
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 29, NO. 7, JULY 2010 1369

General Retinal Vessel Segmentation Using
Regularization-Based Multiconcavity Modeling
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Abstract—Detecting blood vessels in retinal images with the
presence of bright and dark lesions is a challenging unsolved
problem. In this paper, a novel multiconcavity modeling approach
is proposed to handle both healthy and unhealthy retinas si-
multaneously. The differentiable concavity measure is proposed
to handle bright lesions in a perceptive space. The line-shape
concavity measure is proposed to remove dark lesions which have
an intensity structure different from the line-shaped vessels in a
retina. The locally normalized concavity measure is designed to
deal with unevenly distributed noise due to the spherical intensity
variation in a retinal image. These concavity measures are com-
bined together according to their statistical distributions to detect
vessels in general retinal images. Very encouraging experimental
results demonstrate that the proposed method consistently yields
the best performance over existing state-of-the-art methods on the
abnormal retinas and its accuracy outperforms the human ob-
server, which has not been achieved by any of the state-of-the-art
benchmark methods. Most importantly, unlike existing methods,
the proposed method shows very attractive performances not
only on healthy retinas but also on a mixture of healthy and
pathological retinas.

Index Terms—Multiconcavity modeling, perceptive transform,
regularization, retina image, retinal vessel segmentation.

I. INTRODUCTION

B
RIGHT and dark lesions are the symptoms of retinal

diseases arising from diabetic retinopathy, hypertensive

retinopathy, solar retinopathy, retinal vein or artery occlusion,

etc., [1]–[4]. Retinopathies can progress to blindness or severe

loss of vision. However, half of the blindness can be prevented

by regular screening and timely treatment [5]. This is a labor

intensive process, which requires clinical experts to examine a

large number of retinas. Several retina centers such as the Joslin

Vision Network and Inoveon Corporation have shown that
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Fig. 1. (a) An abnormal retina with bright lesions. (b) Cross-section intensity
profile of the abnormal region marked in (a). (c) An abnormal retina with dark
lesions. (d) Cross-section intensity profile of the abnormal region marked in (c).

digital photography is an excellent tool for analyzing retina [6],

[7] and computer algorithms are being developed for automatic

retinal image analysis [8]–[23]. Blood vessel is one of the most

important features in retina for detecting retinal vein occlusion

[24], for grading the tortuosity for hypertension [25], and for

early diagnosis of glaucoma [15]. The segmentation of blood

vessels is an important preprocessing step for the detection of

bright and dark lesions [26]–[30]. However, most existing blood

vessel segmentation algorithms assume that the input retina is

healthy and free of bright and dark lesions. The presence of

lesions can significantly degrade their performances and even

make them useless.

Concavity in the intensity profile is one of the most impor-

tant image properties in blood vessel segmentation and most

existing methods assume that the intensity profile of a vessel

has an elongated concave structure within a smooth and clean

nonvessel region. However, when bright and dark lesions exist,

the nonvessel region is not smooth anymore. Fig. 1(a) and (c)

shows retinal images having bright lesions and dark lesions, re-

spectively. Their cross sections intensity profiles are given in

Fig. 1(b) and (d), respectively. These lesions violate the basic

assumption of existing methods and lead to a large number of

false positives.

Existing retinal vessel segmentation approaches can be clas-

sified into three categories: unsupervised methods, supervised
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learning methods and pathological retina based methods. For

unsupervised methods, Chaudhuri et al. [31] proposed a tem-

plate matching approach to measure the degree of similarity be-

tween a given elongated inverse Gaussian template and the ves-

sels. Hoover et al. [32] enhanced the above method by applying

effective noise removal techniques. Jiang and Mojon [33] pro-

posed an adaptive thresholding technique which partitions the

input image into a finite number of levels according to pixel in-

tensities. In each level, the vessels are extracted using the inten-

sity, angle and length information based on a predefined elon-

gated concave structure. Ricci and Perfetti [34], [35] proposed

a fast and robust template matching algorithm which measures

the output difference between a line filter and an averaging filter.

Tolis et al. [36] proposed a tracking approach in which seed

points are grown according to predefined rules to extract all con-

cave regions as vessels. These methods work well on healthy

retinas but fail to perform on abnormal ones because all non-

vessel regions are assumed to be smooth, which is not true when

bright and dark lesions exist.

In contrast to unsupervised methods, supervised learning

methods adopt human segmentation results to define the

concave intensity structure of retinal vessels and the smooth

characteristic of the nonvessel regions. Most state-of-the-arts

supervised learning methods handle only healthy retina and

reported that retina having lesions are challenging future work

[37]–[39]. Staal et al. [37], [38] is one of the very first research

groups using the supervised learning strategy for vessel seg-

mentation. Numerous features are used for training a classifier

to classify pixels as either vessel or nonvessel. The method

yields very good results on healthy retinal images. However,

many of these features, such as the Laplacian of Gaussian fea-

tures which detect concavity intensity profile in retinal vessels,

require a high degree of smoothness in the nonvessel region. If

a bright lesion is present, the steep intensity transition pattern

of the lesion will also be treated as vessels, producing a large

number of artifacts. Soares et al. [39] proposed a Gabor feature

based supervised learning method for vessel segmentation.

They adopted the Gabor features which consider the low fre-

quency elongated structure in the intensity profile of the retinal

vessels in the training process. This approach has excellent

performance on healthy retinas. However, due to the detection

of low frequency features, the vessels located near the high

frequency bright lesions are discarded.

Pathological retina based methods are the only class in which

pathology in retinas is considered during vessel detection.

There are few publications in this category and they only

handle bright lesions. Mendonça and Campilho [40] adopted

different color space for different retinal images and used the

color space to handle bright lesions. Their method

produces better results on the pathological retina than most of

the existing algorithms. Recently, Lam and Yan [41] proposed a

divergence vector field approach to handle the bright lesions by

measuring the smoothness of the nonvessel regions in different

orientations. Although the method can handle bright lesions,

a thresholding technique is needed for artifacts removal. A

large threshold leads to more artifacts removal near the bright

lesions but also results in many normal vessels being incorrectly

removed.

Clearly, there is a need to develop new vessel segmentation

methods that are effective for both normal and pathological

retinas with bright and dark lesions. In this paper, we present an

effective algorithm that, for the first time, is able to handle both

normal and pathological retinas with bright and dark lesions si-

multaneously. Three different concavity measures are proposed

to detect blood vessels and each of these measures is designed

for addressing the negative impact produced by the lesions for

identifying the normal vessels. Using Weber’s law, we propose

a perceptive transform to model human visual perception in

retinal image analysis. As the bright lesion has a steep intensity

transition pattern, measuring the degree of concavity based

on differentiability (Section II) can effectively distinguish the

bright lesions from the vessels and nonvessels. Since dark

lesions have an irregular shape intensity structure while blood

vessels have a line-shape intensity structure, a line-shape con-

cavity detection method (Section III) is developed to prune the

dark lesions while keeping the line-shape blood vessels. As

retinal image has a spherical intensity variation, the relative

intensities of noise in different parts of the retinal image are

different. A locally normalized concavity detection method

(Section III) is proposed to normalize the strengths of noise

removal in different regions. Finally, these concavity measures

are combined according to their statistical and geometrical

properties (Sections IV and V). A flowchart of the proposed

method is given in Fig. 2. The effectiveness and robustness of

the proposed method are evaluated on two publicly available

databases (STARE and DRIVE) and are compared with the

state-of-the-art methods.

The rest of the paper is organized as follows. Section II

describes the perceptive differentiable concavity measure to

handle the bright lesions. Section III presents the line-shape

concavity measure to handle dark lesions and the locally

normalized concavity measure for noise removal. Section IV

describes how the features obtained from these concavity

measures are combined and Section V describes the lifting

technique for optimizing the regularized solution toward the

ideal vessel shape. The experimental results are given in Sec-

tion VI. Finally, the conclusions are given in Section VII.

II. PERCEPTIVE DIFFERENTIABLE CONCAVITY

In this section, a differentiable concavity measure is

designed to robustly detect retinal blood vessels in the presence

of bright lesions. This measure is constructed on our proposed

perceptive space, which mimics human perception in retinal

image analysis.

A. Perceptive Transform

Weber [42] examined the relationship between the physical

intensity magnitude and its perceptive intensity. He observed

that the just noticeable change of physical magnitude by human

perception can be described by the equation

(1)

where is the physical magnitude at , is its rate

of change and is the Weber’s constant. If the quantity on
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Fig. 2. Flowchart of the proposed method.

the left-hand side of the equation is smaller than at ,

human cannot notice the change of the physical magnitude.

Given a perceptive intensity , the rate of change of the per-

ceptive intensity and the physical magnitude is related by [43]

(2)

Obviously, if is small, it is hard to notice the change of the

physical magnitude, and vice versa. In this research, the phys-

ical magnitude is the intensity of a two dimensional image and

the rate of change is defined as gradient of the physical

magnitude. Transforming an input image to its perceptive in-

tensity can be achieved by the following theorem.

Theorem 1: Assume and . Given

the physical magnitude function in (2), when the rate

of change at is small enough, the perceptive

intensity is expressed as .

Proof: In (2), when the rate of change at is

small enough, the gradient operator can be used as an estimate

of . That is, (2) can be rewritten as

(3)

The and components of the gradient operator is separable.

At , the -component of (3) becomes

(4)

By integrating both sides of the above equation from to

, we have

(5)

where is the natural logarithm. Similarly, for the -com-

ponent, we have

(6)

By taking in (5) and in (6) and summing up

these two equations, we get

(7)

As and , we have

(8)

There are two assumptions ( and

) in the above theorem. If we take with

, the assumptions will be satisfied automatically. In a

retinal image, the pixels along the border of the image [outside

the field-of-view (FOV)] has zero intensity, that is, .

This means that and . Thus,

the equation transforming the input image to the perceptive

image can be expressed as

(9)

where is a constant. The constant is taken to be one in our

experiments. A different value of does not affect the segmen-

tation result as can be digested by the normalization process

and the user-defined parameter of the TV model. More details

will be given in Sections II-E. Nonretinal images (or a cropped

retinal image) may not have a zero intensity pixel or the zero

intensity pixels may not be located at the border of the image.

If that is the case, the transform will become

(10)

The unknown parameter can be ignored as the con-

structions of the two planes and are invariant under

translation to the perceptive intensity, as will be shown in Sec-

tion II-E. Now that a transform to obtain a perceptive intensity

has been formulated, we apply this technique to analyze the con-

cavity profile with the presence of bright lesions.

B. Bright Lesion

Existing retinal vessel segmentation methods assume vessels

in a retina have a concave shape intensity profile within a

smooth and clean nonvessel region. The nonsmooth bright

lesions having a steep intensity transition pattern can therefore

be wrongly classified as vessels. Fig. 1(a) shows an example

of bright lesions with its cross-section intensity profile shown

in Fig. 1(b). Fig. 3 is the result of a well-known concavity

detection algorithm [44] which computes the second-order
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Fig. 3. Vessel segmentation result using the multi-scale method [44] with
(fpr,tpr) � �������� �����	
 to the retinal image in Fig. 1(a).

directional derivatives in a multiscale manner. Due to the steep

intensity transition pattern of the bright lesions, the method

falsely classifies the nonsmooth pixels as vessels and a ringing

effect is produced in the lesion regions.

To deal with the negative effect of the steep intensity tran-

sition pattern in the bright lesions, a differentiable concavity

measure is proposed to describe vessels. The input retina is

first transformed into the proposed perceptive space (see Sec-

tion II-A). Then, the problem of ringing effect is resolved by

constructing two planes using regularizations: smooth imaging

plane (see Section II-C) and structurally differentiable

plane (see Section II-D). The smooth imaging plane

classifies the smooth regions as nonvessel region while the

structurally differentiable plane classifies the nonsmooth steep

intensity transition pattern of bright lesions as nonvessel region.

Together, these two planes can categorize the bright lesions and

the smooth background region as nonvessel and the smooth

concave regions as vessels. In Section II-C, we will first intro-

duce the concept of smooth imaging plane .

C. Smooth Imaging Plane

The smooth imaging plane is constructed by measuring

the concavity strength in a low perceptively noticeable environ-

ment. In the perceptive domain, the degree of noticeable change

is given by (2), whose right hand side is the gradient of the per-

ceptive image . By minimizing this term, the degree

of noticeable change is minimized and pixels with nonnotice-

able change are smoothed out. To preserve the detailed infor-

mation of the input retina, a fitting term which

measures the degree of similarity of the solution and the

input image is applied. The regularized solution

can be obtained by minimizing the following objective function

[45], [46]:

(11)

where is the domain, is a user-defined parameter.

is the Mumford-Shah (MS) model [45], [46], which consists of

two terms, the regularization term and the fitting term measuring

the difference between the solution and the input. Using the cal-

culus of variation, the minimum of the objective function

satisfies the following equation:

(12)

In this equation, the isotropic Laplacian operator is used as

regularization and this equation can be solved using the digital

Fig. 4. Segmentation result in � at (fpr, tpr) � �����	�� ������
.

filter approach given by [47], in which the regularization is ap-

plied to both the magnitude and the orientation of the solution

. It behaves like a diffusion process smoothing out noise.

The strength in the smooth imaging plane is obtained by

computing the squared maximum principal curvature [44].

The principal curvature with respect to a given principal

direction is defined as [44]

(13)

The subscripts in (13) denote the partial derivatives of along

the and coordinates. Then, can be obtained by

the following equation [44]:

(14)

which is the squared maximum eigenvalue of the Hessian matrix

given in (13). Fig. 4 shows the segmentation result in the smooth

imaging plane for the retina image of Fig. 1(a). Compare to the

segmentation result in Fig. 3, it can be seen that is able

to reduce the artifacts due to the bright lesions (fpr reduced by

0.0292) while revealing more vessels (tpr increased by 0.0417).

To handle the artifacts near the bright lesions, a structurally dif-

ferentiable plane is proposed in Section II-D.

D. Structurally Differentiable Plane

The concept of constructing the structurally differentiable

plane is to perform regularization to the input so

that the output ignores the contributions of all steep intensity

transition patterns while revealing the smooth concave-shape

vessels. That is, should give low responses to highly

discontinuous signals such as bright lesions and high responses

to smoother signals such as vessels. The negation of can

be obtained by minimizing the total variation (TV) model [46],

[47] which preserves sharp edges (such as bright lesions) of the

input image while performs strong smoothing to the smoother

signals (such as vessels).

The TV model is given by

(15)

where and is a user-defined con-

stant. is a parameter to avoid the nondifferentiability at
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Fig. 5. Segmentation in the structurally differentiable plane. (a) The output
of the TV model. (b) The vessel segmentation result in � at (fpr,tpr) �
�������� ����	
�.

and we take in all the experiments. The key differ-

ence between (15) and (11) is in the regularization term. The

regularization in the MS model is the square of the gradient am-

plitude while the regularization in the TV model does not have

a square. Using the calculus of variation, the minimum of

the objective function of (15) satisfies

(16)

The solution is computed by the scheme given in [47].

The regularization computes the curvature (the rate of change of

orientation) of the solution . If a pixel and its neighborhood

have a steep intensity transition pattern, will be

very small and the regularization term

to this pixel is greatly reduced, and thus the solution of

the pixel will be equal to its original input . Compare to the

highly discontinuous steep intensity transition pattern in bright

lesions, a vessel in a retina is much smoother. Because of this

smoothness, the regularization term in the vessel region is much

stronger than that in the nonsmooth bright lesions. Fig. 5(a)

shows the output of the TV model. The bright lesions are pre-

served while other concave blood vessels are smoothed out. By

subtracting the original input from , the structurally dif-

ferentiable plane (i.e., ) could be ob-

tained. If has a large value (such as bright lesions),

will return a low value and vice versa. Fig. 5(b)

shows the vessel segmentation result in the structurally differ-

entiable plane, in which no ringing effect is produced. In Sec-

tion II-E, we combine this structurally differentiable plane with

the smooth imaging plane to form the differentiable concavity

measure, which is robust for detecting blood vessels with the

presence of bright lesions.

E. Differentiable Concavity

The two imaging planes are combined to form a differentiable

concavity measure. It is observed that a retinal pixel belongs to a

nonvessel region when both planes have low strengths. It is also

obvious that a pixel belongs to a vessel when both planes show

high responses. For the case of high strength in and low

strength in , a pixel is observed as the ringing effect due to

its high response to the smooth plane but not to the structurally

differentiable plane. As noise can have a concave intensity pro-

file but is not smooth, a pixel is considered as noise when it

TABLE I
COMBINED EFFECTS OF THE TWO PLANES

has low strength in and high strength in . Based on

the above observations (summarized in Table I), a new differ-

entiable concavity measure is defined as the conditional

probability

(17)

where is the input image. The differentiable concavity mea-

sure inherits the strengths of both planes. When the two

image planes , are independent, the above function can

be written as

(18)

The independence can be justified as follows. The max-

imum eigenvalue of the Hessian matrix is used to de-

termine the strength of [(14)] while the curvature

[ in (16)] is used to construct . The

curvature here only involves the rate of change of orientation

and does not involve other variables. Any change of orientation

does not influence the magnitude of the maximum eigenvalue

of a Hessian matrix. Thus, and are orthogonal to

each other.

The two probability maps and are

of the same size as the original input image, in which each pixel

is now of a probability value. By (14), squared maximum eigen-

value is used and must be positive. The computation of the

probability map can be obtained by normalizing

as

(19)

where is the normalization constant and is equal to the

summation of over the FOV. In retinal image analysis, FOV

is defined as the circular retinal region located in the middle of

a rectangular image and the region outside is the dark nonretina

background. We now discuss the effect of the two unknown pa-

rameters and in (10) to the construction of . Ob-

viously, the objective function (11) has a linear relationship be-

tween the input and the output . That is, if is a min-

imum of with input , is the minimum of

with input . As is obtained by making use of

the derivatives given in (13), is invariant under a translation

of the perceptive intensity of . Moreover, the use of normal-

ization constant given in (19) makes the probability

invariant under a scaling of the perceptive intensity of . Thus,

the two parameters and given in (10) can be ignored.

By (16), the output can have either a larger or smaller value
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Fig. 6. (a) Segmentation result of using the differentiable concavity measure
� at (fpr,tpr) � �������� �������. (b) Ground truth.

than the original input and can be nega-

tive. The construction of the probability map can

be obtained by discarding the negative part of

if

otherwise
(20)

where is the normalization constant and is equal to

the summation of over FOV. Next, we discuss the effect

of and to the construction of . The optimization

function in (16) has the following translation relationship if

is a minimum of with input , is the minimum

of with input . The construction of is given

by , which implies is invariant under a translation

of . Hence, the translation parameters can be ignored.

Regarding the scaling parameter in (10), note that the regular-

ization term in (16) is scaling invariant

for the variable . That is, if is a minimum of

with input and user-defined parameter , is the

minimum of with input and . By setting

as a user-defined parameter, the scaling parameter can

be ignored. Fig. 6(a) shows the segmentation result using the

differentiable concavity measure . It can be seen that the

ringing effect around the bright lesions are largely eliminated

and the effect of noise is reduced in the nonvessel region. In Sec-

tion III, we will propose a locally normalized concavity measure

to further remove the noise around the bright lesions and at the

nonvessel region. Moreover, a line-shape concavity is proposed

to detect vessels with the presence of dark lesions.

III. LINE-SHAPE CONCAVITY AND LOCALLY

NORMALIZED CONCAVITY

Other than bright lesions, a pathological retina can also ap-

pear in the form of dark lesions, e.g., due to hemorrhages, having

concavity intensity profile similar to vessels. Fig. 7(a) shows an

example retina with dark lesions. Due to the concavity inten-

sity profile of dark lesions, many vessel detectors give a large

response to the dark lesions. Fig. 7(b) is an example segmen-

tation result showing many false positive dots which are incor-

rectly detected as vessels. To distinguish the dark lesions from

the vessels, a line-shape concavity measure based on the

geometric structural difference of the two regions is proposed.

The vessel has an intensity profile uniformly distributed along

a line with direction while the dark lesion has an intensity pro-

file uniformly distributed on an irregular patch. Likelihood ratio

Fig. 7. (a) A retina image having dark lesions. (b) Segmentation using the
multiscale method [44] at (fpr,tpr)� ����	������
���. (c) Segmentation using
the differentiable concavity measure � at (fpr,tpr) � ����		�����
���.
(d) Segmentation using the line-shape concavity measure � at (fpr,tpr)
� ����������	�	�. (e) Segmentation using the locally normalized concavity
measure � at (fpr,tpr) � ����
������	�.

is used to model this shape difference. The line-shape concavity

measure is defined as the likelihood ratio

(21)

where sup is the supremum, is the conditional prob-

ability given the shape S. This likelihood ratio returns

a large response value at pixel if contains the shape

pattern of more strongly than that of . Otherwise, it gives

a small value. is the space of line shapes containing a collec-

tion of lines with different orientations, which are taken from 0

to with an interval of . This kind of line shapes is shown

to be robust for detecting linear structure [34], [35], [48]. is

the space of square shapes. The probability is com-

puted by applying a filter to in the shape space

or . In , the set of line filters with window size 15 [34] is

adopted. In , the square shape average filter with window size

15 [34] is used. Fig. 7(d) shows the segmentation result of using

the line-shape concavity measure, in which most of the false

positives from using the measure [Fig. 7(c)] are removed.

Fig. 8(a) shows the segmentation result using the line-shape

concavity measure for the retinal image of Fig. 1(a) with bright

lesions.

Next, we discuss the noise problem. The shapes due to noise

always appear as tiny dots and are very different from the ves-

sels. Noise intensity also varies in different part of the retina,

e.g., the noise intensities at the high intensity bright lesions are
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Fig. 8. Segmentation results for the retinal image of Fig. 1(a) having
bright lesions using: (a) the line-shape concavity measure � for (fpr,tpr)
� �������� ������	, and (b) the locally normalized concavity measure �

for (fpr,tpr) � ����
�
����
��	.

larger while they are smaller near the low intensity macula. To

suppress the effect of noise, a locally normalized concavity mea-

sure is proposed based on the shape and local intensity

information.

Line structure carries effective information to suppress noise

and preserve the vessels. However, due to the varying intensity

of noise in different parts of the retina, line information alone is

not enough. To normalize this intensity variation in different re-

gions, the original input intensity (which has the same intensity

variation as noise) is embedded in the probability .

The new probability is defined as

(22)

where and is a normaliza-

tion constant. The use of is to avoid division by zero

when . The exponent is inversely proportional

to the input intensity. Hence, if the computation is made at the

bright lesion, the high intensity noise value is suppressed by the

high input intensity. If it is in the macula (a large concave region

having low intensity value), the low intensity noise value is nor-

malized by the low input intensity. Line-shape detection tech-

nique can then be used for noise removal using the following

equation:

(23)

where and are defined the same as in (21). Fig. 7(e)

and Fig. 8(b) show results of on the retina images

having bright and dark lesions, respectively. In Fig. 8(b), the

noise due to the bright lesions is completely removed obtaining

a clean nonvessel region. Next, we combine all three concavity

measures (differentiable concavity, line-shape concavity and lo-

cally normalized concavity) into one blood vessel segmentation

system.

IV. FEATURE COMBINATION

An effective feature should produce a high response for ves-

sels and a low response for all other nonvessel regions and ar-

tifacts. We see earlier that the three concavity measures ( ,

, and ) have different responses to different regions

in a retinal image. Let and be the normal-

ized vessel feature and the normalized nonvessel feature, respec-

Fig. 9. (a) The vessel region � ��	 for the retina image in Fig. 7(a). (b) The
vessel region � ��	 for the retina image in Fig. 1(a).

tively. The three concavity measures can be used to construct

and as follows. We first normalize the

three measures so that they are statistically the same. The mea-

sures ( , , and ) are assumed to follow the log-

normal distribution with different means and standard deriva-

tions, which have a high occurrence near zero value and de-

creases dramatically [50]. In order to standardize the distribu-

tions of the three measures, statistical normalization is applied to

each of the measures by first taking logarithm and then normal-

izing the output to zero mean and unit variance [51]. Since the

response strength of for vessels is the strongest among the

three concavity measures, is taken to be equal to .

Since concavity measures and have the lowest re-

sponse to dark lesions and noise around the bright lesions in the

nonvessel region, respectively, is taken to be equal

to . The effective feature can then be

formulated as

(24)

where and are binary indicator functions

indicating the locations of vessels and nonvessel regions, re-

spectively.

It was observed that statistically, an average of 12.7% of

retina pixels in the FOV is vessels [33]. Based on the standard-

ized normal distribution table [52], the probability for a feature

having a vessel shape is given by . A

product rule from fusion theory [53] is adopted to define the

vessel region

(25)

where is the Boolean function acting as a classifier that

returns one at a pixel if the corresponding expression in the

bracket is true, or zero otherwise. The product rule fusion theory

is a strict rule [53], where all the classifiers agree on the decision.

Finally, the nonvessel region can be obtained by

. Fig. 9(a) and (b) shows the vessel

region of the retinal images having dark and bright le-

sions, respectively. In Section V, a lifting technique is proposed

to optimize the vessel shape toward its ideal form.

V. LIFTING TECHNIQUE

As regularization is adopted in generating all the measures,

the boundary of given in (24) is smoothed out like the



1376 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 29, NO. 7, JULY 2010

Fig. 10. (a) Dash and solid lines illustrate the ideal and regularized solutions,
respectively. (b) The difference between the ideal and regularized solutions.

solid line shown in Fig. 10(a). The dash line in Fig. 10(a) il-

lustrates the ideal solution for the vessel region. The difference

between the two solutions forms a double peak shape as shown

in Fig. 10(b). In order to optimize the vessel shape toward its

ideal solution, a lifting technique is proposed in this work. Our

lifting strategy is to perform a modified diffusion process so that

the vector field of is lifted iteratively to the ideal solu-

tion. The classical diffusion equation (or heat equation) [54] is

given as follows:

(26)

where . The inverted input image

(taken as ) is used as an approximation to the ideal

solution. Because is static when the image is given, (26)

can be rewritten as

(27)

A time dimension is added to and it is

denoted as , which will be used to iteratively capture

the shape difference between and the ideal solution. At

, . At , is the esti-

mated ideal solution. As the curve of is above , this

implies for must be positive to allow

lifting towards . That is

(28)

or equivalently

(29)

By taking the maximum among in the vessel re-

gion , we can prove that reaches

in the diffusion process for with

. Next,

we insert an anti-diffusion function to the diffusion

equation so that the sign of the is positive

for , where is a function of , and the positive

condition stated in (29) is satisfied. The anti-diffusion function

is taken as , as shown in Theorem 2 below.

Theorem 2: Assume a single peak shape follows a Gaussian

distribution with mean and variance . The modi-

fied diffusion process

when at and .

In the theorem, if we take and apply the chain

rule [54], the sign of will be positive for

. Also, the theorem is still valid for very small ,

for which the peak shape is in the form of a delta-function.

This means our algorithm still performs lifting even if the

vessel region of is closely beneath the . Finally,

a vector field matching function

is im-

posed onto the modified diffusion process as

(30)

measures the degree of shape similarity between

and by their vector fields. If both shapes at

are not matched, the two vectors will be in opposite direc-

tions and . Otherwise, it is zero. In real applica-

tion, the single peak shape may not strictly follow the Gaussian

distribution as assumed by Theorem 2. The role of

is to allow lifting in the modified diffusion process while pre-

serving the shape similarity between and . For

the pixels having low shape similarity, and it

will penalize lifting in (30) for . For the pixels having

high shape similarity, and further lifting would

proceed. By substituting

into (30), we have

(31)

Now, the time variable is converted to

time by the chain rule [54]:

(32)

where . The solution of (32)

can be obtained numerically by discretizing the time variable

of the term with a step size of (which is

taken as 0.5 in our experiments). The implementation is given

in Table II. Fig. 11(a) and (d) shows the difference between

and , in which darker color represents more

lifting yielded by the technique. Fig. 11(b) and (e) shows the

segmentation results using the proposed method, where the final

segmentation is done by thresholding with a threshold
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TABLE II
LIFTING TECHNIQUE

Fig. 11. Lifting and segmentation results in the proposed system on retinas
having dark and bright lesions, respectively. (a) The strength of � ��� � � �
� ����� on the retinal image shown in Fig. 1(a). (b) Final result of the pro-
posed method (fpr,tpr)� �������� ����	��. (c) Ground truth 1. (d) The strength
of � ��� � ��� ��� �� on the retinal image shown in Fig. 7(a). (e) Final re-
sult of the proposed method (fpr,tpr) � �����������
���. (f) Ground truth 1.

chosen such that the false positive rate (fpr) is 0.023. In Sec-

tion VI, experiments will be conducted to evaluate the perfor-

mance of the proposed method in comparison with the state-of-

the-art techniques.

VI. EXPERIMENT

A. Databases

The performance of the proposed method is evaluated on two

publicly available databases, STARE and DRIVE, which are

widely used by most existing methods. The STARE1 database

contains 20 images with 10 pathological and 10 normal retinal

images. Each of the images has a size of 700 605 pixels with

8 bits per color channel. The DRIVE2 database consists of 40

images, which are divided into training and test sets with 20 im-

ages in each. The retinal images in DRIVE databases are mainly

healthy with some of them containing a few mild lesions. Both

databases provide two ground truths manually marked by two

independent observers. All the results presented in this paper

are obtained by using the first human observer in the database

as ground truth.

B. Experimental Evaluation

Three measures are used for performance evaluation. The ac-

curacy and the receiver operating characteristic (ROC) curve are

used as evaluation measures in the same way as used by ex-

isting methods [37], [39]. The performance in the pathological

region (PUR) [41] is also used as a measure for evaluating the

performance on pathological regions of a given retinal image.

The accuracy on a retinal image is defined as the number of true

positive vessel pixels plus the number of true positive nonvessel

pixels divided by the total number of pixels in the FOV. The

ROC is constructed by the true positive rate (tpr) as the vertical

axis and the false positive rate (fpr) as the horizontal axis [55].

The closer the ROC curve approaches the top left corner, the

better the performance of the method. A common single mea-

sure to quantify the performance of a method is to compute the

area under the ROC curve. An area closer to one means

a better performance. The PUR is defined as the number of true

positive pixels plus the number of true positive nonvessel pixels

that are at least T pixels (which ranges from 0 to 25 as in [41])

away from the true positive blood vessels pixels, divided by the

total number of pixels in FOV. A larger PUR indicates a better

performance of the method.

The green channel of a retinal image is used as input because

it is often adopted in the research community [34], [37], [39]

and has been shown empirically to give the best segmentation

results. To reduce the artifacts produced near the border of the

camera aperture by a segmentation method, a border extension

preprocessing technique [37] is utilized. Fig. 12 is an example

of the preprocessing result. The region inside the green contour

is the green channel image while the outside nondark region is

the extended pixels generated by the inside pixels.

C. Results

Tables III–V show the results of the proposed method to-

gether with the benchmark methods obtained on the complete

STARE database, the complete DRIVE database and the ab-

normal images in the STARE database, respectively. We also

study the effect of the perceptive transform. The results with

1http://www.parl.clemson.edu/stare/probing/

2http://www.isi.uu.nl/Research/Databases/DRIVE/
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Fig. 12. Result of extending the border.

TABLE III
RESULTS ON THE COMPLETE STARE DATABASE

TABLE IV
RESULTS ON THE COMPLETE DRIVE DATABASE

the transform (denoted as Proposed Method) and without the

transform, which is in the original image space (denoted as Pro-

posed Method (ImS)), are shown in the tables. The comparative

results of the benchmark methods in the tables are obtained from

[34]–[35], [37]–[41]. For the DRIVE database, there are two dif-

ferent results for the line detector method as reported in [34] and

[35]. Both of them are shown in Table IV for reference together

with the result from our own implementation of the line detector

algorithm of [35], denoted as Line (Impl.). Ideally, the results of

Line (Impl.) should be identical to the results of [35]. However,

we were unable to achieve the results reported in [35] due to

unknown reason. Line (Impl.) is also reported in Tables III and

V. The results of another state-of-the-art method, the supervised

learning method proposed by Soares et al..[39], are available on

their website.3 It consists of two sets of results obtained by two

implementations of their method, which are trained by STARE

and DRIVE databases respectively. They are denoted as Soares

et al. (STARE) and Soares et al. (DRIVE) in this paper.

Table III shows the results on the complete STARE database.

The proposed unsupervised method achieves the highest

among all the methods including the three supervised learning

methods. The accuracy of the proposed method is among the

best and even outperforms the human observer. Fig. 13(a) shows

the ROC curves of the proposed method and the supervised

learning methods. The proposed method is completely above the

other two methods and passes through the (fpr, tpr) of the human

observer. Table IV shows the results on the complete DRIVE

database. The proposed method and the method of Soares et

al. (DRIVE) yield the largest compared to the others.

The accuracy of the proposed method is also among the best.

Fig. 13(b) shows the ROC curves of the proposed method and

the two supervised learning systems. The curves obtained by

the proposed method and the method of Soares et al. (DRIVE)

are almost the same. But the proposed method is closer to the

second observer than Soares et al. (DRIVE). Table V shows the

results on the abnormal images in the STARE database. Both

the accuracy and of the proposed method are the best

among all the unsupervised and supervised learning methods.

The of the proposed method is larger than the second best

method by 0.01. The method of Lam and Yan [41] is specially

designed to handle abnormal retinas. However, our method still

outperforms it by nearly 0.01 in accuracy and 0.03 in , re-

spectively. Fig. 13(c) shows the ROC curves of the proposed

method, the two supervised learning methods, and the method

of Lam and Yan [41]. The proposed method is able to yield the

ROC curve significantly above all the other methods and even

above the human observer, which is not achieved by any of the

state-of-the-art benchmark methods. Fig. 14 shows the overall

PUR measure for the abnormal retinas in the STARE database.

The proposed method is the best and its PUR curve is com-

pletely above those of the other methods.

In Tables III–V, we observe that there is an improvement of

around 0.01 to 0.02 in both accuracy and when perceptive

transform is used. This is in accordance with the argument of

Mendonça and Campilho [40] that the geometric operation is

more robust to noise than the arithmetic operation. In this work,

the arithmetic operations in the perceptive space are equivalent

to geometric operations in the original image space

(33)

The running times of different methods are given in Table VI

where the running times of the methods of Mendonça and

Campilho [40], Soares et al. [39], and Staal et al. [37] are

obtained from their papers. The proposed method takes on

average 13 min to get a segmentation result. Most of the time

is spent on computing and . Boosting up the con-

vergence rates of the two widely adopted TV and MS models

can significantly shorten the running time and this is our future

3http://retina.incubadora.fapesp.br/portal/downloads/results
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Fig. 13. The ROC curves obtained by the proposed method, the two supervised
systems [39] and the method of Lam and Yan [41] on (a) the complete STARE
database, (b) the complete DRIVE database, and (c) the pathological retinal
images only in the STARE database. The dark dot indicates the true and false
positive rates of the second human observer given in the database.

Fig. 14. The performance evaluation measure PUR for different methods using
all the pathological images.

TABLE V
RESULTS ON THE ABNORMAL RETINAS ONLY IN THE STARE DATABASE

TABLE VI
RUNNING TIMES FOR DIFFERENT METHODS

work. Also in real applications, the computation time can be

significantly reduced by implementing the algorithm in C/C++

programming.

VII. CONCLUSION

This paper presents a novel regularization-based multicon-

cavity approach for effectively segmenting blood vessels in both
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normal and pathological retinas with bright and dark lesions in a

single system. A perceptive transform derived from Weber’s law

is proposed to map an input image into a perceptive space for

robust vessel segmentation. Our results show that system perfor-

mances of both accuracy and tested on grey-scale inten-

sity, RGB and color channels are consistently better in

the perceptive space than in the image space, demonstrating the

broader effectiveness of the proposed perceptive space method.

As the bright lesion has a steep intensity transition profile, mea-

suring the degree of concavity can effectively distinguish the

bright lesions from the vessels and nonvessels. Dark lesions

have an irregular shape intensity structure while blood vessels

have a line-shape intensity structure. The line-shape concavity

is modeled to prune the dark lesions while preserving the re-

gions of blood vessels. The relative intensities of noise in dif-

ferent parts of the retinal image are different due to the fact

that a retinal image has a spherical intensity variation. A lo-

cally normalized concavity scheme is proposed to normalize

the strengths of noise removal in different regions. The lifting

scheme is designed to perform a modified diffusion process en-

suring the detected vessel shape is optimized iteratively to the

ideal solution.

In contrast to the existing methods, the proposed method can

identify vessels in pathological retinal images with both bright

and dark lesions. More importantly, it can work simultaneously

for health and pathological retinas. Extensive experimental

results on STARE and DRIVE databases demonstrated the

superior performance of proposed method on both healthy and

abnormal retinas. As an interesting future work, the proposed

techniques may be extended to solve the challenging problem

of lesion detection.
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