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We present a new numerical implementation of the general-relativistic resistive magnetohydrodynamics

(MHD) equations within the Whisky code. The numerical method adopted exploits the properties of Implicit-

Explicit Runge-Kutta numerical schemes to treat the stiff terms that appear in the equations for small electrical

conductivities. Using tests in one, two, and three dimensions, we show that our implementation is robust and

recovers the ideal-MHD limit in regimes of very high conductivity. Moreover, the results illustrate that the code

is capable of describing physical setups in all ranges of conductivities. In addition to tests in flat spacetime, we

report simulations of magnetized nonrotating relativistic stars, both in the Cowling approximation and in dy-

namical spacetimes. Finally, because of its astrophysical relevance and because it provides a severe testbed for

general-relativistic codes with dynamical electromagnetic fields, we study the collapse of a nonrotating star to

a black hole. We show that also in this case our results are in very good agreement with the perturbative studies

of the dynamics of electromagnetic fields in a Schwarzschild background and provide an accurate estimate of

the electromagnetic efficiency of this process.

PACS numbers: 04.25.dk, 04.25.Nx, 04.30.Db, 04.40.Dg, 95.30.Sf, 97.60.Jd

I. INTRODUCTION

Magnetic fields play an important role in several astrophys-

ical scenarios, many of which involve also the presence of

compact objects such as neutron stars (NSs) and black holes

(BHs), whose accurate description requires the numerical so-

lution of the equations of general relativistic magnetohydro-

dynamics (GRMHD).

In most of these phenomena, such as for the interior dynam-

ics of magnetized stars, or for the accretion of matter onto

BHs, the electrical conductivity of the plasma is extremely

high and the ideal-MHD approximation, in which the con-

ductivity is actually assumed to be infinite, represents a very

good approximation. In this case, the magnetic flux is con-

served and the magnetic field is frozen in the fluid, being sim-

ply advected with it. Following this approximation, several

numerical codes solving the equations of general-relativistic

ideal-MHD have been developed over the years [1–13]. By

construction, therefore, the ideal-MHD equations neglect any

effect of resistivity on the dynamics. In practice, however,

even in the scenarios mentioned above, there will be spatial

regions with very hot plasma where the electrical conductiv-

ity is finite and the resistive effects, most notably, magnetic

reconnection, will occur in reality. Such effects are expected

to take place, for example, during the merger of two magne-

tized NSs or of binary system composed by a NS and a BH,

or near the accretion disks of AGNs, and could provide an

important contribution to the energy losses from the system.

The importance of resistivity effects can be easily deduced

from the evolution of a current sheet in high but finite conduc-

tivity. Under these conditions, several instabilities can take

place in the plasma and release substantial amounts of energy

via magnetic reconnection [14], as frequently observed, for

example, in solar flares [15]. The study of reconnection in rel-

ativistic phenomena is instead important to try to explain the

origin of flares in relativistic sources, such as blazars [16] and

magnetars [17]. It is not surprising then that several groups

have developed in the recent years numerical codes to solve

the equations of special relativistic resistive MHD [18–24].

In those scenarios that involve compact objects such as NSs

and BHs, resistivity plays also a very important role and the

equations of ideal MHD would not be sufficient to study them.

In the case of general relativistic simulations of magnetized

binary NS (BNS) and NS-BH mergers, for example, the mag-

netic field has been up to now always confined to the interior

of the NS, where the ideal-MHD limit is a very good approxi-

mation [25–31] and therefore neglecting any effect that could

come from the magnetic field evolution in the NS magneto-

sphere. The equations of general relativistic resistive MHD

provide a framework that can be used to study both the re-

gions of the domain with a high (such as the NS interior) and

small conductivity (such as the NS magnetosphere). More-

over, when the conductivity is set to zero, Maxwell equa-

tions in vacuum are recovered [19], thus allowing for the

study of the magnetic field evolution also well outside the NS.

This is particularly important, since several recent works have

claimed that the interaction of magnetic fields surrounding

BNS and NS-BH systems may lead to strong electromagnetic

emissions [32], and even affect the dynamics of these systems

(see [33] but also [34] for a different conclusion). In order

to verify such predictions, it is therefore important to be able

to accurately follow the dynamics of the magnetic fields in

the region surrounding these compact binary and this cannot

be done in the limit of ideal MHD. Last but not least, binary

mergers are also thought to be behind the central engine of

short gamma-ray bursts (GRBs) [30, 35–37] and the accurate

study of the magnetic field both before and after merger could

provide insights on current observations.

We present the first fully general-relativistic resistive MHD

code in a 3+1 decomposition of spacetime. We extended

the ideal GRMHD Whisky code to include the general rel-

ativistic version of the resistive MHD formalism presented in

http://arxiv.org/abs/1208.3487v1
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Ref. [19]. This new version of the Whisky code can han-

dle different values of the conductivity going from the ideal

MHD limit (for very high conductivities) to resistive and elec-

trovacuum regimes (obtained respectively with low and zero

conductivity). The code implements state-of-the-art numeri-

cal techniques and has been tested in both fixed and dynamical

spacetimes. In particular we show the first fully general rel-

ativistic simulation of a magnetized NS collapse to BH using

resistive MHD to accurately follow the dynamics of magnetic

fields both inside and outside the NS.

The paper is organized as follows. In Section II we describe

the general relativistic resistive MHD equations, in Sec. III the

main numerical methods used to solve them, and in Sec. IV

our numerical tests. In Sec. V we summarize and conclude.

Throughout this paper we use a spacelike signature of

(−,+,+,+) and a system of units in which c = G = M⊙ =
1. Greek indices are taken to run from 0 to 3, Latin indices

from 1 to 3 and we adopt the standard convention for the sum-

mation over repeated indices.

II. MATHEMATICAL SETUP

We next describe our extension of the special-relativistic

resistive MHD formalism presented in Ref. [19] to a general

relativistic MHD framework. A similar (but independent) ex-

tension has been presented recently in [24].

A. The magnetohydrodynamic equations

The complete set of relativistic MHD equations result from

the combination of the conservation of rest mass

∇µ(ρu
µ) = 0, (1)

and the conservation energy and momentum conservation

∇νT
µν = 0. (2)

The stress-energy tensor for a magnetized perfect fluid is

given by

Tµν ≡ [ρ(1 + ǫ) + p]uµuν + pgµν + Fµ
λFνλ

−1

4
gµν F

λαFλα, (3)

where the rest mass density ρ, the specific internal energy ǫ,
the pressure p and the velocity uµ describe the state of the

fluid, and are usually referred to as the “primitive” variables.

The pressure p is described by an equation of state (EOS) as

a function p = p(ρ, ǫ) and it is a property of the type of fluid

considered.

The velocity of the fluid can be decomposed as

uµ =W (nµ + vµ), (4)

where vµ corresponds to the three-dimensional velocity mea-

sured by Eulerian observers moving along a four-vector nµ

normal to the spacelike hypersurface in a 3+1 decomposition

of spacetime (i.e., vµnµ = 0). Notice that the time com-

ponent is not independent due to the normalization relation

uµuµ = −1, so that

W ≡ −nµu
µ = (1− viv

i)−1/2,

ui = W

(

vi − βi

α

)

, (5)

where W is the Lorentz factor.

The 3+1 decomposition of the conservation laws (2),

(3) provides the evolution equations for the fluid variables

D,U, Si, which comes from the following projections of the

stress-energy tensor

D ≡ ρW, (6)

U ≡ hW 2 − p+
1

2
(E2 +B2), (7)

Si ≡ hW 2vi + ǫijkE
jBk, (8)

Sij ≡ hW 2vivj + γijp− EiEj −BiBj +

1

2
γij(E

2 +B2) , (9)

where γij is the usual spatial part of the metric and where

we have introduced the specific enthalpy h = ρ(1 + ǫ) + p.

The conserved rest-mass density D, the energy density U and

the momentum Si are usually referred to as the “conserved”

quantities since they can be shown to satisfy conservation laws

in flat spacetimes [38]. In general, it is more convenient to

describe the energy conservation in terms of the quantity τ =
U − D, which allows to recover the Newtonian limit of the

energy density.

B. The Maxwell equations

Given a four-metric tensor gµν , the dynamics of the electro-

magnetic fields is described by the extended Maxwell equa-

tions [19, 39]

∇ν(F
µν + gµνψ) = Iν − κnνψ, (10)

∇ν(
∗Fµν + gµνφ) = −κnνφ, (11)

where Fµν is the Maxwell tensor, ∗Fµν is the Faraday ten-

sor, Iν is the electric current and (φ, ψ) are scalars to con-

trol the constraints. In vacuum or highly magnetized plasmas,

where the electric and magnetic susceptibilities of the medium

vanish, the Faraday tensor can be written as the dual of the

Maxwell tensor

∗Fµν =
1

2
ǫµναβFαβ , (12)

with ǫµναβ ≡ ηµναβ/
√
g and g the determinant of the four-

metric. These tensors can be decomposed in terms of the

electric and magnetic fields measured by an observer moving

along a normal direction nν as:

Fµν = nµEν − nνEµ + ǫµναβBαnβ , (13)

∗Fµν = nµBν − nνBµ − ǫµναβEαnβ . (14)
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Following the same decomposition, the electric current Iµ

can be written as:

Iµ = nµq + Jµ, (15)

where q and Jµ are the charge density and the current for an

observer moving along nµ, respectively. Using these defini-

tions and performing a 3+1 decomposition of the equations

(10), (11), (15) with respect to the normal vector nν , we ar-

rive to the following evolution equations

(∂t − Lβ)E
i − ǫijk∇j(αBk) + αγij∇jψ =

α trKEi − αJ i, (16)

(∂t − Lβ)ψ + α∇iE
i = αq − ακψ, (17)

(∂t − Lβ)B
i + ǫijk∇j(αEk) + αγij∇jφ =

α trKBi, (18)

(∂t − Lβ)φ + α∇iB
i = −ακφ, (19)

where the scalar fields φ, ψ measure the deviation from the

constrained solution. Their evolution equations contain damp-

ing terms such that the constraint violations decay exponen-

tially to zero over a timescale 1/κ [19, 39].

A consequence of the Maxwell equations is the current con-

servation

∇µI
µ = 0, (20)

which provides an evolution equation for the charge density

(∂t − Lβ)q +∇i(αJ
i) = αKq. (21)

The charge density can either be computed using the evolution

equation above or using the constraint q = ∇iE
i.

Finally, a relation for the current as a function of the other

fields is needed in order to close the system. Ohm’s law pro-

vides a prescription for the spatial conduction current. We will

consider here an isotropic scalar Ohm law

J i = qvi +Wσ[Ei + ǫijkvjBk − (vkE
k)vi], (22)

where the conductivity σ is chosen to be either a constant or a

function of the rest-mass density.

C. The full set of evolution equations

Combining the MHD and Maxwell equations we obtain the

following set of evolution equations, which we write in flux-

conservative form as

∂t(
√
γBi) + ∂k(−βk√γBi + αǫikj

√
γEj) = −√

γBk(∂kβ
i)− α

√
γγij∂jφ, (23)

∂t(
√
γEi) + ∂k(−βk√γEi − αǫikj

√
γBj) = −√

γEk(∂kβ
i)− α

√
γγij∂jψ − α

√
γJ i, (24)

∂tφ + ∂k(−βkφ+ αBk) = −φ(∂kβk) +Bk(∂kα)−
α

2
(γlm∂kγlm)Bk − ακφ, (25)

∂tψ + ∂k(−βkψ + αEk) = −ψ(∂kβk) + Ek(∂kα)−
α

2
(γlm∂kγlm)Ek + αq − ακψ, (26)

∂t(
√
γq) + ∂k[

√
γ(−βkq + αJk)] = 0, (27)

∂t(
√
γD) + ∂k[

√
γ(−βkD + αvkD)] = 0, (28)

∂t(
√
γτ) + ∂k{

√
γ[−βkτ + α(Sk − vkD)]} =

√
γ(αSlmKlm − Sk∂kα), (29)

∂t(
√
γSi) + ∂k[

√
γ(−βkSi + αSk

i)] =
√
γ
[α

2
Slm∂iγlm + Sk∂iβ

k − (τ +D)∂iα
]

. (30)

III. NUMERICAL SETUP

This new version of the Whisky code implements sev-

eral numerical methods that have been successfully used in its

ideal-MHD version [11, 29], but it also implements new nu-

merical algorithms which are instead needed in order to han-

dle the evolution in time of the resistive MHD equations. Here

we briefly summarize the numerical methods that are in com-

mon with the ideal-MHD version of Whisky [11, 27, 29, 40],

while in the following section we provide a more detailed de-

scription of the new algorithms that have been implemented.

The evolution of the spacetime is obtained using the

CCATIE code, a three-dimensional finite-differencing code

providing the solution of a conformal traceless formulation of

the Einstein equations [40]. The general-relativistic RMHD

equations are solved instead using high-resolution shock-

capturing schemes (HRSC) [41]. As its ideal-MHD coun-

terpart, also the WhiskyRMHD code implements several re-

construction methods, such as Total-Variation-Diminishing

(TVD) methods, Essentially-Non-Oscillatory (ENO) meth-

ods [42] and the Piecewise Parabolic Method (PPM) [43].

The Harten-Lax-van Leer-Einfeldt (HLLE) approximate Rie-

mann solver [44] has been used to compute the fluxes in all

the results presented here. Since the code is based on the
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Cactus [45] computational framework, it can also use adap-

tive mesh refinement (AMR) via the Carpet driver [46].

A. IMEX Runge-Kutta Methods

The general-relativistic RMHD equations in high-

conductivity media contain stiff terms which make the time

evolution with an explicit time integrator very inefficient, if

not impossible. The prototype of the stiff system of partial

differential equations can be written as

∂tU = F (U) +
1

ε
R(U), (31)

where ε ≡ 1/σ > 0 is the relaxation time. In the limit of

ε → ∞, the second term on the right-hand side of Eq. (31)

vanishes and the system is then hyperbolic with a spectral ra-

dius ch (i.e., with ch being the absolute value of the maxi-

mum eigenvalue). In the opposite limit of ε → 0 the first

term on the right-hand side of Eq. (31) vanishes and the sys-

tem is clearly stiff, since the timescale ε of the relaxation (or

stiff term) R(U) is very different from the speeds ch of the

hyperbolic (or non-stiff) part F (U).
Stiff systems of this type can be solved efficiently by a com-

bination of implicit and explicit time integrators. In particular,

the IMEX Runge-Kutta scheme consists in applying an im-

plicit discretization to the stiff terms and an explicit one to the

non-stiff terms. When applied to the system (31) it takes the

form [47]

U
(i) = U

n + ∆t

i−1
∑

j=1

ãijF (U
(j)),

+ ∆t
N
∑

j=1

aij
1

ε
R(U(j)) (32)

U
n+1 = U

n + ∆t

N
∑

i=1

ω̃iF (U
(i)) + ∆t

N
∑

i=1

ωi
1

ε
R(U(i)),

whereU(i) are the auxiliary intermediate values of the Runge-

Kutta time integrator. The matrices Ã = (ãij), ãij = 0 for

j ≥ i and A = (aij), are N × N matrices such that the

resulting scheme is explicit in F and implicit in R. An IMEX

Runge-Kutta scheme is characterized by these two matrices

and the coefficient vectors ω̃i and ωi. Since the simplicity

and efficiency of solving the implicit part at each step is of

great importance, it is natural to consider diagonally-implicit

Runge-Kutta (DIRK) schemes for the stiff terms, i.e., (aij = 0
for j > i). The matrices of coefficients are reported in Table

I.

Our approach to the solution of the potentially stiff set

of general-relativistic RMHD equation consists therefore in

the use of the IMEX RK method introduced above. For

the particular set of equations (23)–(30), the evolved fields

can be split into stiff terms V = {Ei} and non-stiff terms

W = {Bi, ψ, φ, q, τ, Si, D}.

The evolution of the electric field (24) can become stiff de-

pending on the value of the conductivity σ = 1/ε in the Ohm

TABLE I: Tableau for the explicit (left) implicit (right) IMEX-

SSP3(4,3,3) L-stable scheme

0 0 0 0 0

0 0 0 0 0

1 0 1 0 0

1/2 0 1/4 1/4 0

0 1/6 1/6 2/3

a a 0 0 0

0 −a a 0 0

1 0 1− a a 0

1/2 b c 1/2− b− c− a a

0 1/6 1/6 2/3

a = 0.24169426078821 , b = 0.06042356519705 ,

c = 0.12915286960590

law (22). Its right-hand-side can be splitted in potentially-stiff

terms and regular ones

∂t(
√
γEi) = F i

E +Ri
E , (33)

where we have introduced the factor 1/ε on the definition of

Ri
E and

F i
E = −∂k[−βk√γEi − αǫikj

√
γBj ]−

√
γEk(∂kβ

i)−
α
√
γγij∂jψ − α

√
γqvi, (34)

Ri
E = −α√γWσ

[

Ei + ǫijkvjBk − (vkE
k)vi

]

. (35)

In order to evolve this system numerically, the

fluxes {Fτ , FSi , FD} have to be computed at each

timestep. This implies that the primitive quantities

{ρ, p, vi, Ei, Bi} have to be recovered from the con-

served fields {D, τ, Si,
√
γ Ei,

√
γ Bi}. With the

exception of very simple EOSs, this recovery cannot be

done analytically and it is instead necessary to solve a set of

algebraic equations via some root-finding iterative procedure,

which we will describe below.

Before that, we note that the solution of the conserved quan-

tities {D, τ, Si,
√
γ Bi} at time t = (n+1)∆t is obtained by

simply evolving the equations (28), (30), (23). However, the

same procedure for the electric field leads only to an approx-

imate solution {Ẽi} containing only the explicit terms. The

full solution, involving also the potentially stiff terms, requires

therefore the inversion the implicit equation (24), which de-

pends on the velocity vi and the fields {Bi, Ẽi}. In the case

of the scalar Ohm law (22), the stiff part is linear in Ei, so a

simple analytic inversion can be performed

Ei = M
−1(vj) [Ẽi + σ̄ SE(v

j , Bj)], (36)

where σ̄ ≡ aii ∆t α W σ and the inversion matrix is given by

M=















1 + σ̄(1 − vxv
x) −σ̄(vyvx) −σ̄(vzvx)

−σ̄(vxvy) 1 + σ̄(1− vyv
y) −σ̄(vzvy)

−σ̄(vxvz) −σ̄(vyvz) 1 + σ̄(1− vzv
z)















.

(37)

The recovery procedure is similar to the one presented in

Ref. [19] and can be summarized in the following steps:
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1. Consider an initial guess for the electric field. Some

possible options are: its value in the previous timestep,

its approximate value in the current time step Ẽi, or the

ideal MHD value Ei = −ǫijkvjBk, where vj is the

velocity in the previous time level.

2. Subtract the electromagnetic field contributions from

the conserved fields, namely compute

τ̃ = τ − 1

2
(E2 +B2), (38)

S̃i = Si − ǫijkE
jBk. (39)

3. Perform the recovery as in the non-magnetized case:

The EOS can be used to write the pressure as a function

of the conserved quantities and the unknown x = hW 2,

so that the definition of τ can be written as

f(x) =

(

1− Γ− 1

W 2Γ

)

x+

(

Γ− 1

ΓW
− 1

)

D

+
Γ− Γp

Γ(Γp − 1)
K

(

D

W

)Γp

− τ̃ , (40)

which must vanish for the physical solutions. Here Γp

andΓ are the adiabatic indices corresponding to an ideal

gas and a polytropic EOS, respectively, while K is the

polytropic constant. By setting Γ = 1 we recover the

simple polytropic EOS, while the ideal EOS can be re-

covered by setting Γp = Γ.

4. A solution of the function f(x) = 0 can be found

numerically by means of an iterative Newton-Raphson

solver. The initial guess for the unknown x is given by

the previous time step.

5. After each step of the Newton-Raphson solver, update

the values of the fluid primitives

vi =
S̃i

x
, W 2 =

x2

x2 − S̃2
, ρ =

D

W
, (41)

p =
Γ− 1

Γ

( x

W 2
− ρ

)

+
(Γp − Γ)KρΓp

Γ(Γp − 1)
. (42)

and then invert the electric field according to (36).

6. Iterate the steps 2.–5. until the difference between two

successive values of x and the electric field fall below a

given threshold, usually of the order of 10−10.

This procedure converges quickly in the high-conductivity

regions if the ideal MHD solution is chosen as an initial guess,

and in the intermediate conductivity regions if the initial guess

is given by the approximate electric field Ẽi. In general, . 5
iterations are sufficient for intermediate conductivities, while

. 70 iterations are usually necessary in the regions with high

conductivity.

IV. NUMERICAL TESTS AND RESULTS

In this extended Section we report the numerical results ob-

tained in one-, two- and three-dimensional tests, which con-

firm that our implementation is correct and provides the ex-

pected results in a large range of conductivities. More specif-

ically, the one-dimensional tests involve: i) a large-amplitude

circularly-polarized (CP) Alfvén wave to validate that our im-

plementation matches the ideal-MHD results in the high con-

ductivity regime; ii) the evolution of a self-similar current

sheet, which tests our implementation in the intermediate con-

ductivity regime; iii) a collection of shock-tube tests involving

a range of uniform and non-uniform conductivities. In these

particular tests we also examine the zero-conductivity regime,

where the electromagnetic fields are expected to follow the

vacuum Maxwell equations and hence behave as propagating

waves.

Following the one-dimensional tests, we then present two

and three-dimensional tests, which include the standard cylin-

drical and spherical explosion tests, which we consider in the

case of very large conductivities in order to test the ideal-

MHD limit of our equations. Finally, we have performed three

different sets of simulations involving spherical magnetized

stars in general relativity. The first setup consists in a spherical

(TOV) star with prescribed magnetic fields confined initially

in the interior of the star. The second set involves the evo-

lution of a magnetized star with initial data generated by the

LORENE library and having a dipolar magnetic field that ex-

tends also outside the star. As a conclusive three-dimensional

test we consider the gravitational collapse of a nonrotating star

to a black hole, where the initial data is again generated by the

LORENE library [48].

With the exception of the collapsing star, where we have

used a polytropic EOS, all simulations reported here have em-

ployed an ideal gas (Γ-law) EOS

p = ρǫ(Γ− 1) , (43)

with Γ = 2 for the one-dimensional tests and Γ = 4/3 for the

two and three-dimensional tests. In addition, for the evolu-

tion of the stable magnetized stars we have adopted a Γ = 2.

As mentioned above, the collapse of the unstable magnetized

star has been followed using a polytropic EOS, p = KρΓ,

with Γ = 2. Finally, to ensure a divergence-free magnetic

field with the our hyperbolic divergence-cleaning approach,

we have set the damping coefficient κ to be one everywhere.

A. One-dimensional Test Problems

1. Circularly Polarized Alfvén waves

The present test has been discussed in detail in Ref. [10] and

it computes the propagation of a large-amplitude circularly-

polarized Alfvén wave through a uniform background mag-

netic field B0. For the purpose of this test, we set a very high

conductivity σ = 106 in order to recover the ideal-MHD limit.

Since the propagating wave is expected to be the advected ini-
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FIG. 1: Circularly-Polarized Alfvén wave. By component

of the magnetic field for three different resolutions ∆x =
{1/50, 1/100, 1/200}, together with the exact initial solution (black

solid line). Clearly, the numerical solution provided by the resistive

MHD implementation and the exact one overlap for a uniform con-

ductivity σ = 106 and the highest resolution.

tial profile, it is convenient to apply periodic boundary con-

ditions and compare the evolved profile after one full period

with the initial one, in order to check the accuracy of our im-

plementation.

In particular, we consider a CP Alfvén wave with a normal-

ized amplitude ηA traveling along positive x-axis, in a uni-

form background magnetic field B0 with components

Bi = {B0, ηAB0 cos[k(x− vAt)], ηAB0 sin[k(x− vAt)]}.
(44)

For simplicity, we take vx = 0 and write the remaining veloc-

ity components as

vy = −vABy/B0 , vz = −vABz/B0 , (45)

where

v2A =
2B2

0

ρh+B2
0(1 + η2A)



1+

√

1−
(

2ηAB2
0

ρh+B2
0(1 + η2A)

)2




−1

.

(46)

By setting ρ = p = ηA = 1 and B0 = 1.1547, we fix the

Alfvén velocity to vA = 0.5. Therefore, in a computational

domain centered at x = 0 with x ∈ [−0.5, 0.5], we expect

the wave to return to its initial position after one full period

t = L/vA = 2. The comparison of the numerical solution

with the initial condition (44) at t = 0 gives us a measure of

the error.

In principle, the resistive MHD formalism would allow us

to recover the ideal-MHD limit only for an infinite conduc-

tivity. In practice, however, the use of a conductivity as large

as σ = 106 is sufficient to obtain a solution that converges

to the ideal-MHD one with increasing resolution. As a re-

sult, we have chosen to perform simulations with a uniform

FIG. 2: Self-similar current sheet. By component of the magnetic

field at the initial t = 1 and final time t = 10. The exact solution at

t = 1 is shown with a dashed blue line. The solution given by the

analytic expression (47) at t = 10 (black solid line) is indistinguish-

able from the numerical solution obtained form the resistive MHD

equations (red dashed line).

conductivity of σ = 106, using the following resolutions:

∆x = {1/50, 1/100, 1/200}.

In Fig. 1 we show the component By at time t = 2, cor-

responding to one full period. By superimposing the results

at t = 2 with the initial data at t = 0, it is evident that the

numerical solution of the resistive MHD equations tends to

the ideal-MHD exact solution for a high-enough conductiv-

ity and resolution. We have used both a linear reconstruction

with monotonized-central (MC) slope limiter and the second

order PPM reconstruction. The numerical solution converges

to the exact one at second order when using PPM reconstruc-

tion and at second order with the linear reconstruction, exactly

the same convergence rates than with the original ideal MHD

system implemented in WhiskyMHD.

2. Self-similar Current Sheet

We next considera a test that involves the evolution of a self-

similar current sheet, as proposed in Ref. [18]. This setup is

useful for testing codes which solve the resistive MHD equa-

tions with a moderate conductivity regime, which we set to be

σ = 100.

In practice, the initial data consists in a magnetic field

solely in the y-direction which changes sign in a thin cur-

rent layer. Provided that the initial solution is in equilibrium

(i.e., the pressure and density are constant, and the velocity

is zero) and that the magnetic pressure is much smaller than

the fluid pressure everywhere, then the evolution of the mag-

netic field is given by the simple diffusion equation ∂tB
y −

(1/σ) ∂2xB
y = 0, which will be responsible for the diffu-

sive expansion of the current layer in response to the physical
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FIG. 3: Shock-tube Tests. By component of the magnetic field at

t = 0.4 for different resolutions ∆x = {1/100, 1/200, 1/400}.

The highest resolution ∆x = 1/400 matches the exact ideal-MHD

solution remarkably well.

resistivity (we are also assuming that Ei = 0 = ∂tE
i). Un-

der these simplified assumptions, the analytical solution of the

diffusion equation is given, for t > 0, by

By(x, t) = B0 Erf

(

1

2

√

σ

ξ

)

, (47)

where ξ ≡ t/x2 and Erf is the error function. Clearly, as the

evolution proceeds, the current layer expands in a self-similar

fashion.

Following [18, 19], we use as initial data the analytic so-

lution (47) at t = 1 and set the density and pressure to be

uniform with ρ = 1 and p = 50 respectively, while keep-

ing the components of the electric field and velocity to zero

initially. In our calculations we have used a computational

domain with extents x = y = z ∈ [−5, 5] with a resolution

of ∆x = 1/200. Furthermore, a linear reconstruction method

was adopted with the further application of the MC limiter.

In Fig. 2 we present the results we obtained by solving

numerically the resistive MHD equations and the compari-

son with the exact solution (47) at t = 10 (black solid line).

Clearly, the numerical solution (red dashed line) is indistin-

guishable from the analytic one, thus providing convincing

evidence that the code can accurately describe resistive evolu-

tions with intermediate values of the conductivity.

3. Shock-Tube Tests

We next consider the numerical solution of the standard of

Brio and Wu shock-tube test [49] as adapted for its MHD im-

plementation and using either a variety of uniform or space-

dependent conductivities parameterized by the reference con-

ductivity σ0. More specifically, the left (L) and right (R)

FIG. 4: Shock-tube Tests. By component of the magnetic field for

conductivities σ0 = {0, 10, 102, 103, 106} at t = 0.4 and resolution

∆x = 1/200. For σ0 = 0 the magnetic field is governed by a wave-

like equation, corresponding to the solution of the Maxwell equations

in vacuum.

states are initially separated by a discontinuity at x = 0.5
and are given by [50]

(ρL, pL, B
y
L) = (1.0, 1.0, 0.5) ,

(ρR, pR, B
y
R) = (0.125, 0.1, −0.5) ,

while all other variables are set to zero. The ideal-MHD evo-

lution of the aforementioned setup with Bx = 0 leads to

two fast waves, one rarefaction propagating to the left and a

shock propagating to the right of the discontinuity. The solu-

tion of this test in the ideal-MHD limit exists and is found in

the exact ideal-MHD Riemann solver provided by Ref. [50].

For the rest of the one-dimensional tests, any comparison be-

tween the solution of the resistive MHD equations in the high-

conductivity regime and the exact solution of the ideal-MHD

equations is performed with data obtained from the publicly

available code [50]. All tests have been performed employing

a linear reconstruction method with further application of the

MC slope limiter.

As a first setup of our shock-tube tests, we consider the

case of a uniform high conductivity σ = σ0 = 106 and, in

analogy with the Alfvén-wave test in the high-conductivity

regime, we verify that the solution of the coupled Maxwell-

Hydrodynamics equations tends to the ideal-MHD exact so-

lution [50] as the resolution is increased. Figure 3 reports

the magnetic field component By at t = 0.4 for the three

resolutions ∆x = {1/100, 1/200, 1/400} considered. The

high-resolution result matches the exact ideal-MHD solution

so well that is difficult to distinguish them, thus providing the

first evidence that our implementation is robust also in the

presence of discontinuities.

As a second setup of the shock-tube tests, we consider the

case in which the conductivity is still uniform in space, but

of different strength. In particular, we perform the same test
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FIG. 5: Shock-tube Tests. The left panel shows the conductivity profile at t = 0.4 for non-uniform conductivity with different power laws,

i.e., γ = {0, 6, 9, 12}. The γ = 0 case corresponds to the high-conductivity regime of the resistive MHD equations. The right panel reports

instead the By component of magnetic field for the same initial conditions as in the left one. The leftmost region tends to the ideal MHD

solution, while the rightmost tends to the vacuum solution for γ = 12.

for σ = {0, 10, 102, 103, 106}, while keeping the resolution

fixed at ∆x = 1/200. Figure 4 reports different solutions of

the magnetic-field componentBy given by the resistive MHD

equations with different values of σ0. It is important to note

here that the solutions change smoothly from the ideal-MHD

solution computed for σ0 = 106, to the wave-like solution

for σ0 = 0, which corresponds to the propagation of a dis-

continuity at the speed of light, corresponding to a solution

of the vacuum Maxwell equations. The ability of treating the

two extreme behaviours of the Maxwell-MHD equations via

a resisitive treatment is an essential feature of our approach

and a fundamental one in the description of the dynamics of

magnetized binary neutron stars.

As a final setup our of our suite of shock-tube test, we have

considered the same initial data but now prescribed a non-

uniform conductivity given by the expression

σ = σ0D
γ , (48)

where γ is an integer exponent we vary in the range γ ∈
[0, 12]. Thes prescription above introduces nonlinearities with

respect to the conserved rest-mass density D and provides

an intuitive way of tracking the dense fluid regions. It leads

to low values of the conductivity in places were the plasma

is tenuous and high values in more dense regions, which

will prove very useful later on when evolving magnetized

stars. However, this prescription is far from being realis-

tic and normally a more general conductivity prescription

σ = σ(D, τ, E) is to be seeked starting from micro-physical

considerations.

Following [19], we adopt the same initial data as before,

however this time we change the exponent γ of Eq. (48) while

maintaining the value of conductivity to σ0 = 106.

The results of this last test are reported in the left panel of

Fig. 5, which show the profile of the conductivity at t = 0.4

for different values of the power-law exponent, i.e., γ =
{0, 6, 9, 12}. Clearly, the conductivity follows the evolution

of the rest-mass density, with a left-going rarefaction wave

and right-going shock. It is interesting to note that our ap-

proach is able to track even very large variations in the con-

ductivity, with jumps as large as eleven orders of magnitude

across the computational domain. The right panel of Fig. 5, on

the other hand, reports instead the magnetic field-component

By at t = 0.4 for the same initial conditions. As imposed by

Eq. (48), the solution in the leftmost part of the computational

domain, where the rest-mass density is very high, is controlled

by a very high conductivity, which tends to σ0 = 106. In turn,

this implies that the solution for the magnetic field should ap-

proach the ideal-MHD limit in that region. On the other hand,

in the rightmost region, where the rest-mass density is very

low, the conductivity is correspondigly small and tending to

zero for high values of γ. In such regions, therefore, the mag-

netic field is expected to behave as a wave, thus explaining the

appearance of a moving peak for γ = 12.

Overall, this suite of shock-tube tests, demonstrates that

our numerical implementation is able to treat accurately both

uniform and non-uniform conductivity profiles in one dimen-

sional tests, independently of the steepness of the profiles and

even in the presence of shocks.

B. Multidimensional Tests

We now focus on multidimensional tests that involve

shocks in several directions, such as the two-dimensional

cylindrical explosion and the three-dimensional spherical ex-

plosion test suggested in Ref.[1]. Despite the fact that there

is no analytical solution for any of these tests, even in the

ideal-MHD case, the symmetries of the problem can be of
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FIG. 6: Left Panel: Snapshot of the magnetic field component Bx in the (x, y) plane at t = 4.0; Right Panel: Snapshot of the magnetic field

component By in the (x, y) plane at t = 4.0.

FIG. 7: Left Panel: One-dimensional cuts along the z-direction and at t = 4.0 of the the pressure. The black dashed line corresponds to the

resistive code (the WhiskyRMHD code), while the blue dotted line corresponds to the ideal-MHD code, (the WhiskyMHD code). Right Panel:

The same as in the left panel but for the Lorentz factor.

great help in verifying that the numerical implementation is

correct and that it preserves the expected symmetries. Our ap-

proach in these tests will be therefore that of comparing the

solution of the same multidimensional test as obtained with

the ideal-MHD code presented in [11] and our new resistive

WhiskyRMHD code in the limit of very high conductivities.

The initial electric field is computed in such a way that it sat-

isfies the ideal-MHD condition, i.e.,Ei = −ǫijkvjBk, and all

the tests have been performed adopting a linear reconstruction

method and the minmod slope limiter.

1. Cylindrical Blast-Wave

In the two-dimensional cylindrical blast-wave problem, we

adopt a square domain with 200 grid cells per direction, in a

range of (−6.0, 6.0)× (−6.0, 6.0). The setup of the problem

consists of three regions. The innermost region with 0 ≤ r ≤
0.8, for which the pressure and the density are set to p = 1,

ρ = 0.01 respectively, the intermediate region which extends

from 0.8 < r < 1.0 where r ≡ (x2+y2)1/2 both the pressure

and the density exponentially decrease, and the outermost re-

gion which is filled with an ambient plasma with p = 0.001,

ρ = 0.001 and occupies the domain 1.0 ≤ r ≤ 6.0. The

initial magnetic field is along the x-direction with an initial

magnetic field strength of B0 = 0.05.
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The numerical results are presented in Fig. 6, where we

show that the magnetic field solution is regular everywhere

and that there are no visible artifacts that could indicate a

possible symmetry error in our implementation. Furthermore,

when one-dimensional cuts of the resistive solution are plot-

ted against the ideal-MHD solution obtained with the code

presented in [11], the agreement is extremely good (this is not

shown in Fig. 6).

2. Spherical Blast-Wave

In the three-dimensional spherical blast-wave problem, the

grid structure is similar, but the domain is now within the

ranges (−6.0, 6.0) × (−6.0, 6.0) × (−6.0, 6.0). The prob-

lem setup consists of the same three regions as in the cylin-

drical blast wave problem, although here the radius r refers to

the spherical-polar radial coordinate, and not to the cylindrical

radius, i.e., r ≡ (x2 + y2 + z2)1/2.

The corresponding solution of the spherical blast-wave

problem in the (x, y) plane is essentially identical to the one

already reported in Fig. 6 and for this reason we do not show

it here. What we do show in Fig. 7, however, are one-

dimensional cuts along the z-direction of the pressure p and of

the Lorentz factor W as computed with the ideal-MHD code

(blue dotted line) and the resistive MHD code (black dashed

line). This comparison, which is not expected to be exact

given that the resistivity is large but not infinite, provides con-

vincing evidence of the ability of our implementation to accu-

rately describe higher-dimensional discontinuous flows in the

high-conductivity regime.

C. Nonrotating Magnetized Stars

In the following Section we present the numerical results

obtained from the evolution of nonrotating spherical stars in

the presence of electromagnetic fields and for a variety of con-

ductivities. In order to accurately model both the interior and

the exterior of the star, we prescribe a spatial dependence of

the electrical conductivity such that the ideal-MHD limit is

recovered in the deep interior of the star (which is expected

to be an excellent conductor) and such that the electrovacuum

limit is recovered outside the star, where the density and the

isotropic conductivity is expected to be negligibly small.

This behaviour can be easily achieved assuming that the

conductivity tracks the (conserved) rest-mass density, thus in-

suring a smooth transition between the two regimes. In prac-

tice, we have experimented with functional prescriptions of

the type

σ = σ0 max [(1−Datmo/D) , 0]
2
, (49)

where σ ≃ σ0 is the conductivity in the regions of large rest-

mass density (σ = σ0 at the stellar center) and σ = 0 in

the atmosphere, where we set the conserved rest-mass den-

sity to its uniform value D = Datmo. In our calculations we

normally set σ0 = 106 and Datmo to be about ten orders of

magnitude smaller than the value of D at the center of the

star. Furthermore, in the atmosphere we set the fluid veloc-

ity to zero and since σ = 0 there, the electric and magnetic

fields are evolved via the Maxwell equations with zero cur-

rents (electrovacuum).

This non-uniform conductivity prescription allows us to

provide effective boundary conditions at the surface of the

star for the exterior electrovacuum solution similar to those

in Refs. [51, 52], but without the limitations of using an ana-

lytical solution for the interior of the star or the further com-

plications of finding a suitable matching between the electro-

magnetic fields of the interior ideal-MHD solution and the ex-

terior one. All the simulations reported hereafter have been

performed adopting the PPM reconstruction scheme, for rel-

ativistic stars whose initial properties are summarized in Ta-

ble II.

1. Stable Star with confined magnetic fields

For the sake of simplicity, we consider as initial data spher-

ical stars in equilibrium to which a poloidal magnetic field

confined to the stellar interior is superimposed (see, e.g., [53–

55]). While the hydrodynamical quantities are consistent so-

lutions of the Einstein equations, the magnetic field is added

a-posteriori, with a consequent violation of the constraint at

the initial time. In practice, however, this violation is always

very small, even for the largest fields, and is quickly domi-

nated by the violations introduced by the standard evolution.

The toroidal vector potential that generates the poloidal in-

terior magnetic field is expressed as [11]

Aφ = r2 max [Ab(P − Pcut), 0]
2
, (50)

where Pcut is about 4% the central pressure Pc. The the star,

initially computed with a polytropic EOS with Γ = 2, K =
100, has a gravitational mass M = 1.40M⊙ and is endowed

with a poloidal magnetic field of strength Bc = 1012 G at the

center of the star and β ≡ pmag/p = 4.49×10−13, with pmag

the magnetic pressure. The magnetic field in the atmosphere

is initially zero. For all of the evolutions presented hereafter

we have used an ideal-fluid EOS with Γ = 2.

We first examine the evolution of the magnetized star

in the fixed spacetime of the initial solution (Cowling-

approximation). In the left panel of Fig. 8 we show with thin

solid, dashed and dotted lines the evolution of the central rest-

mass density normalized to its initial value ρc,0 in thin colored

lines. The tests were performed using three spatial resolutions

of ∆x = {0.4, 0.3, 0.2} km, corresponding respectively to

N = {80, 120, 160} points across the finest AMR grid, which

extends up to Rout = ±18 km. As customary in this type

of tests, stellar oscillations are triggered by the truncation er-

ror and their amplitude decreases as the numerical resolution

is increased. The importance of the test lays therefore in the

calculation of the eigenfrequencies of the oscillations, which

we find to be in very good agreement with those computed

via perturbative analyses (not shown here) and with other hy-

drodynamics and ideal-MHD codes [11, 56]. In addition, a

comparison with the ideal-MHD code [11] shows a very good
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Star type MADM [M⊙] Mb [M⊙] Req [km] K Γ Bc [G] # levels N Nstar Rout [km]

Confined fields 1.40 1.51 12.00 100.0 2 1012 4 80, 120, 160 56, 80, 112 142

Extended fields 1.33 1.37 32.56 372.0 2 2.4 × 1014 4 120 84 355

Unstable model 2.75 2.89 16.30 364.7 2 5× 1015 5 272 216 241

TABLE II: Properties of the magnetized star models used in the simulations. The columns report: the ADM and baryon masses in units of

solar masses MADM and Mb respectively, the circumferential equatorial radius of the star in kilometers Req, the polytropic constant K, the

polytropic index Γ, the value of the magnetic field in Gauss at the center of the star Bc, the number of refinement levels, the number of

gridpoints on the finest level N , the number of gridpoints across the star Nstar for the different resolutions considered, the computational grid

outer boundary in kilometers Rout.

FIG. 8: Left Panel: Evolution of the central rest-mass density of a nonrotating magnetized star for both the Cowling approximation (C; thin

lines) and a dynamical spacetime (D; thick lines). Different line types mark different resolutions: dashed light blue ∆x = 0.4 km, dotted dark

blue ∆x = 0.3 km, continuous black ∆x = 0.2 km. Middle Panel: The same as the left one but for the central magnetic field. Right Panel:

The same as the middle one but different values of the conductivity σ0. All lines refer to a resolution of ∆x = 0.2 km.

agreement in the evolution of the rest mass density, indicat-

ing that the oscillations are tracked correctly by our resistive

MHD implementation.

We next examine the same scenario, but in a fully dynam-

ical spacetime and find also in this case a very good agree-

ment with the ideal MHD solution. Still in the left panel of

Fig.8 we report with thick solid, dashed and dotted lines the

evolution of the central rest-mass central density in a dynam-

ical spacetime for different resolutions. As well known from

perturbation theory, the eigenfrequencies of oscillations are in

this case lower but what is relevant to note is that the secular

evolution in both the fixed and dynamical spacetimes are very

similar, with variations in the central density that is less than

a couple of percent over tens of dynamical timescales.

The middle panel of Fig. 8 displays instead the evolution

of the central value of the magnetic field, where lines of dif-

ferent color refer to different resolutions, while the thickness

marks whether we are considering a fixed or a dynamical

spacetime (thin for the Cowling approximation and thick for a

full general-relativistic evolution). The corresponding power

spectral density is shown in Fig. 9, where different line types

refer to different resolutions and the dotted vertical lines mark

the eigenfrequencies obtained from linear perturbation theory.

The match between the numerical and perturbative results is

clearly excellent and the differences in the fundamental mode

FIG. 9: Power spectral density of a full general-relativistic evolution

of the central rest-mass density for a stable star with confined mag-

netic fields. Different line types refer to different resolutions. Shown

with dotted vertical lines are the eigenfrequencies obtained from lin-

ear perturbation theory.
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FIG. 10: Two-dimensional cuts on the (x, z) plane of the solution the rest-mass density (colorcode from white to red) and of the magnetic

field lines and at times t = 0, 9.88, and 18.59ms. The evolution refers to a nonrotating star in a dynamical spacetime. Note that although the

magnetic field is contained in the star initially, it diffuses out as a result of numerical and physical resistivity.

at the highest resolution are . 0.5%.

We note that, as for the central rest-mass density, the evolu-

tion of the central magnetic field is accompanied by a secular

drift towards lower values, and this is simply the result of the

intrisic numerical resistivity (we recall that these tests have

been performed with the resistive code but for very large con-

ductivities and hence in a virtual ideal-MHD regime). Clearly,

the numerical resistivity decreases with resolution and this is

exactly what the behaviour in the middle panel shows. It is

interesting to note that while with sufficient resolution the re-

sistive losses saturate to about 20% of the original magnetic

field over ∼ 12 ms, these can be very large for low resolution

and dissipate up to ∼ 85% of the initial magnetic field over

the same time-span. These numerical resistive losses should

be compared with the ones introduced instead by the physi-

cal resistivity and which can of course be much larger. This

is shown in the right panel of Fig. 8, which is the same as

the middle one, but where we have used the highest resolution

(i.e., ∆x = 0.2 km) and varied the strength of the physical re-

sistivity from σ0 = 106 to σ0 = 102. Because the fluid veloc-

ities are essentially zero at this resolution, the magnetic-field

evolution follows a simple diffusion equation with a Ohmic

decay timescale which scales linearly with 1/σ. This is in-

deed what shown in the right panel of Fig. 8 where, after the

initial transient, the solution settles to an exponential decay

and where the magnetic field can be reduced of almost two

orders of magnitude over 12 ms in the case of σ0 = 102.

Finally, we show in Fig. 10 two-dimensional cuts on the

(x, z) plane of the rest-mass density (shown in a colorcode

from white to red) and of the magnetic field lines for an os-

cillating star; the three panels refer to times t = 0, 9.88, and

18.59ms, respectively. It is important to remark that although

we start with a magnetic field that is initially confined inside

the star, the inevitable presence of a small but finite numerical

resistivity and our choice of a nonzero physical conductivity

near the surface of the star [we recall that our conductivity

follows the profile given in Eq. (49)], induce a slow but con-

tinuous “leakage” of the magnetic field, which leaves the star

and fills the computational domain. Because the external mag-

netic field is essentially with a zero divergence and with a van-

ishingly small Laplacian (we recall that in the stellar exterior

the resistivity is zero and the Maxwell equations tend to the

those in vacuum), it is to a very good approximation a poten-

tial field, as shown by the clean dipolar-like structure. Clearly,

the Ohmic diffusion timescale increases with resolution and

therefore the relaxation of the magnetic field to a stationary

dipolar-like structure takes place on longer timescales for the

high-resolution simulation.

2. Stable Star with extended magnetic fields

We next consider initial data for a spherical magnetized star

with a poloidal magnetic field extending outside the star, as

generated by the Magstar code from LORENE library [48].

The external magnetic field is dipolar and is computed by

solving the Maxwell equations in vacuum, with boundary con-

ditions given by the interior poloidal magnetic field. This so-

lution is fully consistent with the Einstein equations and it

provides accurate measurements of the stellar deformations in

response to either rapid rotation or large magnetic fields [57].

More specifically, we have considered a nonrotating star mod-

elled initially as polytrope with Γ = 2 and K = 372, hav-

ing a gravitational mass M = 1.33M⊙, and endowed with

a poloidal magnetic field of strength Bc = 5 × 1015 G. The

magnetic field in the atmosphere is given by the electrovac-

uum solution, which has a dipolar structure. The evolutions

have been carried out in a computational domain with outer

boundary at Rout = 355 km and a resolution of ∆x = 0.7
km, corresponding to 60 points covering the positive part of

finest grid which extends up to 44 km.

Figure 11 displays in its left and middle panels two-

dimensional cuts on the (x, z) plane of the rest-mass density

(shown in a colorcode from white to red) at the initial and fi-

nal times, i.e., t = 0ms and t = 37ms. A rapid comparison

among the three panels clearly shows the ability of the code

to reproduce stably the evolution of this oscillating star also

when the magnetic field extends in its exterior. The right panel

of Figure 11, on the other hand, shows in its top part shows the

evolution of the magnetic flux computed across a hemispheric
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FIG. 11: Left and Middle Panels: Evolution of the magnetic field lines displayed at times t = 0ms and t = 37ms. The rest mass density is

also shown with purple-red-yellow colors. Right Panel: The top part shows the evolution of the magnetic flux computed across a hemispheric

surface at a radius r = 135 km, while the bottom part shows the power spectral density of the rest-mass density (black solid line) and of the

magnetic flux (blue dotted line).

surface at a radius r = 135 km, which also shows signs of

oscillations. We have computed the power spectrum of these

oscillations and compared it with the corresponding one ob-

tained for the central rest-mass density. The results of this

comparison are shown in the bottom part of the right panel,

with a black solid line referring to the rest-mass density a blue

dotted line to the magnetic flux. The very good agreement

between the two implies that the oscillations observed in the

magnetic flux are essentially triggered by the oscillations in

the rest-mass density.

3. Magnetized Collapse to a Black Hole

Our final and most comprehensive test is represented by

the collapse to a BH of a magnetized nonrotating star. This

is more than a purely numerical test as it simulates a pro-

cess that is expected to take place in astrophysically realis-

tic conditions, such as those accompanying the merger of a

binary system of magnetized neutron stars [26, 27], or of an

accreting magnetized neutron star. The interest in this pro-

cess lays in that the collapse will not only be a strong source

of gravitational waves, but also of electromagnetic radiation,

that could be potentially detectable (either directly or as pro-

cessed signal). The magnetized plasma and electromagnetic

fields that surround the star, in fact, will react dynamically

to the rapidly changing and strong gravitational fields of the

collapsing star and respond by emitting electromagnetic radi-

ation. Of course, no gravitational waves can be emitted in the

case considered here of a nonrotating star, but we can never-

theless explore with unprecedented accuracy the electromag-

netic emission and assess, in particular, the efficiency of the

process and thus estimate how much of the available bind-

ing energy is actually radiated in electromagnetic waves. Our

setup also allows us to investigate the dynamics of the elec-

tromagnetic fields once a BH is formed and hence to assess

the validity of the no-hair theorem, which predicts the expo-

nential decay of any electromagnetic field in terms of Quasi

Normal Mode (QNM) emission from the BH.

Ours is not the first detailed investigation of this process

and relevant previous studies are that in Ref. [51] and the

more recent one in Ref. [52]. However, our approach differs

from previous ones in that it correctly describes the gravita-

tional dynamics of a collapsing fluid (the semianalytical work

in Ref. [51], in fact, considered the more rapid collapse of a

dust sphere, for which the Oppenheimer-Snyder (OS) analytic

solution can be used [58]) and does not require any match-

ing of the solution near the stellar surface (the fully relativis-

tic work in Ref. [52] had to resort to an ingeniuous match-

ing between the interior ideal-MHD solution and a force-free

one in the magnetosphere), leaving the complete evolution of

the electromagnetic fields to our prescription (49) of a non-

uniform conductivity. Indeed, our solution is expected to be

exactly the same as the force-free one except in regions where

B2 − E2 < 0 and an anomalous resistivity appears. Since

we can handle accurately such resistive regions, this test il-

lustrates the capabilities of our resistive implementation and

serves as a more realistic approach to this astrophysical sce-

nario.

In practice, we have considered the evolution of a nonrotat-

ing neutron star with a gravitational mass of 2.75M⊙, which

is chosen to sit on the unstable branch of the equilibrium con-

figurations and is endowed with an initial poloidal magnetic

field of strength Bc = 5 × 1014 G extending also in the ex-

terior space. As for the previous stellar solutions, we use a

polytropic EOS with Γ = 2 and K = 364.7 for the initial

data and continue to use this isentropic EOS also for the sub-

sequent evolution. The evolutions have been carried out in

a computational domain with outer boundary at Rout = 241
km and a resolution of ∆x = 0.11 km, corresponding to 272
points covering the finest grid which extends up to ±15 km.

Because the magnetic energy is only a small fraction of the

binding energy, the hydrodynamical and spacetime evolution

of the fluid star as it collapses to a BH is very similar to the

unmagnetized case and this has been discussed in great detail

in [59]. The most important difference, therefore, is in the

dynamics of the magnetic field, and this is shown in Fig. 12,

which reports two-dimensional cuts on the (x, z) plane of the
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FIG. 12: Two-dimensional cuts on the (x, z) plane of the collapse to a BH of a magnetized NS. Shown with colors are the rest-mass density

(colorcode from white to red) and the radial poynting vector (colorcode from blue to green) in units of 1034, while thin lines reproduce the

magnetic-field lines. The different snapshots refer to times t = 0, 0.32, 0.57, 0.65, 1.0 and 1.1 ms, and an apparent horizon is marked with

a thin red line starting from t = 0.57 ms. Note that all the matter is accreted into the hole and that a quadrupolar QNM ringdown is clearly

visible in the Poynting flux.
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FIG. 13: The same as the three bottom panels of Fig. 12 but with a linear scale of 15 km to highlight the dynamics near the horizon. It is now

very clear that a closed set of magnetic field lines is built just outside the horizon at t = 1.0 ms, that is radiated away as QNM of the BH.

collapse to a BH of a magnetized NS. Shown with colors are

the rest-mass density (colorcode from white to red) and the

radial poynting vector (colorcode from blue to green), while

thin solid lines reproduce the magnetic-field lines.

At early times the star remains close to its initial state with

the exception of a small transient induced by truncation error,

which produces a small radiative outburst at t . 0.3 ms. As

the instability to gravitational collapse develops, there is a re-

arrangement of the external electromagnetic fields, driven by

a toroidal electric field Eφ ≈ −vrBθ produced in the inte-

rior of the perfectly conducting star, and which is continuous

across the stellar surface. As the collapse proceeds, the rest-

mass density in the center and the curvature of the spacetime

increase until an appararent horizon is found at t = 0.57 ms
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FIG. 14: The same as in Fig. 12, but where in addition to the rest-mass density (colorcode from white to red) and the magnetic-field lines (thin

solid lines) we show the electrically-dominated regions (i.e. B2 − E2 < 0, colorcode from light blue to white in units of 1023).

and is marked with a thin red line in Fig. 12 (we have used the

apparent-horizon finder described in [60]).

As the stellar matter is accreted onto the BH (the rest-mass

outside the horizon Mb, out = 0 is zero by t & 0.62 ms),

the external magnetic field which was anchored on the stel-

lar surface becomes disconnected, forming closed magnetic-

field loops which carry away the electromagnetic energy in the

form of dipolar radiation. This process, which has been de-

scribed through a simplified non-relativistic analytical model

in Ref. [52], predicts the presence of regions where |E| > |B|
as the toroidal electric field propagates outwards as a wave.

This process can be observed very clearly in Fig. 13, which

displays the same three bottom panels of Fig. 12 on a smaller

scale of only 15 km to highlight the dynamics near the hori-

zon. In particular, it is now very clear that a closed set of

magnetic field lines is built just outside the horizon at t = 1.0
ms, that is radiated away. Note also that our choice of gauges

(which are the same used in [61]) allows us to model without

problems also the solution inside the apparent horizon. While

the left panel of Fig. 13 shows that most of the rest-mass is dis-

sipated away already by t = 0.65 ms (see discussion in [62]

about why this happens), some of the matter remains on the

grid near the singularity, anchoring there the magnetic field

which slowly evolves as shown in the middle and right pan-

els. A complementary view of the collapse process is also

offered by Fig. 14, which reports, in addition to the rest-mass

density (colorcode from white to red) and the magnetic-field

FIG. 15: Top Panel: Luminosity calculated at a distance r = 89
km from the compact object. The black dotted line represents the

time at which the apparent horizon is formed and the black dashed

line corresponds to the time at which all the matter is well within

the horizon. Bottom Panel: Evolution of the total radiated energy

normalized to the initial magnetic energy.
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FIG. 16: Left Panel: QNM ringdown of the magnetic field as measured through the magnetic flux at r = 37 km. Again, the black dotted line

represents the time at which the apparent horizon is formed and the black dashed line corresponds to the time at which all the matter is well

within the horizon; the dot-dashed line represents instead our fit to an exponential decay. Right Panel: Logarithm of the absolute values of the

magnetic and electric fluxes as normalized to the initial magnetic flux.

lines (thin solid lines), also the electrically-dominated regions

(i.e. B2 − E2 < 0, colorcode from light blue to white). The

larger scales used in this case makes it easier to follow the dy-

namics of the closed field lines that once produced near the

horizon, propagate as dipolar radiation at infinity.

The total electromagnetic luminosity Lrad emitted during

the collapse and computed as surface integral of the Poynt-

ing flux over a spherical surface at 89 km is shown in the top

panel of Fig. 15. Note the presence of a rise during the col-

lapse and of several pulses after the stellar matter has been

accreted onto the black hole. The vertical dotted line repre-

sents the time at which the apparent horizon is first found,

while the vertical dashed line corresponds to the time at which

all the matter is within the horizon (i.e. Mb, out = 0). The

peaks in the electromagnetic luminosity correspond to the

closed magnetic-field loops that disconnect from the star and

trasport electromagnetic energy. The bottom panel of Fig. 15,

on the other hand, reports the evolution of the total electro-

magnetic energy lost in radiation Erad and when normalized

to the value of the initial magnetic energy outside the star,

E0. Our results indicate therefore a total electromagnetic effi-

ciency which is ≃ 5%; this result is smaller than the estimate

made in Ref. [51] (which was of ≃ 20%), but, besides the dif-

ferent initial data used, this difference can be easily accounted

for by the fact that the gravitational collapse simulated here is

considerably slower (and hence inefficient) than the OS one

computed in [51], where matter is free falling. Our efficiency

is also smaller than the one computed in Ref. [52] and which

is ∼ 16% once the same definition for E0 is used. However,

many other factors could be behind this difference, e.g., differ-

ences in the initial data (use of a dipole everywhere in contrast

to a dipole only outside the star as in our case), differences

in the stellar models, differences in the numerical approach

(treatment of the surface of the star of the transition between

ideal and force-free MHD). A closer comparison between the

two approaches will be carried out in a separate work.

After BH formation, the luminosity decreases exponen-

tially in a fashion which is typical of the QNM ringing of an

electrovacuum electromagnetic field in a Schwarzschild BH

spacetime. These QNMs are clearly visible also in the (ab-

solute value of the) magnetic flux shown in the left panel of

Fig. 16, from which a comparison with the perturbative ex-

pectations can be made. More specifically, by fitting the har-

monic oscillations of the ringdown and the exponential de-

cay we have computed the frequencies of the “ringing-down”

magnetic-field flux for the l = 1 mode to be ω = 0.344054−
i 6.46731 kHz, corresponding to a nonrotating black hole of

2.74M⊙. The agreement with the analytical value is excel-

lent, with a relative error of only ∼ 0.7% for the real part of

the frequency and ∼ 5.6% for the imaginary one [63].

Finally, as a measure of the accuracy of our simulation we

can compare the magnetic flux with the corresponding electric

flux, which should vanish in the continuum limit since no net

electric charge should be present. This is indeed the case, as

can be deduced from the right panel of Fig. 16, which reports

the two fluxes normalized to the initial magnetic flux. Note

that the electric flux is about 30 orders of magnitude smaller

than the magnetic flux before BH formation, increasing after

an apparent horizon is found, but remaining 15-10 orders of

magnitude smaller.
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V. CONCLUSIONS

We have introduced a general-relativistic resistive MHD

formalism as an extension of the special relativistic resistive

MHD formalism reported in Ref. [19] for a 3+1 decompo-

sition of the spacetime. Our numerical implementation has

been made within the Cactus computational infrastructure

as a continuation of the already existing general-relativistic

hydrodynamics code Whisky [56, 59] and of the ideal-MHD

code WhiskyMHD [11].

Our numerical approach exploits Implicit-Explicit (IMEX)

methods and allows us to treat astrophysical problems in

which different spatial regions fall into different regimes of

conductivities. The flexibility introduced by using the Runge-

Kutta will allow us to consider not only more general Ohm

laws and a variety of astrophysical dynamos [24, 64], but also

to use better dispersion relations to calculate the velocities

in the HLLE method and to describe more accurately non-

relativistic systems [65].

Our implementation has been tested for a number of strin-

gent tests and its robustness has been verified. The special-

relativistic tests involved the propagation of circularly polar-

ized Alfvén waves, the evolution of current sheets and shock-

tubes in one dimension, cylindrical and spherical explosion

tests in two and three dimensions respectively, the evolution

of stable and the collapse of unstable magnetized stars in dy-

namical spacetime. We have compared our numerical results

either with the analytical solution (in the cases where one ex-

ists), or with the numerical ideal-MHD solution (in the limit

of high conductivity), proving that our implementation is suit-

able to describe regions with a wide range of conductivities,

with or without large discontinuities and shocks.

We have also considered genuinely general-relativistic tests

in terms of the evolution of nonrotating magnetized stars ei-

ther with fixed or fully dynamical spacetimes. Our stars have

been endowed with magnetic fields of varying strength, ei-

ther confined in their interior or permeating also the exterior

space, and have been modelled with a non-uniform conductiv-

ity that allows us to recover the ideal-MHD limit in the interior

of the star and such the electrovacuum limit outside the star.

All of our results indicate that the resistive implementation is

able to follow the evolution of the oscillations triggered by the

small truncation errors and that the associated eigenfrequen-

cies match well those either reported with other hydrodynam-

ics and ideal-MHD codes [11, 66] or from perturbation theory.

Finally, we have considered the challenging and compre-

hensive test represented by the gravitational collapse of a mag-

netized nonrotating star to a BH. This scenario has an as-

trophysical interest of its own as it could lead to the emis-

sion of electromagnetic radiation, potentially detectable. In-

deed we have found that as the collapse proceeds, electrically

dominated regions develop and lead to the development of

magnetic-field loops that propagate at the speed of light, car-

rying away electromagnetic energy. Up to 5% of the initial

magnetic energy can be lost in this way and the following

evolution of the magnetic field follows a clean exponential

decay, as expected by an electromagnetic perturbation in a

Schwarzschild spacetime. The match of the measured QNMs

and the perturbative predictions is well of a few percent or

less.

Our new code is now ready to be applied to study a vari-

ety of astrophysical scenarios. These include the modeling of

the magnetosphere that could be produced after the merger of

binary neutron stars, or when the hypermassive neutron star

collapses to a BH and is surrounded by a hot torus. The work

in Ref. [30] has already reported that under these conditions

strong magnetic fields can be produced and that a jet-like mag-

netic structure can develop. It is exciting to consider whether

the resistive losses that are expected in the process will pro-

vide sufficient energy to launch of a powerful jet, not yet ob-

served in Ref. [30]. Also of great interest is to study BH mag-

netospheres and the origin of jets so as to answer the ques-

tion of whether an ergosphere is critical for the development

of the Blandford-Znajek mechanism. Finally, our approach is

also well suited to study the properties of accretion disk onto

BHs and to elucidate the role that resistive losses play on the

whole energetic budget. We will report on these applications

in forthcoming works.
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