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Abstract: The present research paper consists of the study of an η1-Einstein soliton in general
relativistic space-time with a torse-forming potential vector field. Besides this, we try to evaluate
the characterization of the metrics when the space-time with a semi-symmetric energy-momentum
tensor admits an η1-Einstein soliton, whose potential vector field is torse-forming. In adition, certain
curvature conditions on the space-time that admit an η1-Einstein soliton are explored and build up
the importance of the Laplace equation on the space-time in terms of η1-Einstein soliton. Lastly, we
have given some physical accomplishment with the connection of dust fluid, dark fluid and radiation
era in general relativistic space-time admitting an η1-Einstein soliton.

Keywords: general relativistic space-time; torse-forming vector fields; η1-Einstein soliton; Einstein’s
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1. Background and Motivations

Throughout the article, we shall utilize the following acronyms: GRS—general rela-
tivistic space-time, TFVF—torse-forming vector field, and EMT—energy-momentum tensor.
Ricci’s soliton is well known among theoretical physicists because it is linked to string
theory. It is well known that the theoretical physicists are interested in the Ricci soliton due
to its association with string theory. In recent times, Ricci solitons are quite interesting in the
field of differential geometry and geometric analysis as they characteristically present the
Einstein metric. As a result, Ricci solitons in pseudo-Riemannian settings are extensively
studied, and Hamilton introduced the concept of Ricci flow and extended it to address
Thurston’s geometric hypothesis. A Ricci soliton is a location in Hamilton’s Ricci flow that
is fixed (see details [1,2]) and an obvious extension of Einstein’s metric is defined on a
pseudo-Riemannian manifold (M, g) by

1
2

£V g + Ric = Λ1g, (1)

where £V stands for the Lie-derivative in the way of V ∈ χ(M), Λ1 is a constant and the
Ricci tensor of g is presented by Ric. The Ricci soliton is classified as follows:

(i) If Λ1 < 0, then the Ricci soliton is said to be shrinking.
(ii) for Λ1 > 0, then it is said to be expanding.
(iii) If Λ1 = 0, then it is implied to be steady.
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Pigoli et al. [3] began by assuming the soliton constant Λ1 becomes a smooth function
on M and denoted as a Ricci almost soliton. Besides, Barros et al. proved a Ricci almost
soliton which belongs to the details in [4,5].

Cho and Kimura [6] introduced the concept of an η1-Ricci soliton as a generalization
of Ricci soliton. An η1-Ricci soliton equation is given by:

£V g + 2S + 2Λ1g + 2µ1η1 ⊗ η1 = 0 (2)

for real constants Λ1 and µ1.
Now, the assumption of Einstein soliton was brought to light by G. Catino and L. Mazz-

ieri [7] in 2016, which set up self-similar solutions to Einstein flow,

∂

∂t
g(t) = −2S(g(t)), t ∈ [0, I]

where S, g stand for Ricci tensor, Riemannian metric. The equation of the η1-Einstein
soliton [8] is introduced by

£ξ1 g + 2S + (2Λ1 − r)g + 2µ1η1 ⊗ η1 = 0, (3)

where £ξ1 is the Lie derivative endowed with the vector field ξ1, Λ1 and µ1 are real constants
and r stands for scalar curvature. For µ1 = 0, the data (g, ξ1, Λ1) are termed an Einstein
soliton [7].

In [9], authors proved the space-time admitting Ricci soliton. Later, Blaga [10] evolved
a depiction of the perfect fluid space-time admitting η1-Ricci soliton and η1-Einstein soli-
tons. Ricci solitons associated with perfect fluid space time were synthesized by Venkate-
sha et al. [11]. Some Ricci soliton endowed space-time has been explored by several authors
(see [12–14]) extensively in different ways. The setting of contact and complex mani-
folds that contain Ricci solitons and Einstein solitons has been investigated very recently
in [15–24]; see their generalizations. We can find more motivations of our work from some
papers (see [25–35]). The enchantment of this universe is its symmetry, i.e., the symmetries
of the universe force objects to keep their movement. However, each symmetry imposes
the conservation of a quantity over time. For translational symmetry, this quantity is the
momentum. For rotational symmetry, this quantity is the angular momentum. For tem-
poral symmetry, this quantity is energy. It is also one of the scientific essences that may
be utilized to explain anything from natural laws to other physical phenomena such as
general relativity. In the early 19th century, Albert Einstein established the “Theory of
General Relativity” (GR).

The EMT T1 of type (0, 2) is of the form [36] for a perfect fluid space-time,

T1(V2, V3) = ρg(V2, V3) + (σ + ρ)η1(V2)η1(V3), (4)

where the energy density and isotropic pressure, respectively, are denoted by σ and ρ.
Moreover, η1(V2) = g(X, ξ1) is 1-form, which corresponds to the unit vector ξ1 and
g(ξ1, ξ1) = −1.

Furthermore, if ρ = σ, the ideal fluid is considered stiff matter [37]. Zel’dovich [38]
initially established a stiff matter equation of state, which he employed in his cosmological
model in that the primeval cosmos is considered to be a cold gas of baryons [38]. According
to Zeldovich, the sound velocity of a stiff matter fluid is equivalent to the velocity of light.
The radiation era was preceded by the stiff matter era with ρ = σ

3 , the dark matter era with
ρ = −σ, and the dust matter era with ρ = 0, according to [37,39]. It also emerged in certain
cosmological theories in which dark matter is comprised of relativistic self-gravitating
Bose–Einstein condensate, as cited by [40].
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2. GRS with TFVF

Without the cosmological constant, Einstein’s field equation is as follows:

S(V2, V3)−
r
2

g(V2, V3) =κ1T1(V2, V3), (5)

where the EMT is denoted by T1, and the gravitational constant is κ1 6= 0. The Equation (5)
suggests that matter dictates the geometry of space-time and that matter’s velocity is
dictated by the metric tensor of the non-flat space. Let (M4, g) be a GRS that fulfills (5).
Then, contracting the Equation (5) and seeing g(ξ1, ξ1) = −1 to yield

r = −κ1τ1, (6)

where τ1 = Tr(T1). Now consider a specific scenario in which ξ1 denotes a TFVF of the
type [8,41].

∇V2 ξ1 = V2 + η1(V2)ξ1. (7)

We may also prove the following relations in a GRS if the vector field ξ1 is
torse-forming.

∇ξ1 ξ1 = 0, (8)

(∇Xη1)(V3) = g(V2, V3) + η1(V2)η1(V3), (9)

R(V2, V3)ξ1 = η1(V3)V2 − η1(V2)V3, (10)

η1(R(V2, V3)Z1) = η1(V2)g(V3, Z1)− η1(V3)g(V2, Z1) (11)

∀ V2, V3, Z1. Utilizing (7), we conclude the following:

(£ξ1 g)(V2, V3) =g(∇V2 ξ1, V3) + g(V2,∇V3 ξ1)

=2[g(V2, V3) + η1(V2)η1(V3)] (12)

∀ V2, V3.

3. Emergence of η1-Einstein Solitons on GRS

Let the metric of a GRS (M4, g) satisfy (3) for the η1-Einstein soliton equation that the
vector field V potential replaces with ξ1 for torse-forming. Then (12) and (3) identities give
the following:

S(V2, V3) = −[Λ1 + 1− r
2
]g(V2, V3)− (µ1 + 1)η1(V2)η1(V3) (13)

∀ V2, V3. Now, we use the contract property in the above equation to find

r = 4Λ1 − µ1 + 3. (14)

We scrutinize r in (14) with (6) to obtain

µ1 = 4Λ1 + 3 + κ1τ1. (15)

Let a semi-symmetric EMT T1 be given as

R(V2, V3) · T1 = 0, (16)

where the derivation on the tensor T1 delas with R(V2, V3). From Equation (16), we imply
the following

(R(V2, V3) · T1)(Z1, U1) = 0, (17)

which implies that

T1(R(V2, V3)Z1, U1) + T1(Z1, R(V2, V3)U1) = 0. (18)
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Now using (5), then (18), we have the following form

S(R(V2, V3)Z1, U1) + S(Z1, R(V2, V3)U1) = 0, (19)

that gives R(V2, V3) · S = 0, which means the space-time is Ricci semi-symmetric [42].
In view of (13) and (19), we find

(µ1 + 1)[η1(R(V2, V3)Z1)η1(U1) + η1(Z1)η1(R(V2, V3)U1)] = 0. (20)

Then we plug V2 = U1 = ξ1 in (20) and employing (11) to construct µ1 = −1. Putting
µ1 = −1 in (15), we have

Λ1 = −κ1τ1

4
− 1.

This encourages the following:

Theorem 1. Let semi-symmetric EMT endowed with GRS (M4, g) contain an η1-Einstein soliton
(g, ξ1, Λ1, µ1), such that ξ1 is a TFVF. Then µ1 = −1 and Λ1 = − κ1τ1

4 − 1, where τ1 is the trace
of the EMT.

Definition 1. A space-time is present to beW2-flat if itsW2-curvature tensor on n-dimensional
manifold [43]

W2(V2, V3, Z1, U1)

= R̀(V2, V3, Z1, U1) +
1

n− 1
[g(V2, Z1)S(V3, U1)− g(V3, Z1)S(V2, U1)] (21)

∀ V2, V3, Z1 and U1, identically zero.

Consider (M4, g) to be a GRS that isW2-flat. Then from (21), we have

R̀(V2, V3, Z1, U1) = −
1
3
[g(V2, Z1)S(V3, U1)− g(V3, Z1)S(V2, U1)]. (22)

We set V2 = U1 = ei in (22), then tracing over 1 ≤ i ≤ 4 and then restoring the
formulation of S from (13) to derive

4
3

[(
Λ1 + 1− r

2

)
g(V3, Z1) + (µ1 + 1)η1(V3)η1(Z1)

]
+

r
3

g(V3, Z1) = 0. (23)

Using (6), the above equation becomes[
4
(

Λ1 + 1 +
κ1τ1

2
)
)
− κ1τ1

]
g(V3, Z1) + 4(µ1 + 1)η1(V3)η1(Z1) = 0. (24)

We take V3 = Z1 = ξ1 in (24) to yield

Λ1 − µ1 = −κ1τ1

4
. (25)

Inserting the value of µ1 given in (15), the preceding equation has the following form:

Λ1 = −κ1τ1

4
− 1. (26)

So, we established the following theorem:

Theorem 2. Let (M4, g) be a GRS, which is W2-flat and admits an η1-Einstein soliton (g, ξ1,
Λ1, µ1), where ξ1 is a TFVF. Then Λ1 = − κ1τ1

4 − 1.
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Definition 2. If its pseudo-projective curvature tensor P accordingly [44] in space-time is equal
to zero

P(V2, V3)Z1 =aR(V2, V3)Z1 + b[S(V3, Z1)V2 − S(V2, Z1)V3]

− r
n

( a
n− 1

+ b
)
[g(V3, Z1)V2 − g(V2, Z1)V3] (27)

∀ V2, V3, Z1 and a, b 6= 0 are constants, then space-time is preseted as pseudo-projectively flat.

Equation (27) reduces the following for exceptional case a = 1, b = − 1
n−1

P(V2, V3)Z1 = R(V2, V3)Z1 −
1

(n− 1)

[
S(V3, Z1)V2 − S(V2, Z1)V3

]
= P(V2, V3)Z1. (28)

Applying the inner product with W in (27) for pseudo-projective flat GRS (M4, g),
we have

aR̀(V2, V3, Z1, U1) =
r
4

[ a
3
+ b
]
[g(V3, Z1)g(V2, U1)− g(V2, Z1)g(V3, U1)]

−b[S(V3, Z1)g(V2, U1)− S(V2, Z1)g(V3, U1)]. (29)

Setting V2 = U1 = ei in (29), tracing accordingly i, 1 ≤ i ≤ 4 and reconstitution, the
formula of S in (13) gives[ r

4
+ Λ1 −

r
2
+ 1
]
(a + 3b)g(V3, Z1) + (a + 3b)(µ1 + 1)η1(Y)η1(Z1) = 0. (30)

We substitute Y = Z = ξ1 into Equation (30) to give

µ1 −Λ1 = − r
4

, (31)

provided a + 3b 6= 0. Now, we utilize identity (6) and locum the value of µ1 from the
identity (15) to yield

Λ1 = −κ1τ1

4
− 1. (32)

Hence, we find the following theorem:

Theorem 3. Let pseudo-projectively flat GRS (M4, g) contain an η1-Einstein soliton (g, ξ1, Λ1, µ1)
such that ξ1 is a TFVF. Then Λ1 = − κ1τ1

4 − 1, provided a + 3b 6= 0.

Definition 3. A space-time is presented to be con-harmonically flat on n-dimensional manifold if
its con-harmonic curvature tensorH [45]

H(V2, V3)Z1 =R(V2, V3)Z1 −
1

(n− 2)
[g(V3, Z1)QV2 − g(V2, Z1)QV3

+S(V3, Z1)V2 − S(V2, Z1)V3] (33)

for all fields V2, V3, Z1 identically vanishes.

For con-harmonically flat GRS (M4, g) and implementation inner product with U1
in (33), we have

R̀(V2, V3, Z1, U1) =
1
2
[g(V3, Z1)S(V2, U1)− g(V2, Z1)S(V3, U1)

+S(V3, Z1)g(V2, U1)− S(V2, Z1)g(V3, U1)]. (34)
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Applying summation over 1 ≤ i ≤ 4 after inserting V2 = U1 = ei in (34) and obtained
formula for S from (13), we acquire

r = 0, (35)

which implies that the space-time is flat. Next, by using (35), Equation (14) becomes

Λ1 =
µ1

4
− 3

4
. (36)

Therefore, we generate the following statement of the theorem:

Theorem 4. Let conharmonically flat GRS (M4, g) consist of an η1-Einstein soliton (g, ξ1, Λ1, µ1)
such that ξ1 is a TFVF. Then the space-time becomes flat and Λ1 = µ1

4 −
3
4 .

The Q-curvature tensor formula for n-dimensional Riemannian manifold was initiated
by Mantica and Suh [46] and presented notation Q is derived as

Q(V2, V3)Z1 = R(V2, V3)Z1 −
ψ

(n− 1)
[g(V3, Z1)V2 − g(V2, Z1)V3], (37)

where ψ is an arbitrary scalar function.

Definition 4. If Q-curvature tensor is zero identically, then a space-time is Q-flat.

The following formula derived by considering GRS (M4, g) is Q-flat and exploring
inner product with U1 in (37)

R̀(V2, V3, Z1, U1) =
ψ

3
[g(V3, Z1)g(V2, U1)− g(V2, Z1)g(V3, U1)]. (38)

Tracing (38) by setting V2 = U1 = ei, we arrive at

S(V3, Z1) = ψg(V3, Z1). (39)

The above conclusion provides that the space-time is Einstein. Entering V3 = Z1 = ξ1
in (39) and utilizing Equation (13) for S, it provides

µ1 −Λ1 +
r
2
= ψ. (40)

Now, we exchange the value of µ1 from the identity (15) to acquire

Λ1 =
2ψ− κ1τ1

6
− 1. (41)

By previous conclusion, we obtain the following.

Theorem 5. Let a Q-flat GRS (M4, g) consisting η1-Einstein soliton (g, ξ1, Λ1, µ1) that ξ1 is a
TFVF. Then the space-time converts into Einstein and provides Λ1 = 2ψ−κ1τ1

6 − 1.

In (3), the metric of a GRS (M4, g) satisfies the η1-Einstein soliton (g, V, Λ1, µ1), then
the Lie derivative (£V g) as

(£V g)(V2, V3) = g(∇V2 V, V3) + g(V2,∇V3 V),
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and with implementation (3), we have

S(V2, V3) =−
1
2
[g(∇V2 V, V3) + g(V2,∇V3 V)]−

[
Λ1 −

r
2

]
g(V2, V3)

−µ1η1(V2)η1(V3). (42)

Substituting V2 = V3 = ei (42) implies that

r = −div(V)− 4
[
Λ1 −

r
2

]
+ µ1, (43)

such that div(V) stands for the divergence of V. Now, in light of (6) and making use of µ1
from the identity (15), the previous equation reads

div(V) = 3. (44)

If we consider V = grad( f ), for a smooth function f , the identity (44) turns into

∆( f ) = 3, (45)

where ∆( f ) is the Laplacian equation confirmed by f . This leads to the following:

Theorem 6. Assuming that (M4, g) is a GRS that admits an η1-Einstein soliton (g, V, Λ1, µ1),
then the Laplacian Equation (45) is satisfied for the Laplacian, where a smooth function V = f .

4. η1-Einstein Soliton with Dust Fluid GRS

For the EMT defined in [47] and pressure-less fluid space-time, we have

T1(V2, V3) = ση1(V2)η1(V3). (46)

Now, with the help of the identities (5) and (46), we obtain

S(V2, V3) =
r
2

g(V2, V3) + κ1ση1(V2)η1(V3). (47)

Taking into account (3), Equation (47) turns into the following

(£V g)(V2, V3) + 2Λ1g(V2, V3) + 2(κ1σ + µ1)η1(V2)η1(V3) = 0. (48)

Tracing after putting V2 = V3 = ei in (48), we have

Λ1 =
µ1 + κ1σ

4
− div(V)

4
. (49)

So, from the previous identity, we obtain

Theorem 7. If a dust fluid GRS contains an η1-Einstein soliton (g, V, Λ1, µ1),
then Λ1 = µ1+κ1σ

4 − div(V)
4 .

Utilizing (49), we can give the following remark:

Remark 1. If a dust fluid GRS contains an η1-Einstein soliton (g, V, Λ1, µ1),
then Λ1 = µ1+κ1σ

4 iff the vector field V is solenoidal.

5. η1-Einstein Soliton on Dark Fluid GRS

In this space-time, ρ is organized by σ. Then, the structure of EMT (4) is

T1(V2, V3) = ρg(V2, V3). (50)
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Combining (5) and (50), we derive

S(V2, V3) =
[
κ1ρ +

r
2

]
g(V2, V3). (51)

In view of (3), the above equation takes the form

(£V g)(V2, V3) + (2Λ1 + 2κ1ρ)g(V2, V3) + 2µ1η1(V2)η1(V3) = 0. (52)

Tracing Equation (52) after invoking V2 = V3 = ei, we have

Λ1 =
µ1

4
− κ1ρ− div(V)

4
. (53)

So, we have finalized the following result:

Theorem 8. If an η1-Einstein soliton (g, V, Λ1, µ1) is associated with dark fluid GRS, then the
scalar curvature turns into Λ1 = µ1

4 − κ1ρ− div(V)
4 .

In view of (53), we achieve

Remark 2. If a dark fluid GRS satisfies an η1-Einstein soliton (g, V, Λ1, µ1), then the scalar
curvature develops into Λ1 = µ1

4 − κ1ρ iff the vector field V is solenoidal.

6. η1-Einstein Soliton Admitting Radiation Era in GRS

Now, characterization of radiation era is denoted by ρ = σ
3 in the perfect fluid space-

time. So, the feature of EMT (4) develops into

T1(V2, V3) = ρ[g(V2, V3) + 4η1(V2)η1(V3)]. (54)

Using (5) and (54), we obtain

S(V2, V3) =
[
κ1ρ +

r
2

]
g(V2, V3) + 4κ1ρη1(V2)η1(V3). (55)

Equation (3) provides the following after combining with (55):

(£V g)(V2, V3) + (2Λ1 + 2κ1ρ)g(V2, V3) + (8κ1ρ + 2µ1)η1(V2)η1(V3) = 0. (56)

Tracing Equation (56) after replacing V2 = V3 = ei provides

Λ1 =
µ1

4
− div(V)

4
. (57)

So, we obtain the next theorem as:

Theorem 9. If a radiation era GRS contains an η1-Einstein soliton (g, V, Λ1, µ1), then Λ1 =
µ1
4 −

div(V)
4 .

Also using the identity (57), we obtain

Remark 3. If a radiation era GRS admits an η1-Einstein soliton (g, V, Λ1, µ1), then V is solenoidal
iff Λ1 = µ1

4 .

7. Conclusions Remark

We investigated the η1-Einstein soliton which is revealed by the space-time of general
relativity with the semi-symmetrical tensor energy-momentum and determined the nature
of the metrics, such that the potential vector field is twisted. Next, we established some
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interesting and needful results forW2−flat space-time, pseudo-projectively flat and Q-flat,
admitting the η1-Einstein soliton. We have also shown that if the space-time is conharmon-
ically flat and admits a η1-Einstein soliton, whose potential vector field is torse-forming,
then the space-time becomes flat. We assumed the potential vector fields are of the gradient
type of η1-Einstein soliton, thus the Laplace equation has been constructed.

The gravitational field contains the space-time curvature with the origin as an EMT
in General Theory of Relativity. In mathematical language, the most effective tools for
understanding general relativity are the relativistic fluids models and differential geometry.
The geometry of the Lorentzian manifold starts with the investigation of the causal character
of the manifold’s vectors; as a result of this causality, the Lorentzian manifold becomes
a convenient choice for the study of general relativity. As a matter of the substance of
space-time, the EMT plays a crucial role; the matter is considered to be fluid with density
and pressure, as well as kinematic and dynamical characteristics such as velocity, vorticity,
shear and expansion [44,46,48–52]. The η1-Einstein soliton is important as it can help in
understanding the concepts of energy and entropy in general relativity. This property is
the same as that of the heat equation due to which an isolated system loses the heat for a
thermal equilibrium.
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