthetic jet actuator with (a) circular and (b) rectangular orifice of aspect ratio 30:1. 
Markers represent cavity pressure magnitudes ( ) 100Pa, ( ) 200Pa, ( ) 500Pa, ( ) 1000Pa. 
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C. Validation of the Electromechanical Model 
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Fig. 7  Electrical impedance Ze = e/i (Eq. (14) with K and β from Table 2) (lines) versus experimental data 
(markers) for a synthetic jet actuator with (a) circular and (b) rectangular orifice of aspect ratio 30:1. 
Markers represent cavity pressure magnitudes ( ) 10Pa, ( ) 20Pa, ( ) 50Pa, ( ) 100Pa, ( ) 200Pa, ( ) 
500Pa. 
 
 
 Figure 7 shows the electrical impedance of the loudspeaker mounted in the synthetic jet actuator. The 

experimental data are well predicted by Eq. (14) using the cavity impedance Zc from Eq. (10) with K and β from 

Table 2. Similar to Figs. 5 and 6, the dashed lines represent the model without damping. The dash-dotted lines 

represent the electrical impedance of the free-mounted loudspeaker characterized by a single resonance peak at fd 

(i.e. identical to Ze curve in Fig. 13). Due to the presence of the cavity and nozzle, two resonance peaks appear at f1 

and f2 which are determined by (but are not equal to) the Helmholtz frequency fH (Eq. (11)) and the free diaphragm 

resonance fd (Eq. (16) or (18)). Although the amplitude correspondence between the experimental markers and the 

lines representing the model may be difficult to evaluate, the phase angle shows a good agreement between 

experiments and model even at frequencies beyond fH. 

 These two peak frequencies correspond approximately to the resonance frequencies of the mechanical diagrams 

in Fig. 8, and can be expressed as 

( )( )
1

12
1

1

1

2

n

d

A

c dA

n

K K

f
Mπ

−−
−⎡ ⎤

+⎢ ⎥
⎣ ⎦≅

′
 and 

( )2

2

1

2

d

n

A

d cA

d

K K
f

Mπ

+
≅

′
 

(26) 
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The lower frequency f1 corresponds to a modified Helmholtz frequency, where the nozzle fluid is resonating against 

the cumulative compliance of the cavity 1

cK
−  and the diaphragm ( )2 1

d n dA A K
−

. The factor ( )2

d nA A  corrects for 

the different cross-sections in the equations of motion of the diaphragm and nozzle. The upper frequency f2 

corresponds to a modified diaphragm resonance frequency, where the diaphragm stiffness is augmented by the 

cavity stiffness. Figure 7 confirms that the nozzle damping (Cn) only affects the lower resonance peak at f1. 

(a) (b) 

Fig. 8  Equivalent mechanical model of loudspeaker-driven synthetic jet actuator at lower and upper 
resonance frequencies (a) f1 and (b) f2 given by Eq. (26). 
 
 
 For a piezoelectric membrane actuator, Gallas et al. [14] report a similar behavior characterized by two 

resonance frequencies, and provide a quadratic equation to determine f1 and f2. Both Eq. (26) and the relation by 

Gallas et al. [14] give a good estimate of the peak frequencies in the system response, as will be shown in Sect. IV 

(Table 4). Similar findings are reported by other studies [16,17]. 

D. Validation of the Overall System Efficiency 

1. Thermal Efficiency 

 In analogy to Silva and Ortega [28], the overall thermal efficiency of a synthetic jet-based cooling device is 

expressed as the ratio of its heat removal power PT to the electrical input power Pe. Based on a recent study [29], the 

stagnation heat transfer rate in an impinging synthetic jet depends mainly on the jet Reynolds number 

(
mm

T nP Re U∝ ∝  where m varies between 0.7 and 0.9), and to a lesser extent on the stroke length 0 nL U f∝ . 

The heat transfer area affected by the jet depends on Re yet is relatively independent of L0 [30]. Without loss of 

generality, the average heat transfer rate is approximately proportional to 
2

nU . Similar to Eq. (1), the thermal 

efficiency can be written as 

3 2

2 2

ref nT

e

e

kL T UP
Z

P eν
Δ

∝  (27) 

Kd 

Md’

(Ad/An)
2
Kc

Resonance at f2 

Cn (An/Ad)
2
Kd Mn’ 

Kc 

Resonance at f1 
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 For a given fluid and operating temperatures, the different jet designs and operating points can be compared 

using the following (arbitrarily scaled) thermal efficiency measure ηT: 

2 2

n d

T e

d

U sx
Z

U e
η

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 (28) 

 Figure 9 shows Tη  as a function of frequency for the orifices used here. Although Tη  does not represent the 

true efficiency T eP P , Fig. 9 does give useful information regarding the optimal operating frequency and amplitude.  
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Fig. 9  Thermal efficiency ηT (Eq. (28) with K and β from Table 2) (lines) versus experimental data 
(markers) for a synthetic jet actuator with (a) circular and (b) rectangular orifice of aspect ratio 30:1. 
Markers represent cavity pressure magnitudes ( ) 20Pa, ( ) 50Pa, ( ) 100Pa, ( ) 200Pa, ( ) 500Pa. 
 
 
 The frequencies f1 and f2 correspond to the peaks observed in the electrical impedance Ze in Fig. 7 with nozzle 

damping affecting only the lower peak. Depending on the cavity pressure magnitude, maximum efficiency is 

achieved close to f1 or f2 defined by Eq. (26). Due to the nonlinear damping, operation at higher cavity pressure leads 

to stronger damping since ( )2n H n cC M K pζ ω ′= ∝ , which reduces the efficiency near f1. 

 Using a piezoelectric synthetic jet actuator, Gallas et al. [14] also observed two resonance peaks in the system 

response, plotted as Un at a constant excitation voltage e. At high enough cavity pressure, the lower peak can 

become hidden due to the nonlinear damping. 

 Using a loudspeaker actuator, Kooijman and Ouweltjes [17] present experimental and numerical results for the 

jet momentum flux at a fixed excitation voltage, which is proportional to ( )2

nU e . Although they accurately model 

nonlinear nozzle damping, their validation is unfortunately limited to a single amplitude. Nevertheless, their results 

are qualitatively very similar to the efficiency plotted in Fig. 9. As above, two resonance peaks are observed, where 

only the lower peak is affected by nozzle damping. 
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2. Acoustic Efficiency 

 By analogy, the acoustic efficiency is defined as the ratio of emitted acoustic power AP pUA∝  to the electrical 

input power Pe. The emitted sound originates from the oscillating nozzle fluid slug as well as turbulence-generated 

noise. Considering only the nozzle fluid motion, the pressure near the orifice is determined by the radiation 

impedance n n nZ pA U= , therefore 2

A n nP Z U∝ . At low frequency n fZ M s≅  (see Sect. II.A.1), and an acoustic 

efficiency measure ηA can be defined as 

 

2 2

n d

A e

d

U sx
s Z

U e
η

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 (29) 

which is very similar to Eq. (28) and 
A T

fη η ∝ . Optimal design of a synthetic jet cooler is achieved by 

maximizing thermal efficiency ηT while minimizing acoustic noise emission ηA.  

 In Fig. 9, although the thermal efficiency might be comparable for both resonance peaks at f1 and f2, the ratio of 

noise emission to heat removal power 
A T

η η  increases with frequency. Here, this ratio is nearly an order of 

magnitude higher at the upper peak ( 2 1f f≅ ), which would favor operation at the lower resonance peak f1.  

 However, these expressions are based on rather crude assumptions, both for the thermal efficiency (
2

T n
P U∝ ) 

and acoustic efficiency (e.g. neglecting turbulent noise, reflection and directivity, psychoacoustics). Acoustic sound 

emission experiments are beyond the scope of the present study, yet this will be investigated in a follow-up research.  

IV. Discussion: Piezoelectric or Electromagnetic Actuation and Optimal Design 

 Commercial synthetic jet-based cooling devices use piezoelectric membrane actuators instead of loudspeakers, 

because of their lower mass and higher efficiency. However Sect. II.B has shown that the electrical impedance and 

deflection-to-voltage ratio (Eqs. (14,15,17)) have a similar functional form. For the synthetic jet actuator used here, 

Fig. 10 compares the electrical impedance of (i) the loudspeaker (grey lines) to (ii) an equivalent piezoelectric 

actuator (black lines) with the same diaphragm resonance frequency, area and mass. 
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Fig. 10  Electrical impedance Ze = e/i for a synthetic jet actuator with (a) circular and (b) rectangular 
orifice of aspect ratio 30:1, using (i) a loudspeaker (Eq. (14)) and (ii) an equivalent piezoelectric 
membrane with the same resonance frequency (Eq. (17)). The measured data ( ) represent a cavity 
pressure magnitude of 100Pa. 
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Fig. 11  Thermal efficiency ηT (Eq. (28) with K and β from Table 2) of a synthetic jet actuator with (a) 
circular and (b) rectangular orifice of aspect ratio 30:1, using (i) a loudspeaker and a piezoelectric 
membrane with (ii) the same resonance frequency and (iii) optimized for maximum thermal efficiency. 
The measured data ( ) represent a cavity pressure magnitude of 100Pa. 
 Figure 11 shows the thermal efficiency for the (i) loudspeaker and (ii) piezoelectrically actuated synthetic jet.  

The dashed lines represent the hypothetical undamped response, whereas the solid lines represent the actual damped 

response for a representative cavity pressure magnitude of 100Pa. The third set of curves in Fig. 11 represents (iii) 

an optimized piezoelectric actuator (coupled to the same cavity and nozzle), with a diaphragm resonance frequency 

that achieves maximum thermal efficiency at its lower resonance peak. Table 4 lists the resonance frequencies and 

peak efficiencies for the three cases in Fig. 11. 

 The diaphragm resonance frequency to achieve peak efficiency is 3.4fH for both orifices (see Table 4). Figure 11 

shows that the efficiency curve for actuator (iii) exhibits a much sharper peak. The gain in maximum efficiency 

between actuators (ii) and (iii) is about 2.2× and 3.5× for the circular and rectangular orifice respectively. While the 

actual efficiency magnitude is not important here, this analysis has shown that exactly matching the mechanical 
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diaphragm resonance frequency fd to the Helmholtz frequency fH does not yield the maximum thermal efficiency. 

Instead, peak efficiency is achieved when the system resonance frequency f1 is close but not equal to fH.  

Table 4  Performance characteristics of synthetic jet actuator using (i) a loudspeaker and a piezoelectric 
membrane with (ii) the same resonance frequency and (iii) optimized for maximum thermal efficiency. 
(Values for f1 and f2 obtained from (a) Eq. (26), (b) Gallas et al. [14], (c) Fig. 11) 

 Circular orifice (fH = 161Hz) Rectangular orifice (fH = 290Hz) 

Type of actuator (i) (ii) (iii) (i) (ii) (iii) 

Diaphragm resonance  

frequency fd 
0.98fH 0.98fH 3.4fH 0.54fH 0.54fH 3.4fH 

System resonance  

frequency f1 

(a) 0.35fH
 

(b) 0.33fH 

(c) 0.36fH 

(a) 0.33fH
 

(b) 0.31fH 

(c) 0.35fH 

(a) 0.77fH
 

(b) 0.76fH 

(c) 0.83fH 

(a) 0.35fH
 

(b) 0.30fH 

(c) 0.31fH 

(a) 0.33fH
 

(b) 0.28fH 

(c) 0.31fH 

(a) 0.91fH
 

(b) 0.90fH 

(c) 0.94fH 

System resonance 

frequency f2 

(a) 2.81fH
 

(b) 2.96fH 

(c) 3.03fH 

(a) 2.96fH
 

(b) 3.11fH 

(c) 3.06fH 

(a) 4.40fH
 

(b) 4.45fH 

(c) 4.32fH 

(a) 1.55fH
 

(b) 1.82fH 

(c) 1.86fH 

(a) 1.64fH
 

(b) 1.90fH 

(c) 1.88fH 

(a) 3.74fH
 

(b) 3.76fH 

(c) 3.65fH  

Maximum thermal 

efficiency ηT,max 

64dB 

(f = 0.36fH) 

74dB 

(f = 0.38fH)

81dB 

(f = 0.83fH)

60dB 

(f = 0.31fH) 

66dB 

(f = 0.36fH) 

77dB 

(f = 0.94fH)

 

 By comparison, Gallas et al. [14] used their lumped parameter model to maximize the jet velocity magnitude at 

constant excitation voltage (
n

U e ), without constraints for acoustic noise emission or input power. This is a 

different objective compared to the above approach which balances thermal efficiency and acoustic emission. 

Although not shown here, the model in this paper can reproduce the results by Gallas et al. [14]. This confirms their 

finding that two resonance frequencies f1 and f2 remain present in the overall system response, although the lower 

peak may be hidden due to strong nonlinear damping. 

V. Conclusion 

 A general lumped parameter model has been derived for a synthetic jet actuator. The electromechanical 

dynamics are separated from the fluidic model 
n c

cU pρ  since only a model relating cavity pressure to jet velocity 

minimizes external disturbances on the operating point (e.g. external pressure fields of adjacent synthetic jets, or 

variations in the actuator characteristics).  
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 The overall system model has been validated against experimental data for a synthetic jet actuator, using 

measurements of the jet velocity, cavity pressure, diaphragm deflection, actuator voltage and current. The validation 

is performed for both a circular and rectangular sharp-edged orifice. 

 The agreement between model and experimental data is excellent up to a geometry-dependent limit frequency 

(Eq. (6)). Equation (24) is the most appropriate model to control the operation point of typical synthetic jet actuators, 

based on a measurement of the cavity pressure amplitude 
c

p : 

222 4
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2 1c c
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n n

cc

H H n n

p V
U

c A L
pV
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ρ
ω ω

ω ω ρ

=
′

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞
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 This simple analytical model explicitly contains the effect of nonlinear nozzle damping, and has proven 

successful in controlling adjacent synthetic jet actuators [8,9]. The model requires two empirical coefficients K and 

β, which can be calibrated against a reference measurement of the jet orifice velocity. Alternatively, their values can 

be estimated based on theoretical values or correlations: (i) the damping coefficient K is comparable to the pressure 

loss coefficient for stationary flow through the nozzle [7]. (ii) The added fluid mass coefficient β can be estimated 

from the governing acoustic radiation impedance, which depends on the boundary conditions for the orifice. 

For the configurations investigated here, these estimates of K (see Table 3) and β (see Table 1) are in reasonable 

agreement with the least-square fitted values (see Table 2). Considering the complex geometry and flow phenomena 

involved, deviations of only 13% for K and 30% for β are remarkable. This gives support to estimating the model 

parameters without a reference velocity measurement, yet for best accuracy, experimental validation as described in 

this paper is still recommended. 

 Although the validation experiments are performed using a loudspeaker-actuated synthetic jet, the model 

equations are provided for both electromagnetic and piezoelectric actuation. The difference in terms of the overall 

system response (i.e. electrical excitation to jet velocity) is discussed in Sect. IV. The response is characterized by 

two distinct resonance frequencies f1 and f2 determined by Eq. (26), which are related but not equal to the free 

diaphragm resonance and the Helmholtz frequency.  

 Even for an optimized actuator, two distinct resonance frequencies f1 and f2 remain present in the overall system 

response, although the lower peak may be hidden due to nonlinear damping [14]. Only the lower resonance peak is 
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affected by nozzle damping [17]. For an impinging synthetic jet actuator, the system model is used to formulate 

optimal design guidelines in terms of minimum acoustic emission and maximum thermal efficiency.  

Two key contributions of this paper are (i) demonstrating how the nozzle flow dynamics affect the system 

response and in turn the optimal operating frequency and amplitude, and (ii) the characterization of the nozzle 

dynamics with two empirical parameters K and β which can be easily estimated or calibrated. This study has only 

considered synthetic jets issuing into a quiescent fluid. In cross-flow conditions, the model is expected to hold at 

least for moderate ratios of cross-flow to jet velocity magnitude, however this requires further validation. Future 

work should confirm the validity of the model for different orifice geometries, and provide a more detailed 

experimental verification of the effect on the thermal and acoustic efficiency for impinging synthetic jets. 

Appendix A. Acoustic Radiation Impedance 

 The acoustic impedance ( Z pA U= ) of a circular plate (diameter 2 4a A π= ) oscillating in an infinite baffle 

has been derived analytically [23,24] as 

( ) ( )1 12 2
1

J ka H ka
Z cA j

ka ka
ρ

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
 (A1) 

where the wave number 2k f cπ= , J1 is a first order Bessel function of the first kind and H1 is a first order Struve 

function [31]. A low frequency approximation ( 0.5ka < ) of Eq. (A1) is 

( )
2

2( 0.5) 2

real imaginary

1 8 8

2 3 2 3

ka A A
Z cA ka j ka s A s
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ρ
ρ ρ

π π π π
< ⎛ ⎞= + = − +⎜ ⎟

⎝ ⎠
 

(A2) 

 The exact impedance and its low frequency approximation are plotted in Fig. 12a. Tabulated values of the 

numerical solution for a rectangular plate oscillating in an infinite baffle are given by Burnett and Soroka [25] for 

aspect ratios of 1, 2, 4, 8, 16 and 32. Figure 12b shows the radiation impedance for an aspect ratio of 32:1, 

comparable to the 30:1 rectangular orifice used in this study. 

 At low frequency ( 0.25ka < ), Z is dominated by the reactance (dashed lines in Fig. 12): 

( 0.25)
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A
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×
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(A3) 
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where Mf represents a fluid mass adjacent to the surface. Table 1 lists values of β for some basic boundary 

conditions, yet in general the value is determined via calibration. 

(a)
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Fig. 12  Real (⎯) and imaginary (− −) parts of the acoustic radiation impedance Z for (a) a circular plate 
(Eqs. (A1, A2)) and (b) a rectangular plate of aspect ratio 32:1 in an infinite baffle (data from [24,25]). 
 

Appendix B. Validation of the Loudspeaker Model 

 The modeling approach in Sect. II.B.1 can be validated against the manufacturer specifications for a given 

loudspeaker. A typical performance measure is the sound pressure level (SPL) at 1r = m distance for an input power 

1
e

P = W, or voltage 
e e

e P Z= . For omnidirectional radiation in one half-space, the pressure 

( ) ( ) ( )20 2
d

p r p A rπ= . Based on the radiation impedance ( ) ( )0
d d d

Z p A x s= , 

( )
22

d d d

e e

d

A Z s x
p r P Z

A erπ
=  with 

d
x e  and Ze according to [32] (B1) 
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Fig. 13  Validation of model (lines) versus experimental data (markers) for a free mounted Visaton FR8 
4Ω loudspeaker: ( ) sound pressure level (SPL) in dB at r = 1m distance and Pe = 1W input power (Eq. 
(B1)) and ( ) electrical impedance Ze (Eq. (14)). 
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Appendix C. Analytical Solution for the Nonlinear Transfer Function in Eq. (23) 

 The nonlinear transfer function in Eq. (23) can be rewritten as 

2

n n

c n c n

n n

c

cU c A

p KA p cU
A L s

c p

ρ ρ
ρ

ρ
=

′ +
 

(C1) 

The absolute value in the denominator ensures the directionality of the damping force (Eq. (21)). Persoons and 

O’Donovan [7] substituted Un and pc by harmonic functions and approximated sin sin sinφ φ φ≅ . Instead, after 

defining n c
cU pξ ρ=  Eq. (C1) becomes 

0jψ ξ ξ Ωξ χ+ + =   (C2) 

where 1
2 n c
KA p cψ = , 

n n
j A L jρ ω′Ω =  and 

n
A cχ ρ= − . Substituting ( )cos sinjξ ξ φ φ= +  in Eq. (C2) and 

separating real and imaginary parts yields 
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Ωφ

ψ ξ
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After back-substitution, this leads to the expression in Eq. (24). 
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