GENERAL RIVER ROUTING ALGORITHM*

Chi- Ping Hsu

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory
University of California, Berkeley, California 94720

ABSTRACT

A general and practical river routing algorithm
is described. It is assumed that there is one layer
for routing and terminals are on the boundaries of
an arbitrarily shaped rectilinear routing region. All
nets are two-terminal nets with pre-assigned {may
be different) widths and no crossover between nets
is allowed. The minimum separation between the
edges of two adjacent wires is input as the design
rule. This algorithm assumes no grid on the plane
and will always generate a scolution if a solution
exists. The number of corners is reduced by
flipping of corners. An analysis to determine the
minimum space required for a strait-type river
routing problem is included.

Let B be the number of boundary segments and
T be the total number, of terminals. The time com-
plexity]§ of O(T(B+T)*) and the storage required is
O((B+T)®). This algorithm is implemented as part
of the design station under development at the
University of California, Berkeley.

1. Introduction

With the advent of VLSI technologies, the com-
plexity of the circuits on a single chip has
increased drastically. Microprocessors and many
digital signal processors are now built on a single
chip. These processors usually have sets of data
busses which interconnect different circuit blocks
on the chip. At the chip planning stage, the
designer can, in general, determine the sequence of
the input and output busses of each block, so that
every block has the output busses ordered in the
same sequence as that of the input busses of the
receiving circuit blocks. Since the input and out-
put busses of the blocks have the same sequence, it
is possible to make the interconnections between
blocks on a single layer. The problem of intercon-
necting pairs of pins in two rows with the same
sequence on a single layer is usually referred to as
the "river routing problem”[1,2,3,4].

This paper presents a routing algorithm which
handles a much more general and practical river
routing problem. This algorithm can handle arbi-
trarily shaped rectilinear routing regions with nets
for which wire widths can be defined independently.

Also, it is a gridless routing algorithm. The
minimum separation between the edges of two
wires is input as a parameter. This algorithm
guarantees that a solution can be found if omne.
exists. The design rule check and an analysis to
determine the minimum space needed for a strait-
type river routing problem are included.

In section 2, we introduce some basic termino-
logies and define the river routing problems. In
section 3, the algorithm for routing is presented.
In section 4, the calculation of the minimum width
for the strait-type problem is described.

2. Terminology and Problem Formulation

A routing region is a continuous area between
circuit blocks that can be used for routing. It is
specified by the boundaries of each available layer.
(Note that each layer may have different boun-
daries). A terminal is either an input or output pin
on the boundaries of a routing region. A terminal
is characterized by its location, width, and the
layer it is on. A signal net (or simply net) is a set
of terminals to be interconnected by wires. A rout-
ing segmenl is a horizontal or vertical wire seg-
ment on a specified layer which implements all or
part of a signal net. It is represented by its start-
ing and ending points, the width of the segment, its
associated layer, and the signal net it belongs to. A
conlact is an area where a set of layers are electri-
cally interconnected. It has a geometry represent-
ing its bounding box and a set of associated layers.

A general routing problem consists of a rout-
ing regiomn, a set of signal net definitions, and a set
of design rule parameters. A solution to a routing
problem is a set of routing segments and contacts
inside the routing region, which implements the set
of signal nets definitions without design rule viola-
tion.

A general river routing problem is a special
case of the general routing problem where

(a) Only one layer is available for routing in
the routing region.

(b) All terminals are on the same layer.

* This paper is supported in part by Air Force Office of Scientific Research, contract number
F496820-79-C-0178, Joint Services Electronics Program, National Science Foundation Grant

ECS-8201580, and Bell Laboratories at Murray Hill, New Jersey.

20th Design Automation Conference

Paper 37.1
578

0738-100X/83/0000/0578$1.00 © 1983 IEEE

(c) Every signal net consists of exactly two
terminals.

(d) Terminals are located in such a way that
no crossover between signal nets is neces-
sary for a solution to exist.

(e¢) The routing region has no internal block-
age.

Fig. 1 shows an example of a general river rout-
ing problem.

]U

2 | §

——

Fig.1

—=r = =

2 3 4 [3 7

An example of the general river routing
problem

A sirait-lype river routing problem is a special
case of river routing problem. It is a river routing
problem, where '

(a) The routing region can be specified by two
opposite boundary segment lists that are
both monotonic in either X or Y direction.

(b) All terminals are on horizontal(vertical)
boundary segments if the two boundary
segment lists are monotonic in the X(Y)
direction.

(c) Every signal net has one terminal on each
of the two boundary segment lists.

A strait-type river routing problem is horizon-
tal if the two boundaries are monotonic in X direc-
tion and vice versa. The separation between the
two boundaries is usually refered to as the width
of the strait. Fig. 2 is a horizontal strait-type river
routing problem.

1 2

2

—————
1
Fig.2 A strait-type river routing problem

3. General River Routing Algorithm

An ordered list of segments is coniinuous if the
starting point of every segment, except for the first
segment, is the ending point of the previous one. A
path is a continuous list of alternating horizontal
and vertical routing segments. A terminal con-

nected with the first segment of a path will be
called a starting terminal and the terminal con-
nected with the last segment is an ending termi-
nel. We assume that the widihs of the routing seg-
ments of a signal net are the same and are pre-
defined by the user.

This algorithm routes one net at a time. It
starts with the assignment of the starting terminal
for each net and the net order is determined by the
sequence of terminals on the boundaries. Path
searching is done by routing each net in turn as
close to the boundaries as possible. Unnecessary
corners are then removed by flipping of corners.

3.1. Starting Terminal Assignment

For a river routing problem, all nets are two-
terminal nets. Without loss of generality, we
assume that every path is counter-clockwise along
the boundary. Every net has two possible paths
along the boundaery. Clearly, the two possible
paths then correspond to the two possible choices
of starting terminal for the net. Fig. 3 shows two
possible paths along the boundary for a net {T1,T2}.
Path P1 has T1 as its starting terminal and path P2
has T2 as its starting terminal.

The starting terminal for a net is chosen,
independently of all other nets, such that the
shorter path is selected. This is done by calculat-
ing the total length of the boundary segments
counter-clockwise between the starting and ending
terminals and compare it with half of the total
length of the boundaries of the routing region. In
fig. 3, path P1 is shorter than path P2, So, terminal
T1 is assigned to be the starting terminal for the
net.

3.2. Net Ordering

Since every path is counter-clockwise and
begins at the starting terminal, there are con-
straints on the order of the nets to be routed. A
net is routed only after all nets, which have one or
more terminals on the counter-clockwise portion of
the boundaries between the starting and ending
terminals of the net, have been routed.

To determine the net order, we first generate a
circular list of all terminals ordered in counter-
clockwise direction according to their positions on
the boundaries. A planarity check is performed to
see whether there exist crossovers by using a
stack. If so, then the input problem is not a river
routing problem. Otherwise, we order the nets as
follows:

NET-ORDERING
(1) stack ST = empty;

i=1;

N = the total number of signal nets;

T = any terminal in the circular list;

Every starting terminal is marked as NOT

PUSHED.

Every ending terminal is marked as NOT

Paper 37.1
579

P2

P1

T2
Two possible paths along the boundary,
path P1 is shorter, so terminal T1 is as-
signed as the starting terminal.

MATCHED.
(2) whilei<=N
begin
if T is a starting terminal that is NOT
PUSHED,
begin
push T on ST;
mark T as PUSHED;
end
else
begin
if T is an ending terminal that is NOT
MATCHED,
begin
if T and the top element of ST
belong to the same net,
begin
mark T as MATCHED;
pop the top element from ST;
assign the number i1 to the
net;
increment i by one;
end;
end;
end;
T = next terminal in the circular list;
end;

Assert: The nets are ordered in increasing
order of the assigned number.

Fig. 4 shows the starting terminal for each net
and the net ordering is {1,7,6,5,4,2,3}.

Fig.3

3 4 5
3
Sz[s
6
s:(
?
xl
2 3 4 6 ?
s s s

Fig.4 The starting terminal for each net and
the net ordering {1,7,6,5,4,2,3}

Paper 37.1
580

3.3. Path Searching

For each net in turn, two continuous con-
straint segment lists are created by tracing
through the boundary segments and the existing
routing segments that are ezposed to the current
net. A path is then formed by routing counter-
clockwise as close to one of the constraint list as
possible, beginning at the starting terminal and
stopping at the ending terminal of the net. The
path is then checked against the other constraint
list for design rule violation. If a violation occurs,
it means that there is not enough space for any
solution to exist, and from the topology of the
current routing, the user can easily determine
where the space should be added.

Fig 5 shows constraint lists 'abed’ and ’ihgf’ for

net A and the path created by routing as close to

list 'abed’ as possible. The path is then checked
against the list 'ithgf’ for design rule violations.

1 A
N

a
b
[
d
o L
i

h

Fig.5 Counstraint lists 'abed’ and 'fghi’ for net
A and the path created by routing as
close to one of the constraint list as

possible.

3.4. Corner Minimization

After we have done the path searching for all
nets without design rule violation, we already have
a solution. Every net has a unique path associated
with it. All paths are pushed outward against the
boundaries and the excess space remains in the
center of the routing region. Fig 8 shows an exam-
ple of the routing after path searching.

The corner minimization is done in a sys-
tematic way of flipping corners toward the inside of
the routing region. We minimize the corners of one
net at a time. The order of the nets for this opera-
tion is just the reverse of the order determined by
the previous net ordering step. The net that is
routed last is minimized first. Equivalently, we are
minimizing the corners of the paths from inside
nets toward the outside nets of the routing region.

Every corner of a path belongs to one of the
eight possible cases as shown in Fig.7. Since every
path is routed in the counter-clockwise direction,
four of the cases can have their corners flipped
toward the inside of the routing region. In fig.7,
cases a,b,c,d can be transformed to cases e,f,g,h by

~

B=h, 7 T

{ U
2 3 4 6 7
Fig.8 A boundary-packed solution after path
searching

flipping toward the inside, where the inside is indi-
cated by a black dot. A constraint segment list is
generated by the same way as in the path search-
ing step. Before we flip a corner, we first check
whether the flipping will generate any design rule
violation against the constraint list. If it does not
have any design rule violation, we will flip the
corner and thus eliminates two corners of the path.
Otherwise, we skip this corner and check the next
corner of the path. Fig 8 shows one path before
and after flipping of corners.

3.5. Summary

In summary, this river routing algorithm routes
all nets against the boundaries of the routing
region and then tries to minimize the number of
corners. The first step “starting terminal assign-
ment” tries to select a shorter path for each net
and spread the nets against all boundaries. It
should be noted that if the problem can be routed
without crossovers, this assignment will not cause
any crossaver to occur. Based on the assignment,
the net order is determined by using a stack. Let T
be the total number of terminals. The while loop in
NET-ORDERING will be executed at most 2T times
since at most two cycles around the circular termi-
nal list is necessary if the problem is a river rout-
ing problem. Because of the assumption that all
paths are counter-clockwise against the boundary,
the paths are generated easily by going along the
constraint list. Finally, the corner minimization is
done in reverse net order by flipping the corners
toward the inside of the routing region. This step
efficiently generates a very desirable final layout

-due to the fact that all paths are distributed
around the whole routing region and the flipping
operation is very efficient.

3.6. Existence of A Solution

A solution of a river routing problem is
boundary-packed if and only if no path can be
replaced by another path which is no farther from
the boundary anywhere. Given a routing solution
with n nets. The routing region is divided into n+1
subregions. If we imagine that we stand inside one
of the subregions, a unique boundary-packed solu-
tion can be obtained by pushing all the nets
‘against the boundaries. For a legal "starting termi-
nal assignment”, it uniquely determines one subre-
gion where we stand. The solution we get after
path searching and before corner minimization is
the unique boundary-packed solution associated

with the "starting terminal assignment” we get in
the first step of the algorithm.

Given a river routing problem, there always
exists a legal “starting terminal assignment”. For
any legal “starting terminal assignment”, there
exists a unique boundary-packed solution if a solu-
tion exists. This algorithm first generates a legal

“starting terminal assignment” and then tries to
find the unique boundary-packed solution associ-
ated with the assignment. Clearly, if the algorithm

ta) (b) (c) td)
(" -} h) *
Fig.7 Eight possible cases of a corner

|

L L

1 N

Fig.8 A path before and after flipping of
corners

can not find the unique boundary-packed solution,
it implies that no boundary-packed solution exists,

‘which in turn implies that there is no solution.

4. Calculation of The Minimum Width For A Strait-
type River Kouting Problem

In the algorithm described above, we have
implicitly assumed that the given routing region
has a fixed topology. The algorithm will generate &
solution if a solution exists, and returns a partially
routed layout if there is no solution for the prob-
lem. If a solution exists, the excess space can be
obtained by using the boundary-packed layout.
However, if a solution does not exist, the informa-
tion about the minimum additional space needed
can only be partially obtained by using the incom-
plete layout.

For a strait-type river routing problem, the
minimum width can be calculated exactly before we
do the actual routing. The calculation starts with a
pseudo-routing without design rule check and then
the minimum width is determined to insure that no
design rule violation will occur.

4.1. Pseudo-Routing Algorithm

. Let us describe this algorithm for a horizontal
strait-type river routing problem as shown in Fig. 2.
As before a signal net for this type of problem con-

Paper 37.1
581

sists of two terminals. There, one is on the upper
boundary and the other is on the lower boundary.
Let Xui be the x coordinate of the terminal of signal
net i on the upper boundary and Xli be the x coor-
dinate of the terminal of signal net i on the lower
boundary. Signal net i will be called a falling net
if Xui < Xli, a ¢rivial net if Xui = Xli, and a rising
net if Xui > Xli.

Algorithm: Pseudo-routing

This algorithm proceeds net by net, in the
order from left to right, generating a set of routing
segments for each net in turn. Further, the set of
routing segments for each net is generated by the
simple procedure:

(1) If the net under consideration is a trivial
net, we simply make a straight vertical
routing segment connecting the two termi-
nals and proceed to the next net. If the
net is not a trivial net, we generate a con-
tinuous constraint segment list. This list
of segments consists of the routing seg-
ments of the previous net just routed (or
the left boundary segments if the net is
the leftmost net) and portions of either

the problem. So thic algorithm will always generate
a solution if one exists.
the upper or lower (for rising or falling
net) boundary segments between the pre-
vious net and terminal of the net.

() Generate a continuous list of segments
with current net width by licking along the
right edge of the constraint segments with
the separation equal to the minimum spac-
ing between adjacent wire edges. Note
that boundary segments have width equal
to zero.

(3) Generate two vertical routing segments
from the two terminals of the net to the
segment list obtained in step (2). Delete
the segments to the left of the vertical
cutline through the left terminal. The
resulting continuous segment list is the
routing segments of this net.

Fig. 9 shows the routing operation for net 2.
The constraint segment list consists of the routing
segments of net 1 and portions of the lower boun-
dary between the two terminals of net 1 and net 2.
A continuous list is generated by licking along the
constraint list and the the resulting routing seg-
ment list is obtained for net 2.

Informally, we route one net at a time in the
order from left to right. If the net under con-
sideration is a falling net, we go downward from the
left terminal of the net as far as we can, and then
lick along the upper edge of the constraint seg-
ment list as close as possible until we reach the
right terminal of the net. If the net is a rising net,
we do the similar operation except we go upward
instead of downward. No design rule check is per-

Paper 37.1
582

formed against the opposite boundaries. If the net
is trivial, we simply connect the two terminals
directly by a straight vertical routing segment.

The intuition behind this algorithm is that no:
space to the left of the routing segments of a net
can be used by the nets to its right. Since we route
the nets from left to right, we would like to route a
net in such a way that we leave the maximum avail-
able space to the right of the routing segments.
Also, we have implicitly assumed that both the left
and right boundaries consists of a single vertical
segment. It is easy to see that, for each net, no
routing segment needs to appear to the left of its
left terminal. So, we route the nets by stacking all

1

" T /ROUT!NC SEGMENTS LIST
1

! I - L——ﬁ

1
i

\ LICKING OPERATION

CONSTRAINTY LIST
Fig.9 Constraint segment list, licking opera-
tion, and the resulting routing seg-
ments of a pseudo-routing for nat 2

rising nets against the upper boundary, and all fal-
ling nets against the lower boundary. Fig. 10 shows
the result of a test example.

Note that this algorithm can handle arbitrarily
shaped rectilinear routing region as long as the
upper and lower boundaries are monotonic in the X
direction.

If B is the number of boundary segments and T
is the total number of terminals. ghe time complex-
ity for this algorithén is O(T(B+T)*) and the storage
required is O((B+T)").

4.2. Calculation of The Minimum Width

The basic constraint on the width of the
strait-type routing problem is that all routing seg-
ments must be inside the routing region, ie.
between upper and lower boundaries. Since the
pseudo-routing algorithm proceeds in such a way
that all rising nets are stacked upward against the
upper boundary and all falling nets are stacked
downward against lower boundary. We can imagine

that the upper boundary segments, and the rising
3 486789101 '

14

14

9 1011 12

Fig.10 Pseudo-routing for a strait-type river
routing problem

net segments {except for those vertical routing
segments that connect to the lower boundary),
forms a rigid body. Similarly, the lower boundary
and the falling net segments (except for the rout-
ing segments that connect to the upper boundary),
forms another rigid body. The concept is shown in
Fig. 11. Now, we can put the two rigid bodies as
close together as possible without design rule viola-
tion and calculate the excess space or the
minimum additionel space needed to have a solu-
tion. With the calculated minimum width, the
result of the pseudo-routing is a solution to the
problem. Since the general river routing algorithm
guarantees that a solution can be found if one
exists. We now can use the calculated width and do
the actual routing by using the general river rout-
ing algorithm.

Let B be the number of boundary segments and
‘T be the total number of terminalsz the time com-
plexity for this analysis is O(B(B+T)").

UPPER RIGID BODY

1 2 3 q 13 6 7 8 9 18
jm—@[11 -
SRRy

, g U

I 1 2 3 “ s € ?]

LOVER RIGID BODY

Fig.11 Formulation of the two rigid bodies

5. Experimental results

The two algorithms are implemented in the C
language on a VAX-11/780 running the Berkeley
Unix operating system, as part of the automatic
placement and routing package of the design sta-
tion under development at the University of Cali-
fornia, Berkeley.

Fig. 12 shows the result of an example routed
by the general river routing algorithm. There are
12 boundary segments and 14 terminals and the
time required is 0.3 CPU seconds. Fig. 13 is a
strait-type river routing problem with 22 boundary
segments and 28 terminals. The analysis for the
minimum width takes 0.2 seconds and the actual
routing takes 1.0 seconds. Fig. 14 is a practical
problem with 126 terminals and 12 boundary seg-
ments. The excess space has been detected and
removed by using the boundary-packed solution.
The time required is 7 seconds.

6. Conclusions

A general river routing algorithm is described.
This algorithm can route signal nets with different
widths inside an arbitrarily shaped routing region
with one layer for routing. It guarantees that a
solution can be found if one exists, and the solu-
tion is very close to the manual layout. The

analysis to find the minimum width for a strait-type:

river routing problem guarantees that an optimal
solution can be found. A simple generalization of

the algorithm can handle a river routing problem
with multiple-terminal nets.

3 4
a a

1 g
t I
2 3 4

Fig.12 An example routed by the general river
routing algorithm

3 456789111
12 1213 14
[
, 8
1234 13 14
5 6
9 1011 12

Fig.13 A strait-type river routing problem
analyzed and routed

Fig. 14 A large and practical example

7. Acknowledgement
The author would like to thank professor E. S,

Kuh for strong support and helpful advising, K.

Keller who provides the convenient interactive
graphics editor KIC, M. Takahashi for programming
the interface with KIC, and the friendly users of
professor R. Brodersen. Professor R. Newton and
Frofessor A. Sangiovanni-Vincentelli have
expedited this project.

8. References

[1] Baratz, A. E., "Algorithms for Integrated Circuit
signal Routing” (Ph.D. dissertation), Dept. of
Electrical Engineering and Computer Science,
MIT., August 1981,

[{2] Tompa, M., “"An Optimal Solution to a Wire-
Routing Problem"”, Proceedings of the twelfth
Annual ACM Symposium on Theory of Comput-
ing, 1980, p161-176.

[3] Leisersonm, C. E. ; Pinter, R. Y., "Optimal Place-
ment for river Routing”, Proceedings of the
CMU Conference on VLSI systems and computa-
tions, October 1981.

[4] Pinter, R. Y., “Kiver Routing: Methodology and
Analysis”, the third Caltech Conference on
VLSI, March 21-23, 1983.

Paper 37.1
583

