
EJTP 11, No. 31 (2014) 177–202 Electronic Journal of Theoretical Physics

General Relativity Extended to non-Riemannian
Space-time Geometry

Yuri A.Rylov∗ †‡

Institute for Problems in Mechanics, Russian Academy of Sciences,
101-1, Vernadskii Ave., Moscow, 119526, Russia

Received 17 April 2014, Accepted 19 June 2014, Published 15 September 2014

Abstract: The gravitation equations of the general relativity, written for Riemannian space-

time geometry, are extended to the case of arbitrary (non-Riemannian) space-time geometry.

The obtained equations are written in terms of the world function in the coordinateless form.

These equations determine directly the world function, (but not only the metric tensor). As

a result the space-time geometry appears to be non-Rieamannian. Invariant form of the

obtained equations admits one to exclude influence of the coordinate system on solutions of

dynamic equations. Anybody, who trusts in the general relativity, is to accept the extended

general relativity, because the extended theory does not use any new hypotheses. It corrects

only inconsequences and restrictions of the conventional conception of general relativity. The

extended general relativity predicts an induced antigravitation, which eliminates existence of

black holes.
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1. Introduction

In this paper we consider dynamic equations for the gravitational field which are obtained

at the generalization of the relativity theory on the case of the most general space-time

geometry. The general relativity supposes, that the Riemannian geometry is the most

general space-time geometry. This supposition is based on our insufficient knowledge of

a geometry, when one supposes that any geometry is axiomatizable. It means, that any
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geometry is constructed as a logical construction. In reality there exist nonaxiomatizable

space-time geometries [1], which are constructed by means of the deformation principle [2]

as a deformation of the proper Euclidean geometry. This geometry is described completely

by the world function [3] and only by the world function. Such a geometry is called a

physical geometry, because physicists need such a geometry, which is a science on location

of geometrical objects and on their shape, (but not as a logical construction). Physicists

use a geometry as a tool for investigation of the space-time properties. Physicists are

indifferent to the question, whether or not a geometry is a logical construction.

Physical geometry may be continuous, or discrete. It may be even granular, i.e. partly

continuous and partly discrete. The physical geometry is described by the same manner

in all cases. Properties of the physical geometry are determined only by properties of

the world function (but not by properties of the point set, where the geometry is given).

As a result the physical geometry may be formulated in the coordinateless form (only in

terms of the world function). A good illustration of this fact is the following example.

Let the proper Euclidean geometry be given in the Cartesian coordinates (x, y) on

the square [0, 1] × [0, 1]. It means, that the world function is given on this square. Let

us map the square [0, 1]× [0, 1] onto the one-dimensional segment [0, 1] described by the

coordinate X. Let the mapping (x, y) → X be one-to-one. It is possible only, if the

mapping is discontinuous at any point. For instance, the mapping can be realized as

follows. Let coordinates x, y, X be presented in the form of decimal fractions

x = 0.α1α2α3...., y = 0.β1β2β3...., X = 0.α1β1α2β2α3β3... (1)

where α and β are decimal ciphers. The formulas (1) realizes one-to-one mapping (x, y) ↔
X. Now the world function σ is given on one-dimensional segment [0, 1].

σ (X1;X2) = σ (x1, y1;x2, y2)

Nevertheless, considering the world function on the one-dimensional segment [0, 1], one

can reconstruct the proper Euclidean geometry. In particular, one can determine, that

the geometry on the segment [0, 1] is the two-dimensional Euclidean geometry (in the

sense, that the maximal number of linear independent vectors is equal two), although the

geometry is given on one-dimensional segment.

For construction of a physical geometry it is sufficient to give a world function for

any pair of points of the point set, where the geometry is given. One does not need to

prove numerous theorems and to test a compatibility of geometric axioms. The world

function σ (P,Q) = 1
2
ρ2 (P,Q) is a function of two points P and Q, where ρ (P,Q) is a

distance between the two points. The number of possible world functions is much more,

than the number of infinitesimal intervals dS2 = gik (x) dx
idxk, which are functions of

only one point. In particular, there is only one isotropic uniform geometry (the geometry

of Minkowski) in the set of Riemannian geometries. It is described by the world function

σM. In the set of physical geometries any geometry is isotropic and uniform, if it is

described by the world function σ = F (σM), where F is an arbitrary function, having

the property F (0) = 0 and σM is the world function of the geometry of Minkowski.
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In particular, the space-time geometry, described by the world function

σ = σ (σM) = σM + λ2
0sgn (σM) , λ2

0 =
~
2bc

= const (2)

is uniform and isotropic. Here ~ is the quantum constant, c is the speed of the light and b is

some universal constant. Besides, this geometry is nonaxiomatizable and discrete. In this

space-time geometry any motion of a free pointlike particles is multivariant (stochastic).

Statistical description of this stochastic motion is equivalent to the quantum description in

terms of the Schrödinger equation [4]. This circumstance admits one to obtain a statistical

foundation of quantum mechanics and to interpret quantum effects as geometrical effects.

It admits one to exclude the quantum principles from the set of prime physical principles

and to reduce the number of physical essences, what is important for fundamental physical

theories.

By definition the special relativity is a consideration of physical phenomena in the

flat uniform isotropic space-time. In the set of Riemannian geometries there is only one

such a geometry. It is the space-time geometry of Minkowski. Description of physical

phenomena in the geometry (2) should be qualified as an extended special relativity,

because the space-time geometry (2) is isotropic and uniform, but it is non-Riemannian.

Statistical foundation of quantum theory shows also, that the real space-time ge-

ometry may be non-Riemannian, and one cannot restrict oneself, considering only the

Riemannian space-time geometries.

Generalization of the general relativity on the case of physical space-time geometry

appears to be possible only at taking into account two essential clauses:

(1) Consideration of physical geometries.

(2) Use of adequate relativistic concepts, and, in particular, a use of the relativistic

concept of the events nearness.

The reasons of violation of the first condition are investigated in [5].

In the beginning of the twentieth century the theoretical physics developed on the

way of geometrization. The special relativity and the general relativity were only stages

of this geometrization. But the physics geometrization appeared to be restricted by

our poor knowledge of geometry, when one knew only axiomatizable geometries. One

was not able to work with discrete geometries and geometries with restricted divisibility.

Quantum effects might be explained easily by multivariance of the space-time geome-

try. However, the property of multivariance [6] was not known in the beginning of the

twentieth century, and scientists were forced to introduce new (quantum) principles of

dynamics. As a result the quantum paradigm of the microcosm physics development

appeared. The quantum paradigm dominated during the whole twentieth century. The

quantum paradigm contains more essences, than it is necessary.

In the end of the twentieth century, when our knowledge of geometry became more

complete, we may return to the program of further geometrization of physics. The ge-

ometrical paradigm appeared to be possible, when, using classical dynamic principles,

quantum effects are freely explained by the properties of the space-time geometry. The

geometrical paradigm is more attractive, because it uses less essences, than the quantum
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paradigm does. To replace the quantum paradigm by the geometrical one, it is necessary

to generalize the special relativity and the general relativity on the case of an arbitrary

physical geometry of space-time.

The physical geometry is a geometry, which is described completely by the world

function, (world function is a half of the squared distance). Practically, the physical

geometry is a metric geometry, which is liberated from all constraints on metric except

the constraint, that the world function (or metric) is equal to zero for two coinciding

points. The physical geometry is a very simple construction [1, 2]. For constructing

the physical geometry one does not need to formulate axioms and to prove numerous

theorems. It is sufficient to know the proper Euclidean geometry, which is used as a

standard physical geometry. All definitions of the proper Euclidean geometry GE may be

formulated in terms of the Euclidean world function σE. Replacing the Euclidean world

function σE in all definitions of the Euclidean geometry by the world function σ of the

physical geometry G, one obtains all definitions of the physical geometry G, described by

the world function σ.

Besides, the physical geometry is a monistic conception, which is described by the only

fundamental quantity σ. All other geometrical quantities and concepts are expressed via

fundamental quantity automatically. This circumstance admits one to modify a physical

geometry easily, because all other geometric quantities concepts are modified automati-

cally at modification of the fundamental quantity σ. [7]. Program of physics geometriza-

tion admits one to construct a monistic conception of physics with the fundamental

quantity σ.

The set of all Riemannian geometries is only a small part of the set of all physical

geometries. A generalization of the relativity theory on the case of arbitrary physical ge-

ometry admits one to obtain such results, which cannot be obtained in the framework of

the Riemannian geometry. The generalization of the special relativity (motion of particle

in the given space-time geometry) on the case of arbitrary physical space-time geometry

has been made already [8]. A generalization of description of the matter influence on the

arbitrary space-time geometry met some problems. These problems are connected with

the fact, that in the relativity theory some basic concepts are taken from the nonrelativis-

tic physics. Concepts of nonrelativistic physics are inadequate for consecutive geometric

description of the relativity theory and for generalization of this description on the case

of a more general space-time geometry.

Practically all physical phenomena on the Earth are nonrelativistic. At first, we study

nonrelativistic physics with its nonrelativistic concepts. Relativistic effects appeared as

corrections to nonrelativistic physics. In the beginning of the twentieth century the

relativistic physics was presented in terms of slightly corrected nonrelativistic concepts.

For instance, the relativity principle has been presented as invariance of the dynamic

equations with respect to Lorentz transformation and as existence of the supreme speed

of the interaction propagation. Such a formulation is useful for pedagogical goals, when

one needs to transit from concepts of nonrelativistic physics to relativistic ones. However,

such a formulation is not effective, when one tries to develop the relativistic physics.
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In this case one should use concepts, which are adequate for relativistic physics. In

particular, the relativity principle is formulated in adequate concepts as follows. The

relativistic physics is a physics in the pseudo-Euclidean space-time geometry of index 1

(geometry of Minkowski or that of Kaluza-Klein). All other details of description are

corollaries of properties of the space-time geometry. For instance, properties, concerning

the role of the light speed, are pure geometrical properties of the space-time.

Unfortunately, the formulation of the relativity theory in adequate (geometrical) terms

is used rare. The main difference of space-time geometry in a relativistic theory from

that in the non-relativistic (Newtonian) physics is as follows. Relativistical event space

(space-time) geometry is described by one invariant (space-time interval), whereas in the

Newtonian physics the event space is described by two invariants (spatial distance and

temporal interval). Sometimes one does not mention this difference in textbooks. Instead

one speaks on difference in transformation laws. In reality, the difference in the number of

invariants is a fundamental property, whereas the difference of the transformation laws is

a very special property, because it is essential only for flat space-time geometry. Besides,

the transformational properties are used only at description at some coordinate system.

They are useless at the coordinateless description. This difference of formulations is not

essential, when the theory is used for calculation of concrete physical effects. However,

this difference becomes essential, if one tries to obtain a generalization of the relativity

theory on the case of the arbitrary space-time geometry.

For instance, the concept of a pointlike particle as a point in the configuration space

is a nonrelativistic concept. It needs concepts of velocity and acceleration of this particle.

These concepts are secondary concepts, which can be introduced only after introduction

of the linear vector space and, in particular of a coordinate system. These concepts are

inadequate in the case of a discrete space-time geometry. As a result the concept of

velocity and that of acceleration cannot be used in an extension of the relativity theory

to the case of arbitrary space-time geometry, which may be discrete.

In the general relativity all interactions (electromagnetic and gravitational) are sup-

posed to be short-range interactions. Concept of short-range interaction is based on the

nonrelativistic concept of the events nearness. The events are considered as points in the

event space (space-time). Two events are considered to be near, if they happen in the

same place at the same time moment. This definition of nearness of events is nonrelativis-

tic, because this definition refers to a spatial distance and to a temporal interval at once.

A consistent relativistic concept of nearness is to contain a reference to only quantity:

space-time interval, (or world function). For instance, if a supernew star flashed very far,

and an observer on the Earth observed this flash, the event of flash and the event of this

flash observation on the Earth are near (close) events.

According to common viewpoint the statement on nearness of the two events (flash

and observation of this flash) seems to be rather strange and unexpected. However, from

consistent relativistic viewpoint the two events are near, because space-time interval

between them is equal to zero.

The problem of relativistic concept of nearness is discussed in [9]. It is known as the



182 Electronic Journal of Theoretical Physics 11, No. 31 (2014) 177–202

principle of Fokker [10], which is interpreted as a conception of the action at a distance

(but not as a relativistic concept of nearness). The action at a distance is treated as a

direct influence of one object onto another one without intermediate agent circulatory

between them.

2. Relativistic Concept of Nearness

Let us consider the proper Euclidean geometry. Let ρ (P,Q) be the Euclidean distance

between the points P and Q. The set Oε of points P , defined by the relation

Oε = {P | ρ (O,P ) < ε} , ε > 0 (1)

is called ε-vicinity of the point O. If the parameter ε is small, the points P and O are

near (P ≃ O). If ε → 0, ε-vicinity Oε degenerates into one point O0 = O. It is easy to

see, that, if P ≃ Q, then Q ≃ P .

The relation of nearness in the proper Euclidean geometry has the property of tran-

sitivity: If P ∈ Oε and Q ∈ Oε, then P ∈ Q2ε and Q ∈ P2ε. It follows from the triangle

axiom,

ρ (O,P ) + ρ (O,Q) ≥ ρ (Q,P )

which is valid for the proper Euclidean geometry. If ε → 0, then 2ε → 0 also. It means

that, if P ≃ O and Q ≃ O, then P ≃ Q.

The property of transitivity seems to be a natural property of the relation of nearness.

However, the transitivity property of the nearness relation does not take place in the

space-time geometry, for instance, in the geometry of Minkowski. In this case the ε-

vicinity Oε of the point O is defined by the relation

Oε = {R| |ρ (O,R)| < ε} , ρ (O,R) =
√
2σM (O,R) (2)

Here σM (P,Q) = σM (x, x′) is the world function of the space-time of Minkowski

σM (P,Q) = σM (x, x′) =
1

2
(gM)ik

(
xi − x′i) (xk − x′k) (3)

x, x′ are coordinates of points P and Q in some inertial coordinate system, and (gM)ik is

the metric tensor in this coordinate system.

In this case the points with coordinates P =
{√

a2 + ε2, a, 0, 0
}
and

Q =
{√

a2 + ε2,−a, 0, 0
}

belong to ε-vicinity of the point O = {0, 0, 0, 0}, whereas

P /∈ Q2ε, because

|2σ (P,Q)| =
∣∣ρ2 (P,Q)

∣∣ = 4a2 (4)

As far as the quantity a may be indefinitely large, the spatial distance between the points

P and Q may be very large, although both points are near to the point O (P ≃ O and

Q ≃ O).

In the space-time of Minkowski the ε-vicinity of the point O = {0, 0, 0, 0} is a region

of the space-time between two hyperboloids(
x0
)2 − x2 = ε2,

(
x0
)2 − x2 = −ε2 (5)
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Formally the relation (5) determines a sphere of radius ε in the space-time of Minkowski.

At ε → 0 this region turns to the light cone with the vertex at the point O. Thus, at

ε → 0 in the proper Euclidean geometry the ε-vicinity of the point P is the same point

P , whereas in the geometry of Minkowski the ε-vicinity of the point P is the light cone

with the vertex at the point P .

In the nonrelativistic physics the ε-vicinity Oε of the point O = {0, 0, 0, 0} is defined

by relations

Oε =
{{

x0,x
}
|
∣∣x0

∣∣ < ε ∧ |x| < ε
}

(6)

In the limit ε → 0, the ε-vicinity (6) turns to one point O. Thus, in the non-relativistic

physics there are only one near point, whereas in the relativistic physics there is a con-

tinual set of near points. This difference appears to be very important in definition of

short-range interaction between particles.

Let us stress, that introducing cone-shaped ε-vicinity and nearness of points on the

light cone to the vertex of the cone, we do not suggest any hypothesis. We follow

only the relativity principle. If we follow the relativity principles, we should accept

the fact of the cone-shaped ε-vicinity, because pointlike shape of the ε-vicinity in the

limit ε → 0 is a remnant of the nonrelativistic theory.

3. Relativistic Concept of a Pointlike Particle

In the consecutive geometric description any particle is realized by its skeleton. In the

case of a pointlike particle the skeleton is the ordered set of two points {Ps, Ps+1}. The

vector PsPs+1 describes the geometric momentum of particle. The length |PsPs+1| =√
2σ (Ps, Ps+1) of the vector PsPs+1 describes the geometric mass of particle. Such a

description is a pure geometric one.

Motion of a pointlike particle is described by a world chain C, consisting of connected

links T[PsPs+1]

C =
∑
s

T[PsPs+1] (1)

Any link T[PsPs+1] is a segment of straight line, determined by the skeleton P(s)
1 =

{Ps, Ps+1}. The link T[PsPs+1] is a set of points, determined by the relation

T[PsPs+1] =
{
R|

√
2σ (Ps, R) +

√
2σ (R,Ps+1)−

√
2σ (Ps, Ps+1) = 0

}
(2)

The length

µ =
√
2σ (Ps, Ps+1) (3)

of all links is the same. The length µ is the geometric mass of the particle, which is

connected with the usual mass m of the particle by the relation

m = bµ = b
√
2σ (Ps, Ps+1) (4)

where b is the same universal constant, which appears in (2)
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Complicated (not pointlike) particles are described by a more complicated skeleton

Pn = {P0, P1, ...Pn} [8]

Description of the particle motion does not need an introduction of a coordinate sys-

tem. Details of such a description of the particle motion may be found in [8]. Such a

description is generalized easily on the case of arbitrary space-time geometry (in particu-

lar, discrete one). In the microcosm the structure of the world chain (1) is essential, but

outside the microcosm one may consider the length µ of a link T[PsPs+1] to be infinitesimal,

and to replace the world chain by a smooth world line.

Let L be a world line of a pointlike particle, and the point P ∈ L. A set NP of events

Q, which are near to the point P is different from the relativistic viewpoint and from the

nonrelativistic one. From nonrelativistic (conventional) viewpoint NP = {P}, whereas
from the relativistic viewpoint NP = CP , where CP is the light cone with the vertex at

the point P .

CP = {R|σ (P,R) = 0} (5)

It is known, that the electromagnetic interaction between two pointlike charged parti-

cles is carried out only via points, connecting with vanishing space-time interval (retarding

interaction), i.e. via points, which are near from the relativistic viewpoint. The same is

valid for the gravitational interaction. On the other hand, the near points of the world

line L should be interpreted in a sense of points belonging to the world line. In this sense

any interaction of two pointlike particles via near points may be interpreted as a direct

interaction (collision).

The light cones with vertexes at the points P ∈ L, may be considered as attributes

of the pointlike particle, which is described by the world line L. We shall consider these

light cones, directed into the past, as bunches of isotropic straight lines H. In other

words, any world line L of a pointlike particle is equipped by bunches CP of hair HP at

any point P ∈ L. Any hair HP consists of points R ∈ HP , which are near to the point

P ∈ L, (σ (P,R) = 0, R ∈ HP ) on the world line L. The point P is a footing of the

hair HP . The length of the hair HP is equal to zero, because the hair HP consists of

points, which are near to the point P . Although the length of any hair is equal to zero,

nevertheless the hairs of any world line cover the whole space-time. When some point

P ′ ∈ HP , P ∈ L1 of the world line L1 hair coincides with a point P ′ = P2 ∈ L2 of other

world line L2, the particle L2 transfers a part of its momentum to the particle L1. See

figure

What part of its momentum does the particle L2 transfer, depends on the point

P ′ ∈ HP , which is a common point with L2 (P ′ = P2 ∈ L2).

Although the length of any part of the hair is equal to zero, nevertheless there is some

invariant parameter along any hair H. This parameter lr is the relative length of the

hair segment. The relative length (r-length) of the point P is the more, the ”farther”

the point R ∈ HP lies from the footing P of the hair HP . The r-length lr of the point

R ∈ HP is defined by the relation

lr = lr (P,R) =
(PR.Q0Q1)

|Q0Q1|
(6)
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Fig. 1

where vector Q0Q1 is an arbitrary timelike vector (σ (O0, Q1) > 0). The scalar product

(PR.Q0Q1) of vectors PR and Q0Q1 is defined by the relation

(PR.Q0Q1) = σ (P,Q1) + σ (R,Q0)− σ (P,Q0)− σ (R,Q1) (7)

|Q0Q1| =
√

(Q0Q1.Q0Q1) =
√

2σ (Q0, Q1) (8)

It follows from expressions (6) - (8), that the relative length is invariant, because it

is expressed in terms of the world function. Numerical value of the r-length depends on

the choice of the timelike vector Q0Q1. Sign of the r-length depends on the choice of the

timelike vector Q0Q1 also. However, the order of points on the hair, directed to the past,

is determined single-valuedly by the value of the r-length.

If for some choice of the timelike vector Q0Q1

|lr (P,R1)| < |lr (P,R2)| , R1, R2 ∈ HP (9)

then the relation (9) takes place for any other choice of timelike vector Q0Q1. It means

that the point R1 is located between the points P and R2. The quantity of the transferred

momentum is inversely to the r-length lr (P, P
′) between the footing of the hair P ∈ L1

and the point P ′ ∈ L2, P
′ ∈ HP .

The concept of the world line hair admits one to consider and to calculate electromag-

netic and gravitational interaction of particles as a direct collision of one particle with a

hair of other particle. As far as the hairs of a world line are considered as attributes of a

particle, one may consider electromagnetic and gravitational interaction of particles as a

direct collision of particles. Such a description of the particle interaction does not men-

tion about gravitational and electromagnetic fields. Such a description is a consecutive

relativistic description.

In the nonrelativistic theory the electromagnetic and gravitational fields are essences,

which exist independently of the matter. These essences provide the momentum transfer

from one particle to another one. Introduction of such essences is necessary, because the

nonrelativistic concept of nearness is used. In the consecutive relativistic theory, which

uses relativistic concept of nearness, one does not need to consider the electromagnetic

and gravitational fields as additional essences. It is sufficient to consider them as a

manner of description of particle interaction. The less number of essences is contained in

a fundamental theory, the more perfect fundamental theory takes place.



186 Electronic Journal of Theoretical Physics 11, No. 31 (2014) 177–202

Our conclusion, that gravitational and electromagnetic fields are not physical essences

(they are only attributes of the world function) seems rather unexpected for most physi-

cists. It is connected with the fact, that the relativity theory is considered usually as a

correction to the nonrelativistic physics. As a result the relativity theory is presented al-

most in all textbooks in terms of concepts of nonrelativistic physics. The relativity theory

is studied after presentation of nonrelativistic physics. It is natural, that the relativity

theory is presented in terms of nonrelativistic concepts. Such a presentation is clearer

for physicists, which know nonrelativistic physics. New specific relativistic concepts are

used only in the case, when one cannot ignore them.

However, the relativity theory is a self-sufficient fundamental theory, which can and

must be presented without a mention of nonrelativistic concepts. Furthermore, the rela-

tivity theory can be developed successfully only in terms of adequate (relativistic) concepts.

Let there be two timelike world lines L1 and L2 of two different particles. Any point

P ∈ L1 corresponds, at least, to one near point P ′ ∈ L2, i.e. P
′ ≃ P , because the timelike

world line L2 crosses the light cone with the vertex at the point P ∈ L1. In other words,

any point of the world line L1 has a near point on the world line L2 and vice versa.

Let us consider the space-time Ω of Minkowski, which is described by the world

function σM, defined by (3). Let the inertial coordinate system K be used, and the world

chains C1, C2 be timelike. The world chains C1 and C2 consist of connected segments

T[PlPl+1] and T[P ′
lP

′
l+1]

C1 =
∪
l

T[PlPl+1], C2 =
∪
l

T[P ′
lP

′
l+1]

(10)

T[PlPl+1] =
{
R|

√
2σM (Pl, R) +

√
2σM (Pl+1, R) =

√
2σM (Pl, Pl+1)

}
(11)

T[P ′
lP

′
l+1]

=

{
R|

√
2σM (P ′

l , R) +
√
2σM

(
P ′
l+1, R

)
=

√
2σM

(
P ′
l , P

′
l+1

)}
(12)

All segments of a world chain have the same geometrical length µ, defined by the relation

(3) The real mass of the particle, described by the world chain, is connected with the

geometric mass µ by means of the relation (4).

Outside the microcosm the length µ is small with respect to characteristic size of the

world chain, and one may consider, that the vectors PlPl+1 of any link have infinitesimal

length. In the Minkowski space-time Ω the timelike links T[PlPl+1] are one-dimensional

infinitesimal timelike segments. The timelike world chain C can be replaced by a smooth

timelike world line L, whose points are labelled by a parameter τ . The world line is

described by the vector PP′ (τ), where P is the origin of the coordinate system K and

P ′ (τ) ∈ L. The vectors PlPl+1 of links turn into infinitesimal vectors P′ (τ)P′ (τ + dτ),

which are tangent to the world line.

Let the world lines L1 and L2 be timelike. For timelike world lines the infinitesimal

segments T[PlPl+1] = P′ (τ)P′ (τ + dτ) are timelike, and the geometrical mass µ is real

(σ (Pl, Pl+1) > 0). In this case the world lines L1 and L2 are one-dimensional, and all

points of a world line can be labelled by a parameter τ .
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As far as the space-time Ω of Minkowski is a linear vector space, the vectors PP′ (τ)

can be represented as a linear combination of basic vectors

PP′ (τ) = fk (τ) ek, (13)

where ek are basic vectors of the inertial coordinate system K with the origin P . The

functions fk (τ), k = 0, 1, 2, 3 are coordinates of points of the world line L2.

Four basic vectors ek may be presented in the form

ek = PQk, ei = (gM)
ik ek = (gM)

ik PQk, k = 0, 1, 2, 3 (14)

Here and further a summation over repeating Latin indices is produced 0÷3. The basic

vector ek = PQk is determined by the origin point P and by the end point Qk. Such

a representation is necessary to use the scalar product in arbitrary physical geometry,

where there is no linear space, and the scalar product of two vectors PR and Q0Q1 is

defined by the relation (7). The scalar product (PR.Q0Q1) of two vectors PR and Q0Q1

is defined only via the world function without a reference to the properties of the linear

vector space.

Coordinates of the points P ′ (τ) in the coordinate system K can be presented as

follows

L2 : P
′ (τ) =

{
fk (τ)

}
=

{(
PP′ (τ) .ek

)}
=

{
(gM)

ik (PP′ (τ) .ei)
}
, τ ∈ R, P ′ ∈ Ω

(15)

or

fk (τ) = (gM)
kl (PP′ (τ) .el) = (gM)

kl (PP′ (τ) .PQl) (16)

fk (τ) = (gM)kl f
l (τ) = (PP′ (τ) .PQk) (17)

where (gM)
kl is the contravariant metric tensor, which is obtained from the covariant

metric tensor (gM)kl by means of relations

(gM)
il (gM)lk = δik, (gM)lk = (ei.ek) = (PQi.PQk) (18)

In reality the functions fk (τ) are piecewise. But for simplicity we shall consider them as

continuous and differentiable

L2 : xk = fk (τ) , ḟk (τ) ≡ dfk (τ)

dτ
k = 0, 1, 2, 3, (19)

4. Dynamic Equations for Calculation of World

Function of Space-time

Variation δgik of the metric tensor, which is generated by particles in the space-time

geometry of Minkowski is described by the relation [11](
c−2∂2

0 −∇2
)
δgik = −κTik (1)
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where Tik is the energy-momentum tensor of particles. The constant κ = 8πG/c2, where

G is the gravitational constant and c is the speed of the light. Solution of this equation

can be presented in the form

δgik (x) = −κ

∫
Gret (x, x

′)Tik (x
′)
√
−gMd

4x′, (2)

gM = det ||(gM)ik|| , i, k = 0, 1, 2, 3 (3)

where the retarded Green function Gret (x, x
′) has the form

Gret (x, x
′) =

1

2πc
θ
(
x0 − x0′) δ (2σM (x, x′)) (4)

Here σM is the world function of the Minkowski space-time, defined by the relation (3),

and the multiplier

θ (x) =

 1 if x > 0

0 if x ≤ 0
(5)

Idea of derivation of dynamic equation for world function is very simple. It is based on

the deformation principle [2]. Dynamic equations (1) for weak gravitational field in the

space-time geometry of Minkowski are written in terms of the world function and only in

terms of the world function. As far as these equations contain only world function, they

are declared to be valid for variation of the world function of any physical space-time

geometry under action of the matter added in the space-time.

The energy-momentum tensor Tik of particles has the form

T ik (x) =
∑
s

pi(s) (x)u
k
(s) (x) , i, k = 0, 1, 2, 3 (6)

where uk
(s) (x) and pk(s) (x) are distributions of the 4-velocity and of the 4-momentum of

the sth particle in the space-time. We have for the particle number s

L(s) : xi = f i
(s) (τ) , pi(s) = bḟ i

(s) (τ) dτ , (gM)
ik p(s)ip(s)k = m2

(s)c
2, (7)

uk
(s) =

ḟk (τ)√
grlḟ r

(s) (τ) ḟ
l
(s) (τ)

(8)

p(s)i = (gM)ik b
(
fk
(s) (τ + dτ)− fk

(s) (τ)
)
= (gM)ik ḟ

k
(s) (τ) bdτ (9)

where the constant b is the proportionality coefficient (4) between the length of the world

line link µ = |PlPl+1| and the particle mass, described by this link. We have

p(s)ig
ik
Mp(s)k = gMikḟ

i
(s) (τ) ḟ

k
(s) (τ) b

2 (dτ)2 = m2
(s)c

2 (10)

m(s) =
bdτ

c

√
(gM)rl ḟ

r
(s) (τ) ḟ

l
(s) (τ) (11)
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Then it follows from (7) and (11), that

pi(s) =
m(s)cḟ

i√
(gM)rl ḟ

r
(s)ḟ

l
(s)

(12)

According (6) one obtains for the pointlike particles

T ik (x) =
∑
s

m(s)cḟ
i
(s) (τ) ḟ

k
(s) (τ)

(gM)rl ḟ
r
(s) (τ) ḟ

l
(s) (τ)

α=3∏
α=1

δα
(
xα − fα

(s) (τ)
)

(13)

where δ-function is defined by the relations

∫
V

α=3∏
α=1

F (x′) δα (x
′α − fα (τ))

√
−gspdx

′ =

F (f (τ)) if x′ ∈ V

0 if x′ /∈ V
(14)

Here

gsp = det
∣∣∣∣∣∣(gM)αβ∣∣∣∣∣∣ , α, β = 1, 2, 3 (15)

Integral (2) over

d4x′ = d3x′dt′ = d3x′dt
′

dτ
dτ = d3x′ḟ 0 (τ) dτ

can be presented in the form

δgik (x) = −κ

∫
Gret (x, x

′)T ik (x′)
√
−gMd

4x′

= −κ

∫ ∑
s

m(s)ḟ
i
(s) (τ) ḟ

k
(s) (τ)

2π (gM)rl ḟ
r
(s) (τ) ḟ

l
(s) (τ)

α=3∏
α=1

δα
(
x′α − fα

(s) (τ)
)√

−gMd
3x′

×δ
(
σM(x, f(s) (τ)

)
ḟ 0
(s) (τ) dτ (16)

Integration over x gives

δgik (x) = −κ

∫ ∑
s

m(s)ḟ
i
(s) (τ) ḟ

k
(s) (τ)

2π (gM)rl ḟ
r
(s) (τ) ḟ

l
(s) (τ)

√
gM
gsp

δ
(
2σM(x, f(s) (τ)

)
ḟ 0
(s) (τ) dτ (17)

Integration over dτ gives

δgik (x) = − κ

4π

∑
s

m(s) (gM)ij ḟ
j
(s) (τ s) (gM)kl ḟ

l
(s) (τ s)

(gM)rl ḟ
r
(s) (τ s) ḟ

l
(s) (τ s)

∣∣ d
dτ
σM (x, f (τ s))

∣∣
√

gM
gsp

ḟ 0
(s) (τ s) (18)

where τ s = τ s (t,x) is a root of the equation

2σM (x, f (τ s)) = (gM)ik
(
xi − f i

(s) (τ s)
) (

xk − fk
(s) (τ s)

)
= 0 (19)

which can be written in the form

σ (P, P ′
l ) = 0 (20)
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We have

d

dτ
σM (x, f (τ s)) = −gMik

(
xi − f i

(s) (τ s)
)
ḟk (τ s) = −

(
PP′

l.P
′
lP

′
l+1

)
dτ

(21)

Using relations (16), (17) one can rewrite the relation (18) in the form

δgik (x) = − κ

4π

∑
s

m(s)

(
P′

lP
′
l+1.PQi

) (
P′

lP
′
l+1.PQk

)∣∣(PP′
l.P

′
lP

′
l+1

)∣∣ (P′
lP

′
l+1.P

′
lP

′
l+1

) (
P′

lP
′
l+1.PQs

)
(gM)

0s

√
gM
gsp

(22)

In the case, when all basic vectors PQk are unite and orthogonal, the determinants gM
and gsp are connected by the relation

gM = det ||gMik|| = gsp (gM)00 , (gM)00 = (PQ0.PQ0) = |PQ0|
2 (23)

Besides (
P′

lP
′
l+1.PQs

)
(gM)

0s =
(
P′

lP
′
l+1.PQ0

)
(gM)

00 (24)

Then the last multipliers of (22) can be written in the form

(gM)
00

√
gM
gsp

= ((gM)00)
−1

√
(gM)00 =

1

|PQ0|
(25)

The constant κ is connected with the gravitational constant G by means of the relation

κ = 8πG/c2. Using (25) and (18), the relation (22) can be rewritten in terms of scalar

products

δgik (P ) = δ ((PQi.PQk))

= −2G

c2

∑
s

m(s)
θ ((P′

lP.PQ0))(
P′

lP.P′
lP

′
l+1

) (
P′

lP
′
l+1.PQi

) (
P′

lP
′
l+1.PQk

) (
P′

lP
′
l+1.PQ0

)(
P′

lP
′
l+1.P

′
lP

′
l+1

)
|PQ0|

(26)

σ (P, P ′
l ) = 0 (27)

where vectors PQi, i = 0, 1, 2, 3 are basic vectors of the coordinate system at the point P .

Vector PQ0 is timelike. The points P ′
l and P ′

l+1 are on the world line L(s) of sth particle.

The points P ′
l and P ′

l+1 are separated by infinitesimal distance. All scalar products are

taken in the space-time geometry of Minkowski. Besides, one uses the fact, that the

metric tensor gik (P ) at the point P can be presented in the form

gik (P ) = (PQi.PQk) , i, k = 0, 1, 2, 3 (28)

and the scalar product is expressed via the world function by means of the relation (7).

To determine world function σ from relations (26), (27), let us use the relation

(PS1.PS2) = σ (P, S2) + σ (S1, P )− σ (P, P )− σ (S1, S2) (29)

where S1 and S2 are arbitrary points of the space-time. As far as σ (P, P ) = 0, it may

rewritten in the form

σ (S1, S2) = σ (P, S2) + σ (S1, P )− (PS1.PS2) (30)
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Using (8) the relation (30) may be rewritten in terms of scalar products

σ (S1, S2) =
1

2
((PS1.PS1) + (PS2.PS2)− 2 (PS1.PS2)) (31)

Replacing Qi, Qk, i, k ̸= 0 in relation (26) by S1, S2 and substituting in (31), one

obtains after transformations

δσ (S1, S2) = −G

c2

∑
s

m(s)

θ ((P′
lP.PQ0))

(
P′

lP
′
l+1.PQ0

)(
P′

lP.P′
lP

′
l+1

)
|PQ0|

×
((
P′

lP
′
l+1.PS1

)
−
(
P′

lP
′
l+1.PS2

))2(
P′

lP
′
l+1.P

′
lP

′
l+1

) (32)

The relations (32), (27) are completely geometric relations, written in terms of the

world function σM of the Minkowski geometry. According to the deformation principle

the relations (32), (27) are valid in any physical space-time geometry (i.e. for any world

function σ). It means, that, if the space-time geometry without additional particles is

described by the world function σ0, then appearance of additional particles perturbs the

space-time geometry, and it becomes to be described by the world function σ = σ0 + δσ,

where perturbation δσ of the world function is determined by the relations (32), (27).

Scalar products in rhs of (32) should be calculated by means of the world function σ, which

is unknown at first. As a result equations (32), (27) form equations for determination of

the world function σ.

In the case of continuous distribution of particles the summation in (32) is to be sub-

stituted by integration over Lagrangian coordinates ξ, labelling the perturbing particles.

One obtains

δσ (S1, S2) = −G

c2

∫
V

ρ (ξ) dξ
θ ((P′

lP.PQ0))
(
P′

lP
′
l+1.PQ0

)(
P′

lP.P′
lP

′
l+1

)
|PQ0|

×
((
P′

lP
′
l+1.PS1

)
−

(
P′

lP
′
l+1.PS2

))2(
P′

lP
′
l+1.P

′
lP

′
l+1

) (33)

where the total mass M is defined by the relation∫
V

ρ (ξ) dξ =M (34)

The points S1 and S2 are arbitrary points of the space-time.

Remark 1

It is possible that equation (1) is valid only for small values of the metric tensor. In this

case the relation (33) should be replaced by a set of n equations of the form (33). The

first equation determines σ1 = σ0 + δσ1, where δσ1 is defined by the relation (33) with

initial σ0, where ρ is replaced by ρ/n. The second equation determines σ2 = σ1 + δσ2,

where δσ2 is defined by the relation (33) with initial σ1, where ρ is replaced by ρ/n. ...

The final nth equation determines σn = σn−1 + δσn, where δσn is defined by the relation

(33) with initial σn−1, where ρ is replaced by ρ/n. The exact result σ = σn is obtained at

n → ∞. At any step of solution a change of the world function will be small. As a result

one obtains something like a differential equation instead of the finite equation (33)
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5. World Function of Non-rotating Body

Let us consider a physical body, which is concentrated in a space volume V . Its density is

ρ (ξ), where ξ are Lagrangian coordinates of the body points. The body does not rotate.

We shall use the inertial coordinate system x = {t,x} = {t, x1, x2, x3}.
We shall search for solution of equations (33), (27) in the form of a second order

polynomial of (t1 − t2)

σ (t1,y1; t2,y2) =
1

2
A (y1,y2) c

2 (t2 − t1)
2 +B (y1,y2) c (t2 − t1) + C (y1,y2) (1)

A (y1,y2) = 1− V (y1,y2) , C (y1,y2) = −1

2
(y1 − y2)

2 + δC (y1,y2) (2)

where functions A,B and C should be determined as a result of solution of equations (33),

(27). In the zeroth order approximation, when the space-time is the space of Minkowski,

one has

A0 (y1,y2) = 1, V0 (y1,y2) = 0, B0 (y1,y2) = 0, δC0 (y1,y2) = 0 (3)

Let coordinates of points have the form

P ′
l =

{
t− r

c
, ξ
}
, P ′

l+1 =
{
t− r

c
+ dT, ξ

}
,

P = {t,x} S1 = {t1,y1} S2 = {t2,y2}
Q0 = {t+ dt,x} , Q1 =

{
t, x1 + dx1, x2, x3

}
,

Q2 =
{
t, x1, x2 + dx2, x3

}
, Q3 =

{
t, x1, x2, x3 + dx3

}
(4)

where coordinates ξ label points of the body. The point P is chosen such, that

t =
t1 + t2

2
, x =

y1 + y2

2
(5)

Vectors PQ in scalar products of the expression (33) are described by coordinates of

points P and Q: PQ = {x (P ) ; x (Q)}, where x (P ) are coordinates of the point P . By

means of (4) we have the following coordinates for vectors in (33):

P′
lP =

{
t− r

c
, ξ; t,x

}
, PQ0 = {t,x;t+ dt,x} , P′

lP
′
l+1 =

{
t− r

c
, ξ;t− r

c
+ dT, ξ

}
,

PS1 = {t,x;t1,y1} , PS2 = {t,x;t2,y2} (6)

The quantity dT is supposed to be infinitesimal.

In the first approximation the world function has the form

σ1 (t1,y1; t2,y2) =
1

2
A1 (y1,y2) c

2 (t2 − t1)
2 +B1 (y1,y2) c (t2 − t1) + C1 (y1,y2) (7)

As far as σ1 = σM + δσ1, it follows from (7)

δσ1 (t1,y1; t2,y2) = −1

2
V1 (y1,y2) c

2 (t2 − t1)
2 +B1 (y1,y2) c (t2 − t1) + δC1 (y1,y2) (8)
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where

δC1 (y1,y2) = C1 (y1,y2) +
1

2
(y2 − y1)

2 (9)

At t2 → t1 the world function σ1 (t1,y1; t2,y1) tends to 0. Then it follows from (7)

C1 (y1,y1) = 0 (10)

Taking into account the symmetry of the world function with respect to transposition

(t1,y1) ↔ (t2,y1), we conclude from (7), that

B1 (y1,y1) = 0 (11)

According to equation (27), we obtain from (7), (6)

1

2
|P′

lP|2 = 1

2
A1 (ξ,x) c

2
(r
c

)2

+B1 (ξ,x) r + C1 (ξ,x) = 0 (12)

Solution of (12) has the form

r =
−B1 (ξ,x) +

√
B2

1 (ξ,x)− 2C1 (ξ,x)A1 (ξ,x)

A1 (ξ,x)

= − 2C1 (ξ,x)

B1 (ξ,x) +
√

B2
1 (ξ,x)− 2C1 (ξ,x)A1 (ξ,x)

(13)

Calculation of other scalar products gives the results

|PQ0|
2 = A1 (y1,y2) c

2 (dt)2 (14)(
P′

lP
′
l+1.P

′
lP

′
l+1

)
= A1 (ξ, ξ) c

2 (dT )2 (15)

(
P′

lP
′
l+1.P

′
lP

)
= σ (P ′

l , P ) + σ
(
P ′
l+1, P

′
l

)
− 0− σ

(
P ′
l+1, P

)
= σ

(
P ′
l+1, P

′
l

)
− σ

(
P ′
l+1, P

)
(16)

σ
(
P ′
l+1, P

)
= σ

(
t− r

c
+ dT, ξ;t,x

)
(17)

=
1

2
A1 (ξ,x) c

2
(r
c
− dT

)2

+ cB1 (ξ,x)
(r
c
− dT

)
+ C1 (ξ,x)

(
P′

lP
′
l+1.P

′
lP

)
= σ

(
P ′
l+1, P

′
l

)
− σ

(
P ′
l+1, P

)
(18)

=
1

2
A1 (ξ, ξ) c

2 (dT )2 −
(
1

2
A1 (ξ,x) c

2
(r
c
− dT

)2

+ cB1 (ξ,x)
(r
c
− dT

)
+ C1 (ξ,x)

)
= −1

2
A1 (ξ,x) r

2 + A1 (ξ,x) crdT −B1 (ξ,x) r +B1 (ξ,x) cdT − C1 (ξ,x) +O
(
dT 2

)
Taking into account, the relation (12) one obtains(

P′
lP

′
l+1.P

′
lP

)
= A1 (ξ,x) crdT +B1 (ξ,x) cdT +O

(
dT 2

)
(19)
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Calculation of
(
P′

lP
′
l+1.PS1

)
−
(
P′

lP
′
l+1.PS2

)
gives(

P′
lP

′
l+1.PS1

)
−
(
P′

lP
′
l+1.PS2

)
= σ1 (P

′
l , S1) + σ1

(
P ′
l+1, P

)
− σ1 (P

′
l , P )− σ1

(
P ′
l+1, S1

)
−
(
σ1 (P

′
l , S2) + σ1

(
P ′
l+1, P

)
− σ1 (P

′
l , P )− σ1

(
P ′
l+1, S2

))
= σ1 (P

′
l , S1)− σ1

(
P ′
l+1, S1

)
−

(
σ1 (P

′
l , S2)− σ1

(
P ′
l+1, S2

))
= −dT

∂

∂dT
σ1

(
P ′
l+1, S1

)
+ dT

∂

∂dT
σ1

(
P ′
l+1, S2

)
= dT

∂

∂dT

(
σ1

(
P ′
l+1, S2

)
− σ1

(
P ′
l+1, S1

))
+O

(
dT 2

)
(20)

Using (1) and

P′
lS1 =

{
t− r

c
, ξ;t1,y1

}
, P′

l+1S1 =
{
t− r

c
+ dT, ξ;t1,y1

}
(21)

one obtains from (20)(
P′

lP
′
l+1.PS1

)
−

(
P′

lP
′
l+1.PS2

)
= +A1 (ξ,y1) c

2t1dT − A1 (ξ,y2) c
2t2dT + (A1 (ξ,y2)− A1 (ξ,y1)) c

2
(
t− r

c

)
dT

+(B1 (ξ,y1)−B1 (ξ,y2)) cdT +O
(
dT 2

)
(22)

Let us take into account, that the time coordinate t of the point P has the form (5).

The relation (22) takes the form(
P′

lP
′
l+1.PS1

)
−

(
P′

lP
′
l+1.PS2

)
= +

1

2
(A1 (ξ,y1) + A1 (ξ,y2)) c

2 (t1 − t2) dT − (A1 (ξ,y2)− A1 (ξ,y1)) rcdT

+(B1 (ξ,y1)−B1 (ξ,y2)) cdT (23)

Using (2), the relation (23) can be written in the form(
P′

lP
′
l+1.PS1

)
−

(
P′

lP
′
l+1.PS2

)
=

(
1− 1

2
(V1 (ξ,y2) + V1 (ξ,y1))

)
c2 (t1 − t2) dT + (V1 (ξ,y2)− V1 (ξ,y1)) rcdT

+(B1 (ξ,y1)−B1 (ξ,y2)) cdT (24)

Calculation gives the following result for scalar product (P′
lP.PQ0)

(P′
lP.PQ0) = (2A1 (ξ,x) r +B1 (ξ,x)) cdt (25)

This scalar product is positive, if r, defined by the relation (13), is positive and A1 (ξ,x) >

0.

After substitution of expressions (11), (12), (15), (19) and (24), the expression (33)
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takes the form

δσ (S1, S2)

= −G

c2

∫
V

ρ (ξ) dξ
θ ((P′

lP.PQ0))A1 (ξ,x) c
2dtdT√

A1 (x,x)cdt

×

 (
1− 1

2
(V1 (ξ,y2) + V1 (ξ,y1))

)
c (t1 − t2)

+ (V1 (ξ,y2)− V1 (ξ,y1)) r + (B1 (ξ,y1)−B1 (ξ,y2))


2

(cdT )2

(A1 (ξ,x) r +B1 (ξ,x))A1 (ξ, ξ) c2 (dT )
2 cdT

(26)

After cancellation of multiplier dT and dt, we obtain

δσ (S1, S2)

= −G

c2

∫
V

ρ (ξ) dξ
A1 (ξ,x)√

A1 (x,x) (A1 (ξ,x) r +B1 (ξ,x))A1 (ξ, ξ)

×

 (
1− 1

2
(V1 (ξ,y2) + V1 (ξ,y1))

)
c (t1 − t2)

+ (V1 (ξ,y2)− V1 (ξ,y1)) r + (B1 (ξ,y1)−B1 (ξ,y2))


2

(27)

where

r =
−B1 (ξ,x) +

√
B2

1 (ξ,x)− 2C1 (ξ,x)A1 (ξ,x)

A1 (ξ,x)
(28)

One can see, that rhs of (27) is the second order polynomial of (t1 − t2). Thus, our

supposition that the world function is the second order polynomial of (t1 − t2) is not

changed after variation of the world function under influence of additional particles.

δσ2 (t1,y1; t2,y2) = −1

2
V2 (y1,y2) c

2 (t2 − t1)
2+B2 (y1,y2) c (t2 − t1)+ δC2 (y1,y2) (29)

On the other side, it follows from (27)

δσ2 (S1, S2)

= −
∫
V

D (x, ξ)

(
1− 1

2
(V1 (ξ,y2) + V1 (ξ,y1))

)2

c2 (t1 − t2)
2 dξ

−2

∫
V

D (x, ξ)

(
1− 1

2
(V1 (ξ,y2) + V1 (ξ,y1))

)
c (t1 − t2)

× ((V1 (ξ,y2)− V1 (ξ,y1)) r + (B1 (ξ,y1)−B1 (ξ,y2))) dξ

−
∫
V

D (x, ξ) (V1 (ξ,y2)− V1 (ξ,y1)) r + (B1 (ξ,y1)−B1 (ξ,y2))
2 dξ (30)

where

D (x, ξ) =
G

c2
ρ (ξ)A1 (ξ,x)

A1 (ξ, ξ)
√

A1 (x,x) (A1 (ξ,x) r +B1 (ξ,x))

=
G

c2
ρ (ξ)A1 (ξ,x)

A1 (ξ, ξ)
√

A1 (x,x)
√

B2
1 (ξ,x)− 2C1 (ξ,x)A1 (ξ,x)

(31)
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Here

C1 (ξ,x) = −1

2
(x− ξ)2 + δC1 (ξ,x) (32)

Comparing (29) and (30), one concludes

V2 (y1,y2) = 2

∫
V

D (x, ξ)

(
1− 1

2
(V1 (ξ,y2) + V1 (ξ,y1))

)2

dξ (33)

B2 (y1,y2) = −2

∫
V

D (x, ξ)

(
1− 1

2
(V1 (ξ,y2) + V1 (ξ,y1))

)
× ((V1 (ξ,y2)− V1 (ξ,y1)) r + (B1 (ξ,y1)−B1 (ξ,y2))) dξ (34)

δC2 (y1,y2) = −
∫
V

D (x, ξ) (V1 (ξ,y2)− V1 (ξ,y1)) r+(B1 (ξ,y1)−B1 (ξ,y2))
2 dξ (35)

Substituting V2, B2, δC2 in rhs of equations (33) - (35) instead of V1, B1, δC1, we

obtain the quantities V3, B3, δC3. Continuing this process, we obtain in the limit, that

the quantities Vn, Bn, δCn, appear to be equal in both sides of equations (33) - (35). In

the developed form these equations are written as follows

V (y1,y2) =
2G

c2

∫
V

ρ (ξ)A (ξ,x)
(
1− 1

2
(V (ξ,y2) + V (ξ,y1))

)2
A (ξ, ξ)

√
A (x,x)

√
B2 (ξ,x) + A (ξ,x)

(
(x− ξ)2 − 2δC (ξ,x)

)dξ
(36)

B (y1,y2) = −2
G

c2

∫
V

ρ (ξ)A (ξ,x)
(
1− 1

2
(V (ξ,y2) + V (ξ,y1))

)
A1 (ξ, ξ)

√
A (x,x)

√
B2 (ξ,x) + A (ξ,x)

(
(x− ξ)2 − 2δC (ξ,x)

)dξ
× ((V (ξ,y2)− V (ξ,y1)) r + (B (ξ,y1)−B (ξ,y2))) (37)

δC (y1,y2) = −G

c2

∫
V

ρ (ξ)A (ξ,x) ((V (ξ,y2)− V (ξ,y1)) r + (B (ξ,y1)−B (ξ,y2)))
2

A (ξ, ξ)
√

A (x,x)
√

B2 (ξ,x) + A (ξ,x)
(
(x− ξ)2 − 2δC (ξ,x)

) dξ

(38)

where

x =
y1 + y2

2
, A (y1,y2) = 1− V (y1,y2) (39)

r =
−B (ξ,x) +

√
B2 (ξ,x) + A (ξ,x)

(
(x− ξ)2 − 2δC (ξ,x)

)
A (ξ,x)

(40)

It follows from (37) - (38), that for y1 = y2 = x

B (x,x) = 0, δC (x,x) = 0 (41)

Equations (36) - (38) are three integral equations for determination of three quantities

V (y1,y2) , B (y1,y2) , δC (y1,y2), which determine the world function

σ (t1,y1; t2,y2) =
1

2
c2 (t2 − t1)

2 − 1

2
(y1 − y2)

2 − 1

2
V (y1,y2) c

2 (t2 − t1)
2

+B (y1,y2) c (t2 − t1) + δC1 (y1,y2) (42)
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6. Dynamic Equations for World

Function, Generated by Non-rotating Sphere

Let the shape of the physical body be a sphere of radius R. Let us introduce parameter

ε = rg/R, where rg = 2GM/c2 is so called gravitational radius. Let

ε =
2G

c2

∫
V

ρ (ξ)

R
dξ ≪1 (1)

Then it follows from equations (36) - (38), that

V (y1,y2) = O (ε) , B (y1,y2) = O
(
ε2
)
, δC (y1,y2) = O

(
ε3
)

(2)

If ε ≪ 1, equations (36) - (38) can be solved by means of successive approximations.

In the first approximation one obtains

V1 (y1,y2) =
2G

c2

∫
V

ρ (ξ)√(
|y1+y2|2

4
− ξ

)2
dξ+O

(
ε2
)

(3)

B1 (y1,y2) = 0, δC1 (y1,y2) = 0 (4)

If ρ (ξ)

ρ (ξ) =

 ρ0 if |ξ| < R

0 if |ξ| > R
, ρ0 =

3M

4πR3
= const (5)

where M is the sphere mass, then

V1 (y1,y2) =


2GM
c2|x| if |x| > R

3GM
c2R

− GM
c2R3 |x|2 if |x| < R

, x =
y1 + y2

2
(6)

In the second approximation one obtains

V2 (y1,y2) =
2G

c2

∫
V

ρ0 (ξ)
√
A1 (ξ,x)

(
1− 1

2
(V1 (ξ,y2) + V1 (ξ,y1))

)2
A1 (ξ, ξ)

√
A1 (x,x)

√
(x− ξ)2

dξ+O
(
ε3
)

(7)

B2 (y1,y2) = −2
G

c2

∫
V

ρ0 (ξ)
√
A1 (ξ,x)

(
1− 1

2
(V1 (ξ,y2) + V1 (ξ,y1))

)
A1 (ξ, ξ)

√
A1 (x,x)

√
(x− ξ)2

dξ

× (V1 (ξ,y2)− V1 (ξ,y1)) r (8)

where

r =

√
(x− ξ)2√
A1 (ξ,x)
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B2 (y1,y2) = −2
G

c2

∫
V

ρ0 (ξ) (V1 (ξ,y2)− V1 (ξ,y1)) dξ+O
(
ε3
)

(9)

δC2 (y1,y2) = −G

c2

∫
V

ρ0 (ξ)
√

A1 (ξ,x)

(
(V1 (ξ,y2)− V1 (ξ,y1))

√
(x−ξ)2√
A1(ξ,x)

)2

A1 (ξ, ξ)
√

A1 (x,x)
√(

(x− ξ)2
) dξ

= −G

c2

∫
V

ρ0 (ξ)
√

(x− ξ)2 (V1 (ξ,y2)− V1 (ξ,y1))
2

A1 (ξ, ξ)
√

A1 (x,x)A1 (ξ,x)
dξ =O

(
ε3
)

(10)

We obtain

V2 (y1,y2) =
2G

c2

∫
V

ρ0 (ξ)
√

A1 (ξ,x)
(
1− 1

2
(V1 (ξ,y2) + V1 (ξ,y1))

)2
A1 (ξ, ξ)

√
A1 (x,x)

√
(x− ξ)2

dξ+O
(
ε3
)

(11)

V2 (y1,y2) = V1 (y1,y2) +
G

c2

∫
V

ρ0 (ξ) (−V1 (ξ,x) + 2V1 (ξ, ξ) + V1 (x,x))√
(x− ξ)2

dξ

−G

c2

∫
V

ρ0 (ξ) (V1 (ξ,y2) + V1 (ξ,y1))√
(x− ξ)2

dξ+O
(
ε3
)

(12)

V2 (y1,y2) = V1 (y1,y2) +
2G

c2

∫
V

ρ0 (ξ)V1 (ξ, ξ)√
(x− ξ)2

dξ +O
(
ε3
)

(13)

+
G

c2

∫
V

ρ0 (ξ) (−V1 (ξ,x) + V1 (x,x)− V1 (ξ,y2)− V1 (ξ,y1))√
(x− ξ)2

dξ

Estimation of (13) in the case, when |y1| , |y2| , |x| ≫ R, has the form

V2 (y1,y2) = V1 (y1,y2) +
6

5
ε2

R

|x|
− ε2

2

R2

|x|2

(
1 +

2 |x|
|y1|

+
2 |x|
|y2|

)
+O

(
ε3
)

(14)

where V1 (y1,y2) is determined by the relation (6), and

ε =
2GM

c2R
≪ 1 (15)

In the case, when y1 = y2 = x, we have

V2 (x,x) = V1 (x,x) +
6

5
ε2

R

|x|
− 5

2
ε2

R2

|x|2
+O

(
ε3
)

(16)

We obtain for the quantity B2 (y1,y2) for |y2| , |y1| ≫ R

B2 (y1,y2) = −2
G

c2

∫
V

ρ0 (ξ) (V1 (ξ,y2)− V1 (ξ,y1)) dξ+O
(
ε3
)

= −2
GM

c2
(V1 (0,y2)− V1 (0,y1))+O

(
ε3
)

= −ε2R2

(
1

|y2|
− 1

|y1|

)
+O

(
ε3
)

(17)
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B2 (x,x) = 0 (18)

Thus, for small ε = 2GM/ (Rc2) and |x| ≫ R, the calculated value of metric ten-

sor, determined by the quantities V1 (y1,y1) , B1 (y1,y1) , δC1 (y1,y1) coincides with the

metric tensor, calculated in Newtonian approximation of the general relativity.

At large values of parameter ε the quantity V (x,x) remains to be less, than unity.

Indeed, setting y1 = y2 = x in exact equations (36) - (38), we obtain

V (x,x) =
2G

c2

∫
V

ρ (ξ)A (ξ,x)
(
1− 1

2
(V (ξ,x) + V (ξ,x))

)2
A (ξ, ξ)

√
A (x,x)

√
B2 (ξ,x) + A (ξ,x)

(
(x− ξ)2 − 2δC (ξ,x)

)dξ
(19)

B (x,x) = 0, δC (x,x) = 0

Rewriting equation (19) in the form

V (x,x)
√

1− V (x,x)

=
2G

c2

∫
V

ρ (ξ)A (ξ,x)
(
1− 1

2
(V (ξ,x) + V (ξ,x))

)2
A (ξ, ξ)

√
B2 (ξ,x) + A (ξ,x) (x− ξ)2 − 2A (ξ,x) δC (ξ,x)

dξ (20)

we conclude, that equation (20) contains only solutions with V (x,x) ≤ 1. In other words,

component g00 = c2 (1− V (x,x)) of the metric tensor cannot change its sign. It means

that non-rotating physical body of any size and of any mass cannot generate a black hole.

This result disagrees with the result of general relativity, but it agrees with the com-

mon sense. To obtain the reason of such unexpected result, we calculate the quantities

A,B, δC inside the uniform heavy sphere of radius R and mass M . At calculation we

suppose that the quantity

ε =
rg
R

=
2GM

c2R
≪ 1 (21)

where rg is the gravitational radius of the sphere.

For |x| < R results of calculations looks as follows (Details of calculations are rather

bulky, and we omit them)

V2 (x,x) = ε

(
3

2
− 1

2

x2

R2

)
− ε2

153

64
+ ε2

37

32

x2

R2
− ε2

61

320

|x|4

R4
+O

(
ε3
)

(22)

The gravitational force inside the region |x| < R has the form

F = ∇V2 (x,x) = − ε

R2
x+

ε2

R2

37

16
x−61

80

ε2

R2

|x|2

R2
x, |x| < R (23)

It follows from (23), that if ε > 16
37

≈ 0.43, the region, where the gravitational force is

directed from the center, appears near the point x = 0. If ε ≥ 0.65, the gravitational

force is directed from the center of the sphere in the whole region |x| < R.

Thus, inside the heavy sphere the regions of antigravitation may appear at large

values of ε. To understand this unexpected circumstance, let us note, that dynamical
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(not completely relativistic) approach and geometrical (completely relativistic) approach

to gravitational phenomena disagree in some points.

The Newtonian gravitational potential of a uniform heavy sphere of radius R has the

form

φ (x) =


GM
|x| if |x| > R

3GM
2R

− GM
2R3 |x|2 if |x| < R

(24)

whereM is the of the sphere. The gravitational potential φ is maximal at the point x = 0,

whereas the gravitational force F = ∇φ is minimal at the point x = 0 (F = 0 at x = 0).

The space-time geometry is connected with the gravitational potential g00 = (c2 − 2φ),

but not with the gravitational force F.

Gravitational potential φ inside the hallow sphere of mass M is proportional to the

mass M , but φ =const, and the gravitational force F = 0 inside the sphere. From

dynamic (differential) viewpoint this fact is explained as follows. Gravitational influence

of different parts of the hallow sphere compensate inside the sphere. If the gravitational

law distinguishes from the Newtonian one, such a compensation may disappear, and an

induced antigravitation may appear, because the attraction force, generated by any part

of the hallow sphere, is directed from the center of the sphere.

From the geometric (integral) viewpoint an appearance of the induced antigravita-

tion regions is natural, because the gravitational potential increases in such regions with

increase of amount of the matter. As to the gravitational force, it may have any direction.

7. Concluding Remarks

Thus, the extended general relativity (EGR) is the next stage of the physics geometriza-

tion. At this stage we have the monistic conception, containing only one fundamental

quantity: world function σ. The gravitational field, which is one of fundamental quanti-

ties of the general relativity (GR), is now only an attribute of the world function. From

viewpoint of extended general relativity (EGR) the gravitational field is not a physical

essence. It is only a manner of the particle interaction description. In particular, from

viewpoint of EGR the gravitational field cannot exist separate from the matter. Such a

change of approach to the gravitational field is connected with a usage of the relativistic

concept of the events nearness.

Any monistic conception is a result of development of the preceding pluralistic concep-

tion, and the monistic conception is more perfect as a rule, than the preceding pluralistic

one. The extended general relativity (EGR) is obtained as a result of overcoming of de-

fects of the general relativity (GR): (1) usage of only inconsistent Riemannian space-time

geometry, (2) use of inadequate (nonrelativistic) concepts and quantities. EGR is to be

considered as a more perfect conception, than GR. Results obtained in the framework of

EGR are more dependable, than results, obtained in the framework of GR. In particular,

conclusion on impossibility of the dark hole existence in EGR is more dependable, than

existence of the black holes in the framework of GR. Besides, impossibility of the gravi-
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tational collapsing, leading to a formation of a black hole, is confirmed by appearance of

induced antigravitation in EGR.

Besides, the mathematical technique of EGR is the same for all (continuous and

discrete) geometries. Dynamic equations for the world function are written in the coordi-

nateless form. This circumstance admits one to eliminate consideration of any coordinate

transformation.

There is a possibility, that some problems of contemporary cosmology (dark matter,

dark energy) are a result of imperfect theory of gravitation. More correct results of EGR,

concerning dark holes, admit to hope, that EGR will be able to solve difficult problems

of contemporary cosmology.
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