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ABSTRACT

We study the three-dimensional (3D) hydrodynamics of the post-core-bounce phase of the collapse of a 27 M⊙
star and pay special attention to the development of the standing accretion shock instability (SASI) and
neutrino-driven convection. To this end, we perform 3D general-relativistic simulations with a three-species
neutrino leakage scheme. The leakage scheme captures the essential aspects of neutrino cooling, heating, and
lepton number exchange as predicted by radiation-hydrodynamics simulations. The 27 M⊙ progenitor was studied
in 2D by Müller et al., who observed strong growth of the SASI while neutrino-driven convection was suppressed.
In our 3D simulations, neutrino-driven convection grows from numerical perturbations imposed by our Cartesian
grid. It becomes the dominant instability and leads to large-scale non-oscillatory deformations of the shock front.
These will result in strongly aspherical explosions without the need for large-scale SASI shock oscillations.
Low-ℓ-mode SASI oscillations are present in our models, but saturate at small amplitudes that decrease with
increasing neutrino heating and vigor of convection. Our results, in agreement with simpler 3D Newtonian
simulations, suggest that once neutrino-driven convection is started, it is likely to become the dominant instability
in 3D. Whether it is the primary instability after bounce will ultimately depend on the physical seed perturbations
present in the cores of massive stars. The gravitational wave signal, which we extract and analyze for the first
time from 3D general-relativistic models, will serve as an observational probe of the postbounce dynamics and, in
combination with neutrinos, may allow us to determine the primary hydrodynamic instability.
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1. INTRODUCTION

Baade & Zwicky (1934) inaugurated core-collapse supernova
theory with their seminal prediction that “a super-nova repre-
sents the transition of an ordinary star into a neutron star.” The
very basics of this theory, summarized authoritatively by Bethe
(1990), were confirmed by the observation of neutrinos from
SN 1987A (Hirata et al. 1987; Bionta et al. 1987): the electron-
degenerate core of a massive star (with mass M ∼ 8–130 M⊙
at zero-age main sequence), once having reached its effective
Chandrasekhar mass, becomes radially unstable. Collapse en-
sues and, once fully dynamic, separates the core into the ho-
mologous, subsonically contracting inner core and the outer
core, which is supersonically infalling. When the inner core
reaches nuclear density, the nuclear force, which is repulsive at
short distances, leads to a stiffening of the nuclear equation of
state (EOS). The dramatically increased pressure support stabi-
lizes the inner core, which overshoots its new equilibrium, then
rebounds into the still infalling outer core. This core bounce
launches a hydrodynamic shock wave, which, endowed with
the kinetic energy of the inner core, plows into the outer core.
Its progression is, however, soon muffled by energy losses to the

10 Alfred P. Sloan Research Fellow.
11 NASA Einstein Fellow.

dissociation of heavy nuclei and to electron capture neutrinos
that are created and stream out from now optically-thin regions
behind the shock. The hydrodynamic shock thus succumbs to
the extreme ram pressure of the outer core and turns into a
stalled accretion shock. In the commonly accepted picture of
the neutrino mechanism (Wilson 1985; Bethe & Wilson 1985;
Bethe 1990; Janka et al. 2007), the shock is revived by the depo-
sition of neutrino energy in a layer of net neutrino heating (the
gain layer) below the shock. In an alternative scenario, requir-
ing very rapid progenitor rotation and efficient magnetic field
amplification, a magnetorotational explosion may occur (e.g.,
Burrows et al. 2007b and references therein). In order to leave
behind a slowly cooling neutron star and not a black hole, shock
revival must occur within a few hundred milliseconds of bounce
(O’Connor & Ott 2011; Ugliano et al. 2012).

While the general picture of core-collapse supernova theory
may be well established, details of the explosion mechanism,
its dependence on precollapse conditions and input physics, and
its neutrino and gravitational wave (GW) signals12 remain to be
determined by detailed first-principles numerical simulations.

12 Both neutrinos and gravitational waves may be direct probes of progenitor
properties, supernova dynamics, and of the explosion mechanism. See, e.g.,
Ott (2009), Lund et al. (2010), Lund et al. (2012), Dasgupta et al. (2010),
Brandt et al. (2011), Logue et al. (2012), and O’Connor & Ott (2013).
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In the case of the neutrino mechanism, modern spherically-
symmetric (1D) simulations with full Boltzmann neutrino trans-
port have shown that neutrino heating alone fails to drive an
explosion in all but the lowest-mass massive stars (Liebendörfer
et al. 2001; Rampp & Janka 2002; Thompson et al. 2003;
Sumiyoshi et al. 2005; Kitaura et al. 2006; Hüdepohl et al. 2010;
Burrows et al. 2007a). Spherical symmetry, however, is a poor
approximation to the situation after core bounce, even if the ini-
tial conditions are nearly spherically symmetric. The weakening
shock leaves behind a negative entropy gradient, which is ex-
pected to lead to convective instability within milliseconds after
bounce (prompt convection). Somewhat later, neutrino heating
establishes a negative entropy gradient in the gain region, lead-
ing to neutrino-driven convection. Strong deleptonization near
the neutrinosphere (where the neutrino optical depth τν ∼ 1; lo-
cated at the edge of the protoneutron star at ∼1011–1012 g cm−3)
establishes a negative lepton gradient, driving protoneutron star
convection.

The first full axisymmetric (2D) simulations (Herant et al.
1994; Burrows et al. 1995; Janka & Müller 1995, 1996; Fryer &
Heger 2000) showed that 2D neutrino-driven convection could
increase the efficacy of the neutrino mechanism by increasing
the residence time of accreted material in the region of net
neutrino heating and leading to high-entropy turbulent flow that
aids shock expansion.

A new instability, the standing accretion shock instability
(SASI), was discovered by Blondin et al. (2003), who carried out
idealized 2D simulations of an accretion shock using an analytic
EOS, neutrino cooling, but no neutrino heating. In 2D, the SASI
leads to large-scale, low-order (in terms of spherical harmonics,
ℓ = {1, 2}) deformations of the shock front that vary in time in
a predominantly ℓ = 1 sloshing-type motion up and down the
symmetry axis. These aspherical motions lead to larger average
shock radii, increase the dwell time of material in the gain
region, may lead to secondary shocks, and are thus generally
aiding the explosion mechanism (Ohnishi et al. 2006; Scheck
et al. 2006; Murphy & Burrows 2008; Ott et al. 2008; Marek
& Janka 2009; Müller et al. 2012b). In 3D, nonaxisymmetric
modes (m = {−ℓ, . . . , 0, . . . , ℓ}) are excited as well, leading to
more complex dynamics and smaller saturation amplitudes for
individual modes (Iwakami et al. 2008). In some 3D simulations,
in particular in those that include some initial rotation, a strong
spiral mode (ℓ = 1,m = ±1), capable of redistributing angular
momentum, has been observed (Blondin & Mezzacappa 2007;
Iwakami et al. 2008, 2009; Fernández 2010; Wongwathanarat
et al. 2010; Rantsiou et al. 2011).

Perturbation theory and carefully controlled numerical exper-
iments suggest that the SASI is driven by an advective-acoustic
cycle in which entropy and vorticity perturbations are advected
from the shock front to the edge of the protoneutron star. There
they trigger the emission of acoustic perturbations that travel
upstream in the subsonic flow of the postshock region and am-
plify perturbations in the shock front, thus creating a feedback
cycle that injects power preferentially into low-order modes (see
Foglizzo 2002; Foglizzo et al. 2006, 2007; Ohnishi et al. 2006;
Yamasaki & Yamada 2007; Fernández & Thompson 2009a,
2009b; Scheck et al. 2008; Guilet & Foglizzo 2012 and refer-
ences therein). The saturation of the SASI has been proposed to
occur via parasitic Rayleigh–Taylor and/or Kelvin–Helmholtz
instabilities that operate on the entropy gradients and vorticity
generated by the SASI (Guilet et al. 2010).

In a real core-collapse supernova, neutrino-driven convection
and SASI overlap in space and may grow at the same time. In

the linear regime, in which seed perturbations are minute, they
can be clearly separated: SASI’s fastest growing mode is ℓ = 1,
while convective eddies will grow with horizontal wavelengths
a few times of the entropy scale height, giving ℓ ∼ 7–8 in the
postbounce supernova context (based on estimates of Foglizzo
et al. 2006; Herant et al. 1992; see also Chandrasekhar 1961). In
convection, however, all modes are unstable and will eventually
grow to nonlinear amplitudes if convection is able to develop
at all.

How convection and SASI interact in the nonlinear regime,
which of them becomes the dominant instability, how this
may depend on the dimensionality (2D versus 3D), and the
ramifications of all this for the explosion mechanism are open
questions that are currently under much debate.

Foglizzo et al. (2006) argued, based on linear theory, that in
the absence of large (i.e., nonlinear) perturbations the develop-
ment of neutrino-driven convection may be suppressed if slowly
developing eddies are advected out of the convectively unsta-
ble region before they can grow significantly. In this scenario,
SASI would be the primary instability. This was also found in
the idealized simulations of Ohnishi et al. (2006), who studied
the 2D evolution of an artificially set up accretion shock with
a constant accretion rate and analytic neutrino cooling, heating,
and deleptonization functions. Scheck et al. (2008) performed
2D energy-averaged (gray) neutrino radiation-hydrodynamics
postbounce simulations of a 15 M⊙ progenitor star in a carefully
controlled setting to study the development of the SASI. They,
too, confirmed the result of Foglizzo et al. (2006) and showed
that if sufficiently large (�1%) perturbations from sphericity
are present in the upstream flow, neutrino-driven convection
becomes the primary and dominant instability.

If linearly-growing convection is suppressed by high advec-
tion velocities in the gain region, then one would expect a de-
pendence of the relative importance of SASI and convection
on the postbounce accretion rate and, hence, on the progeni-
tor star. This was convincingly confirmed by the recent work
of Müller et al. (2012a), who carried out full first-principles 2D
general-relativistic (GR) multi-energy radiation-hydrodynamics
postbounce simulations of a 8.1 M⊙ low-metallicity star with a
small core and low postbounce accretion rate and of a 27 M⊙
star of solar metallicity with a large core and high accretion
rate. In agreement with the prediction of Foglizzo et al. (2006),
they found strong convection and absent SASI in the 8.1 M⊙
star and strong SASI and nearly absent convection in the 27 M⊙
progenitor. In both cases, explosions developed within ∼200 ms
of bounce.

In a different line of research targeted at understanding
the dependence of the neutrino mechanism on dimensionality,
Nordhaus et al. (2010) carried out 1D, 2D, and 3D Newtonian
collapse simulations of a 15 M⊙ progenitor. They used the
simple analytic heating and cooling prescription introduced by
Murphy & Burrows (2008; hereafter the MB08 “light-bulb”
scheme) on the basis of the work of Janka (2001). Their 3D
simulations did not show a dominant ℓ = 1 oscillatory SASI
mode observed in 2D (Scheck et al. 2006; Ohnishi et al. 2006;
Murphy & Burrows 2008). Using the critical luminosity versus
accretion rate approach of Burrows & Goshy (1993), they
reported that in 3D explosions could be obtained at ∼15%–25%
and ∼40%–50% lower neutrino luminosities than in 2D and 1D,
respectively.

The Nordhaus et al. (2010) 3D versus 2D result was not con-
firmed by Hanke et al. (2012). These authors performed Newto-
nian simulations with neutrino approximations very similar to
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the MB08 light bulb, but used a different 3D hydrodynamics
code. They did not find clear evidence that 3D effects facilitate
the development of an explosion to a greater degree than the
non-radial motions due to SASI and convection in 2D. How-
ever, in agreement with Nordhaus et al. (2010), they did not
find large-scale oscillatory low-order modes in their 3D simu-
lations. They hypothesized that this may be less of a 3D effect
than an effect of the rather simple treatment of neutrino heating
and cooling by Nordhaus et al. (2010). The arguably great-
est limitation of the MB08 light-bulb scheme is its inability to
track the contraction of the protoneutron star, leading to too low
advection velocities in the gain region, thus artificially favor-
ing neutrino-driven convection over the SASI. The results of
Takiwaki et al. (2012), whose Newtonian 3D simulations used
a multi-energy approximate neutrino transport scheme, appear
supportive of this assertion. However, these simulations were
carried out with very low resolution and the low-order modes
appear to be clearly oscillatory only at early times.

Using the same MB08 light-bulb approximation for neutrinos
and an updated version of the Nordhaus et al. (2010) code,
Burrows et al. (2012), Murphy et al. (2012), and Dolence
et al. (2013) performed and analyzed another set of 2D and
3D simulations to investigate the roles of SASI and convection
in the postbounce evolution of a 15 M⊙ progenitor. Comparing
2D and 3D results for the evolution of low-order fluid mode
amplitudes, Burrows et al. (2012) showed that at the same
MB08 driving luminosity, oscillatory mode amplitudes are
much smaller in 3D than in 2D. In models that develop an
explosion a non-oscillatory ℓ = 1 dipole asphericity grows
already in the early postbounce evolution. Furthermore, they
showed that the oscillatory ℓ = 1 modes observed in 2D—and
generally associated with the SASI—occur even in the case
of a high light-bulb driving luminosity, in which neutrino-
driven convection is the dominant instability. They argued that
in successful explosions by the neutrino mechanism, neutrino-
driven convection should be the dominant instability. However,
for the reasons put forth by Hanke et al. (2012) and Müller
et al. (2012a) and discussed in the above, the predictive power
of these light-bulb simulations may be limited.

Ultimately, high-resolution 3D energy-dependent GR neu-
trino radiation-hydrodynamics simulations will be needed for fi-
nal answers regarding the explosion mechanisms and the role of
the various instabilities involved. Such simulations are compu-
tationally extremely challenging and current attempts are forced
to use low spatial resolution (Takiwaki et al. 2012; Kuroda et al.
2012), the gray approximation (Wongwathanarat et al. 2010;
Müller et al. 2012c; Kuroda et al. 2012), and/or employ an ar-
tificial inner boundary, cutting out the protoneutron star core
(Wongwathanarat et al. 2010; Müller et al. 2012c).

In this paper, we present results from 3D hydrodynamic post-
bounce supernova calculations that attempt to strike a balance
between the computationally cheap, but possibly too simplistic
light-bulb approximation and true 3D radiation-hydrodynamics
simulations, which cannot yet be performed without at least par-
tially debilitating limitations. Our simulations use the Zelmani
core-collapse simulation package (Ott et al. 2012) and are fully
GR. We make no symmetry assumptions and use no artificial
inner boundary. We employ a novel computational setup with
a multi-block approach that provides curvilinear grid blocks to
track the collapse of the outer core and Cartesian adaptive mesh
refinement (AMR) grids covering the central region, including
the protoneutron star and the entire shock. We treat neutrinos
in the postbounce phase with an energy-averaged three-species

neutrino leakage scheme with neutrino heating. The only free
parameter of this scheme is a scaling factor in the charged-
current energy deposition rate. As we shall demonstrate, the
leakage scheme captures the essential aspects of neutrino cool-
ing, neutrino heating, and lepton number exchange.

We apply Zelmani to the collapse and postbounce evolution
of the 27 M⊙ progenitor star that was considered by Müller et al.
(2012a) and shown to be highly susceptible to the SASI in their
fully self-consistent 2D GR simulations. Müller et al. (2012a)
find a SASI-aided explosion that develops within ∼150–200 ms
after bounce, making this progenitor ideal for studying the SASI
in computationally expensive high-resolution 3D simulations.
We carry out four simulations of the 27 M⊙ progenitor, varying
the strength of neutrino heating. We evolve these four models
from the onset of collapse to ∼150–190 ms after bounce at
an effective angular resolution of 0.◦85 at a radius of 100 km.
The linear resolution at this radius is ∼1.5 km. The maximum
resolution covering the protoneutron star core is ∼370 m.

We find that neutrino-driven convection is able to grow from
the numerical seed perturbations imposed by our Cartesian
AMR approach. It becomes the dominant instability in the
postbounce dynamics of all of our models. In the case of
strong neutrino heating, convection, which is initially manifest
as small-scale cells of rising hotter and sinking cooler material,
develops into large blobs of high-entropy material. These
push out the shock and lead to large-scale non-oscillatory
shock deformations. We also observe growth of oscillatory
low-(ℓ,m) deformations associated with the SASI. However,
these saturate at small amplitudes that decrease further with
increasing strength of neutrino heating and vigor of convection.
The SASI remains sub-dominant at all times in our simulations.
Our results suggest that if neutrino-driven convection is able to
grow in 3D—which will generally depend on the postbounce
accretion rate and on the seed perturbations present in the flow
(Scheck et al. 2008)—it will dominate the postbounce flow.
This is consistent with the results obtained by Burrows et al.
(2012) with the simpler light-bulb approach. We extract the
GW signals generated by accelerated quadrupole mass motions
in our models and find that the strongest component of the signal
comes from the initial burst of convection, which grows on the
negative entropy gradient left behind by the stalling shock.

This paper is structured as follows. In Section 2, we de-
scribe Zelmani and give details on grid setup, EOS, the
leakage/heating scheme, and the progenitor model. In Section 3,
we present the results of our simulations. First, in Section 3.1,
we give an overview of the overall postbounce evolution of our
models. We then discuss in detail the postbounce configura-
tions resulting from our leakage/heating scheme (Section 3.2),
the development of neutrino-driven convection and SASI
(Section 3.3), various criteria for neutrino-driven explo-
sions (Section 3.4), and the GW signals extracted from our
models (Section 3.5). We summarize our findings and conclude
in Section 4.

2. METHODS AND INITIAL CONDITIONS

We carry out our 3D GR simulations with the Zelmani

core-collapse simulation package. Zelmani is based on the
open-source Einstein Toolkit13 (Löffler et al. 2012), for
numerical relativity and relativistic computational astrophysics.
It builds upon the Carpet AMR driver (Schnetter et al. 2004)
and the Llamamulti-block system (Pollney et al. 2011; Reisswig

13 http://www.einsteintoolkit.org
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et al. 2013) within the Cactus Computational Toolkit

(Goodale et al. 2003).

2.1. Spacetime Evolution and Hydrodynamics

We evolve the full Einstein equations without approximations
in a 3 + 1 decomposition as a Cauchy initial boundary value
problem (see, e.g., Baumgarte & Shapiro 2010), using the
conformal-traceless BSSN formulation (Baumgarte & Shapiro
1999; Shibata & Nakamura 1995). A 1 + log slicing condition
(Alcubierre et al. 2000) controls the evolution of the lapse
function α, and a modified Γ-driver condition (Alcubierre et al.
2003) is used for the evolution of the coordinate shift vector β i .
The BSSN equations and the gauge conditions are implemented
in the module CTGamma using fourth-order accurate finite
differencing. Implementation details are given in Pollney et al.
(2011) and Reisswig et al. (2013). We note that in its present
form, our evolution system is limited to 3D simulations. An
extension to 2D along the lines of Baumgarte et al. (2013) may
be possible in future work.

We use a flux-conservative formulation of the GR Euler equa-
tions, implemented in the GR hydrodynamics module GRHydro,
which is part of the Einstein Toolkit (Löffler et al. 2012).
GRHydro is an enhanced derivative of the Whisky (Baiotti et al.
2005) and GR-Astro/MAHC (Font et al. 2000) codes. It is based
on a finite-volume high-resolution shock-capturing scheme and
works with general finite-temperature microphysical EOS. We
employ the enhanced piecewise-parabolic method for recon-
struction of state variables at cell interfaces (McCorquodale &
Colella 2011; Reisswig et al. 2013) and subsequently solve ap-
proximate Riemann problems to compute intercell fluxes with
the HLLE solver (Einfeldt 1988). Details are given in Reisswig
et al. (2013).

Both spacetime evolution and GR hydrodynamics are dis-
cretized in a semi-discrete fashion and coupled with the Method
of Lines (Hyman 1976) using a multi-rate Runge–Kutta integra-
tor (Reisswig et al. 2013), providing fourth-order and second-
order accuracy in time for spacetime and GR hydrodynamics,
respectively. The time step is limited by the speed of light and
we use a constant Courant–Friedrichs–Lewy factor of 0.4.

2.2. Multi-block Infrastructure, Adaptive
Mesh Refinement, and Grid Setup

We employ the multi-block infrastructure Llama (Pollney
et al. 2011; Reisswig et al. 2013), which allows us to cover
the computational domain using a set of overlapping curvilinear
grid blocks that are logically Cartesian but physically curvilinear
(so-called “inflated cubes”), adapted to the overall spherical
topology of the collapse problem. We employ a set of such
curvilinear blocks to track the collapse of the outer core,
while the interior domain containing the protoneutron star, the
postshock region, and the shock itself is covered by an adaptively
refined Cartesian mesh (see Figure 1 for a schematic view).

The spherical inflated-cube multi-block system discretizes
one spherical shell via six angular grid blocks designed such
that one angular coordinate direction always coincides at inter-
block boundaries. This allows us to use efficient fourth-order
one-dimensional interpolation to update ghost zone information
between neighboring blocks (Thornburg 2004). Furthermore,
this particular multi-block system offers an almost uniform
distribution of points across the sphere (i.e., without clustering
of points at the poles), thus avoiding distortions and pathologies
associated with standard spherical-polar grids.

1

2

3

4

Figure 1. Schematic view of a slice through our 3D multi-block grid. Six
physically curvilinear (four are shown), logically Cartesian inflated-cube grids
with constant angular, varying radial resolution surround a central Cartesian
region with five AMR levels (not all shown). The third finest level is adjusted
to always encompass the entire postshock region.

(A color version of this figure is available in the online journal.)

The adaptively refined central Cartesian block is based
on cell-centered and flux-conservative mesh-refinement tech-
niques, provided by the open-source AMR driver Carpet

(Schnetter et al. 2004; Reisswig et al. 2013). AMR is imple-
mented with subcycling in time, following the approach of
Berger & Oliger (1984). We make use of refluxing, which cor-
rectly adjusts fluxes at mesh refinement boundaries after the
AMR restriction operation (Reisswig et al. 2013). This ensures
that mass, momentum, and energy fluxes are exactly conserved,
even in the presence of strong shocks and other discontinuities.
To update zones at AMR boundaries and to initialize new grid
points after regridding, we make use of fourth-order prolon-
gation for the spacetime curvature variables, and second-order
essentially non-oscillatory prolongation for the matter variables.
As detailed in Reisswig et al. (2013), spacetime variables are
restricted from fine onto coarse grids using a third-order poly-
nomial, while matter variables are restricted via cell averaging.

All simulations are carried out with the same general grid
setup. In the central region, we use five nested Cartesian grids
with a factor of two in resolution between each of them. The
finest grid has a linear cell size dx = 0.37 km and extends out to
17.7 km. The second finest grid has a cell size of dx = 0.74 km
and extends to 59 km, while the third grid has dx = 1.48 km and
is set up to adaptively track the shock, ensuring that shock itself
and the turbulent flow in the gain layer behind the shock are
always resolved with no worse resolution than dx = 1.48 km.
For a shock radius of 100 km, this corresponds to an effective
angular resolution dx/R of ∼0.◦85. There are two additional
coarser grids with dx = 2.95 km and dx = 5.9 km in the
Cartesian region, which extends to 532 km, where it overlaps
with the outer spherical cube grid. The latter’s radial cell size
dr at its inner boundary is the same as the dx of the coarsest
Cartesian grid it overlaps with. dr is held constant out to a
radius of ∼3000 km and then smoothly reduced to dr = 189 km
at the outer boundary at ∼15000 km. Each of the six cubed-
sphere blocks has 31 angular zones each in angle σ and ρ. This
corresponds to an effective cell size of ∼2.◦9.

We start our simulations at the onset of collapse with
only the coarsest of the Cartesian AMR grids active and
progressively activate the finer grids when the central density in
the collapsing core reaches 3.2×1011 g cm−3, 1.3×1012 g cm−3,
5.1 × 1012 g cm−3, and 2.0 × 1013 g cm−3, respectively.
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2.3. Equation of State

We employ a tabulated version of the finite-temperature
nuclear EOS by Lattimer & Swesty (1991). This EOS is
based on the compressible liquid-drop model with a nuclear
symmetry energy of 29.3 MeV. We use its variant with a nuclear
compression modulus K0 of 220 MeV, since it yields a cold
neutron star mass–radius relationship in agreement with current
observational and theoretical constraints (e.g., Demorest et al.
2010; Hebeler et al. 2010; Steiner et al. 2010).

We employ the Lattimer–Swesty EOS at densities above
108 g cm−3, where T � 0.5 MeV at all times in the core-collapse
context and nuclear statistical equilibrium (NSE) holds. At lower
densities, we employ the Timmes EOS (Timmes & Arnett 1999)
and assume that the matter is an ideal gas composed of electrons,
positrons, photons, neutrons, protons, alpha particles, and heavy
nuclei with the average A and Z given by the Lattimer–Swesty
EOS at the transition density. This is an approximation and
may lead to slightly incorrect pressures in non-NSE regions
that result in changes in the collapse times for the silicon and
carbon/oxygen shells. Ideally, a fully consistent treatment with
multiple advected chemical species, a nuclear reaction network
and transition in and out of NSE with an NSE network as
proposed by Buras et al. (2006b) should be implemented. This,
however, is beyond the scope of the present study.

Details on the EOS table and on the implementation of
the contribution of electrons, positrons, and photons, as well
as other details of the construction of the table are de-
scribed in O’Connor & Ott (2010). The table itself as well
as table generation and interpolation routines are available at
http://www.stellarcollapse.org.

2.4. Neutrino Treatment

We employ the approximate neutrino treatment of the
open-source code GR1D (O’Connor & Ott 2010), which was
adapted to 3D and implemented in the module ZelmaniLeak

by Ott et al. (2012). The source code is available from
http://www.stellarcollapse.org.

Before core bounce, the primary neutrino emission process
is electron capture on free and bound protons, leading to a
reduction of the electron fraction Ye in the collapsing core. We
include this effect and associated changes of the specific entropy
in the approximate way proposed by Liebendörfer (2005). He
showed, on the basis of 1D Boltzmann neutrino radiation-
hydrodynamics simulations, that Ye in the collapse phase can
be well parameterized as a function of rest-mass density ρ. This
parameterization shows only small variations with progenitor
star and nuclear EOS. We employ an analytic Ye(ρ) fit to the
results of 1D radiation-hydrodynamics collapse simulations of a
20 M⊙ solar-metallicity progenitor star of Woosley et al. (2002)
obtained with the code and microphysics of Buras et al. (2006b).
The same Ye(ρ) profile was used in Ott et al. (2007a, 2007b)
and Ott et al. (2012).

In the late collapse phase, when neutrinos begin to be
trapped in the inner core, and throughout the postbounce phase,
momentum exchange between neutrinos and matter becomes
non-negligible. The effect of this “neutrino stress” is naturally
captured by the coupling of radiation and matter in full neutrino
transport calculations (see, e.g., Müller et al. 2010). In our
approximate treatment, we must include it explicitly. We assume
that neutrino stress is relevant only above a fiducial trapping
density of 2 × 1012 g cm−3 and approximate the stress as the
gradient of the neutrino Fermi pressure. The stress is then

included as a source term in the GR hydrodynamics equations at
each time-integration substep and the neutrino Fermi pressure
is included in the stress-energy tensor (see Ott et al. 2007b and
O’Connor & Ott 2010 for details).

After core bounce, which we define as the time at which
the specific entropy at the edge of the inner core reaches
3 kB baryon−1, signaling shock formation, the simple Ye(ρ)
approximation breaks down and fails to even qualitatively
capture the effects of neutrino processes occurring in the
postbounce phase. Dissociation of iron-group nuclei by the
shock provides a sea of free protons for electrons to capture
on, leading to the neutronization burst of electron neutrinos
(νe) and a steep drop of Ye in the region just outside the
nascent protoneutron star. High temperatures and low Ye in the
lower postshock region allow for the appearance of positrons
that capture on neutrons, leading to the emission of electron
antineutrinos (ν̄e). High temperatures in the protoneutron star
core lead to neutral-current pair emission of neutrinos of all
species.

In order to capture the aforementioned processes and their
effects in terms of cooling, heating, and deleptonization in the
region behind the shock, we switch to the neutrino leakage
scheme of O’Connor & Ott (2010; based on the work of
Rosswog et al. 2003 and Ruffert et al. 1996) at bounce. We
consider three neutrino species, νe, ν̄e, and νx = {νμ, ν̄μ, ντ , ν̄τ },
where we lump the heavy-lepton neutrinos together, since
they participate only in neutral current processes and have
very similar cross sections in the core-collapse supernova
environment.

The leakage scheme provides approximate energy and num-
ber emission and absorption rates based on local thermody-
namics and the optical depth in the postshock region. Neutrino
absorption and emission are ignored outside the shock. The op-
tical depth requires a non-local calculation, which we solve in
a ray-by-ray way, computing an optical depth integral τνi

along
radial rays cast into θ and ϕ directions (see Figure 1 of Ott et al.
2012) from the origin. We then interpolate trilinearly in (r, θ, ϕ)
to obtain the optical depth at the centers of Cartesian grid cells.
Ideally, an optical depth calculation should be carried out into
all directions from any given cell and the minimum value should
be used as the optical depth of that cell (see, e.g., Ruffert et al.
1996). However, for situations that are spherical at zeroth order,
like the one considered here, the computationally much cheaper
ray-by-ray approach should be sufficient. In our simulations, we
employ 37 rays in θ , covering [0, π ], and 75 rays in ϕ, covering
[0, 2π ]. Each ray has 800 equidistant points to ∼600 km and
200 logarithmically spaced points covering ∼600–3000 km.

We calculate local free neutrino energy (Qloc
νi

) and number

(Rloc
νi

) emission rates for the capture processes p + e− →
νe + n and e+ + n → ν̄e + p and the thermal processes
e−e+ pair annihilation, plasmon decay, and nucleon–nucleon
bremsstrahlung. Using the estimate of the optical depth τνi

, we
compute diffusive emission rates Qdiff

νi
and Rdiff

νi
and obtain the

final energy and number loss predicted by the leakage scheme
by interpolating between free emission and diffusive emission
rates,

χ leak
eff,νi

= χ leak
loc,νi

/
(

1 + χ leak
loc,νi

/χ leak
diff,νi

)

, (1)

where χ = Q for energy loss and χ = R for number loss (see
Rosswog & Liebendörfer 2003 and O’Connor & Ott 2010 for
definitions and details).

We approximately include neutrino heating by charged-
current absorption of νe and ν̄e on neutrons and protons,
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respectively. For this, we make use of a local heating function
based on the derivations by Janka (2001),

Qheat
νi

= fheat

Lνi
(r)

4πr2
Sν

〈

ǫ2
νi

〉 ρ

mn

Xi

〈

1

Fνi

〉

e−2τνi . (2)

Here Lνi
is the neutrino luminosity incident from below,

Sν = 0.25(1 + 3α2)σ0(mec
2)−2, where σ0 is the fiducial weak

interaction cross-section ∼1.76 × 10−44 cm2, α = 1.23, and
mec

2 is the electron rest mass energy in MeV. ρ is the rest-mass
density, mn is the neutron mass in grams, and Xi is the neutron
(or proton) mass fraction. 〈ǫ2

νi
〉 is the mean-squared energy of νi

neutrinos. We approximate it by taking the matter temperature
TNS,νi

at the νi neutrinosphere (where τνi
= 2/3) and evaluating

〈

ǫ2
νi

〉

= T 2
NS,νi

F5(ηνi ,NS)

F3(ηνi ,NS)
, (3)

where theFj are Fermi integralsFj (η) =
∫ ∞

0
dx xj (ex−η+1)−1,

and ηνi ,NS = μνi ,NS (kBTNS,νi
)−1, where μνi ,NS is the chemical

potential of neutrino species νi at its neutrino sphere. The factor
〈F−1

νi
〉 is the mean inverse flux factor, which depends on details

of the neutrino radiation field. We parameterize it as a function of
optical depth τνi

based on the angle-dependent radiation fields of
the neutrino transport calculations of Ott et al. (2008) and set
〈F−1

νi
〉 = 4.275τνi

+1.15. While the true mean inverse flux factor
will asymptote to 1 at infinity, this simple fit leads to values in the
postshock region (we include heating only there) in agreement
with Ott et al. (2008). Finally, the factor e−2τνi is applied to
strongly suppress heating at optical depth above unity. The
leakage scheme implementation inZelmani varies slightly from
the original implementation in O’Connor & Ott (2010, 2011).
In O’Connor & Ott (2010, 2011), leakage was calculated only
inside the shock to avoid unnecessary calculations outside of
the shock where little cooling or heating occurred. To facilitate
easy implementation in Zelmani, where the angle-dependent
shock radius is evaluated only infrequently, we have removed
the explicit dependence on the shock radius and have replaced it
with a condition on the mass fraction of heavy nuclei: we only
calculate the heating and cooling terms where the heavy nuclei
mass fraction is smaller than 0.5 or the density is higher than
1013 g cm−3.

We obtain the neutrinosphere locations and the thermody-
namic conditions for Equation (3) from the rays used for the
optical depth calculations. We also solve full leakage problems
including heating along the rays to obtain an estimate for the
incident luminosity Lνi

needed by Equation (2). The estimates
for Lνi

and 〈ǫ2
νi
〉 are then interpolated between rays for the local

leakage calculations in Cartesian grid cells.
All of the above leakage calculations are carried out operator-

split after the fully coupled spacetime/hydro update and are
first order in time. We find this to be sufficiently accurate
and stable, due to the small time step imposed by the light
travel time through the smallest cell. The energy and lepton
number updates are applied to the fluid rest-frame quantities
and we ignore velocity dependence or other relativistic effects
in consideration of the overall very approximate nature of the
leakage scheme. The computationally most expensive aspect of
the leakage scheme is the interpolation of density, temperature,
and electron fraction onto the rays. This interpolation is executed
at every time step in the highly dynamic early postbounce phase.
We later switch to carrying out this interpolation only every 16
fine grid time steps (corresponding to every ∼8 × 10−6 s) while
continuing to evaluate the local expressions at every time step.

2.5. Initial Model

We simulate core collapse and postbounce evolution in the
nonrotating single-star 27 M⊙ solar-metallicity model s27 of
Woosley et al. (2002). We choose this particular model to
facilitate comparisons with the recent 2D results of Müller
et al. (2012a). As pointed out by Müller et al. (2012a), this
progenitor has an iron-core mass14 of ∼1.5 M⊙ and a silicon-
shell mass of ∼0.18 M⊙. According to O’Connor & Ott
(2011), this progenitor, having a bounce compactness parameter
ξ2.5 = 2.5(R[M = 2.5 M⊙)]/1000 km)−1 = 0.233, is a
likely candidate for explosion via the neutrino mechanism. The
recent work of Ugliano et al. (2012) predicts a higher failed
core-collapse supernova rate for the solar metallicity model
set of Woosley et al. (2002) than the work of O’Connor &
Ott (2011). However, they also predict that this particular
presupernova model is a progenitor of a successful neutrino-
driven core-collapse supernova.

Using the spherically-symmetric GR1D code of O’Connor
& Ott (2010, 2011) and modifying its leakage scheme to be
identical to what we use in Zelmani, we find that fheat = 1.18
is the critical value of the scaling factor in Equation (2) to drive
an explosion that sets in at late times after multiple cycles of
radial shock oscillations. fheat = 1.28 is required to drive an
explosion without shock oscillations that sets in at ∼150 ms
after bounce.

We map model s27 to our 3D grid under the assumption that
the 1D profile data represent cell averages and use the radii
of cell centers for interpolation. The initial spacetime is set up
under the assumption of spherical symmetry and weak gravity,
using the Newtonian line element without distinction between
areal and isotropic radius.

3. RESULTS

3.1. Overall Postbounce Evolution

We simulate core collapse and bounce of the 27 M⊙ progen-
itor in full 3D with AMR, adding refinement levels as the col-
lapse toward a protoneutron star proceeds (see Section 2.2). Core
bounce, defined as the time when the entropy at the edge of the
inner core reaches 3 kB baryon−1, occurs at ∼299 ms. At bounce,
we switch from the Ye(ρ) parameterization of Liebendörfer
(2005) to the leakage/heating scheme described in Section 2.4.
This scheme includes a scaling factor fheat in the neutrino energy
deposition rate (Equation (2)). We carry out four long-term post-
bounce simulations, choosing fheat = {1.00, 1.05, 1.10, 1.15} to
study the influence of changes in the heating rate on the post-
bounce evolution. All models are labeled according to their
value of fheat. For example, s27fheat1.00 is the model with
fheat = 1.00. All models are evolved to �150 ms after bounce
and for as long as our computer time allocations allow at a cost
of ∼25,000 CPU hours per millisecond of physical postbounce
time (see Table 1).

In the top panel of Figure 2, we show the angle-averaged
shock radius as a function of time in the four simulated models.
After the early dynamic expansion phase, shock expansion
stagnates and the shock stalls at 100–130 km about 40 ms after
bounce. Up to this point, the evolution is virtually independent
of fheat. In the subsequent period of quasi-stationary evolution,
the gain layer develops and neutrino heating drives a secular
shock expansion.

14 We define the iron-core mass as the mass coordinate that has a Ye of 0.495.
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Figure 2. Global evolution of the shock in all models. Top panel: average shock
radii 〈Rshock〉. Center panel: standard deviation σshock = [(4π )−1

∫

dΩ [Rshock−
〈Rshock〉]2]1/2 of the shock radii. Bottom panel: ratio of maximum to minimum
shock radius. The shock radii of models with fheta � 1.05 exhibit positive
trends in their average shock radii and have growing σshock and ratios between
maximum and minimum shock radius. Model s27fheat1.00’s shock radius starts
decreasing at ∼100 ms after bounce and its σshock and min/max shock radii
ratios oscillate around moderate values.

(A color version of this figure is available in the online journal.)

Table 1

Key Simulation Parameters and Results

Model fheat dxshock dθ, dφ tend Rshock,max Rshock,av Rshock,min

(km) at 100 km (ms) at tend at tend at tend

(deg) (km) (km) (km)

s27fheat1.00 1.00 1.48 0.85 184 82 71 62

s27fheat1.05 1.05 1.48 0.85 192 259 189 152

s27fheat1.10 1.10 1.48 0.85 165 428 306 204

s27fheat1.15 1.15 1.48 0.85 154 432 336 267

Notes. fheat is the scaling factor in the neutrino heating rate (Equation (2)),

dxshock is the minimum linear resolution covering the shock and the region

interior to it, dθ, dφ at 100 km is the effective angular resolution at a radius of

100 km, tend is the time after core bounce at which the simulation is stopped,

and Rshock,max, Rshock,av, and Rshock,min are the final maximum, average, and

minimum shock radius, respectively.

The neutrino luminosity emitted from the protoneutron star
core and provided by accretion is identical in all models. Hence,
as shown in the top panels of Figure 3, there is a monotonic
increase with fheat in the net neutrino heating rate Qnet and in
the heating efficiency η = Qnet(Lνe

+ Lν̄e
)−1, where we use

the angle-averaged luminosities at the base of the gain layer.
Varying fheat by a moderate 15% from 1.00 to 1.15 results in
∼100% more total net heating, since the increase in the local
energy deposition rate results in an expanded gain layer with
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Figure 3. Evolution of key integral quantities indicative for the strength of
neutrino heating. Top panel: net neutrino heating rate Qnet (total heating minus
total cooling). Center panel: heating efficiency η defined as the net heating rate
divided by the sum of the νe and ν̄e angle-averaged luminosities incident below
the gain layer. Bottom panel: mass in the gain layer (left ordinate) and density-
weighted average specific entropy in the gain layer (right ordinate). Heating rate,
efficiency, and mass in the gain layer all increase monotonically with increasing
heating scaling factor fheat. Interestingly, the specific entropy average 〈sgain〉 in
the gain layer does not exhibit such a dependence on fheat and the 〈sgain〉 curves
of all models are nearly identical until �100 ms after bounce, at which point
the overall hydrodynamic evolutions have diverged.

(A color version of this figure is available in the online journal.)

more mass that is able to absorb net neutrino energy (cf. bottom
panel of Figure 3).

The quantitative differences in neutrino energy deposition
translate to qualitative differences in the shock evolution.
In model s27fheat1.00, which has the least heating, shock
stagnation turns into recession and the average shock radius
decreases to ∼70 km at the end of the simulation. The situation
is very different in models s27fheat1.10 and s27fheat1.15,
which both show expanding average shock radii, surpassing
300 km at the end of their simulations and trending toward
explosion. Model s27fheat1.05 is somewhere in between, but
has a slowly, but steadily increasing average shock radius that
reaches ∼190 km at the end of the simulation.

The center and bottom panels of Figure 2 display simple
measures of the asphericity of the shock: σshock, the angular
standard deviation of the shock radius, and Rshock,max/Rshock,min,
the ratio of maximum to minimum shock radius. Both quantities
show an initial local maximum at ∼8 ms after bounce, which is
due to an initial transient large ℓ = 4 deformation of the shock
front caused by the Cartesian grid employed in our simulations.
We will discuss this further in Section 3.3. In the first 40 ms after
bounce, all models show very similar small deviations of the
shock from spherical symmetry. Differences between models
begin to be apparent at the same time their average shock radii

7
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Figure 4. 3D volume renderings of the specific entropy at ∼150 ms after bounce in the four simulated models. The z-axis of the frames is the vertical, x is the
horizontal and y is into the frame. The scale of the frames is 700 km on a side. The color map is chosen such that cyan corresponds to a moderate specific entropy of
∼4.3 kB baryon−1, indicating the shock front and low-entropy regions near the protoneutron star. Regions in yellow indicate higher entropy gas at s ∼ 16 kB baryon−1

and red regions correspond to gas with s ∼ 20 kB baryon−1. These values are chosen to highlight the surface of the shock and gas at a representative “intermediate”
and a representative “high” specific entropy. Note the large-scale global asymmetries and the many small blob-like protrusions in the shock fronts of models whose
shock has reached large radii.

(A color version of this figure is available in the online journal.)

begin to diverge. Models s27fheat1.10 and s27fheat1.15 exhibit
very large asymmetries with σshock ∼ 30 km and almost a factor
of two in radius between maximum and minimum shock radius
at the end of their simulations (see Table 1 for final minimum,
maximum, and average shock radii for all models). Model
s27fheat1.05 also shows growing asymmetry with increasing
postbounce time, similar to the models with fheat = 1.10 and
1.15, but, at least in σshock, a periodicity is visible, which is
lacking completely or is occurring at a much smaller level in
the two models with larger fheat. In model s27fheat1.00, which
does not show a positive trend in its shock radius, the deviations
of the shock from sphericity remain small and maximum and
minimum shock radius differ, on average, by ∼20% and this
average difference does not grow until the end of the simulation.
There is, however, clear oscillatory behavior (with a short period
of ∼15 ms) in this model’s shock radius variations, which may
be indicative of SASI activity. We shall investigate this further
in Section 3.3.

In Figure 4, we present volume renderings of the specific
entropy at ∼150 ms after bounce for all four models. The

renderings are all plotted at the same scale to emphasize
the differences in shock radius and 3D geometry between
the models. The color map and rendering opacity are chosen to
emphasize (1) regions with specific entropy of ∼4.3 kB baryon−1

(cyan), (2) regions with a representative “intermediate” specific
entropy of ∼16 kB baryon−1 (yellow), and, (3) regions with a
representative “high” specific entropy of ∼20 kB baryon−1 (red).
Red and yellow thus mark gas in the high-entropy gain layer,
while cyan indicates the shock front and an iso-entropy surface
at the edge of the protoneutron star. While the shock appears
nearly spherical in model s27fheat1.00, it is clearly deformed
in model s27fheat1.05, and strongly so in models s27fheat1.10
and s27fheat1.15. One also notes that in the latter two models
the highest-entropy gas is concentrated in the region of greatest
expansion while it is more evenly spread out in the other models.
The shock deformation in these models is clearly dominated by
low-ℓ modes, but there is still much smaller-scale structure in
the form of protrusions caused by rising hot gas bubbles that
push out the shock front at local scales. The overall morphology
of the expanding shock fronts seen in these models is similar

8
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Figure 5. Color maps of the specific entropy in the x–z plane in models s27fheat1.00 (left column), s27fheat1.05 (center column), and s27fheat1.15 (right column) at
80, 115, and 154 ms after core bounce. The linear scales of the three vertical panels are 350, 450, and 900 km at these three times. The values of the specific entropy
in the convectively unstable gain region increase with time in all simulations. Model s27fheat1.00 exhibits a stagnant shock and only small deviations from sphericity.
The average shock radius is secularly growing in model s27fheat1.05 with slightly stronger neutrino heating and the shock is more aspherical. Model s27fheat1.15 is
on track to explosion and exhibits, at 154 ms after bounce, a strongly deformed shock with a single large high-entropy bubble.

(A color version of this figure is available in the online journal.)

to what was found by Dolence et al. (2013) in exploding 3D
Newtonian light-bulb models of a 15 M⊙ progenitor, but their
shock fronts appear to have less small-scale structure than ours
(cf. their Figure 20).

Figure 5 depicts color maps of 2D x–z slices of the specific
entropy in models s27fheat1.00, s27fheat1.05, and s27fheat1.15
at 80, 115, and 154 ms after bounce. Model s27fheat1.10 is
not shown, but is overall very similar to model s27fheat1.15.
The evolution toward large shock radii, large-scale shock
deformation, and peak specific entropies of �20 kB is obvious
in the slices belonging to models s27fheat1.05 and s27fheat1.15.
In the latter, at 154 ms, one notes a large high-entropy area
subtending an angle of ∼30◦ and ranging from the gain radius
out to the shock, which has the overall greatest radii in this
region. This is consistent with the volumetric view of this model
at approximately the same time, shown in Figure 4.

In the bottom panel of Figure 3, we plot the density-weighted
average of the specific entropy in the gain layer 〈sgain〉 (dashed
lines; right ordinate). While the heating rates differ strongly

between the models, their 〈sgain〉 remain very similar until

∼100 ms after bounce and 〈sgain〉 ∼ 12 kB baryon−1. The top
row of Figure 5 shows that the peak entropy reached in the gain
layer is very comparable among the three displayed models at
80 ms after bounce. At 115 ms and, in particular, at 154 ms, the
situation is different. The models with increasing shock radii and
shock deformations develop large regions with specific entropies
in excess of 20 kB baryon−1 and large spatial variations. In model
s27fheat1.15, at 154 ms after bounce, the expanding deformed
shock has already swept up cold gas that now moves through
the gain layer, leading to a decreasing 〈sgain〉 in this model.
This is consistent with the decrease in 〈sgain〉 seen at the onset
of explosion in the 3D and 2D simulations of Hanke et al.
(2012) and Dolence et al. (2013). At the same postbounce time,
the shock in model s27fheat1.00 has receded to ∼90 km and
the distribution of specific entropy behind it is much more
uniform than in the other models. Its average entropy continues
to increase despite the decrease in net heating (cf. top panel of
Figure 3). This is due to the combined effect of smaller shock
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radii and small deformation of the shock front. The average
specific entropy in model s27fheat1.05 also grows, since its net
heating rate continues to stay high while its shock deformation
is still moderate and shock expansion has not yet become
dynamical.

3.2. Protoneutron Star, Neutrino Emission,
and Thermodynamics of the Postshock Region

The three-species leakage/heating scheme employed in our
simulations goes beyond the MB08 light-bulb approach taken
by many recent 3D hydrodynamic studies (e.g., Nordhaus
et al. 2010; Hanke et al. 2012; Burrows et al. 2012; Murphy
et al. 2012; Dolence et al. 2013). These simulations use
analytic cooling functions and neglect important protoneutron
star cooling by νx . They also do not take into account changes
of the electron fraction Ye after bounce (Hanke et al. 2012)
or do so only via a parameterization of Ye(ρ), which cannot
account for the strong deleptonization in the region behind the
shock due to electron capture on free protons. Neutrino heating
is realized in these simulations by an analytic heating function
with spatially and temporally constant neutrino temperature and
luminosity. An important consequence of these approximations
is that accreted material settling onto the protoneutron star
cannot sufficiently cool, deleptonize and contract (Hanke et al.
2012; Müller et al. 2012a). This, in turn, results in too large
shock radii and low advection speeds through the convectively
unstable gain layer that may artificially favor the growth of
convection over SASI (Scheck et al. 2008; Foglizzo et al. 2006;
Müller et al. 2012a). Our leakage/heating scheme is designed
specifically to overcome these limitations at little additional
computational cost. We take into account cooling by νe, ν̄e,
and νx , account for the change in electron fraction by νe and
ν̄e emission and absorption. Our heating prescription uses the
true νe and ν̄e luminosities available at a given position for
heating (as computed by leakage/heating at smaller radii) and
the mean-squared neutrino energies entering the heating rate are
determined by assuming blackbody emission from the νe and
ν̄e neutrinospheres, taking the time-changing thermodynamic
locations on these surfaces into account.

While clearly not as sophisticated as recent gray multi-
dimensional (e.g., Scheck et al. 2008; Müller et al. 2012c;
Kuroda et al. 2012) or energy-dependent (e.g., Ott et al. 2008;
Marek & Janka 2009; Müller et al. 2012a, 2012b; Takiwaki et al.
2012) neutrino radiation-hydrodynamics calculations, the goal
of our approach is to capture the essential qualitative features
correctly and reproduce quantitative results approximately. In
the following, we investigate the extent to which our scheme
lives up to its premise.

In Figure 6, we plot, for all four models, the time evolutions
of the baryonic mass inside the 1011 g cm−3 density isosurface
(top panel, left ordinate), the angle-averaged accretion rate
measured outside the shock (top panel, right ordinate), the
angle-averaged coordinate radius of the 1011 g cm−3 density
isosurface (center panel), and the angle-averaged νe, ν̄e, and
νx neutrinosphere radii (where τνi

= 1; bottom panel). The
evolutions of protoneutron star mass and radius, and of the
accretion rate are very similar in all models. The radius if
the 1011 g cm−3 isosurface, which we define as the surface of
the protoneutron star following Müller et al. (2012b), shrinks
from ∼70 km early after bounce to 40 km at 180 ms after
bounce. At the same time, the enclosed baryonic mass increases
from ∼1.15 M⊙ to 1.55 M⊙. If accretion suddenly stopped
completely at 180 ms, the gravitational mass of the final, cold
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Figure 6. Top panel: evolution of the mass accretion rate measured at the shock
(right ordinate) and baryonic mass of the protoneutron star enclosed by the
1011 g cm−3 density isosurface (left ordinate). Center panel: evolution of the
protoneutron star radius, defined as the location of the 1011 g cm−3 point on
the angle-averaged rest-mass density profile. The protoneutron star contracts
as neutrino-cooling and deleptonizing material is settling on its surface. This
is expected from 1D and 2D neutrino radiation-hydrodynamics simulations
(cf. Müller et al. 2012b), but is not captured by the simple MB08 light-bulb
approach (S. Richers et al. 2013, in preparation). Bottom panel: evolution of
the gray, angle-averaged neutrinosphere radii 〈Rν〉 as predicted by the leakage
scheme. The well-known hierarchy Rνe > Rν̄e > Rνx is reproduced and the
neutrinospheres follow the contraction of the protoneutron star as expected from
full radiation-hydrodynamics simulations (e.g., Janka et al. 2007).

(A color version of this figure is available in the online journal.)

neutron star would be ∼1.4 M⊙ (Lattimer & Prakash 2001).
The increase in mass and decrease in radius of the protoneutron
star seen in our simulations is qualitatively consistent with the
findings of Müller et al. (2012b) and Buras et al. (2006a) for
different progenitors. Müller et al. (2012a), who studied the
s27 progenitor, do not show these quantities. Hence, a direct
quantitative comparison is not possible.

The angle-averaged neutrinosphere radii given in the lower
panel of Figure 6 show that the leakage scheme correctly
reproduces the well known hierarchy Rνe

> Rν̄e
> Rνx

of
neutrinosphere radii in the postbounce pre-explosion phase (e.g.,
Janka et al. 2007). One notes that models with larger fheat have
slightly larger neutrinosphere radii. We attribute this to their
somewhat hotter postshock regions, resulting in higher opacity.

Model s27fheat1.05 is intermediate between model
s27fheat1.00 that fails to explode in the simulated time and
models s27fheat1.10 and s27fheat1.15, which have rapidly in-
creasing shock radii at the end of their simulations. We choose
s27fheat1.05 as our representative model and show, in Figure 7,
angle-averaged profiles of its specific entropy, temperature, elec-
tron fraction, and rest-mass density at 40, 80, 120, and 140 ms
after bounce. The smoothness of the profiles is due entirely to
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Figure 7. Angle-averaged profiles of specific entropy s (top panel), temperature
T (second panel), electron fraction Ye (third panel) and the rest-mass density
ρ (bottom panel) at representative postbounce times in model s27fheat1.05.
The data are taken from the AMR level encompassing the shock and, hence,
do not extend to the full 180 km shown at early times. The smoothness
of the curves is due entirely to the angle averaging. The profiles show the
progressive deleptonization and contraction of the outer protoneutron star and
the development of the high-entropy gain layer as is expected from full radiation-
hydrodynamics simulations (e.g., Buras et al. 200a, 2006b; Lentz et al. 2012;
Müller et al. 2012b). Note, however, that our leakage/heating scheme tends to
somewhat overestimate cooling and deleptonization at optical depths of a few,
leading to a dip in Ye and a local temperature minimum around 40 km. This
temperature minimum is shown in a zoomed-in inset in the temperature panel.

(A color version of this figure is available in the online journal.)

angle averaging. The overall qualitative behavior of all quanti-
ties is as expected from more complex radiation-hydrodynamics
simulations (cf. Buras et al. 2006b and Figure 5 of Dessart et al.
2006). The radial extent and specific entropy of the gain layer
increase with time, while the changes in the specific entropy
below ∼40 km simply reflect protoneutron star contraction. The
latter is also well captured by the rising temperature at the
protoneutron star edge, indicating compression. The strong
deleptonization of the postshock region caused by the νe neu-
tronization burst shortly after bounce is still visible in the
Ye profile at 40 ms after bounce. The outer postshock region
re-leptonizes over time due to a slight dominance of νe over
ν̄e absorption in the gain layer. In the lower postshock region
(R ∼ 10–45 km), neutrino cooling and deleptonization continue
and, as expected from more accurate neutrino transport calcula-
tions, a strong negative lepton gradient develops that may drive
protoneutron star convection (e.g., Dessart et al. 2006; Buras
et al. 2006a).

The top panel of Figure 8 shows the total luminosities of νe, ν̄e,
and νx as predicted by our leakage/heating scheme for models
s27fheat1.05 and s27fheat1.15, which we take as representative
examples. Differences between these models are minor and due
to the greater heating in model s27fheat1.15. Since Müller et al.
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Figure 8. Top panel: νe , ν̄e , and νx luminosities as a function of postbounce
time in models s27fheat1.05 (solid lines) and s27fheat1.15 (dashed lines) as
representative examples of our model set. The νe and ν̄e luminosities in model
s27fheat1.15 are somewhat smaller due to the strong charged-current absorption
in this model. The inset plot shows the νe deleptonization peak. Comparing the
Lνi

shown here with those provided for the same progenitor in Figure 8 of
Müller et al. (2012a) demonstrates that our much more approximate neutrino
treatment still yields luminosities that agree within ∼20% with the results
of true radiation-hydrodynamics simulations. Bottom panel: evolution of the
mean neutrino energies 〈ǫνi

〉 in the same models, obtained via the assumption
of blackbody emission at the respective neutrinospheres. After the transient
very early postbounce phase, the usual hierarchy of mean neutrino energies is
established. At �80–100, ms after bounce, the evolution becomes qualitatively
incorrect when 〈ǫνe 〉 and 〈ǫν̄i

〉 surpass 〈ǫνx 〉. Comparison with the results of
Müller et al. (2012a) shows that this and the overall high predicted 〈ǫνi

〉 are an
artifact of the leakage/heating scheme.

(A color version of this figure is available in the online journal.)

(2012a) provide these luminosities from their 2D simulations
in their Figure 8, we can directly compare with their results.
Their Lνe

peaks at ∼385 B s−1 (1 B = 1051 erg), while ours

peaks at ∼365 B s−1 (a 5% difference). At 100 ms after bounce,
the Müller et al. (2012a) simulation suggests Lνe

∼ 62 B s−1,

while we find ∼68 B s−1 in model s27fheat1.15 (∼73 B s−1 in
model s27fheat1.05), a ∼10% (∼20%) difference. The ν̄e and νx

luminosities compare similarly well. The rather good agreement
in total neutrino luminosities with the much more detailed
radiation-hydrodynamics simulation of Müller et al. (2012a)
suggests that our leakage/heating scheme captures the overall
neutrino emission and its energetics in an acceptable way.

The situation is different for the mean neutrino energies 〈ǫν〉
shown in the lower panel of Figure 8. We obtain estimates
for 〈ǫν〉 of each species by assuming blackbody emission from
its neutrinosphere in the same way as for the mean-squared
energies that enter the heating function (Equation (2)). This kind
of estimate is not reliable in the very early, highly dynamical
postbounce phase, but ∼20 ms after bounce, the usual hierarchy
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of neutrino energies 〈ǫνx
〉 > 〈ǫν̄e

〉 > 〈ǫνe
〉 is established

analogously to the hierarchy of neutrino sphere radii (cf. lower
panel of Figure 6). This hierarchy is, however, broken at times
�80–100 ms, when the mean νe and ν̄e energies exceed the mean
energy of νx . This is clearly an artifact of our leakage/heating
scheme and will not happen in nature. It is also not found by
Müller et al. (2012a). The reason for this incorrect behavior can
be understood by considering the neutrinosphere radii plotted
in the lower panel of Figure 6 and looking at the temperature
and Ye profiles shown in Figure 7 for model s27fheat1.05. At
postbounce times �80 ms, one notices a global minimum in
Ye around 40–50 km. At the same location, a local temperature
minimum develops. Both are related and caused by the inability
of the leakage/heating scheme to establish a correct balance
between emission and absorption at optical depths of a few.
Unfortunately, the νx neutrinosphere recedes precisely into the
local temperature minimum, while the νe and ν̄e neutrinospheres
sit in the local maximum at slightly greater radii. While the
differences in temperature are not large, they are sufficient to
explain the incorrect evolution of the 〈ǫνi

〉.
Comparing the values of 〈ǫνi

〉 predicted by the leakage
scheme with the results of Müller et al. (2012a) at times before
the qualitative evolution becomes unreliable, we find that the
leakage scheme systematically overpredicts the mean energies.
For example, at 50 ms after bounce, in model s27fheat1.05, we
find 〈ǫνe

〉 ∼ 16 MeV, 〈ǫν̄e
〉 ∼ 18 MeV, and 〈ǫνx

〉 ∼ 18.5 MeV.
At the same time the 〈ǫνi

〉 found by Müller et al. (2012a) are, in
the same order, 9.3 MeV, 12.3 MeV, and 14 MeV.

In summary, the results shown in this section indicate that
the leakage/heating scheme used in our simulations yields
overall qualitatively correct thermodynamics/stratification in
the postshock region and captures the integral neutrino emission
to within ∼20% of fully self-consistent simulations. It fails,
however, to yield reliable predictions for the mean neutrino
energies, in particular at later postbounce times. Since energy
(and lepton number) absorption rates depend sensitively on
neutrino energy, the leakage/heating scheme, at least in its
present form, cannot be employed to make reliable predictions
of the spectrum of the emitted neutrinos or the composition of
explosion ejecta.

3.3. SASI and Neutrino-driven Convection

The recent 2D radiation-hydrodynamics core collapse and
postbounce simulations of the s27 progenitor carried out by
Müller et al. (2012a) show a very clear and clean growth of a
dominant periodic ℓ = 1 SASI mode. The relative amplitude
(with respect to the average shock radius) of the ℓ = 1 mode
saturates in their simulations at a very large ∼45%, indicating
a large-scale periodic dipole deformation. In their simulation,
neutrino driven convection is only a secondary instability that
develops in the nonlinear phase, but may be connected with the
saturation itself (Guilet et al. 2010).

It is now interesting to ask if the SASI is the primary
instability driving asphericity in the s27 progenitor also in
our 3D simulations or if neutrino-driven convection dominates
early on and possibly suppresses the growth of coherent SASI
oscillations. It is furthermore interesting to study how the
roles and prominence of SASI and convection depend on the
strength of neutrino heating. It is evident from the discussion in
Section 3.1 and Figures 4 and 5 that deviations from sphericity
develop at large scales in our models. We shall now take a more
quantitative look at the development of this asphericity.

3.3.1. Convection

The local stability of a fluid element to convective overturn
is determined via the Ledoux criterion (Ledoux 1947),

CL = −
(

∂ρ

∂P

)

s,Yl

[

(

∂P

∂s

)

ρ,Yl

(

ds

dr

)

+

(

∂P

∂Yl

)

ρ,s

(

dYl

dr

)

]

,

(4)
which, in the postbounce supernova case, takes into account
radial gradients in specific entropy s and lepton fraction Yl =
Ye + Yνe

−Yν̄e
. For simplicity, we set Yl := Ye, since our leakage

scheme does not keep track of local neutrino fractions. This
approximation may lead to quantitatively incorrect estimates
of CL in the protoneutron star where neutrinos are trapped or
partially trapped. A fluid element is convectively unstable if
CL > 0. The linear growth time for convection from arbitrarily
small perturbations is then given by the Brunt–Väisälä (BV)
frequency,

ωBV = sgn (CL)

√

∣

∣

∣

∣

CL

ρ

dΦ

dr

∣

∣

∣

∣

, (5)

where we are following the definition of Buras et al. (2006a)
and Takiwaki et al. (2012) and where Φ is the local gravitational
potential and thus dΦ/dr is the local gravitational acceleration.
For simplicity, we approximate the gravitational acceleration
as −GM(r)r−2 assuming an angle-averaged spherical matter
distribution in our postprocessing analysis.

Foglizzo et al. (2006) pointed out that Equation (4) is
an insufficient criterion for the development of large-scale
convective instability in the postshock region. A small (linear)
perturbation that could seed convection in the unstable gain layer
is advected in toward the convectively stable cooling layer with
the background flow. This advection may occur faster than the
time it takes for convection to grow from the small perturbation.
It is thus necessary to compare the advection timescale τadv with

the growth time for convection in the gain layer, τconv ≈ ω−1
BV.

Foglizzo et al. (2006) defined the quantity

χ =
∫ Rshock

Rgain

ωBV

|vr |
dr =

τadv

τconv

, (6)

where vr is the radial velocity through the gain region. A
small-scale perturbation of magnitude δin entering the gain
layer from above may at most grow by a factor exp (χ ) to
δout = δin exp (χ ) during its advection through the gain layer
(Scheck et al. 2008). According to the linear analysis of Foglizzo
et al. (2006), χ � 3 is required for convection to develop in
the gain layer from small perturbations δin. Scheck et al. (2008)
noted, then demonstrated, that the situation is different if the seed
perturbations δin are sufficiently large so that the time integral of
the buoyant acceleration becomes comparable to the advection
velocity. In this case, the advected seed may grow into a buoyant
plume and stay in the gain layer instead of leaving it. The results
of Scheck et al. (2008) indicate that local seed perturbations of
order 1%, e.g., in the upstream radial velocity, may already be
sufficient to trigger convection even if χ < 3.

If convection does develop, a simple measure of its strength
is the anisotropic velocity vaniso, which we define, following
Takiwaki et al. (2012), as

vaniso =

√

〈

ρ
[

(vr − 〈vr〉4π )2 + v2
θ + v2

ϕ

]〉

4π

〈ρ〉4π

, (7)
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Figure 9. Color maps showing the time evolution of the angle-averaged Brunt–Väisälä (BV) frequency ωBV in units of ms−1 (Equation (5); left panels) and anisotropic
velocity vaniso in units of the speed of light c (Equation (7); right panels) in models s27fheat1.05 (top panels) and s27fheat1.15 (bottom panels). Also indicated are the
maximum shock radius (red curves), the average shock radius (blue curves), and the minimum shock radius (green curves). Note the different radial scales of the top
and bottom panels. We mask out vaniso and ωBV outside the average shock radius, where they are not reliable, since at most angles the radial region is actually outside
of the shock. Shortly after bounce, the stalling shock leaves behind a negative entropy gradient, leading to ωBV > 0 and thus convective instability, strongest at radii
between 20 and 40 km. Prompt convection develops quickly and is strong, as indicated by the large vaniso in the right panels. Subsequently, convective instability and,
as shown by the right panels, convection, develops in the gain layer and, after ∼30–40 ms or so, also at the edge of the protoneutron star core, due to the negative
lepton gradient. Note that high vaniso at late times prevails to significantly smaller radii than the inner radius of convective instability, indicating large asymmetries and
undershooting of decelerating convective plumes.

(A color version of this figure is available in the online journal.)

where 〈.〉4π denotes an angle average at fixed radius. vaniso

essentially extracts the magnitude of the velocity component that
does not belong to a purely radial background flow. We compute
vaniso by introducing a spherical auxiliary grid onto which we
interpolate the Cartesian coordinate velocity components and
transform to obtain vr , vθ , and vϕ . We then integrate over
4π steradian at each radius r to obtain the various angle-
averaged quantities. vaniso is high in regions of large fluctuations
in vr and high non-radial velocities vθ and vϕ . We note that
high vaniso in the postshock region is a good measure for
non-radial flow in that region. If this non-radial flow is due to
prompt/neutrino-driven convection or induced by the SASI is
difficult to decide, in particular when the SASI has reached the
nonlinear regime. vaniso is thus most useful at early postbounce
times and both its time evolution and radial distribution must be
carefully considered.

In Figure 9, we present color maps showing the time evolu-
tions of radial profiles of the angle-averaged ωBV (left panels)
and vaniso (right panels) for models s27fheat1.05 (top panels) and
s27fheat1.15 (bottom panels) as representative cases for moder-
ate and strong neutrino heating. The qualitative evolution is the
same in all models.

Within milliseconds of bounce, a highly convectively unstable
region develops where the negative entropy gradient left behind
by the stalling shock is strongest. As is evident from the vaniso

color maps, a strong burst of prompt convection develops and
smoothes out this entropy gradient within ∼20 ms of bounce.
The highly dynamical early phase of shock expansion and
prompt convection is over by ∼40 ms after bounce, when
the shock has settled at ∼100–120 km. At this time, the gain
layer has developed and neutrino heating creates a negative
entropy gradient and thus instability to convection between
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Figure 10. Top panel: Foglizzo parameter χ (Equation (6)) as a function of
time after bounce. At times �40 ms after bounce, the shock is still expanding
and a quasi-stationary gain layer has not yet developed. χ is not reliable in
that phase. At later times, it stays consistently below the critical value of
3 suggested by Foglizzo et al. (2006) as being necessary for convection to
develop from arbitrarily small perturbations. Note that stronger neutrino heating
leads to greater χ , since ωBV is larger. Bottom panel: density-weighted average
of the anisotropic velocity 〈vaniso〉 (Equation (7)) in the gain layer inside the
minimum shock radius. As in the case of χ , this quantity is not reliable in
the highly dynamic early postbounce phase. The early peak around 10 ms is
related to prompt convection, which ebbs over ∼30 ms. Starting at ∼40 ms
after bounce, when neutrino driving becomes efficient (cf. Figure 3), 〈vaniso〉
increases nearly monotonically in a very similar way in all models. Only model
s27fheat1.00, which has the weakest neutrino heating, deviates from this trend
at times �100 ms after bounce.

(A color version of this figure is available in the online journal.)

∼80 km and the shock. Also, deleptonization at the edge of
the protoneutron star (cf. Figure 7) creates a negative lepton
gradient, driving protoneutron star convection, which sets in at
35–40 ms after bounce and is clearly marked by a band of high
vaniso, spatially coinciding with the band of convective instability
in the protoneutron star.

Figure 10 shows the evolution of the Foglizzo parameter
χ (Equation (6); top panel) and the density-weighted average
anisotropic velocity in the gain layer (bottom panel). At the
early postbounce times at which prompt convection takes place,
both quantities are poorly defined, since the shock expansion is
still rather dynamic and a quasi-stationary gain layer does not
yet exist. This explains the large variations seen at early times
in particular in χ . Once the postbounce quasi-equilibrium in the
postshock region is established, χ settles at values between 0
and 2 in all models, which is consistent with what Müller et al.
(2012a) found for the s27 progenitor.

The χ � 3 criterion proposed by Foglizzo et al. (2006) for
the development of convection in the gain layer is never fulfilled

in any of our models. Nevertheless, neutrino-driven convection
does develop and becomes strong in all of our models. This is
obvious from the radial vaniso distribution shown in Figure 9. As
soon as the gain layer develops and ωBV becomes large, a broad
region of high vaniso appears and traces the region of instability.
This is indeed neutrino-driven convection, as can be seen from
the entropy slices in the top panel of Figure 5, which show fully
developed neutrino-driven convection at ∼80 ms after bounce.
The development of neutrino-driven convection in the gain layer
can also be inferred from the density-weighted average vaniso

over the gain layer (bottom panel of Figure 10). 〈vaniso〉 has an
initial local maximum due to prompt convection and decreases
as the latter ebbs only to increase again at �40 ms after bounce
when neutrino heating in the gain layer becomes efficient and
drives convection (cf. Figure 3).

Müller et al. (2012a), in their axisymmetric simulation
of the s27 progenitor, did not observe the development of
neutrino-driven convection, in agreement with the prediction
of Foglizzo et al. (2006) that for χ � 3 small perturbations
are advected out of the gain layer before they can grow into
buoyant plumes. While there are many technical differences
between the simulation of Müller et al. (2012a) and the ones
presented here, the key difference relevant for the development
of neutrino-driven convection in our simulations is our choice of
a Cartesian AMR grid as opposed to the spherical polar grid of
the axisymmetric code of Müller et al. (2012a). A spherical polar
grid is ideal for tracking the spherically-symmetric collapse
phase and the upstream flow outside the shock after bounce.
Seed perturbations remain minimal and neither prompt nor
neutrino-driven convection grow in the simulation of Müller
et al. (2012a). Our Cartesian AMR grid, on the other hand,
leads to significant perturbations in multiple ways: (1) The
Cartesian grid itself only imperfectly resolves spherical flow and
perturbations of at most order dx/Rshock, where dx is one linear
computational cell size, are generated locally at the shock front.
(2) Also due to its rectangular nature, the grid has ℓ = 4,m = 4
symmetry, which leads to buildup of numerical noise primarily
in modes with ℓ = 4,m = {−4, 0, 4}. (3) In our AMR setup,
the shock is formed on the finest grid and then is allowed to
pass through two mesh refinement boundaries before it reaches
the grid that will track its subsequent evolution. The crossing
of AMR boundaries causes large perturbations in the shock
front that are also of ℓ = 4 character. (4) The AMR grid that
tracks the shock front expands whenever the shock expands.
The AMR boundary must constantly be filled via interpolation
from the next coarser grid, which also introduces noise. Points
(1) and (2) are true for any code using a Cartesian grid (e.g., the
CASTRO code used in the recent simulations of Burrows et al.
2012; Murphy et al. 2012; Dolence et al. 2013), while (3) and
(4) are due to our particular approach in Zelmani, which may
or may not be different from what is done in CASTRO and other
codes.

There are multiple ways in which one could quantify the
magnitude of the perturbations present in the early postbounce
phase in our models. One indicator may be the relative deviation
of the shock front from spherical symmetry quantified in
Figure 11. The ℓ = 4 grid modes indeed imprint themselves
on the shock front, though the deviation of the shock itself from
sphericity is not large. The root-square-sum A4 of the normalized
ℓ = 4,m = {−4, . . . , 4} components of the shock front has a
maximum of ∼1.4% at ∼10 ms after bounce. This could be
interpreted as a lower bound on the deviation from sphericity
of the postshock flow and may already be sufficient to seed
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Figure 11. Time evolution of the normalized root-square-summed spherical
harmonic mode amplitudes of the shock in all models for each ℓ in {1, 2, 3, 4}:
A1, A2, A3, and A4 (Equation (11)). Note the dominance of the ℓ = 4
perturbations from the Cartesian grid at early times. The A1 amplitude becomes
dominant ∼40–50 ms after bounce and shows oscillatory features in models
s27fheat1.00 and s27fheat1.05. Models s27fheat1.10 and s27fheat1.15 have no
obvious oscillatory behavior of A1, but develop large non-oscillatory amplitudes
at late times when the shock in these models reaches large radii.

(A color version of this figure is available in the online journal.)

convection (Scheck et al. 2008). Alternatively, we consider the
relative root-mean-square deviation from sphericity of any fluid
quantity X on a spherical shell of radius R,

ξ (X) =
√

〈(X − 〈X〉4π )2〉4π

〈X〉4π

, (8)

where 〈·〉4π denotes an angular average at fixed radius and we
have dropped the dependence on R for simplicity. Evaluating ξ
for density, radial velocity, entropy, and pressure in the preshock
region (R > Rshock,max), we find only very small deviations from
sphericity of order 0.1% at any time. We carry out this analysis
also at a radius just inside the shock (dynamically adjusting
R to be ∼Rshock,min − 1 km), which should be reliable in the
dynamical shock expansion phase. Any perturbations would
have to come from shock passage, since convection had no time

to grow. For this, we find large deviations of 5%–10% in density,
entropy, and pressure.15 These deviations are present already
milliseconds after bounce and they peak when the shock passes
through the boundary of the second finest refinement level (at
59 km) at ∼3 ms after bounce. This indicates that shock passage
through refinement boundaries may be the dominant source of
numerical perturbations in our simulations.

The large-amplitude perturbations present in the early post-
bounce flow are more than sufficient to overcome advection and
seed prompt convection, which grows within milliseconds of
bounce in our models (cf. Figures 9 and 10). Neutrino-driven
convection is, in turn, seeded by the turbulent flow of prompt
convection and by additional, though much smaller magnitude,
noise coming from interpolation at the AMR boundary and
from the Cartesian representation of the spherically accreting
outer core.

3.3.2. SASI

Convective overturn, first prompt, then neutrino-driven, de-
velops early on in our simulations and appears dominant. We
can, however, not yet exclude growth of the SASI. The condi-
tions for SASI growth are very different from those for convec-
tion. Any standing accretion shock is unstable to the SASI, with
ℓ = 1,m = 0,±1 modes being the most unstable and grow-
ing from arbitrarily small perturbations (e.g., Guilet & Foglizzo
2012). The linear growth rate of the SASI can be expressed as

ωSASI =
ln |Q|
τcyc

, (9)

where Q is the cycle efficiency, defined as the amplification
factor of perturbations in each advective-acoustic cycle, and
τcyc is the duration of a cycle (see, e.g., Scheck et al. 2008 for
a detailed discussion). Qualitatively, τcyc depends on the radius
at which the shock stalls and on the timescale for advection of
entropy/vorticity perturbations between shock and protoneutron
star edge. A smaller shock radius and shorter advection time
will thus lead to a smaller τcyc and faster SASI growth. Strong
neutrino heating, as pointed out by Yamasaki & Yamada (2007)
and Scheck et al. (2008), increases the buoyancy in the gain layer
and leads to both larger Q and shock oscillation frequencies
(connected with τcyc), while the growth rate is not strongly
affected.

A characteristic feature of the SASI in its linear phase is
the exponential growth of oscillatory low-mode deformations
of the shock front. We look for evidence for the SASI in our
simulations by decomposing the shock surface Rshock(θ, φ) into
spherical harmonics:

aℓm =
(−1)|m|

√
4π (2ℓ + 1)

∫

4π

Rshock(θ, φ)Ym
ℓ (θ, φ)dΩ . (10)

Note that a00 corresponds to the average shock radius and that the
definition of the aℓm used here gives individual aℓm amplitudes
that are a factor of (2ℓ + 1) smaller than the definition for aℓ0

used by Müller et al. (2012a) in the axisymmetric case, but at
each ℓ, there are (2ℓ + 1) more modes in our case. The Ym

ℓ are
the standard real spherical harmonics (e.g., Boas 2006), which
we use with the normalization factors given in Burrows et al.
(2012). We also define the quantities Aℓ as the root-square-sum

15 The deviation of the radial velocity is of order unity there, which is readily
explained by the extreme variation of vr across the shock and is thus not a
reliable measure.
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Figure 12. Normalized ℓ = 1,m = {−1, 0, 1} mode amplitudes a1m/a00 of the shock front plotted on a linear scale (top panels) and their absolute values plotted on
a logarithmic scale (bottom panels) for models s27fheat1.00 (left panels) and s27fheat1.15 (right panels). Model s27fheat1.00 shows a clear exponential growth of
oscillatory modes, but saturation occurs at amplitudes that are about an order of magnitude smaller than in the 2D simulation of the same progenitor carried out by
Müller et al. (2012a). Model s27fheat1.15, which has strong neutrino heating and intense neutrino-driven convection also shows some oscillatory ℓ = 1 mode growth,
though at a longer oscillation period, lower saturation amplitudes, and without a well defined exponential growth phase.

(A color version of this figure is available in the online journal.)

of the aℓm for a given ℓ normalized by the average shock radius
a00,

Aℓ =
1

a00

√

√

√

√

ℓ
∑

m=−ℓ

a2
ℓm . (11)

In Figure 11, we present in four panels, from top to bottom,
the time evolutions of the A1 − A4 amplitudes of the shock
front in all four models. In the first ∼20 ms after bounce, the
initial ℓ = 4 deformation due to our Cartesian grid imprints
itself onto the shock front and the A4 amplitude is dominant.
Subsequently, the other modes grow. For SASI growth, the
expectation is that the ℓ = 1,m = {−1, 0, 1} modes have
the fastest growth rate and have oscillatory behavior, which
should be reflected in the A1 amplitude. In models s27fheat1.00
and s27fheat1.05, A1 indeed is the fastest growing amplitude
and shows the expected oscillatory behavior throughout the
simulated postbounce interval, suggesting the presence of the
SASI. However, the maximum value of A1 reached is ∼0.04,
which is an order of magnitude smaller than what was reported
by Müller et al. (2012a) for their 2D simulation of the s27
progenitor.

For the two models with stronger neutrino heating,
s27fheat1.10 and s27fheat1.15, the situation is different. Their A1

and A2 amplitudes hover around very similar small values with-
out obvious oscillatory behavior until ∼100 ms after bounce,
when large-scale deviations from sphericity (cf. Figure 4) lead
to strongly growing amplitudes in all ℓ. This was also observed

in the high-luminosity light-bulb simulations of Burrows et al.
(2012) and Dolence et al. (2013). A1 is the dominant amplitude
and reaches ∼0.1 in model s27fheat1.10 and about 0.03 in model
s27fheat1.15 at the end of its simulation. It is interesting to note
that model s27fheat1.05, which has a positively trending shock
radius at the end of its simulation, has clearly growing A2, A3,
and A4 amplitudes at late times, while A1 remains the dominant
mode with stable amplitudes near 0.03.

For further insight into the nature of the observed mode evolu-
tion, we plot, in Figure 12, the individual ℓ = 1,m = {−1, 0, 1}
normalized mode amplitudes a1m/a00 in linear (top panels) and
logarithmic scale (bottom panels) for models s27fheat1.00 (left
panels) and s27fheat1.15 (right panels). The former model has
the weakest neutrino heating and least vigorous neutrino-driven
convection of all our models while the latter model has the
strongest heating and most vigorous convection. All ℓ = 1
modes in model s27fheat1.00 show a clear oscillatory behavior
and, importantly, an exponential growth phase between ∼20 and
∼80 ms after bounce can be made out. However, saturation oc-
curs at low a1m/a00 ∼ 0.01 for all modes. As noted before, this
is an order of magnitude smaller than found in the axisymmet-
ric simulations of Müller et al. (2012a; in which neutrino-driven
convection did not develop as a primary instability).

Interestingly, some of the a1m/a00 modes in model
s27fheat1.15 do exhibit oscillatory behavior, though with larger
periods than in model s27fheat1.00. This is expected for SASI
growth under the influence of strong neutrino heating (Yamasaki
& Yamada 2007; Scheck et al. 2008). The growth also saturates
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more quickly at amplitudes that remain a factor of ∼2 smaller
than in model s27fheat1.00 until ∼100 ms after bounce, when
the mode growth becomes non-oscillatory. It is not possible
to unambiguously and clearly identify a phase of exponential
growth of the a1m/a00 modes in this model.

In summary, there is clear evidence for SASI growth in our
models. It is strongest in the model with the least neutrino heat-
ing and weakest neutrino-driven convection. It is weakest in the
model with the most neutrino heating and the strongest neutrino-
driven convection. However, even in the model in which SASI
growth is strongest, the SASI saturates at amplitudes that are
an order of magnitude smaller than in the 2D simulation of
Müller et al. (2012a), which did not have any neutrino-driven
convection. These observations suggest that 3D neutrino-driven
convection is indeed detrimental to the development of large-
amplitude SASI. This confirms the findings of Scheck et al.
(2008), Guilet et al. (2010), Burrows et al. (2012), and Dolence
et al. (2013). Furthermore, our results show that both instabili-
ties can coexist and grow at the same time, but even if convection
is suppressed (a case we cannot study in our 3D Cartesian AMR
code), the nearly equal splitting of the ℓ = 1 power across the
three azimuthal m modes in 3D, will likely reduce the mag-
nitude of deviations from sphericity that can be driven by the
SASI alone. Moreover, the SASI, once it has reached its non-
linear phase, will trigger neutrino-driven convection (Scheck
et al. 2008; Guilet et al. 2010; Burrows et al. 2012; Müller et al.
2012a), which may very well become the dominant instability,
in particular if neutrino heating is strong.

3.4. Criteria for Neutrino-driven Explosions

The simulations presented here end before an explosion is
fully developed in any of our models. Nevertheless, interesting
trends can be observed. Models s27fheat1.10 and s27fheat1.15
have strongly positively trending shock radii at the end of their
simulations. The shock in model s27fheat1.05 also expands at
late times, but the development of an explosion is definitely
more marginal. Model s27fheat1.00 has a receding shock and
thus a rather negative prognosis regarding explosion.

A variety of criteria for neutrino-driven explosions have been
discussed in the literature and it is interesting to see how the
trends observed in our models compare with what is expected
from theory and other simulation results.

From the bottom panel of Figure 3 we find that models with
stronger neutrino heating and, thus, more vigorous neutrino-
driven convection have systematically more mass in the gain
layer (Mgain) that can absorb neutrino energy. The low-amplitude
SASI seen in our models, which is strongest in models with
weakest heating and convection, does not appear to have any
positive effect on Mgain in our simulations. In models that are
trending toward explosion, Mgain increases as shock expansion
sets in. This is consistent with previous work giving the most
optimistic prognosis for models with the greatest Mgain (e.g.,
Murphy & Burrows 2008; Scheck et al. 2008; Müller et al.
2012b; Hanke et al. 2012).

Also shown in the bottom panel of Figure 3 is the density-
weighted average of the specific entropy in the gain layer
(〈sgain〉). All models, trending toward explosion or not, exhibit
the same 〈sgain〉 evolution until ∼130 ms after bounce, when
the most optimistic models actually move to somewhat smaller
〈sgain〉 (cf. the discussion in Section 3.1). Thus, in agreement
with Hanke et al. (2012), the average entropy in the gain layer
is not a good indicator for a model’s potential for explosion.

A criterion frequently used to diagnose neutrino-driven ex-
plosions arises from the comparison of the timescale for neu-
trino heating τheat and the advection timescale τadv for material
to pass through the gain layer (Burrows & Goshy 1993; Janka
2001; Thompson et al. 2005; Murphy & Burrows 2008). If heat-
ing is faster than advection through the gain layer, then a fluid
parcel entering the gain region may absorb sufficient energy to
reach positive total specific energy and thus become unbound.
For τadv/τheat � 1, shock expansion should set in, further in-
creasing τadv and thus leading to positive feedback and runaway
expansion.

In our simplified analysis, we set τheat = |Egain|/Qnet, where
Qnet is the net integral heating rate in the gain layer and |Egain|
is the volume integral of the (Newtonian) total specific energy
of material in the gain layer, given, e.g., by the integral over
Equation (3) of Müller et al. (2012b). We note that the internal
energy of the LS220 EOS is defined with respect to a free
neutron gas, this defines the zero of our internal energy. There
are a variety of possible definitions for τadv (cf. the discussions
in Murphy & Burrows 2008; Marek & Janka 2009; Müller et al.
2012b). Here, we use the definition τadv = Ṁ/Mgain, where

Mgain is the mass in the gain region and Ṁ is the accretion rate
through the shock. Note that this definition is different from
what we use in the computation of the Foglizzo χ parameter
(Equation (6)).

In the top panel of Figure 13, we plot τadv/τheat as a function
of time after bounce for all of our models (left ordinate).
The behavior is as expected: the two models s27fheat1.15 and
s27fheat1.10, which are strongly trending toward explosion
reach τadv/τheat � 1 already at ∼100 and ∼115 ms after
bounce. The marginal model s27fheat1.05 also shows increasing
τadv/τheat, which reaches 1 at ∼142 ms after bounce. There
is, however, no hope for model s27fheat1.00, where τadv/τheat

always remains below ∼0.5.
Also shown in the top panel of Figure 13 is Epos (right

ordinate), the integral energy of unbound material (with positive
total specific energy, again defining the internal energy with
respect to a free neutron gas). When τadv/τheat > 1.4 in our
models, material starts to become unbound and Epos grows
rapidly. However, at the end of our simulations, it is still far
away from the energy needed to unbind the entire envelope and
lead to a canonical ∼1B core-collapse supernova explosion. We
caution the reader to not overinterpret Epos—it is unreliable at
this point. Rather, what is important to note is that toward the
end of the simulations there is an increasing amount of unbound
material for the highest values of fheat. To obtain a quantitatively
reliable measure of the asymptotic explosion energy one must
follow the explosion to late times, consistently track or account
for recombination (∼8–9 MeV per nucleon), and consider the
binding energy of the overlying envelope (∼1 B; Woosley et al.
2002).

Finally, in the bottom panel of Figure 13, we plot the
time evolution of the maximum of the ratio of the angle-
averaged square of the speed of sound 〈c2

s 〉 to the angle-
averaged square of the escape velocity, which we approximate as
〈v2

esc〉 ≈ 2GM(r)/r , where M(r) is the enclosed baryonic mass.
This ratio is interesting, since Pejcha & Thompson (2012) have
recently derived the antesonic condition,

max

(

c2
s

v2
esc

)

>
3

16
≈ 0.19 , (12)

beyond which no solution for a stationary spherically symmetric
accretion shock exists, marking the transition to explosion.
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Figure 13. Top panel: ratio of advection and heating timescales τadv/τheat as a
function of time after bounce in our models (left ordinate) and Epos, the volume
integral over positive values of the total specific energy in the gain region (right
ordinate). τadv/τheat � 1 is considered to be a condition for runaway explosion.
It is satisfied by all of our models with optimistic outlook. Models s27fheat1.15,
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speed of sound to the angle-averaged squared escape velocity. According to the
antesonic condition of Pejcha & Thompson (2012), no solution for a spherical
stationary accretion shock exists for max(c2

s /v
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explosion is expected to set in models that surpass this value.

(A color version of this figure is available in the online journal.)

While the expanding shocks in our models are far away from
sphericity, we find values of max(〈c2

s 〉/〈v2
esc〉) � 0.2–0.22,

which is consistent with the expectation of Pejcha & Thompson
(2012). Model s27fheat1.00, which has the most pessimistic
outlook, does not reach max(〈c2

s 〉/〈v2
esc〉) � 0.19, while the

marginal model, s27fheat1.05 does. The prognosis, according to
Pejcha & Thompson (2012) is thus similar to the one based on
the τadv/τheat > 1 runaway condition.

3.5. Gravitational Wave Signals

Besides the neutrino signals already discussed in Section 3.2,
GWs are the only other direct probe of the processes occurring
in the postshock region and in the protoneutron star. The overall
GW signature of core-collapse supernovae has been reviewed
in detail by Ott (2009) and Kotake (2011) and we refer the
interested reader to these reviews for an in-depth discussion
of the various potential GW emission processes and their
underlying physics.

GW observations of the next galactic core-collapse supernova
could provide important insight into the role and relevance of
multi-dimensional fluid instabilities, rotation, the structure of
the protoneutron star, and the nuclear EOS (Dimmelmeier et al.

2008; Marek et al. 2009; Yakunin et al. 2010; Murphy et al. 2009;
Röver et al. 2009; Ott 2009; Kotake 2011). Recently, Logue et al.
(2012) carried out a proof-of-principle study, demonstrating that
Bayesian inference allows to select between different explo-
sion mechanisms for a galactic core-collapse supernova. The
reliability of this depends on the availability of robust wave-
form predictions from simulations. Most currently available
core-collapse supernova waveforms come from 2D simulations
(as summarized by Ott 2009; Kotake et al. 2011), which can
predict only one of the two independent polarizations. In the
context of nonrotating or slowly rotating neutrino-driven core-
collapse supernovae, only very few waveform predictions from
3D simulations without symmetry constraints exist. Fryer et al.
(2004), carried out Newtonian 3D smoothed-particle hydrody-
namics simulations with gray flux-limited diffusion neutrino
transport and studied the GW emission from matter motions and
asymmetric neutrino emission up to ∼80 ms after bounce in a
variety of different precollapse configurations with and without
initial rotation and large-scale asphericities. Kotake et al. (2009,
2011) performed Newtonian 3D hydrodynamic simulations with
a light-bulb scheme (similar to MB08, but with a better approx-
imation to changes in Ye). They used analytic initial conditions,
a fixed accretion rate and a fixed inner spherical boundary at
50 km, but were able to evolve for ∼500 ms and studied the
GW emission from matter dynamics and asymmetric neutrino
emission. Scheidegger et al. (2010) performed full 3D Cartesian
(without inner boundary) Newtonian collapse and postbounce
simulations of a slowly rotating progenitor with neutrino leakage
(but no heating). They employed a monopole approximation for
gravity with relativistic corrections and evolved to ∼100 ms af-
ter bounce. Recently, Müller et al. (2012c) presented Newtonian
3D postbounce simulations with GR corrections to the monopole
term of the Newtonian potential. They used a time-dependent in-
ner boundary that contracts from 60–80 km to 15–25 km over 1 s
following the prescription of Scheck et al. (2008), but were able
to evolve multiple progenitor models for �1.2 s using a ray-by-
ray gray two-species approximate transport scheme (neglecting
νx) and imposed neutrino luminosities at the inner boundary.
They extracted and studied in detail the GW emission due to
matter dynamics and anisotropic neutrino emission.

While the simulations presented in this study do not have
the more sophisticated neutrino transport treatment of Müller
et al. (2012c), they do not have an artificial inner boundary with
imposed core neutrino luminosities, are carried out in full GR,
and include the cooling due to νx emission from the protoneutron
star. It is, hence, worthwhile to study the GWs emitted by
our models. We restrict ourselves to GWs from the dominant
accelerated quadrupole matter motions and ignore GWs from
asymmetric neutrino emission. The rationale for the latter is that
our simple leakage scheme is unfit to give a reasonable estimate
for the true neutrino radiation field anisotropy leading to GW
emission. Moreover, as demonstrated by previous work (Kotake
et al. 2009, 2011; Müller et al. 2012c; Marek et al. 2009; Yakunin
et al. 2010), GW emission due to asymmetric neutrino emission
occurs at too low frequencies to be relevant for earthbound
detectors such as Advanced LIGO (for the LIGO Scientific
Collaboration: Harry 2010; Shoemaker 2010), Advanced Virgo
(Virgo Collaboration: Accadia et al. 2011), and KAGRA (for
the KAGRA Collaboration: Somiya 2012).

We employ the quadrupole approximation for extracting
GWs from our simulations and use the expressions detailed
in Ott et al. (2012). In principle, we could extract the gravita-
tional waveforms directly from the spacetime, but the results of
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Figure 14. Left panel: gravitational wave polarizations h+D and h×D (rescaled by distance D) of model s27fheat1.05 as a function of postbounce time seen by and
observer on the pole (θ = 0, ϕ = 0; top panel) and on the equator (θ = π/2, ϕ = 0; bottom panel). Right panel: the same for model s27fheat1.15. Both models show
a burst of gravitational waves associated with large-scale prompt convection developing shortly after bounce. Subsequently, gravitational wave emission comes from
aspherical flow in the gain layer, in the outer protoneutron star, and from descending plumes of material that are decelerated at the edge of the protoneutron star. The
gravitational wave signals are trending toward higher frequencies with time.

(A color version of this figure is available in the online journal.)

Reisswig et al. (2011) suggest that the quadrupole approxi-
mation is very likely sufficiently accurate for stellar collapse
spacetimes with a protoneutron star. The full observer-angle in-
dependent GW signals for all models are available for download
from http://www.stellarcollapse.org/gwcatalog.

In Figure 14, we plot the h+ and h× polarizations of the
GW signal (rescaled by distance D) for model s27fheat1.05 (left
panel) and model s27fheat1.15 (right panel) as seen by observers
on the north pole (θ = 0, ϕ = 0; top panels) and on the equator
(θ = π/2, ϕ = 0; bottom panels). The GW signals emitted
by the other models are very similar and not shown. The early
emission sets in ∼10 ms after bounce and is due to prompt
convection that dominates the aspherical dynamics in the early
postbounce phase, but has decayed by ∼40 ms after bounce. The
GW signal from convection and other fluid instabilities is of
stochastic nature (cf. Kotake et al. 2009; Ott 2009) and its time
series cannot be predicted exactly. The GW signal of prompt
convection, since it is emitted within milliseconds of bounce by
the strongest first few overturn cycles, is particular sensitive to
the perturbations seeding prompt convection. Note that the time
series of h+ and h× from prompt convection in the two models
are quite different, but the overall amplitudes agree well, but
peak in different viewing directions. The subsequent evolution
of the GW signals is similar in both models, both polarizations,
and both observer positions. After an intermittent quiescent
phase, GW emission picks up again at times �80 ms after
bounce when aspherical dynamics becomes strong throughout
the entire postshock region (cf. Figure 9). In this phase, the
GW emission transitions to higher frequencies, indicating that
emission from deceleration of downflows at the steep density
gradient at the edge of the protoneutron star (as first pointed
out by Murphy et al. 2009) and convection in the protoneutron
star play an increasing role. While both models have expanding
shocks at the end of their simulations, the shock acceleration
has not become sufficiently strong to lead to an offset in the GW

signal (GW memory) seen in other work that followed exploding
models to later times (e.g., Murphy et al. 2009; Yakunin et al.
2010; Müller et al. 2012c; Kotake et al. 2009, 2011).

The peak GW strain amplitudes reached in our models
are from prompt convection and go up to |h|D ∼ 20 cm
(∼6.5 × 1022 at 10 kpc). Scheidegger et al. (2010) found
|h|D ∼ 10 cm and Fryer et al. (2004) found |h|D ∼ 12 cm,
but we note that the GW signal will depend on the strength of
prompt convection, which is different from model to model.
The approaches of Müller et al. (2012c) and Kotake et al.
(2009, 2011) do not allow them to study prompt convection.
The typical amplitudes reached in the pre-explosion phase are
∼3 cm (∼10−22 at 10 kpc). This is comparable to, but somewhat
larger than what Müller et al. (2012c) found in the pre-explosion
phase of their models. This may be due the different progenitor
models used and/or to the rather large inner boundary radius
of their models in the pre-explosion phase. Our typical |h| are
also quantitatively consistent with the findings of the simpler
3D simulations of Scheidegger et al. (2010) and Kotake et al.
(2009, 2011), but are a factor of a few smaller than predictions
from 2D simulations (e.g., Marek et al. 2009; Yakunin et al.
2010; Murphy et al. 2009).

Figure 15 contrasts the angle-averaged characteristic GW
strain spectra hchar(f ) (Flanagan & Hughes 1998) of our models
with the broadband design noise levels of advanced-generation
GW interferometers, assuming a source distance of 10 kpc.
The spectra are scaled with a factor of f −1/2 to allow one-to-
one comparison with the detector one-sided amplitude spectral
noise density

√
S(f ), which has units of Hz1/2. Most of the

detectable emission is within ∼60–1000 Hz and at essentially
the same level of ∼2–6 × 10−23 Hz−1/2. A galactic event
(at 10 kpc) appears to be well detectable by the upcoming
generation of detectors. All four models, while having distinct
individual h+ and h× time series that vary greatly in the time
domain, exhibit essentially the same robust spectral features,
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independent of fheat and the exact postbounce time the individual
models are evolved to. The low-frequency to intermediate-
frequency emission is most likely due to prompt convection
in the early postbounce phase, while the high-frequency peaks
at ∼400 Hz and ∼900 Hz are most likely due to the deceleration
of downflows at the protoneutron star surface and protoneutron
star convection. A more detailed investigation of these features
must be left to future work, since it would require multiple
quadrupole integrals to isolate emission regions as done, e.g.,
by Murphy et al. (2009). Our present simulations provide only
one global quadrupole integral and we do not have sufficiently
finely sampled output for a postprocessing analysis of the GW
signal.

The total energy emitted in GWs is 3–4 × 10−10 M⊙ c2 in
all our models and about 50% of the emitted energy is due to
the higher-frequency GW emission at later postbounce times.
This finding is consistent with the 3D results of Scheidegger
et al. (2010). Müller et al. (2012c), on the other hand, found
emitted GW energies of only ∼10−11 M⊙ c2. Their models do
not include prompt convection and emit most of their GW energy
at frequencies below ∼400–600 Hz. This, again, may be due to
the different considered progenitor structures and/or to the inner
boundary of their simulations.

4. DISCUSSION AND CONCLUSIONS

We have carried out four 3D GR core collapse and post-
bounce simulations of the 27 M⊙ solar-metallicity progenitor
of Woosley et al. (2002), systematically varying the rate of
neutrino energy deposition to study the effect of variations in
neutrino heating on the 3D postbounce evolution in general and
on the SASI in particular. These simulations neither employed
an artificial inner boundary nor did they make any symmetry
assumptions or approximations for the gravitational field. The
resolution of our simulations is nearly twice as high and we
carried them out for nearly twice as long as the only previous
3D GR study of Kuroda et al. (2012).

For neutrinos, we used an energy-averaged (gray) three-
species neutrino leakage/heating scheme in the postbounce
phase, whose only free parameter is a scaling factor in the

energy deposition rate. The leakage scheme captures the essen-
tial aspects of neutrino cooling, lepton number exchange, and
neutrino heating as predicted by fully self-consistent 1D and
2D neutrino radiation-hydrodynamics simulations. Importantly,
our simulations do not suffer from the limitations of simpler
analytic “light-bulb” heating/cooling schemes, which cannot
capture the contraction and deleptonization of the protoneutron
star and result in artificially large shock radii and overestimated
advection times through the postshock region (S. Richers et al.
2013, in preparation). The light-bulb approach, due to its sim-
plicity and low computational cost, is being employed in many
contemporary 3D simulations (e.g., Nordhaus et al. 2010; Hanke
et al. 2012; Burrows et al. 2012; Murphy et al. 2012; Dolence
et al. 2013). However, as pointed out by Hanke et al. (2012) and
Müller et al. (2012a), light-bulb calculations may yield qualita-
tively incorrect results for the postbounce hydrodynamics and
the respective roles and relevance of neutrino-driven convection
and the SASI.

Our approach was designed specifically to avoid the problems
of the light-bulb scheme and provide a realistic postbounce
setting for more robust conclusions on the postbounce evolution
and the role of hydrodynamic instabilities. At the same time,
our leakage/scheme is still computationally much cheaper and
simpler than the approximate gray or energy-dependent 3D
neutrino transport schemes of Kuroda et al. (2012), Takiwaki
et al. (2012), Müller et al. (2012c), and Wongwathanarat et al.
(2010). This affords us with the ability to carry out parameter
studies with high numerical resolution as presented in this work
for the 27 M⊙ progenitor.

Müller et al. (2012a) previously carried out an axisymmetric
(2D) simulation of the same 27 M⊙ progenitor with their
2D GR radiation-hydrodynamics code. They found neutrino-
driven convection to be suppressed due to the high postbounce
accretion rate and, thus, short advection time through the
convectively unstable gain layer. The SASI is the primary
instability in their simulation and seeds convection, which grows
only as a secondary instability once the SASI has reached
nonlinear amplitudes.

Our models show instead early and strong growth of con-
vective instability. It is initially prompt, driven by the negative
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entropy gradient left behind by the stalling shock. Subsequently,
convection is driven by neutrino energy deposition in the gain
layer. Neutrino-driven convection first manifests itself in small-
scale local rising hotter and sinking cooler blobs of postshock
material. In models with strong neutrino heating that are trend-
ing toward explosion, the small-scale blobs combine over time
to a few large, near volume-filling high-entropy regions whose
expansion pushes out the shock. This was also observed in the
high-luminosity light-bulb simulations of Burrows et al. (2012)
and Dolence et al. (2013). These large blobs lead to a low-ℓ-
mode dominated structure of the expanding shock. The shock,
however, has a complicated substructure of protruding bumps
caused by smaller-scale plumes that perturb it locally. Mod-
els whose shock expansion becomes dynamical, surpass the
runaway explosion criterion τadv/τheat � 1 (Burrows & Goshy
1993; Janka 2001) and satisfy the antesonic condition of Pejcha
& Thompson (2012). Both criteria for explosion yield predic-
tions consistent with the trends in our models. Interestingly,
shortly after the τadv/τheat � 1 condition is met by our mod-
els, individual fluid cells behind the shock reach positive total
energy, indicating the transition to explosion.

While neutrino-driven convection is the fastest growing and
overall dominant instability, our analysis suggests that all of
our models exhibit some growth of clearly periodic low-ℓ
deformations of the shock front that are characteristic of the
linear phase of the SASI. As expected from linear perturbation
analysis, we find that the ℓ = 1,m = {−1, 0, 1} modes exhibit
the fastest growth. However, our results also show that the
saturation amplitudes of the oscillatory ℓ = 1,m = {−1, 0, 1}
modes are, in the best case, an order of magnitude smaller than
in Müller et al. (2012a). The SASI remains a sub-dominant
instability in all of our models. Furthermore, we find the
SASI to be strongest in the model with the least neutrino
heating and the weakest neutrino-driven convection. Models
with stronger heating and more vigorous convection have lower
saturation amplitudes of the oscillatory modes, but develop large
non-oscillatory deformations of ℓ = 1, 2, 3 character that
are caused by low-mode neutrino-driven convection and are
unrelated to the SASI.

Our simulations satisfy all the requirements laid out by Müller
et al. (2012a) for the development of strong SASI in the 27 M⊙
progenitor: GR gravity, an EOS that results in a fairly compact
protoneutron star, and the inclusion of all neutrino species
and deleptonization of the protoneutron star. Yet, our results
turn out to be very different from what Müller et al. (2012a)
found. What is the root cause of this discrepancy? On the one
hand, our simulations are 3D, splitting, on average, the 2D
ℓ = 1 SASI power across three azimuthal m modes. This may
explain lower saturation amplitudes, but cannot explain the early
growth of neutrino-driven convection that is absent from the
2D simulation of Müller et al. (2012a). On the other hand—as
we are convinced, more importantly—our simulations used a
central Cartesian AMR grid, which imparts perturbations of
order of 1%–10% onto the very early postbounce flow, seeding
prompt convection. This, in turn, acts as seed for neutrino-
driven convection in our models. The seed perturbations are
sufficiently large for convection to develop despite the high
accretion rate and correspondingly short advection time through
the gain layer. Neutrino-driven convection becomes dominant
and limits the growth of the SASI, in agreement with the 2D
work of Scheck et al. (2008). We expect any 3D simulation
relying on 3D Cartesian AMR with similar resolution to have
similarly large seed perturbations for convection. The recent

3D light-bulb simulations of Burrows et al. (2012), Murphy
et al. (2012), and Dolence et al. (2013) are all subject to these
perturbations.

The question of the magnitude of seed perturbations was
not raised by Müller et al. (2012a), who used a spherical-polar
grid that leads to only minute perturbations from the growth
of numerical noise during collapse. Is the almost perfectly
spherical postbounce state of Müller et al. (2012a) representative
of nature or should one expect significant asphericities to
be present in the outer core? Some guidance on the size
of perturbations induced by turbulent convection during late
time burning in core-collapse supernova progenitors is already
available from the 2D and 3D simulations of Meakin, Arnett,
and collaborators (Meakin 2006; Meakin & Arnett 2006, 2007b;
Arnett & Meakin 2011).

There are two important results from these multi-dimensional
stellar evolution calculations that pertain to the expected density
perturbation amplitudes in precollapse cores. First, 2D and 3D
simulations of the oxygen shell burning dominated phase in a
23 M⊙ star (Meakin & Arnett 2007b) have clarified the basic
mechanism responsible for the origin of the fluctuations. In
short, Meakin & Arnett (2007a) found that the root-mean-
square (rms) density fluctuations are largest at the convective
boundaries. By interpreting the dynamics of the convective
boundary layer in terms of g-modes excited by the turbulent
convection, it was shown that the rms density fluctuation
amplitude can be related directly to the background stellar
structure and the Mach number of the convective flow, with

δρ

ρ
∼ M2

c +
vsωBVMc

g
, (13)

where Mc is the rms Mach number of the convective flow, ωBV

is the Brunt–Väisälä frequency in the stable layer adjacent to
the convection zone, vs is the sound speed of the gas, and g
is the gravitational acceleration. The first term on the right-
hand side, which is very small, is relevant to the interior of the
convection zone, where density fluctuations arise solely from
the presence of velocity fluctuations in a nearly adiabatic layer.
The second term is significantly larger and applies to the stable
layers bounding the convection zone, reflecting the excitation
of fluid motions in these regions in the form of internal waves
(predominantly g-modes).

The 27 M⊙ progenitor of Woosley et al. 2002 has a turbulent
Mach number of ∼0.1 to 0.2 in the silicon burning convective
shell overlying the core, and two peaks in ωBV of importance:
the peak corresponding to the inner edge of the active silicon
burning shell (corresponding to the outer edge of the iron core),
and a peak deeper in associated with the outermost extent of the
now extinguished silicon burning core. Both peaks have values
of vsωBV/g of ∼1, indicating that rms density fluctuations at
these locations will be of order the turbulence Mach number
of the convection, or ∼10%–20%. The spike in ωBV associated
with the outer extent of the silicon core burning epoch will be
accreted into the shock within ∼15 ms of bounce, while the edge
of the iron core will be accreted a little later, at ∼60 ms after
bounce.

The second result from the multi-dimensional stellar convec-
tion simulations of Meakin and Arnett involves the interaction
of nuclear burning shells at late times. While the results on
boundary layer fluctuations described above are considered to
be robust by those authors, the presence of two or more convec-
tive shells in close proximity, as found in late burnings stages,
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has been found to drive additional motion at the convective
boundaries and correspondingly larger density fluctuation am-
plitudes. In the most relevant case of a silicon burning shell
around an iron core, the interaction between the silicon, oxy-
gen, neon, and carbon shells were found to produce a dramatic
increase in boundary layer distortion, eventually leading to a
complete disruption and mixing of the multi-shell burning re-
gion (Meakin 2006; Arnett & Meakin 2011). This result is likely
to be due, at least in part, to the inconsistency between the initial
stellar model used (based on mixing length theory) and a more
realistic turbulent convection as represented by the numerical
simulation. Judging the robustness of these shell-interaction re-
sults, however, awaits 3D simulations since all of the multi-shell
calculations performed to date have been restricted to 2D geom-
etry which is known to result in exaggerated velocities in regions
of thermal convection. From this body of work, it would appear
that the presence of density fluctuations with amplitudes of at
least 1%, and possibly as large as 10%–20%, should be expected
in the material accreting into the shock at early postbounce times
in a collapsing iron core.

The fast growth of neutrino-driven convection in our current
models is almost certainly caused by the large seed perturbations
from our Cartesian AMR grid. In 2D simulations, the growth
of neutrino-driven convection may go along with SASI growth
or, if not genuine SASI, then at least large-scale oscillatory
low-ℓ deformations of the shock front (Müller et al. 2012a;
Burrows et al. 2012; Fernández & Thompson 2009a; Scheck
et al. 2008). Our 3D models do not exhibit any large-scale oscil-
latory features. Rather, models evolving toward an explosion de-
velop non-oscillatory large-scale asphericities at late times and
produce a globally aspherical explosion morphology without a
need for SASI-driven ℓ = 1 deformations. This qualitative find-
ing is in agreement with the results of the convection-dominated
3D Newtonian light-bulb calculations of Burrows et al. (2012)
and Dolence et al. (2013). The late-time development of
SASI-like oscillatory behavior seen in 2D simulations that
are initially convection dominated (e.g., Marek & Janka 2009;
Müller et al. 2012b) may thus be an artifact of axisymmetry, but
further work is required to solidify this conclusion.

The next galactic core-collapse supernova will reveal its in-
ner workings by means of its neutrino and GW signals. Both
will provide key insight into the thermodynamics and multi-
dimensional dynamics of the protoneutron star and the post-
shock region (e.g., Ott 2009; Lund et al. 2010, 2012; O’Connor
& Ott 2013). While our neutrino treatment is too simplistic to
yield quantitatively interesting predictions of the neutrino sig-
nal, we are in a good position to study the GW emission from
accelerated quadrupole mass motions in our models: For the first
time, we have extracted GWs from full 3D GR collapse and post-
bounce core-collapse supernova simulations. We find a strong
burst of GWs associated with early-postbounce prompt convec-
tion with frequencies around ∼100–200 Hz, a subsequent almost
quiescent phase, followed by higher-frequency (400–1000 Hz)
emission, whose amplitudes are dominated by the deceleration
of undershooting convective plumes at the edge of the protoneu-
tron star (cf. Murphy et al. 2009). If convection (prompt and/or
neutrino-driven) does not develop early, the GW signal would
not have a strong initial burst, but rather a slow rise to smaller
amplitudes at later times, when the SASI becomes strong. This
is a key difference and may allow GW data analysts to dis-
tinguish between convection-dominated and SASI-dominated
postbounce evolution in the next galactic core-collapse super-
nova. The design sensitivities of advanced-generation GW de-

tectors such as Advanced LIGO, Advanced Virgo, or KAGRA
are likely to be sufficient to detect the collapse and neutrino-
driven explosion in our 27 M⊙ progenitor throughout the Milky
Way. While different in detail, our results for the GW signature
are generally consistent with what was found for other progeni-
tors in the 2D first-principles simulations of Marek et al. (2009)
and Yakunin et al. (2010). Our GW signals have higher ampli-
tudes and characteristic frequencies than predicted by the 3D
simulations of Müller et al. (2012c), who employed an artifi-
cial inner boundary that was moved in according to an analytic
prescription.

There are a number of shortcomings and limitations of the
simulations presented here that must be mentioned and can be
removed only by future work. As is well known and has been
pointed out recently by Hanke et al. (2012) in the core-collapse
context, in 3D, turbulent power cascades to small scales. Low
resolution in 3D may artificially keep power at large scales
and may thus lead to an overestimate of the positive effect
of neutrino-driven convection. While our effective angular and
radial resolution in the postshock gain layer is comparable to
the highest resolution considered by Hanke et al. (2012), we
agree with their assessment that understanding the resolution
dependence of 3D results is of great importance. We will carry
out a resolution study in future work.

The second major limitation of our simulations is our Carte-
sian AMR grid and the fact that we must let the nascent su-
pernova shock pass two mesh refinement boundaries before
tracking its further evolution by AMR. This induces large per-
turbations leading to the growth of prompt and neutrino-driven
convection in all of our models. These large and essentially
unavoidable seed perturbations for prompt and neutrino-driven
convection make it difficult to draw conclusions on which hy-
drodynamic instability dominates in the early postbounce phase.
This limitation is shared by other Cartesian AMR schemes.
It could possibly be avoided in future work by extending our
spherical-polar grid blocks all the way into the protoneutron star
core and using a single high-resolution Cartesian mesh only in
the innermost few kilometers. Also in future work, we intend to
carry out a study in which we map a postbounce profile from
a 1D collapse simulation onto our 3D grid after the shock has
passed the radii of the inner refinement levels. This should al-
low us to investigate the role of seed perturbations in a more
controlled way.

A third major limitation of our work is the reliance on our
simple gray heating/leakage scheme. While superior to the
light-bulb approach, it cannot replace the energy-dependent
neutrino radiation-hydrodynamics treatment that has proven to
be crucial for reliable conclusions on the neutrino mechanism
(e.g., Müller et al. 2012b and references therein). The set of
3D GR hydrodynamics simulations presented here required
about ∼20 million CPU hours to complete. Adding energy-
dependent 3D neutrino transport will increase the computational
complexity by an order of magnitude. Novel, highly efficient and
scalable approaches to 3D neutrino transport will be needed to
address this problem (Sumiyoshi & Yamada 2012; Abdikamalov
et al. 2012; Zhang et al. 2013; Radice et al. 2012).
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