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Abstract
We describe a theory of gravity in (1 + 1) dimensions that can be thought of as
a toy model of general relativity. The theory should be a useful pedagogical
tool, because it is mathematically much simpler than general relativity but
shares much of the same conceptual structure; in particular, it gives a simple
illustration of how gravity arises from spacetime curvature. We derive the
theory from fundamental physical principles using two different methods,
one based on extrapolating from Newtonian gravity and one based on the
equivalence principle, and present several exact solutions.

1. Introduction

General relativity is a difficult subject to teach to beginning students because a great deal of
mathematics needs to be introduced, and the complexity of this mathematics can sometimes
obscure the underlying physical concepts. The complexity of the mathematics reflects the
complexity of describing spacetime curvature in (3 + 1) dimensions; in lower dimensions, the
mathematics needed to describe spacetime curvature is much simpler. For example, whereas in
(3 + 1) dimensions 20 different parameters are needed to characterize the spacetime curvature,
in (1+1) dimensions a single parameter will suffice1. In this paper, we show that by working in
(1 + 1) dimensions one can construct a toy model of gravity that is much simpler than general
relativity, yet retains much of its conceptual structure. The model is a useful pedagogical
tool because it illustrates many of the ideas of general relativity in a simplified context;
in particular, it shows how gravity arises from spacetime curvature. The paper should be
accessible to advanced undergraduates and beginning graduate students, and is intended to
supplement an introductory class in general relativity taught at the level of Misner, Thorne
and Wheeler [1].

It is not obvious how to construct a theory of gravity in (1+1) dimensions that is analogous
to general relativity; simply writing the Einstein field equations in (1 + 1) dimensions does not
work [2], as can be understood from the following considerations. In (1 + 1) dimensions the

1 The number of parameters needed to characterize the spacetime curvature is given by the number of independent
components of the Riemann tensor, which in d spacetime dimensions is (d2/12)(d2 − 1).
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Riemann tensor can be expressed as2

Rγ
ναβ = R

2
gγµ(gµαgνβ − gµβgνα), (1)

where R is the curvature scalar and gµν is the metric tensor. Thus, the Ricci tensor is given by

Rνβ = Rγ
νγβ = R

2
gνβ. (2)

Equation (2) implies that in (1 + 1) dimensions the Einstein tensor vanishes identically,

Gµν = Rµν − R

2
gµν = 0, (3)

and the Einstein field equations reduce to

Gµν = 8πGTµν = 0, (4)

where Tµν is the energy–momentum tensor. Thus, the Einstein field equations do not constrain
the metric tensor, and simply state that the energy–momentum tensor vanishes.

Instead of writing the Einstein field equations in (1 + 1) dimensions, we will consider an
alternative theory of gravity that is described by the field equation

R = 4GgαβT αβ. (5)

In the 1980s this theory was proposed as a lower-dimensional model of gravity [4–6], and
its dynamical content has been investigated by a number of authors [7–11]. The theory is
the direct (1 + 1)-dimensional analog of a theory of gravity in (3 + 1) dimensions that was
proposed by Nordstrøm in 1913. The Nordstrøm field equations are3

R = 24πGgαβT αβ, Cαβ
µν = 0, (6)

where Cαβ
µν is a quantity known as the Weyl tensor. One can show that in (1 + 1)

dimensions the Weyl tensor vanishes identically4, so the Nordstrøm equations are equivalent to
equation (5).

The paper is organized as follows. We first describe two different methods of deriving
the toy model from basic physical principles: in section 2, we derive the toy model by
extrapolating from Newtonian gravity, and in section 3, we derive the toy model by starting
with a flat spacetime and constructing a relativistic field theory that obeys the principle of
equivalence. We then consider two solutions to the field equation for the toy model: in
section 4 we present a solution for a stationary point particle, and in section 5 we present a
solution for a static source of uniform density.

2. Deriving the toy model from Newtonian gravity

One way to derive the toy model is to look for a relativistic theory that reduces to Newtonian
gravity in the nonrelativistic limit. It is straightforward to construct the analog to Newtonian
gravity in (1 + 1) dimensions: the field equation for the gravitational potential φ is given by

∂2
xφ(t, x) = 2Gρ(t, x), (7)

where G is the gravitational constant and ρ is the mass density, and the equation of motion for
a point particle moving in this potential is given by

z̈(t) = −∂xφ(t, x)|x=z(t), (8)

2 See [3, p 232].
3 See [12]; a discussion of the Nordstrøm theory that is accessible to students is given in [1, p 429].
4 See [3, p 238].
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where z(t) is the position of the particle at time t. A key feature of this equation of motion
is that it does not involve the particle mass, which means that the trajectory of the particle
depends only on its initial position and velocity, and not on its constitution. This suggests that
we might be able to explain gravitational effects in terms of a property intrinsic to space itself,
rather than in terms of a particle–field interaction, and we will therefore look for a relativistic
generalization of Newtonian gravity that explains gravitational effects in this way.

A further hint that can guide us towards the correct relativistic generalization is the
observation that the effects of gravitational acceleration can be locally transformed away by a
suitable choice of coordinates. We can demonstrate this by choosing a system of coordinates
in which the position of the particle is specified in terms of its separation 	(t) = z(t) − zR(t)

from a freely falling reference particle with trajectory zR(t). From equation (8), we find that
the equation of motion for 	 is

	̈(t) = z̈(t) − z̈R(t) = −	(t)∂2
xφ(t, x)|x=zR(t), (9)

where we have assumed that 	 is small enough that we can expand in 	 and retain only the
first-order term. Using equation (7), we can substitute for ∂2

xφ(t, x) to obtain

	̈(t) = −2Gρ(t, zR(t))	(t). (10)

We can also write this equation as

	̈(t) = 1

m
Ft(t), (11)

where m is the mass of the particle and

Ft(t) ≡ −2mGρ(t, zR(t))	(t) (12)

is a quantity that we will call the tidal force5. Note that the tidal force is negligible if the
particle is close to the reference trajectory, so in this limit equation (11) has the same form as
the equation of motion for a free particle in the absence of a gravitational field.

Based on these observations, we are led to consider a geometric theory of gravity in
which particle trajectories correspond to geodesics in a curved spacetime. We can then view
the tidal acceleration described by equation (10) as geodesic deviation caused by the spacetime
curvature. Thus, we would like to interpret equation (10) as the nonrelativistic limit of the
equation of geodesic deviation6

d2	

ds2
= −R

2
	, (13)

where R is the curvature scalar corresponding to the metric tensor gµν and s is the proper time
defined relative to gµν . By comparing equation (10) with equation (13), we can relate the
curvature scalar to the mass density:

R = 4Gρ. (14)

This should be the nonrelativistic limit of our new field equation. This cannot be the correct
relativistic field equation, since R is a scalar under general coordinate transformations while
ρ is the time–time component of the energy–momentum tensor T αβ . Note, however, that the
trace of the energy–momentum tensor is a scalar, and reduces to ρ in the nonrelativistic limit.
Thus, we take

R = 4GgαβT αβ (15)

as our gravitational field equation.

5 The name ‘tidal force’ comes from the fact that one can define an analogous force for Newtonian gravity in (3 + 1)

dimensions, and it is the action of this force on the oceans of the Earth that generates the tides (see [13], section 1.6).
6 This equation is discussed in [1, p 30].
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3. Deriving the toy model from the principle of equivalence

A second way to derive the toy model is to start with a flat spacetime and construct a relativistic
field theory that satisfies the principle of equivalence7. The principle of equivalence states that
all forms of energy–momentum act as a source for gravity, including the energy–momentum
of the gravitational field itself. This means that the gravitational field is self-interacting, so
the gravitational field equation must be nonlinear. We can obtain the correct nonlinear field
equation by using the following procedure. First, we construct a theory that describes a
point particle interacting with a scalar field φ via an arbitrary coupling. Next, we calculate
the total energy–momentum tensor for the particle–field system, and impose the principle of
equivalence by choosing the form of the coupling such that the source for the field is given
by the trace of this tensor. Finally, we show that the resulting theory can be interpreted
geometrically, so we can either view the theory as describing a particle coupled to a scalar
field in a flat spacetime, or as describing a free particle moving in a curved spacetime with
metric tensor8 gµν = e2φηµν .

3.1. Free point particle in flat spacetime

Let us begin by considering a free point particle of mass m moving in a flat spacetime. We can
describe the motion of the particle by specifying its trajectory zµ(λ), where λ is an arbitrary
parameter that labels points along the particle’s worldline. It is convenient to parameterize the
trajectory in terms of the proper time τ , which is defined such that

dτ = (ηµνv
µvν)1/2 dλ, (16)

where

vµ ≡ dzµ

dλ
. (17)

Given a trajectory expressed in terms of an arbitrary parameter λ, we can use equation (16) to
re-parameterize the trajectory in terms of the proper time. We then define the velocity of the
particle to be

wµ ≡ dzµ

dτ
. (18)

The mass density in the rest frame of the particle is

ρ̄p(x) = m

∫
δ(2)(x − z(τ )) dτ, (19)

and in appendix A we show that the energy–momentum tensor for the particle is9

T̄ µν
p (x) = m

∫
wµwνδ(2)(x − z(τ )) dτ. (20)

We can describe the dynamics of the particle in terms of the action

Sp =
∫

Lp dλ =
∫

Lp d2x, (21)

7 This method of deriving the toy model is based on a similar method for deriving general relativity by considering a
tensor field in a flat spacetime (see [14] and the references within; a treatment that is accessible to beginning students
is given in [13], chapter 3).
8 Here ηµν is the Minkowski tensor, defined such that η00 = −η11 = 1, η01 = η10 = 0.
9 The bars on these quantities indicate that they are defined from the point of view in which the spacetime is flat;
later, when we reinterpret the theory, we will need to distinguish these quantities from the corresponding quantities
defined from the point of view in which the spacetime is curved. Here δ(2)(x − z(τ )) ≡ δ(t − z0(τ ))δ(x − z1(τ )).
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where Lp, the relativistic Lagrangian, is given by

Lp = −m(ηαβvαvβ)1/2, (22)

and Lp, the Lagrangian density, is given by

Lp = −m

∫
(ηαβvαvβ)1/2δ(2)(x − z(λ)) dλ = −ρ̄p(x). (23)

The equation of motion for the particle can be obtained from Lp via the Euler–Lagrange
equations

d

dλ

∂L

∂vγ
− ∂L

∂zγ
= 0. (24)

Note that

∂Lp

∂vγ
= −m(ηαβvαvβ)−1/2ηγµvµ,

∂Lp

∂zγ
= 0. (25)

Thus, from equations (16)–(18) and (24), it follows that the equation of motion for the particle
is

dwµ

dτ
= 0. (26)

As a consistency check, we can use this equation of motion to show that the energy–momentum
tensor is conserved:

∂µT̄ µν
p (x) = m

∫
dwν

dτ
δ(2)(x − z(τ )) dτ = 0, (27)

where we have used that

wµ∂µδ(2)(x − z(τ )) = − d

dτ
δ(2)(x − z(τ )) (28)

and integrated by parts.

3.2. Point particle coupled to a scalar field in flat spacetime

Suppose we now couple the point particle to a scalar field φ. We will take the action for the
system to be

S =
∫

(Lf + Lp + Li ) d2x, (29)

where

Lf = 1

4G
(∂µφ)(∂µφ) (30)

describes a free massless scalar field,

Lp = −ρ̄p (31)

describes a free particle, and

Li = −f (φ)ρ̄p (32)

describes an arbitrary coupling between the particle and field. We can use this action to obtain
equations of motion for the particle and field, and to construct the energy–momentum tensor
for the system.
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Let us first consider the particle. Since the particle degrees of freedom only enter into the
Lagrangian densities Lp and Li , we can obtain the equation of motion for the particle from
the action

Spi =
∫

(Lp + Li ) d2x =
∫

Lpi dλ, (33)

where the relativistic Lagrangian Lpi is given by

Lpi = −m(1 + f )(ηµνv
µvν)1/2. (34)

From the Euler–Lagrange equations (24), we find that the equation of motion for the particle
is

d

dτ
wµ + (1 + f )−1(∂νf )(wµwν − ηµν) = 0. (35)

Now let us consider the field. The field equation can be obtained from the Euler–Lagrange
equations

∂µ

δL
δ(∂µφ)

− δL
δφ

= 0, (36)

where L = Lf + Lp + Li . Note that

δL
δ(∂µφ)

= 1

2G
∂µφ,

δL
δφ

= −df

dφ
ρ̄p. (37)

Thus, we find that the field equation is10

�φ = −2G
df

dφ
ρ̄p. (38)

We can calculate the total energy–momentum tensor T̄ αβ for the system by applying the
procedure described in appendix A to the action given in equation (29). We find that

T̄ αβ = T̄
αβ

f + T̄
αβ

pi , (39)

where

T̄
αβ

f = 1

2G

(
(∂αφ)(∂βφ) − 1

2
ηαβ(∂µφ)(∂µφ)

)
(40)

T̄
αβ

pi = m(1 + f )

∫
wαwβδ(2)(x − z(τ )) dτ. (41)

As a consistency check, we can use the particle equation of motion (35) and the field
equation (38) to show that

∂αT̄
αβ

pi = −∂αT̄
αβ

f = ρ̄p

df

dφ
∂βφ, (42)

confirming that the total energy–momentum tensor is conserved:

∂αT̄ αβ = 0. (43)

10 Here � = ηµν∂µ∂ν = ∂2
t − ∂2

x is the d’Alembertian operator in (1 + 1) dimensions.
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3.3. Determining the coupling

We will impose the principle of equivalence by choosing the coupling f (φ) in such a way
that the trace of the total energy–momentum tensor T̄ αβ acts as a source for the field φ. This
means that the field equation must have the form

�φ = −2GηαβT̄ αβ. (44)

If we substitute the field equation (38) and the expression for T̄ αβ given in equation (39), we
see that this condition implies

df

dφ
= 1 + f, (45)

where we have used that ηαβT̄
αβ

f = 0 and ηαβT̄
αβ

pi = (1 +f )ρ̄p. We can integrate this equation
to obtain

f (φ) = A eφ − 1 (46)

for some constant A. Since the particle should be free when the field vanishes, we require that
f (0) = 0, which implies that A = 1:

f (φ) = eφ − 1. (47)

Substituting f (φ) into the expressions we derived in the previous section, we find that the
equation of motion for the particle is

d

dτ
wµ + (∂νφ)(wµwν − ηµν) = 0, (48)

the field equation is

�φ = −2G eφρ̄p, (49)

and the total energy–momentum tensor for the system is T̄ αβ = T̄
αβ

f + T̄
αβ

pi , where T̄
αβ

f is given
by equation (40), and

T̄
αβ

pi (x) = m eφ

∫
wαwβδ(2)(x − z(τ )) dτ. (50)

3.4. Geometric interpretation

We will now show that we can reinterpret the theory, so we can view it as describing a free
point particle moving in a curved spacetime with metric tensor gµν = e2φηµν . To accomplish
this we need to reinterpret both the particle equation of motion (48) and the field equation (49)
in geometric terms.

Let us begin with the particle equation of motion. For a particle moving in a spacetime
described by the metric tensor gµν , the proper time s is defined such that

ds = (gµνv
µvν)1/2 dλ = eφ(ηµνv

µvν)1/2 dλ = eφ dτ, (51)

and the particle velocity is given by

uµ = dzµ

ds
= dτ

ds

dzµ

dτ
= e−φwµ. (52)

Using these relations, we can rewrite the equation of motion (48) in terms of s and uµ:

d

ds
uµ + (∂νφ)(2uµuν − gµν) = 0. (53)
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In appendix B we calculate the Christoffel symbols for the metric gµν , and using these symbols
we can express this equation of motion as

d

ds
uγ + �γ

αβuαuβ = 0. (54)

This is just the geodesic equation; thus, we find that the particle moves along geodesics of the
curved spacetime described by gµν .

Next, we will reinterpret the field equation (49). In appendix A, we show that for a particle
of mass m moving in a curved spacetime with metric tensor gµν , the energy–momentum tensor
is given by

T αβ
p (x) = mg−1/2

∫
uαuβδ(2)(x − z(s)) ds, (55)

where g ≡ − det gµν . From equations (19), (51), (52) and (55), we find that

gαβT αβ
p (x) = e−φρ̄p(x). (56)

In appendix B, we show that the curvature scalar corresponding to gµν is

R = −2e−2φηµν∂µ∂νφ = −2e−2φ �φ. (57)

Thus, we can express the field equation (49) as

R = 4GgαβT αβ
p . (58)

This is just the field equation (5) for the special case of a point particle source.
In summary, from one point of view the spacetime is flat and the particle interacts with

a scalar field φ. The equation of motion for the particle is given by equation (48), and the
field equation is given by equation (49). From another point of view, the spacetime is curved
and the particle falls freely. The equation of motion for the particle is given by the geodesic
equation (54), and the spacetime geometry is described by a metric tensor that satisfies the
field equation (58).

4. Solution for a stationary point particle

To illustrate the results of the previous section, we will solve the field equation for the case
of a stationary point particle. Let us first consider the system from the flat-spacetime point
of view. We will take the trajectory of the particle to be z0(τ ) = τ, z1(τ ) = 0, where τ

is the proper time defined relative to the metric tensor ηµν . Substituting this trajectory into
equation (19), we find that the mass density in the rest frame of the particle is given by

ρ̄p(x) = m

∫
δ(2)(x − z(τ )) dτ = mδ(x). (59)

If we substitute this result into the field equation (49), we find that

∂2
xφ(x) = 2Gm eφ0δ(x), (60)

where φ0 ≡ φ(0), and where we have assumed that the potential is static. The solution to this
equation is11

φ(x) = Gm eφ0 |x| + φ0. (61)

We can also consider the system from the curved-spacetime point of view. The metric
that describes the spacetime curvature is

ds2 = e2φ(x)(dt2 − dx2), (62)

11 The most general solution includes an additional term Ex that describes a constant background field, but for
simplicity we will assume that E = 0.
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with φ(x) given by equation (61), and the curvature scalar is

R = 2e−2φ(x)∂2
xφ(x) = 4Gm e−φ0δ(x), (63)

so the spacetime is flat everywhere except on the particle worldline itself. In the curved-
spacetime interpretation the parameter φ0 can be thought of as defining a constant scaling
factor eφ0 . This scaling factor can always be eliminated by transforming to new coordinates
t̄ = eφ0 t, x̄ = eφ0x in which the metric takes the form

ds2 = e2φ̄(x̄)(dt̄2 − dx̄2), (64)

where φ̄(x̄) = a|x̄| and a ≡ Gm. Thus, without loss of generality we can take φ0 = 0.

4.1. Coordinate transformations

The (t, x) coordinates that we have been using up until now are convenient because they allow
us to connect the toy model with the flat-spacetime interpretation, but we can gain further
insight into our solution by considering an alternative system of coordinates that casts the
metric into a simpler form. Since the spacetime is flat for x > 0 and x < 0, in each of these
regions we can define coordinates in which the metric tensor is given by the Minkowski tensor
ηµν . For the region x � 0 we define coordinates (u+, v+) by

u+(t, x) = a−1 eax sinh at (65)

v+(t, x) = a−1 eax cosh at, (66)

and for the region x � 0 we define coordinates (u−, v−) by

u−(t, x) = a−1 e−ax sinh at (67)

v−(t, x) = a−1 e−ax cosh at. (68)

It is straightforward to verify that if we apply these coordinate transformations to the metric
given in equation (62), we obtain the Minkowski metric

ds2 = du2
+ − dv2

+ = du2
− − dv2

−. (69)

Note that events with x > 0 are described exclusively by the (u+, v+) coordinates, events
with x < 0 are described exclusively by the (u−, v−) coordinates, and events with x = 0 (that
is, events on the worldline of the particle) are described by both systems of coordinates. The
two coordinate patches are therefore glued together along the particle worldline, which in the
new coordinates corresponds to the hyperbolas v2

+ −u2
+ = 1/a2 and v2

− −u2
− = 1/a2. We will

call these hyperbolas H+ and H−, respectively; note that points to the left of these hyperbolas
do not correspond to physical events.

To describe the gluing, we need to relate the two coordinate descriptions of events (t, 0)

that lie on the particle worldline; from equations (65)–(68), we find that

u+(t, 0) = u−(t, 0), v+(t, 0) = v−(t, 0). (70)

We also need to relate the two coordinate descriptions of vectors in the tangent space of the
particle worldline. From equations (65) and (66), we find that as x → 0 from above,(

du+

dv+

)
=

(
cosh at sinh at

sinh at cosh at

) (
dt

dx

)
, (71)

and from equations (67) and (68), we find that as x → 0 from below,(
du−
dv−

)
=

(
cosh at − sinh at

sinh at − cosh at

) (
dt

dx

)
. (72)
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Thus, at x = 0, we have that(
du−
dv−

)
=

(
cosh 2at − sinh 2at

sinh 2at − cosh 2at

) (
du+

dv+

)
. (73)

This is just a spatial reflection followed by a Lorentz transformation with β = tanh 2at . An
arbitrary vector in the tangent space of the particle worldline has two coordinate descriptions
A

µ
+ and A

µ
−, and these are related by the same transformation law:(

A0
−

A1
−

)
=

(
cosh 2at − sinh 2at

sinh 2at − cosh 2at

)(
A0

+

A1
+

)
. (74)

In summary, the new coordinates are convenient because they reduce the metric to
Minkowski form, but the cost of this simplification is that instead of one global coordinate
patch (t, x) we need two coordinate patches (u+, v+) and (u−, v−) that are glued together in a
nontrivial way.

4.2. Trajectory of a freely falling test particle

Let us now consider the trajectory of a test particle12 falling in the spacetime described by
equation (62). Intuitively, we expect the test particle to be attracted by the gravitational field
of the source particle and to undergo periodic oscillations about the source particle worldline.
One can verify this by calculating the trajectory of the test particle in the (t, x) coordinate
system, using either equation (48), the equation of motion for the flat-spacetime interpretation,
or equation (54), the equation of motion for the curved-spacetime interpretation. We will
consider an alternative approach, however, which makes use of the (u+, v+) and (u−, v−)

coordinates, and helps clarify the way in which the two coordinate patches are glued together.
Let us assume that the test particle starts out to the right of the source particle worldline,

so initially we can describe its trajectory using the (u+, v+) coordinates. The metric tensor in
this coordinate system is just the Minkowski metric, so the test particle moves at a constant
velocity until it hits the hyperbola H+. We then switch over to the (u−, v−) coordinate system,
using equations (70) and (74) to obtain the initial position and velocity of the test particle in
this system. The test particle once again moves at a constant velocity until it hits the hyperbola
H−, at which point we switch back to the (u+, v+) coordinate system and the whole process
repeats itself.

We can illustrate this with a specific example. Consider a portion of a test particle
trajectory that consists of two segments: for −s0 � s � 0 the trajectory is given by

u−(s) = s cosh θ, v−(s) = a−1 − s sinh θ, (75)

and for 0 � s � s0 the trajectory is given by

u+(s) = s cosh θ, v+(s) = a−1 + s sinh θ, (76)

where s0 ≡ 2a−1 sinh θ . Note that in each segment the particle moves at a constant velocity
β± = ± tanh θ . We can verify that the two segments are glued together properly by checking
that they satisfy equations (70) and (74) at s = 0:

u+ = u−, v+ = v−,
du+

ds
= du−

ds
,

dv+

ds
= −dv−

ds
. (77)

where we have used that t = 0 for the point on the trajectory at s = 0.
It is straightforward to transform the trajectory into the (t, x) coordinate system by

inverting equations (65)–(68). Figure 1 illustrates the trajectory for the case θ = 1/2.

12 We will assume the mass of the test particle is small compared to mass m of the source particle, so it does not
significantly alter the spacetime geometry.
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Figure 1. Test particle trajectory in the (u−, v−), (u+, v+) and (t, x) coordinate systems. The
thick lines indicate the trajectory of the test particle; the thin lines in the (u−, v−) and (u+, v+)

coordinate systems indicate the hyperbolas H− and H+.

5. Solution for a static, uniform density source

As a second example, we will present a solution for the case of a static, uniform density
source13. This solution provides a simple example that illustrates some of the techniques
involved in finding solutions for relativistic stars. We will assume that the source is a perfect
fluid, so its energy–momentum tensor is given by14

T αβ(x) = (ρ + p(x))uα(x)uβ(x) − p(x)gαβ, (78)

where ρ is the density, and p(x) and uα(x) are the pressure and velocity of the fluid at the point
x. Let us choose a system of coordinates such that the metric tensor has the form gµν = e2φηµν .
Since the fluid is static, in this coordinate system the components of the velocity vector uα are

u0 = e−φ u1 = 0. (79)

Thus, the components of the energy–momentum tensor are

T 00 = e−2φρ, T 11 = e−2φp, T 01 = 0, T 10 = 0. (80)

The energy–momentum tensor must obey the conservation law

∇βT αβ = ∂βT αβ + �α
µβT µβ + �β

µβT αµ = 0, (81)

where ∇β indicates a covariant derivative. Substituting for the components of T αβ using
equation (80), and for the Christoffel symbols using the results of appendix B, we find that

∇βT 1β = e−2φ(∂xp + (ρ + p)∂xφ). (82)

Thus, we obtain an equation of hydrostatic equilibrium:

∂xp = −(ρ + p)∂xφ. (83)

This equation describes how the pressure must vary inside the source in order to balance the
gravitational attraction.

13 This is the (1+1)-dimensional analog of an exact solution due to Schwarzschild for the interior of a uniform-density
star (see [1], pp 609–12).
14 See [15], equation 2.10.7.
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Using equation (80) for the components of T αβ , and using the results of appendix B for
the curvature scalar R, we find that the field equation is given by

R = −2e−2φ �φ = 4GgαβT αβ = 4G(ρ − p). (84)

Since the field is static, this reduces to

∂2
xφ = 2G(ρ − p) e2φ. (85)

The equation of hydrostatic equilibrium (83) and the field equation (85) form a coupled set of
equations that can be solved for the pressure p(x) and the gravitational potential φ(x). We
can simplify these equations by introducing a dimensionless spatial coordinate

u = (4Gp0)
1/2 eφ0x (86)

and a dimensionless pressure

P(u) = p(u)/p0, (87)

where p0 ≡ p(0) and φ0 ≡ φ(0) are the pressure and gravitational potential at the center of
the source. In terms of these new quantities, equations (83) and (85) become

P ′(u) = −(α + P(u))φ′(u) (88)

φ′′(u) = 1
2 (α − P(u)) e2(φ(u)−φ0), (89)

where the primes denote derivatives with respect to u and where α ≡ ρ/p0 is the density-to-
pressure ratio at the center of the source. We can integrate equation (88) to obtain

φ(u) = φ0 − log

(
α + P(u)

α + 1

)
. (90)

Or, solving for the pressure,

P(u) = (α + 1) e−(φ(u)−φ0) − α. (91)

Substituting this result into equation (89), we find

φ′′(u) = α e2(φ(u)−φ0) − 1
2 (α + 1) e(φ(u)−φ0). (92)

We will assume that the source is symmetric about u = 0, so φ′(0) = 0. Using this boundary
condition, we can write the solution to equation (92):

φ(u) = φ0 − log
(

1
2 (α + 1 − (α − 1) cosh u)

)
. (93)

If we substitute this result into equation (91), we find that

P(u) = 1
2 (α2 + 1 − (α2 − 1) cosh u). (94)

Thus, the pressure decreases as we move outwards from the center at u = 0, and eventually
reaches zero at some point u = r that defines the surface of the source. We can determine the
location of this point by solving the equation P(r) = 0 for r; we find that

r = log

(
α + 1

α − 1

)
. (95)

So far we have only considered the interior of the source, which corresponds to the region
|u| � r . Outside the source the energy–momentum tensor vanishes, so the field equation is

φ′′(u) = 0, (96)

and the potential is given by

φ(u) = A|u| + B (97)
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for some constants A and B. We can determine these constants by matching the exterior
solution given by equation (97) to the interior solution given by equation (93). From
equations (93) and (95), we find that

φ(±r) = φ0 + log(1 + 1/α) (98)

φ′(±r) = ±1. (99)

Thus, the exterior solution, which applies to the region |u| � r , is given by

φ(u) = |u| − r + φ0 + log(1 + 1/α). (100)

It is instructive to compare this solution to the analogous solution for a constant-
density source in Newtonian gravity. The field equation for Newtonian gravity is given by
equation (7), so for a source with a constant density ρ we have that

∂2
xφ(x) = 2Gρ. (101)

To determine how the pressure p(x) varies inside the source, let us consider the forces acting
on a small mass element of length δx. The mass element feels an inward force −ρδx∂xφ(x)

due to the gravitational field, and an outward force δx∂xp(x) due to the pressure variation. If
we require that these forces balance, we obtain an equation of hydrostatic equilibrium:

∂xp(x) = −ρ∂xφ(x). (102)

Equations (101) and (102) are the Newtonian analogs of equations (85) and (83). We can
solve these equations for the gravitational potential and the pressure inside the source:

φ(u) = 1
4αu2 (103)

P(u) = 1 − 1
4α2u2, (104)

where for simplicity we have assumed that φ0 = 0, and as before α ≡ ρ/p0, u ≡ (4Gp0)
1/2x

and P(u) = p(u)/p0. The surface of the source is located at the point u = r where the
pressure vanishes, so we find that r = 2/α. Using these results, it is straightforward to show
that the relativistic solution reduces to the Newtonian solution in the limit α � 1 in which the
density of the source is much larger than the pressure at the center of the source.

Appendix A. Energy–momentum tensor

Here we show how to obtain a conserved energy–momentum tensor15 for a system that is
described in terms of an action S. First, we write the action in covariant form; that is, in
a form that is invariant under general coordinate transformations. We can then obtain the
energy–momentum tensor T αβ by varying this covariant action with respect to the metric
tensor:

δS = −1

2

∫
T αβδgαβg1/2 d2x, (A.1)

where g ≡ − det gµν . For this method to be applicable, all the fields in the action must be
dynamical; in other words, there can be no explicit spacetime dependence of the Lagrangian
density. There are two results that are useful in performing the variations. First, the variation
of the inverse metric tensor is given by

δgµν = −gµαgνβδgαβ. (A.2)

15 See [15, pp 360–3] for a discussion of this method and a proof that the resulting energy–momentum tensor is
conserved.
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Second, the variation of g is given by16

δg = ggµνδgµν. (A.3)

To illustrate this technique, we will calculate the energy–momentum tensor for a free
point particle and for a free scalar field. For a free point particle, the action is

Sp = −m

∫
(ηαβvαvβ)1/2 dλ. (A.4)

In covariant form, this action becomes

Sp = −m

∫ ∫
(gαβvαvβ)1/2δ(2)(x − z(λ)) dλ d2x. (A.5)

If we vary this action with respect to gαβ , we find that the energy–momentum tensor is

T αβ
p = mg−1/2

∫
(gαβvαvβ)−1/2vαvβδ(2)(x − z(λ)) dλ. (A.6)

For a flat spacetime with gµν = ηµν , the energy–momentum tensor is

T αβ
p = m

∫
wαwβδ(2)(x − z(τ )) dτ. (A.7)

For a free scalar field, the action is

Sf = 1

4G

∫
(∂µφ)(∂µφ) dx2. (A.8)

In covariant form, this action becomes

Sf = 1

4G

∫
gµν(∂µφ)(∂νφ)g1/2 dx2. (A.9)

If we vary this action with respect to gαβ , we find that the energy–momentum tensor is

T
µν

f = 1

2G

(
gµαgνβ(∂αφ)(∂βφ) − 1

2
gµνgαβ(∂αφ)(∂βφ)

)
. (A.10)

For a flat spacetime with gµν = ηµν , the energy–momentum tensor is

T
µν

f = 1

2G

(
(∂µφ)(∂νφ) − 1

2
ηµν(∂αφ)(∂αφ)

)
. (A.11)

Appendix B. Geometry in conformal coordinates

Here we calculate the Christoffel symbols and curvature scalar for the metric tensor
gµν = e2φηµν . The Christoffel symbols are

�µ
αβ = 1

2gµν(∂αgνβ + ∂βgαν − ∂νgαβ) (B.1)

= ηµν(ηνβ∂αφ + ηαν∂βφ − ηαβ∂νφ). (B.2)

The Riemann curvature tensor is defined to be

Rµ
ανβ = ∂ν�

µ
αβ − ∂β�µ

αν + �γ
αβ�µ

γν − �γ
αν�

µ
γβ, (B.3)

and from this expression we can obtain the curvature scalar

R = gαβRµ
αµβ = −2gµν∂µ∂νφ = −2e−2φηµν∂µ∂νφ = −2e−2φ �φ. (B.4)

Note that we can also use equation (1) to express the Riemann tensor in terms of R.

16 These results are derived in [3, p 258].
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