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Abstract—Given a single image of an arbitrary road, that may
not be well-paved, or have clearly delineated edges, or some a
priori known color or texture distribution, is it possible for a
computer to find this road? This paper addresses this question
by decomposing the road detection process into two steps: the
estimation of the vanishing point associated with the main
(straight) part of the road, followed by the segmentation of the
corresponding road area based on the detected vanishing point.
The main technical contributions of the proposed approach are a
novel adaptive soft voting scheme based on a local voting region
using high-confidence voters, whose texture orientations are com-
puted using Gabor filters, and a new vanishing-point-constrained
edge detection technique for detecting road boundaries. The
proposed method has been implemented, and experiments with
1003 general road images demonstrate that it is effective at
detecting road regions in challenging conditions.

Index Terms—vanishing point detection, road detection, soft
voting, dominant edge detection.

I. INTRODUCTION

NUMEROUS image-based road detection algorithms have

emerged as one of the components of fully automatic ve-

hicle navigation systems [1]. Most of the early systems focused

on following the well-paved road that is readily separated

from its surroundings. More recently, triggered by the DARPA

Grand Challenge [2], a competition between autonomous off-

road vehicles, many algorithms have attempted to handle

off-road conditions. Although significant advances have been

made on specialized systems for detecting individual road

types, little progress has been made in proposing a general

algorithm to detect a variety of types of roads.

Given a road image as shown in Fig.1, can the computer

roughly determine where the road is? This paper answers

this question by proposing a novel framework for segmenting

the road area based on the estimation of the vanishing point

associated with the main (straight) part of the road. The

novelties of this paper lie in the following aspects: (1) In the

estimation of texture orientation, we not only compute the

texture orientation at each pixel, but also give a confidence to

each estimation. The introduced confidence is then incorpo-

rated into the vanishing point estimation. (2) Observing that

the higher image pixels tend to receive more votes than lower

image pixels, which usually results in wrong vanishing point

estimation for the road images where the true vanishing point

of the road is not in the upper part of the image, a locally

adaptive soft-voting (LASV) scheme is proposed to overcome

this problem. The scheme uses a local voting region, in which

pixels having low confidence texture orientation estimation

are discarded. This vanishing point estimation method is quite

Fig. 1. Different types of roads with varying colors, textures and lighting.

efficient because only the selected pixels in the local voting

region are used as voters. (3) To segment the road area,

a vanishing-point constrained group of dominant edges are

detected based on an Orientation Consistency Ratio (OCR)

feature, and two most dominant edges are selected as the road

borders by combining color cue. This road detection method

integrates texture orientation and color information of the road,

and it handles well changes of illumination and applies to

general road images. In the preliminary version of this paper

[3], we only use the OCR feature and a clustering method for

road segmentation. We show through empirical results that

the road segmentation accuracy is improved by combining the

OCR and color features.

II. RELATED WORK

Generally, a road image can be classified into a structured

(e.g., a road in unburn area) or unstructured one (e.g., a road

in rural area). For structured roads, the localization of road

borders or road markings is one of the most commonly used

approach. Color cue [4], [5], [6], Hough transform [7], [8],

steerable filters [9], [10], and Spline model [11], [12], [13]

etc. have been utilized to find the road boundaries or markings.

The drawbacks of these methods is that they only consistently

work for structured roads which have noticeable markings or

borders. Methods based on segmenting the road using the

color cue have also been proposed, but they do not work well

for general road image, specially when the roads have little

difference in colors between their surface and the environment.

In addition, Laser [14], radar [15] and stereovision [16] have

also been used for structured-road detection.
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For unstructured roads or structured roads without remark-

able boundaries and markings, Alon et al. [17] have combined

the Adaboost-based region segmentation and the boundary

detection constrained by geometric projection to find the

“drivable” road area. However, it needs many different types

of road images to train a region classifier, which might be

onerous. Reverse optical flow technique [18] provides an

adaptive segmentation of the road area, but the method does

not work well on chaotic roads when the camera is unstable

and the estimation of the optical flow is not robust enough.

Stereo cameras [19], [20] are also used to determine terrain

traversability. When there is little difference in color between

the road and off-road areas, it is hard to find strong intensity

change to delimit them. The one characteristic that seems to

define the road in such situations is texture. The associated

approaches [21], [22], [23] have attempted to define the

forward “drivable” image region by utilizing the texture cue.

They compute the texture orientation for each pixel, then seek

the vanishing point of the road by a voting scheme, and finally

localize the road boundary using the color cue. Our approach

belongs to this line of research. Although multiple-sensor

method [24] can handle unstructured road case, it is beyond

the scope of this paper which only uses visual information.

The rest of this paper is organized as follows: a texture

orientation estimation at each pixel for which a confidence

level is provided (Section III), a voting scheme taking into

account this confidence level and the distance from the voting

pixel to the vanishing point candidate (Section IV), and

a new vanishing-point constrained dominant edge detection

technique for finding the boundaries of the road (Section V).

III. CONFIDENCE-RATED TEXTURE ORIENTATION

ESTIMATION

Our texture orientation estimation relies on Gabor filters

since they are known to be accurate (see [22, Section 2.1]). The

kernels of the Gabor filters are similar to the 2D receptive field

profiles of the mammalian cortical simple cells and exhibit

desirable characteristics of spatial locality and orientation

selectivity. For an orientation
�

and a scale (radial frequency)✁
, the Gabor wavelets (kernels,filters) are defined by [25]✂☎✄✝✆ ✞✠✟☛✡✌☞✎✍✑✏✓✒ ✁✔ ✕✗✖✙✘✛✚✢✜ ✄✤✣✦✥★✧✪✩✪✣✬✫✌✭✮✣✰✯☛✱✲✥✴✳✶✵✷✣✬✯✗✸ ✚✺✹ ✩✶✄✼✻ ✚✢✜ ✵✷✣✰✱✰✽✿✾

where ❀ ✒❁✡❃❂✦❄❆❅❇�✙❈❉✍❊❅✬❋❍●■�
, ❏ ✒ ✻ ✡❃❅✎❋❍●❊�✙❈❑✍▲❂✲❄✢❅❇�

and
✘ ✒ ✕✛▼ ✕

(octave 1.7 in [25]). We consider 5 scales (
✁ ✒ ✁❖◆▲P ✕❘◗ ☞ ✁❙◆ ✒✕✑▼❍❚ ☞✰❯❱✒❳❲❇☞ ❚ ☞ ✕ ☞✰❨✛☞✬❩

) on a geometric grid and
❨❘❬

orientations

(180 divided by 5). These parameters are similar to the ones

in [22]. Figure 2 shows the real and imaginary parts of the

Gabor kernels.

Let ❭ ✟❪✡❙☞✬✍✛✏ be the gray level value of an image at
✟❪✡✌☞✎✍✛✏

.

The convolution of image ❭ and a Gabor kernel of scale ✁
and orientation

�
is defined as follows❫ ✄✝✆ ✞❴✒ ❭❛❵ ✂☎✄✠✆ ✞

(1)

The convolution result
❫ ✄✝✆ ✞ ✟☛❜✤✏

at pixel
❜❝✒❞✟❪✡✌☞✎✍✛✏

has two

components, a real part and an imaginary part. To best char-

acterize the local texture properties, we compute the square

Fig. 2. Gabor kernels with 5 scales and 36 orientations: real part kernels
(rows 1 to 5) and imaginary part kernels (rows 6 to 10).
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Fig. 3. Left: Four points on which the Gabor complex responses are
evaluated. Right: The Gabor complex responses for the four points.

norm of this “complex response” of the Gabor filter for each

36 evenly spaced Gabor filter orientations:❭ ✄✝✆ ✞✠✟❡❜❆✏❢✒ Re

✸ ❫ ✄✝✆ ✞✠✟❡❜❆✏ ✾ ✽ ❈
Im

✸ ❫ ✄✝✆ ✞✝✟☛❜✤✏ ✾ ✽ ▼
The response image for an orientation is then defined as the

average of the responses at the different scales (see Fig.3):❣❑✞ ✟☛❜✤✏❢✒
Average

✄ ❭ ✄✠✆ ✞ ✟❡❜❆✏ ▼
The texture orientation ❤ ✟❡❜❆✏ is chosen as the filter orienta-

tion which gives the maximum average complex response at

that location (the average is taken over the 5 scales):❤ ✟☛❜✤✏❢✒ Argmax
✞ ❣ ✞✠✟❡❜❆✏

The second row of Figure 4 shows the images overlaid with

subsampled texture orientations estimated using Gabor filters.

From the convolution theorem applied to Eq. (1), we have✐❃❥❦❫ ✄✝✆ ✞✑❧❉✒ ✐❃❥ ❭ ❧ ✐❃❥ ✂♠✄✝✆ ✞✛❧✢☞
hence ❫ ✄✠✆ ✞♥✒ ✐ ✜✙♦ ❥♣✐❃❥ ❭ ❧ ✐❃❥ ✂☎✄✝✆ ✞✤❧✢❧✢☞
where

✐
and

✐ ✜q♦ denote the Fourier and inverse Fourier

transform, respectively. The use of the fast Fourier transform✐❃❥ ✂☎✄✝✆ ✞✑❧✤✟❪r✑☞✰s❇✏✒ ✔ t ✖ ✘✁✈✉ ✚✢✜ ✵✷✣✪✥❪✥❍✇ ✜ ✄✑✯❪✣✬✫q①✢✣✬✯☛✱✲✥✴✽✎✄✑✣✎✯✶✻ ✚✢✜ ✵✷✣✶✥❍✇✢✣✎✫q✄✑✣✎✫②①✢✣✬✯❡✱✦✥❍✽✬✄✑✣✬✯④③ ☞
with ⑤ ✒❁r❖❂✲❄✢❅❇�❉❈⑥s❊❅✎❋❍●❃�

and ⑦ ✒ ✻ r☎❅✬❋❍●❃�❛❈⑧s❊❂✲❄✢❅❇�❙☞
allows

fast computation of the response image.

Although the above solution for texture orientation estima-

tion has been used by some previous researchers, the estimated

texture orientation in this way is not guaranteed to be correct.

To provide a confidence level to the texture orientation ❤ ✟❡❜❆✏
at pixel

❜
, we seek to a way which evaluates how peaky the

function
�⑩⑨❶ ❣❑✞ ✟☛❜✤✏

is near the optimum angle ❤ ✟❡❜❆✏ . Let
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Fig. 4. First row: four road sample images. Second row: images overlaid
with texture orientations estimated using Gabor fi lters. Third row: examples
of the confi dence map for the texture orientation estimation. The brighter the
pixel, the higher confi dence the orientation estimation. Fourth row: pixels with
confi dence larger than �✂✁ ✄ .

☎ ♦ ✟☛❜✤✏✝✆✟✞✠✞✡✞☛✆ ☎✂☞✍✌ ✟☛❜✤✏ be the ordered values of the Gabor

response for the
❨❘❬

considered orientations (in particular,☎ ♦ ✟☛❜✤✏❢✒ ❣✏✎ ✥✒✑✰✯ ✟❡❜❆✏
). If the global maximum response is signif-

icantly different from the other local maximum responses, the

texture orientation estimation is reliable, otherwise, it is not.

We have found that the local maximum responses usually fall

between
☎✂✓

and
☎ ♦ ✓ (

☎ ✽
,
☎ ☞ and

☎ ✧
correspond to similar angles

to the optimal one). Therefore, we choose the average of the

responses from
☎✂✓

to
☎ ♦ ✓ as the mean of the local maximum

responses. The confidence in the orientation ❤ ✟☛❜✤✏ is given by

Conf
✟❡❜❆✏❢✒ ❚ ✻

Average
✟ ☎✂✓ ✟☛❜✤✏✪☞ ▼✲▼✲▼ ☞ ☎ ♦ ✓ ✟☛❜✤✏✬✏☎ ♦ ✟❡❜❆✏

We normalize Conf throughout the image to the range of

0 to 1. In our experiments, we discard the pixels having a

confidence score smaller than ✔ , and consider the remaining

pixels as the “voting” pixels. ✔ can be seen as a threshold put

on the normalized confidence score. The optimal ✔ is obtained

by tuning ✔ on our test image set, where ✔ ✒ ❲ ▼ ❨
results in

highest vanishing point detection accuracy.

We did not directly use the magnitude of the response

of the Gabor filter, since it leads to worse results than the

proposed method according to our tests. These negative results

are mostly due to high magnitudes of the response in parts of

the image that are not related to the road and low magnitudes

of the Gabor response in the road area, which often happens

with unstructured roads and bright sky.

IV. LOCALLY ADAPTIVE SOFT-VOTING

After having computed the texture orientation at each pixel

of the image, one can make these pixels vote to obtain the

vanishing point. Precisely, a pixel ✕ for which the texture

orientation is the vector ✖✗✙✘ can vote for all pixels ✚ above ✕
(we consider images in which the road is below the sky) such

that the angle ✛ ✟✬✟ ✕✜✚ ✏✪☞ ✖✗ ✘ ✏ between the direction
✟ ✕✜✚ ✏

and

the vector ✖✗ ✘ is below some fixed threshold ✢ . This “hard-

voting” strategy has been used in [22]. In our experiments, we

notice that this scheme tends to favor points that are high in

the image, leading sometimes to large errors in the estimation

of the vanishing point. A typical image for which this defect

appears is given in Fig.5.

Fig. 5. Illustration of the problem in vanishing point estimation by
conventional voting strategy. P1, P2, P3 and P4 are four possible voters. V1
and V2 are two vanishing point candidates (assuming that V2 is the true
vanishing point). ✣✤✦✥ , ✣✤★✧ , ✣✤★✩ and ✣✤★✪ are respectively the texture orientation
vectors of the four voters. The two vanishing point candidates divide the
whole image region into three zones, denoted as Z1, Z2 and Z3. Z1 does not
vote for both candidates. Both Z2 and Z3 potentially vote for V1 while V2
receives votes only from Z3. Therefore, the higher vanishing point candidates
tend to receive more votes than the lower candidates.

To deal with this problem, we propose a soft-voting scheme

where the voting score received by a vanishing point candidate

from a voter is a value taking into account the distance

between the vanishing point candidate and the voter. We treat

as a candidate vanishing point each pixel in the top ✫ ❲✭✬
portion of the whole image (although we might only consider

fewer by sub-sampling the image), which, to our knowledge,

is a realistic assumption for general road images. For each

point ✚ of the image, we define a voting region
❣✯✮

as the

intersection of the Gabor response image with a half-disk

below ✚ centered at ✚ (see Fig.6). The radius of this half-

disk is set to be
❲ ▼ ❨✱✰ P✳✲ , where ✲ is the length of the image

diagonal (see our empirical validation part).

Each pixel ✕ inside
❣ ✮

, for which the texture orientation

✖✗✙✘ has been confidently estimated (see end of Section III),

will vote for the candidate vanishing point ✚ all the more as

✕ is close to ✚ and the orientation of its texture coincides

with the direction
✟ ✕✜✚ ✏

. Specifically, we introduce the ratio✴✝✟ ✕ ☞ ✚ ✏
equal to the distance between ✕ and ✚ divided by

Fig. 6. Left: Global ✵★✶ . Right: local ✵★✶ . The blue belt in the images is
the border pixels excluded from voting owing to the Gabor kernel size.
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TABLE I
LOCALLY ADAPTIVE SOFT-VOTING (LASV) SCHEME

1. For each pixel of the input image, compute the confi dence in its texture
orientation estimation.
2. Normalize the confi dence to the range of 0 to 1, and only keep as
voters the pixels whose confi dence is larger than 0.3.
3. Only the pixels in the top 90% portion of the image are selected as
vanishing point candidates.
4. Create the local voting region ✵ ✶ for each vanishing point candidate,
and only the voters within ✵ ✶ vote for it.
5. Vote for each vanishing point candidate based on Eq. 2.
6. The pixel who receives the largest voting score is selected as the initial
vanishing point.

the diagonal length of the image, and let
✁ ✒ ✛ ✟✬✟ ✕✜✚ ✏✪☞ ✖✗ ✘✓✏

be the angle in degrees between the direction
✟ ✕✜✚ ✏ and the

texture orientation at ✕ .

Vote
✟ ✕ ☞ ✚ ✏ ✒✄✂ ♦♦ ✫✆☎ ✝✟✞✿✥ ✘ ✆ ✮✌✯✡✠ ✣ if ✁☞☛ ✓♦ ✫✙✽✌✞✿✥ ✘ ✆ ✮✙✯❲

otherwise
(2)

It is worth noting that
✁

itself is independent of
✴✝✟ ✕ ☞ ✚ ✏ .

However, the threshold of
✁

depends on
✴✠✟ ✕ ☞ ✚ ✏ so that points

that are far away (but still within
❣☛✮

) are taken into account

only if the angle ✁ is very small (typically less than 3 ✍ ),

while points closer to ✚ will be taken into account up to✁✎☛ ✰ ✍ . For example, if
✴✝✟ ✕ ☞ ✚ ✏ =0.3, P votes for V only

when ✁ is smaller than
✰✑✏✛✟ ❚ ❈ ❲ ▼ ❬❆✏

(approximately 3 ✍ ). In

contrast, if
✴✠✟ ✕ ☞ ✚ ✏ =0.03, P votes for V when ✁ is smaller

than
✰✑✏✛✟ ❚ ❈❑❲ ▼ ❲❘❬❆✏

(approximately 5 ✍ ). In this way, ✁ ’s threshold

can also be viewed as a penalty coefficient that penalizes the

vanishing point candidates in the top end of the image who has

an advantage of receiving more votes than the lower vanishing

point candidates. In addition, this also allows to improve the

computational efficiency. At the end, the vanishing point is

detected as the candidate that receives the largest voting score.

The LASV process is briefly described in Table I.

The advantages of the proposed LASV method over the

conventional global hard-voting method lie in three-fold when

the true vanishing point does not lie at the very top end of the

image. First, the soft-voting strategy suppresses the support to

the false vanishing point (i.e., those vanishing point candidates

above the true vanishing point) by making the voting score far

less than one (unless
✁

is very small). For example, it reduces

the support received by V1 from those voters in ✒ ✕ and ✒ ❨
in Fig.5. Second, it increases the ratio of the support received

by the true vanishing point to that received by the higher false

vanishing point, e.g., the support to V2 is larger than that

to V1 if P1 votes for both V1 and V2, while the support

to V1 and V2 is equal when using hard-voting method even

if P1 votes for both V1 and V2. To discard pixels far away

from the vanishing point candidate, or with low confidence in

the texture orientation estimation, or with
✁

not small enough

results in a significant computational speed-up. Our empirical

results show that LASV is more than five times faster than the

slow version of the global hard-voting method [22].

V. ROAD SEGMENTATION

The correctly detected vanishing point provides a strong

clue to the localization of the road region. Therefore, we

propose a vanishing-point constrained dominant edge detection

method to find the two most dominant edges of the road. Based

on the two dominant edges, we can roughly segment the road

area and update the vanishing point estimated by LASV with

the joint point of the two most dominant edges.

In [23], a similar straight road segmentation method is given

to detect both road borders simultaneously. It is achieved by

optimizing a criterion, which is the difference between the

average values of some characteristic (e.g., R,G,B color cues)

within the image road region and that characteristic in the

region outside the road. It may work when the road and off-

road regions have different characteristics. However, it usually

fails for both cases where there is little difference in color

between road and off-road regions, and where the color is not

homogeneous in road region.

We also need to point out the distinction between the road

support region segmentation method proposed in [26] and

ours. The main difference is that they obtain the middle line

of the road by using the imaginary “road support ray”. This

technique is well adapted to desert (unpaved) roads where

there usually is a clear trace left by previous vehicles and these

rays exhibit a even distribution. However, it may not work

as well on paved roads whose texture is usually sparser, and,

therefore, finding the middle line may prove more difficult than

road borders. In contrast, our method finds the road boarders

by optimizing a criterion, which is a combination of a pre-

defined feature, called “Orientation Consistency Ratio” (OCR),

and a measure related to color cue.

The proposed road segmentation strategy is to find the two

most dominant edges by initially locating the first one and the

other based on the first one. Because we utilize both texture

and color cues, the proposed method exhibits good merits

in handling very general road detection tasks, e.g., for some

unpaved roads where there is very subtle or no change in colors

between the road and its surrounding areas (road covered by

snow or desert road), or for some roads where color in road

region is not homogeneous (road after rain), or for well-paved

roads where painted markings are present.

The definition of “Orientation Consistency Ratio” is given

in the top left image of Fig.7: ✓ is a line consisting of a

set of discrete oriented points/pixels (the orientation of these

points denoted by a black arrow in the figure). For each point,

if the angle between the point’s orientation and the line’s

direction is smaller than a threshold, this point is viewed to be

orientationally consistent with the line. OCR is defined as the

ratio between the number of orientationally consistent points

and the number of total points on the line.

We find that the initially estimated vanishing point ( ✔✖✕ ❲ )

coincides with the joint point of a few dominant edges of the

road if this vanishing point is a correct estimation, while it

usually falls on the extension of one of the most dominant

boundaries if it is a wrong estimation. Therefore, we propose

to use the initial vanishing point estimation as a constraint

to find the first most dominant road boundary. Specifically,
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Fig. 7. Illustration of detection of the two most dominant edges. Top row: (1) line segments consisting of discrete oriented points. (2) Some sample rays
originating from the initially detected vanishing point �✂✁ � . (3) Illustration of computing the sum of the OCRs of each ray and its two direct neighbors. (4)
Illustration of computing the color difference between each ray’s two neighboring regions, ✄ �

and ✄ ✄
. Bottom row: (1) The fi rst most dominant border (red

line), updated vanishing point �✂✁ �
and the ☎ rays (green lines) which have the largest ✆✞✝ . (2), (3) and (4) Among the green lines, the second road border is

selected as the one which maximizes Eq.(3).

we will search this boundary from a set of imaginary rays

which originate from the initially estimated vanishing point.

We only consider 29 evenly distributed rays (excluding those

rays whose angle relative to horizon is smaller than 20 ✍ or

larger than 160 ✍ ) with the angle between two neighboring of

them being 5 ✍ . The second image in the top row of Fig.7 shows

some of these imaginary rays, with each of them consisting of

a set of oriented points whose orientations have been estimated

by Gabor filters. Two measures are computed: the sum of the

OCRs of each ray and its two direct neighbors (illustrated

in the third image of the top row of Fig.7), and the color

difference between the two neighboring regions of each ray

(illustrated as the color difference of
✟ ❚

and
✟ ✕

in the fourth

image of the top row of Fig.7). Accordingly, the first most

dominant boundary is selected as the ray which maximizes

the product of the above two measures,

❏ ✒✡✠☞☛✍✌ ✹ ✎ ✠✑✏✙✟ diff
✟ ✟ ❚ ☞ ✟ ✕ ✏ P ✹ ✫ ♦✒

✓✕✔ ✹☛✜q♦
✗✗✖ ❣ ✓ ✏ (3)

where
✟ ❚

and
✟ ✕

is the two direct neighboring regions on

either side of the ✘ -th ray, and diff
✟ ✟ ❚ ☞ ✟ ✕ ✏

is the color

difference of
✟ ❚

and
✟ ✕

. Specifically, diff
✟ ✟ ❚ ☞ ✟ ✕ ✏

is de-

fined as the largest of the color difference for each channel,

diff
✟ ✟ ❚ ☞ ✟ ✕ ✏ ✒ ✙ ❀ ✡ ❥ diff

✟ ✟ ❚ ☞ ✟ ✕ ✏✎✵✛✚ ✘ ✒ ❣ ☞✍✜ ☞✕✢ ❧
1, and

diff
✟ ✟ ❚ ☞ ✟ ✕ ✏✎✵

is given by

diff
✟ ✟ ❚ ☞ ✟ ✕ ✏✎✵✓✒ ✚

mean
✟ ✟ ❚ ✏ ✻

mean
✟ ✟ ✕ ✏✣✚

✤
var

✟ ✟ ❚ ✏❙❈
var

✟ ✟ ✕ ✏ (4)

where mean
✟✮✏

and var
✟✮✏

are the mean and variance of pixel

values in a region for a single color channel.

1The main purpose of including colors in this section is to show that color
information helps to boost road segmentation accuracy (compared with our
preliminary results by vanishing point [3]). Although we choose RGB as
exemplar colors, the use of the other colors, e.g., HSV, might also achieve
equivalent or even better performance.

TABLE II
VANISHING POINT CONSTRAINED ROAD BORDER DETECTION

1. Starting from the initially estimated vanishing point �✂✁ � , construct a
set of evenly distributed imaginary rays.
2. For each ray, compute two measures, i.e., OCR and color difference.
3. Select the ray as the fi rst road border if it satisfi es the following two
conditions:

3.a It maximizes the criterion, i.e., Eq.(3).
3.b Its length is no smaller than one third of the image height.

4. Update the vanishing point estimation:
4.a Regularly sample some points (with a four-pixel step) on the fi rst

road border, denoted as ✁✦✥ .
4.b Through each point of ✁✦✥ , respectively construct a set of evenly

distributed rays, denoted as ✧★✥ .
4.c From each ✧ ✥ , fi nd a subset of ☎ rays such that their OCRs rank

top ☎ among the 29 rays.
4.d The new vanishing point �✕✁ �

is selected from ✁ ✥ as the one
which maximizes the sum of the top ☎ OCRs.

5. Starting from �✂✁ �
, detect the second road border in a similar way as

the fi rst border, with a constraint that the angle between the road borders
is larger than 20 ✩ .

Note that the area of
✟ ❚

and
✟ ✕

is controlled by their wedge

angle respectively, which is set to be 20 ✍ in our experiment.

The red line, E, in the bottom left image of Fig.7, is detected

as the first most dominant edge and its length is denoted as✪ ✚✛✫ ♦ . To avoid possible false detection caused by short edges,

the smallest
✪ ✚✛✫ ♦ is set to be one third of the height of image.

Once the first border of the road E is found, we will

update the initial vanishing point by looking at the points on

E where several dominant edges converge according to the

OCR. For this, through each (regularly) sampled pixel ✬ on

E, we construct a set of line segments (
✪✮✭

) such that the angle

between any two neighboring lines of
✪✮✭

is fixed ( ⑦ ✒ ✰ ✍ in

our experiments). We also set the angle between E and any

one of
✪✯✭

is larger than 20 ✍ (motivated by the assumption that

the vanishing angle between the two road borders is generally

larger than 20 ✍ ). We compute the OCR for each line of
✪ ✭

(we count the number of lines whose OCR is larger than 0.02

and denote this number by ✰ ), and for each new vanishing
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Fig. 8. The effect of � , the threshold set on the confi dence of texture
orientation estimation, on the vanishing point detection accuracy.

point candidate ✬ , we consider the sum
✁✄✂

of the top ✫ OCR

( ✫ ✒
min

❥ ✰ ,8
❧

in our experiments). The green line segments

in Fig.7 are the ✫ lines starting from ✬ receiving the top ✫
OCR. The new vanishing point is then estimated as the point ✬
maximizing

✁☎✂
. We try other points along E besides the initial

vanishing point since the initial vanishing point estimation

may not be accurate (i.e., it is not the joint point of the most

dominant edges of the roads). Some of the updated vanishing

points can be observed in Fig.12.

From the updated vanishing point and more precisely from

the ✫ dominant edges which have voted for it, we deduce the

position of the second border of the road in a similar way

as explained for the first road border detection. The length

of the obtained second most dominant edge is denoted
✪ ✚✛✫ ☞

and the length of the first dominant edge is updated to
✪ ✚✛✫ ✽

(see Fig.7). The smallest
✪ ✚ ✫ ✽ and the smallest

✪ ✚ ✫ ☞ are

set to be one third of the image height to avoid possible

false detections. The process to detect the road borders is

summarized in Table.II.

VI. EXPERIMENTAL RESULTS

A. Vanishing point estimation

Vanishing point estimation is tested on 1003 general road

images. These road images exhibit large variations in color,

texture, illumination and ambient environment. Among them,

about 430 images are from the photographs taken on a scouting

trip along a possible Grand Challenge route in the Southern

California desert and the other part is downloaded from inter-

net by Google Image. Some image samples are shown in Fig.1.

All images are normalized to the same size with height of 180

and width of 240. To assess the algorithm’s performance vs.

human perception of the vanishing point location, we request

5 persons to manually mark the vanishing point location after

they are trained to know the vanishing point concept. To

remove the effect brought by the subjectivity of each individual

in marking vanishing point, a median filter is applied to these

human recorded results (for x and y coordinates, respectively)

and the median is used as the initial ground-true position. The

two farthest manually marked locations to the initial ground-

true position are removed as outliers. Finally, the ground-truth

location is computed as the mean of the other three locations.
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Fig. 9. The effect of the radius of the local voting region on the vanishing
point detection accuracy (note that the detected vanishing point is deemed to
be correct if the error between the detected vanishing point position and the
ground truth one is no larger than 10 pixels).

For brevity, the soft voting strategy defined in Eq.2 is

denoted by “Soft” and the hard voting strategy (by replacing♦♦ ✫✆☎ ✝✟✞✿✥ ✘ ✆ ✮✌✯✡✠ ✣ with 1 in Eq.2)is denoted as “Hard”. The voting

strategy based on global voting region (left image of Fig.6) is

denoted by “Global” and the one based on local voting region

(right image of Fig.6) is denoted by “Local”. We compare

the “Hard” v.s. “Soft” and “Global” v.s. “Local” schemes.

We also compare different combination of them with/without

introducing the confidence factor.

Before comparing these combination schemes, we firstly

introduce how the threshold ( ✔ ), which is set to the confidence

of texture orientation estimation, affects the vanishing point

detection accuracy. Using the “Soft”+“Local” strategy (the

radius of the local region set to 0.35 P ✲ ), we tune ✔ from

0 to 1 with an interval of 0.1, and the result is shown in

Figure 8. Note that the detected vanishing point is deemed to

be correct if the error between the detected vanishing point

position and the ground truth one is no larger than 10 pixels.

The optimal vanishing point detection result is obtained when

✔ is set to be 0.3. Similarly, the size of the local voting

region also plays a role in detecting vanishing point. In Fig.9,

the vanishing point detection accuracy is obtained based on

the “Soft”+“Local” strategy where the radius of local voting

region is tuned from 0 to
✲

and only the image pixels whose

texture orientation estimation confidence is larger than 0.3 are

used for voting. From Fig.9, we obtain the best vanishing point

detection results when the radius of the local voting region is

about 0.35 P ✲ , and this size is fixed in all the subsequent

experiments which are based on local voting region.

Figure 10 visually gives us the comparison of vanishing

point estimation on some sample images. The estimation using

the “Hard” and “Soft” voting based on global
❣ ✮

are shown

in (a) and (b) respectively, while some results using “Hard”

and “Soft” voting based on local
❣ ✮

are shown in (d) and

(e) respectively. Figure 10 (c) and (f) shows some samples

voted from those image pixels whose confidence score is larger

than 0.3. By comparing (a) with (b) and comparing (d) with

(e), it can be observed that “Soft” voting scheme is better

than “Hard” voting scheme. By comparing (a) with (d) and

comparing (b) with (e), we find that local voting region scheme

is more accurate than global voting region one. The examples
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based on the “Soft” voting from those highly confident texture

orientations in the global
❣✜✮

are shown in row (c), and the

estimations based on LASV are shown in row (f). Comparing

(c) with (a) and (b), and comparing (f) with (d) and (e), we find

that it does improve the vanishing point estimation accuracy

by introducing the confidence measure.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 10. Comparison of vanishing point estimation based on different com-
binations: (a) “Hard”+“Global”; (b) “Soft”+“Global”; (c) “Soft”+”Global”
(T � 0.3); (d) “Hard”+“Local”; (e) “Soft”+“Local”; (f) “Soft”+“Local”
(T � 0.3)

Figure 11 lists some statistics of the above different combi-

nations. Based on the ground truth positions, we compute the

L2 norm distance, i.e., dist ✁ ✽ =
✤ ✟❪✡ ✞ ✻ ✡✄✂♣✏ ✽ ❈ ✟☛✍✑✞ ✻ ✍☎✂✗✏ ✽

,

where (
✡ ✞✢☞✎✍✑✞

) is the detection position and (
✡✆✂✤☞✬✍☎✂

) is the

ground truth position, of the results produced by the above

different combinations to the ground truth positions, and put

these distances into a 15-bin histogram. The horizontal axis

of Fig.11 represent the dist ✁ ✽ .
If the distance is larger than or equal to 15, it is put into the

15th bin of the histogram. The seven histograms are shown in

(a) of Fig.11. From Fig.11 (a), we may find that the vanishing

point estimation from the pixels with high confidence is much

better than the estimation without considering the confidence

factor. Local voting-region based method produces more ac-

curate estimation than the corresponding global voting-region

based method. Based on these histograms, we also compute the

percentage of the images whose error distance is smaller than a

number. The best results come from the “Soft” voting based on

0 5 10 15
0

50

100

150

200

250

Distance (number of pixels) from manually marked ground truth position to detected vanishing point position

N
um

be
r 

of
 im

ag
es

Global+Hard

Global+Soft

Global+Soft (Confidence>T)

Local+Hard

Local+Soft

Local+Soft(Confidence>T)

Local+Soft(Confidence>T) + updating by dominant edges

(a)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance (number of pixels) from manually marked ground truth position to detected vanishing point position

P
er

ce
nt

ag
e

Global+Hard
Global+Soft
Global+Soft (Confidence>T)
Local+Hard
Local+Soft
Local+Soft(Confidence>T)
Local+Soft(Confidence>T) + updating by dominant edges

(b)

Fig. 11. Comparison of vanishing point estimation accuracy: (a) At a certain
error distance, the number of images whose road vanishing point detection
is viewed to be correct. (b) The percentage of images whose vanishing point
detection error is smaller than a threshold.

the high-confidence image pixels of the local
❣ ✮

(confidence

value is larger than 0.3) plus updating by the joint point of the

two most dominant edges. About 96% of all images have an

error distance no bigger than 10 pixels. The method described

in [22] belongs to the “Global”+“Hard” scheme. Based on

our experiment, our algorithms perform much better: applying

the “Global”+“Hard” scheme to our data, totally 112 images

produce an error of more than 50 pixels, where 87 of them

have very low ground-truth vanishing points. In contrast, such

a large error occurs in only 33 images for the weakest variant

(Global + Soft) of our method. On average, on our test data,

our method gives a 9-pixel instead of 14-pixel error for the

method in [22]. Note that, for curved road, the vanishing point

produced by our method is located at the joint point of the

most immediate straight road borders.

B. Dominant edge detection and road segmentation

Among the 1003 images, about 300 images are from well

paved roads with painted markers. Excluding the 430 desert

images, the rest images corresponding to the rural roads have

no painted lines although part of them are also well paved. For

over 90% of the rural roads, the two road borders are detected

as the two most dominant edges. For the desert images, the

road can be correctly detected as long as the vanishing point

estimation is close to the true position. For curved roads, the
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(a)

(b)

Fig. 12. Vanishing point detection and road segmentation. (a) sample images from Mojave desert and (b) sample images downloaded from Google image.
For (a) and (b), the fi rst rows show the voting images based on “Local”+“Soft” scheme. The second rows are the initially detected vanishing points based on
the voting images. The third rows show the detected dominant road edges based on the OCR and color features (note that the detected red dominant edges
correspond to the fi rst most dominant road borders). The fourth rows are the segmented road regions based on the two detected road borders. The fi fth rows
display the updated vanishing points. The sixth rows are the ground-truth road segmentation.

detected road region is the most immediately drivable area

although part of the road surface cannot be fully encompassed

by the two dominant edges.

Figure 12 (a) corresponds to the desert road images and (b)

comes from the downloaded images. Note that some initially

detected vanishing point locations are improved by the two

dominant edges. The initial vanishing points by LASV are

shown in the second rows respectively. The detected dominant

edge candidates are shown in the third rows respectively,

where the red lines are the first detected road borders. The

two most dominant edges are detected and shown in the

fourth rows respectively. The updated vanishing points by

dominant edges are shown in the fifth rows. By checking the

vanishing point detection results, we find that some failed

cases are caused by extreme illumination conditions (e.g.,

intensity saturation or strong edge of shadow casted by trees,

like the images shown in the seventh and eighth columns

of Fig.13). The vanishing point detection tends to fail when

the vehicle goes up or down the mountain and there is no

enough supporting voting region for the vanishing point (the

fifth column of Fig.13). But if there is enough supporting

voting region, the vanishing point can be correctly detected

even when the vehicle is not running on the flat road (the sixth

column of Fig.13). Similarly, the vanishing point detection

is accurate during turning the vehicle if there is a large

supporting voting region available in the image (the first and
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Fig. 13. Examples of failed detections under extreme illumination conditions, or when the vehicle is going up or down the mountain, or making a turn.

Fig. 14. Illustration of the “recall” concept: the ground truth road segmentation is represented by the gray area in the fi rst image, and the light purple areas
in the other images represent the detected road regions. Except for the third image, the “recall” for the other images is smaller than “1”.

third columns of Fig.13), and vice versa (the second, fourth

and last column of Fig.13. To deal with the above failed

situations, we might have to seek the other ways instead of

only relying on vanishing point detection for road detection.

The alternative solution might be the road tracking strategy

based on the detected road appearance by our method in

previous frames.

To quantitatively show the road segmentation accuracy, we

manually labelled the 1003 road images. Some of the labelled

road images are shown in the last rows of Fig.12 (a) and

(b). Let
✢✁�

and
✢ ✭

denote the binarized ground-truth and

detected road regions of one image respectively, the “recall”

is computed as

recall
✒ ✢ �✄✂ ✢ ✭

✢☎�✄✆ ✢ ✭ (5)

where the road regions in
✢ �

and
✢ ✭

are set to be “1” and

the off-road regions are set to be “0”. Based on this definition,

we may find that the “recall” reaches its maximum value, “1”,

only when the detected road region coincides with the ground

truth one. Figure 14 illustrates the concept of “recall”, where

the ground truth road segmentation is represented by the gray

area in the first image, and the light purple areas in the other

images represent the detected road regions. Except for the third

image, the “recall” for the other images is smaller than “1”.

We change the recall rate from 0 to 1 and calculate the

statistics of how many road images are correctly segmented,

which is displayed in Fig.15, where the “recall” is represented

in percentage as the horizontal axis. We compare the road

segmentation method proposed in this paper with the one in

[3]. Because we combine texture (OCR) and color features

for road segmentation in this paper, we can observe a large

improvement over [3] where only a clustering method based

on OCR features is used.

Our method is efficient and can be run in real time. This is

attributed to the sparse number of voters in the local voting

region during the vanishing point detection, and the efficient

dominant edge detection (the most heavy computation being

in the calculation of the OCR for each constructed edge). We

run our implementation under Windows OS with a CPU of

1.8GHZ and 1G memory, it takes about 62 seconds for our

1003 240 P 180 images (i.e., about 17 frames per second). In

addition, there is still much room in improving the efficiency.

For example, the running speed can be significantly improved

by subsampling the vanishing point candidates (e.g., with a

even step of 2 pixels), since, in the current version, we consider

every pixel as a vanishing point candidate in the top 90%

portion of image. For the memory space requirement, our

method is economic where the largest memory usage is less

than 9M (in texture orientation computation by Gabor filters).

VII. CONCLUSION

A novel framework for segmenting the general road region

from one single image is proposed based on the road vanishing

point estimation using a novel scheme, called Locally Adaptive

Soft-Voting (LASV) algorithm. Then the estimated vanishing

point is used as a constraint to detect two dominant edges

for segmenting the road area. To remove the effect caused by

noisy pixels, each Gabor texture orientation is estimated with

a confidence score. In voting, only the pixels of a local voting

region whose confidence is high are used, which reduces the

computational complexity and improves the accuracy.
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Fig. 15. Road segmentation accuracy: combination of texture and color
features improves the accuracy over texture-feature based method.
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