
J. Operations Research Soc. of Japan

Vol. 14, No. 2, September 1971.

GENERAL SCHEDULING ALGORITHMS WITH

APPLICATIONS TO PARALLEL

SCHEDULING AND MULTIPROGRAMMING SCHEDULING

ICHIRO NABESHIMA

University of Electro-Communications

Chofu-shi, Tokyo

(Received January 22, 1971 and Revised March 19, 1971)

Abstract

Branch-and-bound algorithms are presented on related disjunctive

graph for general job-shop scheduling problems with various objective

functions for two cases, such that set-up times are included in process

ing times in one case and not in the other case. They are applied to

parallel scheduling and multiprogramming of programs and/or multi

project sheduling.

1. Introduction

The branch-and-bound method is a principal application of the funda

mental state equation approach in state transformation process defined

for combinatorial problems such as job-shop scheduling problem. [5].

Three branch-and-bound algorithms 1, 2, and 3 are presented on

disjunctive graph for general job-shop scheduling problem with various

objective functions for two cases where set-up times are included in pro

cessing times in one case and not in the other case. Algorithm 3 is ap

plied to parallel scheduling and multiprogramming of computer programs

and/or multiproject scheduling.

The research for finding an optimal schedule on disjunctive graph,

which minimizes the total elapsed time (makespan) of N operations of n

72

© 1971 The Operations Research Society of Japan

General Scheduling Algorithms 73

jobs on m machines along the required technological orders, had been

started from a model introduced byRoy and Suss man [7], and Nghiem

[6]. Recently Balas [1], [2] has proposed branch-and-bound algorithms

for this problem by finding a critical path in a disjunctive graph with

a complete set of arcs at each stage. On the other hand, Charlton and

Death [3] has proposed a more efficient branch-and-bound algorithm for

this problem by finding a critical path in a disjunctive graph with a spe

cified subset of arcs at each stage. The algorithms presented in this

paper are revised and extended forms of the latter algorithm, treating

the problems with various objective functions uniformly. They can be

applied to parallel scheduling and also to multiprogramming or multi

project scheduling, which makes them general scheduling algorithms.

2. General Problem where Set-up Times are Included

in Processing Times

General job-shop scheduling problems considered first in this paper

are assumed to satisfy the following n!straints:

1). n jobs must be processed on m machines where these is no

requirement for each job to visit all machines or to visit each

machine only once.

2). Each job must be processed by specified machines along the

required technological order which is independent of that of any

other job, and which may be of PERT diagram type.

3). Processing of each job by each machine is called an operation.

Each operation to be performed by each machine must be com

pleted without interruption by another operation on the same

machine.

4). Each machine can perform one and only one operation at a time.

The available time of each machine is assumed to be the same

as a strarting time of the processing of the first operation in m

machines. For the case where non-equality of the available time

of each machine occurs, the algorithms presented later also can be

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

74 ichjro Nabeshima

applied with slight modifications.

5). Set-up times are included in processing times of the operations.

The other case will be discussed in Section 7 and so on.

6). Objective function f to be minimized is assumed to be the one

which increases its value in the wide sense when the completion

time of any operation in a schedule is delayed without changing

the order of operations on each machine in this schedule.

Hence objective functions with this property include: total

elapsed time (makespan), weighted mean completion time of jobs,

mean waiting time consumed by each operation to be processed

by the next machine where the sum of all waiting times is equal

to the sum of the completion times of all jobs minus the sum

of the given processing times of all jobs, mean machine idle

time where the sum of all machine idle times is equal to the

sum of the completion times Of all last operations on m machines

minus the sum of the given processing times of all jobs, maxi

mum lateness (tardiness), and weighted mean lateness (tardiness),

where the weights are assumed to be non-negative, lateness Lk of

job k is defined as the completion time C(k) of the last operation

for job k minus due date dk of job k, that is, Lk=CCk)-dk , and

tardiness n of job k is defined to be Max CLk, 0).

Also any cost function which is an increasing function of

SOme or all of these objectives can be taken as the objective

function.

3. Formulation on I)isjunctive Graph

Let job kCk=l-n) involve Nk operations and let the technological

order for job k be a required order I:: N1- 1 + 1, I:: NI-l +2, ... , I:: N1_1 (

k k k+1')

1=1 1=1 1=1

k k k+1

of Nk operations I:: N1_1+l, I:: N1_1+2, ... , I:: NI~l of job k where No=O.
1=1 1=1 1=1

n

Then the total number of operations of n jobs is N= I:: N k •

k=1

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

General Scheduling Algorithms 75

Let Sp be a set of all operations performed by machine p (p= I-m), then

any two operations in Sp cannot be performed simultaneously by machine

p from assumption 4) in Section 2.

Then, let X be a set of N+2 nodes where nodes 0, and N+l are

the source, and the sink, respectively, which represent dummy nodes,

and all other N nodes represent N operations.

And le,t G= (X, Z) ,be a finite directed graph, with X as its set of

nodes, and Z as its set of directed arcs which represent the required

technological order of the operations of any job, that is, directed arc (i, j)

belongs to Z if the operation corresponding to node i directly precedes

the operation corresponding to node j, or if i=O or j=N+1. With each

arc (i, j) is associated a real positive number p; which represents the

processing time of operation i, where Po=O.

Let t; be the earliest starting time of operation i. Then C=t;+p;

is the earliest completion time of operation i (i=I-N) where tN +1=

Max (C(l), "', C(n)) is the total elapsed time.

Hence it is sufficient to determine the value of tq in order to deter

mine the value of Cq for each last operation q of any job or on any

machine. This leads to the fact that we can represent any objective

function f as a function of all variables tq where operation q represents

the last operation Of each job for any f except for. mean. machine idle

time, or the last operation on each ill achine for mean· machine idle time

f
, . I

Then th~ general job shop scheduling problem with any objective

function f defined. in 6) of Section 2 can be f~rmulated as a critical path

problem I on a dis:urtctive graph. as shown below by considering the

precedence relations of any two operations on the same machine p, that

is, those included in the set Sp (p=l-m):

Determine the values of all tq where opetation q is the last operation

of each job 01; on each machine such' that f is minimized subject to

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

76

(3.2)

Ichiro Nabeshima

(p=l-m)

(i=O-N+l)

In any feasible schedule, one of inequalities (3. 2) must hold for each

disjunctive pair. An arc which satisfies one constraint of the disjunctive

pair is called a disjunctive arc. An example is shown in Table 1 and Fig.

1 where dotted lines represent disjunctive arcs.

Table 1. Technological Order of Operations 1-8.

Machine

Job 1 1 2 3

Job 2 4 5

Job 3 7 6 8

Fig.1. Related Disjunctive Graph where

X= ~O, 1, 2, 3, 4, 5, 6, 7, 8, 9},

Z= ~ (0,1), (1, 2), (2, 3), (3, 9), (0, 4),

(4, 5), (5,9), (0, 6), (6, 7), (7, 8), (8, 9)},

S, = n, 7} , S2 = {2, 4, 6}, S3 = {3, 5, 8},

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

General Scheduling Algorithms 77

By defining a set S of disjunctive arcs which consists of one dis

junctive arc from each disjunctive pair; that is, if i, jESp (p=l-m)

then (i, j) E S or (j, i) E S; then the above formulation can be transformed

to the following problem I:

Problem I. Determined the set S along with the values of all earliest

starting times t. above defined, such that f is minimized subject to

t,-t;?;,p;, for (i, j)EZUS

t;?;,O. (i=O-N+1)

Hence the general job shop scheduling problem can be converted

to a critical path problem on related disjunctive graphs G=(X, ZUS)

where S assumes the possible combinations of disjunctive arcs.

4. Branch-and-Bound Algorithms 1 and 2

In order to solve the critical path problem I on a disjunctive graph

defined in Section 3, we must determine the optimal set S. Since the

complete determination of the set S by taking one arc from each dis

junctive pair seems to make the algorithm for this problem complex, it

would be better to follow a method similar to that proposed in Ref. [3],

because, in case where set-up times are included in processing times, it

does not make any circuit on the related disjunctive graph at each stage

as shown in Section 5.

The method of branching of the following branch-and-bound algorithm

1 follows the newest active node search procedure as shown below:

Branch-and-bound algorithm 1.

Step 1. Solve Problem I with S'=</J (null set) (node (1)) by using the

recurrence relation:

(4.1) tj= Max (t;+p;).
(i, j)EZUS

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

78 Ichiro Nabeshima

Proceed to Step 2.

Step 2. If the solution (the values of 'an ti and f) satisfies all dis

junctive pairs (3.2), then this solution gives an optimal schedule.

Otherwise proceed to Ste~) 3.

Step 3. Generally, if the solution of Problem I with S does not

satisfy all of disjunctive. pairs, the solution value of f gives a lower

bound LB(f) of f for the optimal schedule, at this node. If this LB(f)

is not smaller than the least upper bound where the upper bound is

equal to the value of f for a feasible schedule already obtained, then

go to Step 5. Otherwise, find a disjunctive pair for which tj- ti<Pi

and ti-tj<Pj hold for i, jESp for certainp's (p=l-m); introduce

one disjunctive arc (i, j) into S (for example, for a positive tj-i i , or

for a minimum Pi.-(tj-ti». In any way, the ,new set ZUS of arcs

does not contain a circuit. (cf. Section 5) Solve Problem I with the

new S (next node).

Proceed to Step 4.

Step 4. Generally, a) if the solution of Problem I does not satisfy

all of disjunctive pairs, go to Step 3. b) If the solution ?f Problem I

with S at node (n) satisfies all disjunctive pairs, then this gives a

feasible schedule where the value of f is an upper bound UB(f), at this

node, of f for the optimal schedule. 'If the least UB(f) is not greater

than any LB(f) at all other nodes of degree 1 or 2 where degree of

a node is defined' as the number of arcs incident to this node, the

feasible schedule with the least UB(f) gives an optimal schedule.

Otherwise proceed to Step 5.

Step 5. Backtrack up the tree to the nearest node (n-k) of degree

2 or to the first node (1) among the nodes with a LB(f) smaller than

the least UB(f), and proceed to Step 6,

Step 6. Remove from the present S the disjunctive arcs which have

been already introduced to the nodes passed by, and introduce the

other disjunctive arc (j, i) into the set S at node (n-k), in the case

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

General Scheduling Algorithms 79

where a disjunctive arc (i, j) of the same pair has been already ex

amined at the next node (n-k+1). Then solve Problem I with this

S (node (n+1». Go to Step 4.

Obviously another branch-and-bound algorithm can be formulated

where the method of branching is the frontier search; that is,

Branch-a'ld-bound algorithm 2.

Algorithm 2 differs from Algorithm 1 in the following:

1). Two branches corresponding to two disjunctive arcs (i, j), (j, i)

are constructed when the disjunctive pair does not hold for i, i -= Sp

in Step 3 of Algorithm 1, and Problem I for each new node is

solved. Then the first part of Step 6 is omitted.

2). Branching is made to a node which has the smallest lower bound

among all nodes of degree 1.

3): An optimal schedule is found at a node with the least UB(f)

~which is not greater than LB(f) at any other node of degree 1.

5. Justification of the Algorithms and Some Remarks

1). The fact that the new set ZU S of arcs, which is generated by

introducing one disjunctive arc (i,j) into the old S when a dis

junctive pair does not hold for ti and tjfor i, jE Spwhere S is ob

tained from the solution of Problem I for the old set ZU S, does

not contain any circuit (Steps 3, 6) is justified as follows: there

·.·is no circuit for the first graph C= (X, ZUS) where S=1>. If

there is no circuit in the graph Cl = (X, ZU Slat any stage, for

any i, jE Sp which construct a disjunctive pair such that they can

make a circuit with the arcs in Cl either by arc (i, j) or (j, i),

for example, if tj>ti holds for Cl (Fig. 2), then obviously tj>ti+Pi

holds, hence the disjunctive pair must hold for these i, jESp •

As a consequence, any i, j ESp for which the disjunctive pair

does not hold for the old graph do not make a circuit in the new

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

80 Ichiro NabeBhima

I (1)-4-..... ,

7
i \ , Pj

\ "
\ , ., \ , , \

Pi '..... ,

"CD

L--___ I
Fig.2. tj>ti

graph obtained by introducing either arc (i, j) or (j, i) into the

old graph.

2). Since there are finite number of disjunctive pairs for the problem,

the algorithm gives an optimal schedule after finite steps.

3). Whenever Problem I must be solved for each new set ZU S,

it is sufficient to calculate only the values of ti at nodes which

can be reached by directed path from the extreme node of a

newly introduced disjunctive arc, including the extreme node

itself.

4). We can obtain an approximate schedule by suitably stopping

the newest active node search procedure of Algorithm 1. (cf.

Section 9).

5). If one takes the time dij for Pi for each arc (i, j) where dij

represents the processing time Pi plus set-up times incurred

when operation j follows operation i, then the procedure of

Algorithms 1 and 2 may make a circuit as shown is example 4

in Section 6, which shows a counter example for the algorithm

proposed in Ref. [3].

These generalized problems will be treated in Section 7.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

General Scheduling Algorithms 81

6. Examples by Algorithm 1

Three examples 1, 2, 3: (min-makespan problem, min-mean comple

tion time problem, and min-mean tardiness problem, respectively) will

be solved by Algorithm 1, and it wiH be shown that Algorithm 1 which

does not check circuits at any stage makes a circuit in the solution

procedure for example 4 where dij is taken for Pi.

Example 1. (Min-Makespan Problem)

Three jobs 1, 2, 3, three machines M 1 , M 2 , Ma, the tech

nological order for each job, and processing times and related opera

tion (node) numbers are given in Table 2 where, for example, M12
(1)

Table 2

Job Technological Order (Operation Number)

- --.-------~--

1 M12 M,s M31

(1) (2) (3)

2 M3' M? M l3 M 25

(4) (5) (6) (7)

3 M 13 M32

(8) (9)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

82 Ichiro Nabeshima

means that job 1 is first processed by machine Ml with 2 units of

processing time and this operation has operation (node) number 1 in

the related disJunctive graph. (Fig. 3).

Solution. It is sufficient to minimize tlO=Max (Ca, C7 , C9).

The tree obtained by Algorithm 1 is shown in Fig. 4 where node

numbers 1-11 show the order of branching and the number at each

node represents the lower bound or upper bound.

In this solution procedure a disjunctive arc (i,j) with the smallest

(1)14

/, ,~(1,8)
/(8,1) ~

)7\4(t ' !@~ (2,5)

/(2,5) \,2) (5, 2) ~

® 21 fo®\14)@~14 ®lf~as.)
~,n ~,n

(7,2) (7,2)

@21 ®17 @21 @17(feas.)
opt.

Fig.4. Tree for Example 1.

Fig.5.Graph of the Optimal Schedule

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

General Schedulin.g Alll:Jrithms 83

node number i orj and with smaller p;-(tj-t;) or positive tj-t;

for these i, jESp was introduced into S. (Step 3).

An optimal schedule is a feasible schedule corresponding to node

5 with a makes pan of 17 where G=(X, ZU {(1,8), (5,2), (2,7)}) as

shown in Fig. 5. The corresponding Gantt Chart is shown in Fig. 6

where each number denotes a job number.

Time
o 5 10

~.

15 . 17 20
-r- I f-V I' f-V
1 3 2

.,

2 "t- ~ V , V
1 2

--.

....... _/ ~ -
1 2

Fig.6. Gantt Chal'i. of the Optimal

Schedule

CD 28

/. ~ (1,8)
/(8,1) ~

@31 '®30

/ \(5,2) / ~(2,5)
/(2,5) '\ /(5',2) ~

® 36 ® 32 (4) 34 ® 34

;r; ~
. t (feas.)

. . '(2 7) op . '
, (7,2) ,

® 40 (j) 35

Fig. 7 .. Tree for Example 2

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

84 Ichiro Nabe8hima

Example 2. (Min-Mean Completion Time Problem)

For the same data as example 1, it is sufficient to minimize the

sum of the completion times of three jobs C=C3+C7+C9=(ta+P8)+

(t7+P7)+(t9 +Pg).

The solution tree is shown in Fig. 7. An optimal schedule is a

feasible schedule corresponding to node 3 with the minimum C=34,

Fig.S. Graph of the 'Optimal Schedule

5 10 15 18 20
....... t-- ~

1 3 2

.,

"" 1:/
p I" [;..-'

t--..... 2
1 2

--~ --=-

2 3 1

Fig.9. Gantt Chart of the Optimal Schedule

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

General Scheduling Algorithm8 85

that is, a mean completion time of 11 ~where G=(X, ZU {(l,B), (2,5)}).

The makespan for this schedule is lB, which is not minimum.

The corresponding graph and Gantt Chart are shown in Figs. Band

9, respectively.

Example 3. (Min-Mean Tardiness Problem)

For the same data as example 1 and additional data for due

dates shown in Table 3, it is sufficient to minimize the sum of

tardiness of three jobs T=Max (Ca-lB, O)+Max (C7 -23, O)+Max

(Cg-5, 0).

Table 3. Due Dates.

Job i Due date di

1 18

2 23

3 5

(Do

1(8,1)

@o

\ (5, 2)

®O

1(2,7)

@O

1(9,4)

<ID 0 (feas.)

opt.

Fig.lO. Tree for Example 3

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

86 Ichiro Nabeshima

one disjunctive arc (i,j) which is introduced at Step 3 of Algorithm 1

is taken as i=8 or 9 whenever i or j is equal to 8 or 9.

The solution tree is shown in Fig. 10. An optimal schedule is

a feasible schedule corresponding to node 5 with the minimum T=O,

or the mean tardiness =0, where G=(X, ZU {(8,l), (5,2), (2,7), (9,4)}).

The makespan for this schedule is 22.

The corresponding graph and Gantt Chart are shown in Figs. 11

and 12, respectively.

~

3

Fig.Il. Graph of the Optimal Schedule

1

d.
5

~'-

3
../

2

10
........ -

2

2
,

........

15
.-

-,/'

1

Time

d! 20 22 d 25

....... ,.,.-
-2

........
1

Fig.12. Gantt Chart of the Optimal Schedule

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

General Scheduling Algorithms 87

Example 4. (Min-Makespan Problem where set-up times are not

included in processing times and sequence dependent)

This example illustrates that Algorithms 1 and 2 can not be ap

plied to the case where explicit set-up times exist.

Let two jobs 1, 2 be processed on two machines M j , M2 along

the technological order shown in Table 4. The duration d;j which

is the sum of the processing time p; of operation i and set-up time

S;; incurred to perform operation .i after i is shown in Table 5.

Table 4. Technological Order.

Job

1

2

Technological Order
(Operation Number)

----.----~-.---

M,
(1)

M,
(4)

1\1,
(5)

M,
(3)

Table 5. Duration du.

The corresponding disjunctive graph is shown in Fig. 13.

Each disjunctive arc which must be introduced into S was taken

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

88 Ichiro Nabeshima

(feas.)

Fig.14. Tree for Example 4

as shown in the tree. (Fig. 14)

Then a circuit 1 2 3 4 1 IS constructed at node 6 where

G=(X, ZU {(4,1), (3,4)}).

Hence certain checks for the circuit must be made at Step 3 in

the present algorithms 1 and 2 in case where explicit set-up times

exist; that is, where durations dij are taken for processing times Pi.

Algorithms for this generalized problem will be presented in the

next section.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

General Scheduling Aigorithms 89

7. Generalized Branch-and-Bound Algorithms for Generalized Problem

with Explicit Set-up Times

The generalized problem is defined as a problem which is different

from the general problem presented at Section 2 in the restraint 5) such

that set-up times are not included in processing times and then duration

d;j is taken for p; for each arc (i, j) in the related disjunctive graph.

Branch-and-bound algorithms 1 and 2 for this generalized problem

can be constructed only by adding the following statements for checking

circuits at Step 3 and Step 6 in the previous Algorithms 1 and 2; that is

Generalized Algorithm 1.

Steps 1, 2, 4, 5 are the same as those in Algorithm 1 of Section 4.

Steps 3 and 6 are improved as below:

At Step 3, always introduce one disjunctive arc (i, j) where tj-t; is

positive. If both tj-t; and t;-tj t!qual zero, introduce one disjunc

tive arc (i, j) which makes no circuit with the present ZU S. If

this is impossible tor any candidate, the problem has no feasible

solution.

At Step 6, check the circuit which may be constructed by introducing

the other disjunctive arc (j, i).

If there happens no circuit, the procedure proceeds as stated in

Algorithm 1. Otherwise, the corresponding node (n + 1) must be

omitted and back to Step 5 in order to backtrack to the next nearest

node, at Step 6.

Similarly the generalized branch-and-bound algorithm 2 taking the

frontier search procedure is constructed by the same improvements

of the corresponding Algorithm 2 of Section 4.

8. Example for Generalized Problem

Example 4 presented in Section 6 can be solved by Generalized

Algorithm 1 if we continue the branching along the same procedure as

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

90 Ichiro Nabeshima

that shown in Fig. 14. Then the tree for this example is completed as

shown in Fig. 15.

An optimal schedule is a feasible schedule corresponding to node 5

with a makespan of 15 where; G=(X, ZU {(4, 1), (4, 3) (2, 5)}).

The corresponding graph and Gantt Chart are shown in Figs. 16 and

17, respectively.

Fig.15. Tree for the Example

'Fig.16. Graph of the Optimal Schedule

16
(feas.)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

General Scheduling Algorithms

Time
5 10 15
r-- "'- /'

2 1 1

- -1 ~

Fig.1 7. Gantt Chart of the Optimal

Sche dule

91

9. Heuristic Program for Obtaining an Approximate Schedule

For a problem with excessively large number of operations, an

approximate schedule of any problem stated in Sections 2 and 7 can be

obtained by using Algorithm 1, with stopping its procedure when it

terminates to the feasible schedule first obtained, for example.

Then the percentage of the relative error (PRE) of the value of f of

this approximate schedule is bounded as shown in the following inequality:

(9.1)

PRE= (Value of f of Appr. Schedule):=-CMi~·J of Opt. Schedule) x100
(Min. f of Opt. Schedule)

~ (Val~e~~~(o~~ ~P~r:~S~~(:tu}e) --:·:J~()we!.J)oun~of f fou l1<!) X 100
- (Lower bound of f found)

For example, this upper bound (9.1) for each of the examples 1~4

becomes 28.6%, 21.4%, 0%, 60% respectively when the lower bound of

f is taken as that at the first node (node 1). Also they become 28.6%,

13.3%, Oro, 23.1 % respectively when the lower bound of f is taken as the

minimum value of two lower bounds at two nodes which follow directly

the first node.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

92 Ichiro Nabeshima

The largest lower bound of f can be known at each stage. Hence,

by giving a prescribed value of the upper bound (9.1), say 20% or 30%,

one can stop the procedure whenever a feasible schedule is found. By

checking whether or not it gives a new upper, bound (9.1) which is
, ! ;:

not greater than the prescribed valu~, one dill ~aKe this feasible schedule

as a desired approximate schedule when it ~iv~s.~.
, , . . , I

' " ; I I

10. Algorithm 3 for Sensitivity Analysis: and Parallel Scheduling

In this section another algorithm, called Algorithm 3, is presented

for optimal scheduling of n jobs to one shop. This algorithm is some

what complex, but useful for sensitivity analysis and especially applicable

to parallel scheduling of n jobs to q stations (shops) each of which has

the same kind of machines, in order to minimize the maximum among

q minimal values of the objective function f at q stations.

Algorithm 3 has a feature which resembles the procedure of dynamic

programming and uses Algorithm 1 or 2 presented in the previous sections

at each stage; that is, it is composed of n stage decision process in state

transformation process [5] as shown below:

Algorithm 3.

Stage 1. For each job i, calculate the value of f. Let FI (i) be this

value for job i U=l~n), and store all FlU).

The above can be done by following Step 1 of Algorithm 1 or 2.

Stage 2. For each combination of any two jobs (il, i2) among n

jobs, apply Algorithm 1 or 2 to a tree starting from the first node with

a lower bound Max (FI(iI), F j (i2» in order to obtain the minimum

value of f. F2(i lo i2), for the job-set i l , i2. Store the combination

(i l , i2), F2(i1, i2), the value of the bound of f. and the set S of disjunc

tive arcs assigned for each node of degree 1 or 2 in the solution

tree; these are the contents of each solution-tree necessary for the

next stage.

Stage 3. For each combination of any three jobs (i l , i2, i3) among

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

General Scheduling Algorithm8 93

n jobs, take out the stored nodes and the contents of the solution

tree for definite two jobs i" iu (t=!-'u; t, u=l, 2, 3) with the largest

F2 (i" i.) defined at Stage 2, and replace the stored bound at each

node of degree 1 or 2 by the maximum value between the stored

bound and Fl(iw) for w~Ft, u, where w=l, 2, 3.

Then continue the procedure of Algorithm 1 or 2 in order to

grafting the tree with the first fictitious node 1, when the set of stored

nodes does not include a node with S=1>, and with each other stored

nodes having revised bound as each other nodes which directly follow

node 1, finally obtaining the minimum value of f, FS(il, i2 , is), for

the job-set i l , i2 , is.

Store the combination (il, ;2, ia), Fa(il, i2 , ia), the value of the

bound of f, and the set S of disjunctive arcs assigned for each node

of degree 1 or 2 in the solution tree; these are the contents of each

solution tree necessary for the next stage.

Proceed in the same way to Stage k (k=3, 4,

Stage k. (k=3, 4, ... , n-1).

n-1) :

For each combination of any k jobs (il, i 2 , ••• , i.) among n jobs,

take out the stored contents of the solution tree for definite (k-1)

jobs among these k jobs with the largest F.- 1 defined at Stage (k-1),

and replace the bound at each node of degree 1 or 2 by the maxi-

mum value between this stored bound and Fl for one remaining job.

Continue the procedure of Algorithm 1 or 2 in order to grafting the

tree composed of the fictitious first node, if necessary, and the set

of stored nodes with the revised bound as the set of nodes which

directly follow the first node, finally obtaining the minimum value

of f, F.(il, i2 , ••• , i.), for the job-set i1 , i2 , ••• , i k • Store the com

bination (il, i2 , •.. , i,,), F.(il, i2 , .•. , i.), the value of the bound of

f, and the set S of disjunctive arcs assigned for each node of degree

1 or 2 in the solution tree; these are the contents of each solution

tree necessary for the next stage.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

94 Ichiro Nabe8hima

Stage n. For all n jobs, take out the stored contents of the solution

tree for definite (n-I) jobs with the largest F.- l defined at Stage

(n-I), and replace the stored bound at each node of degree 1 or 2

by the maximum value b~tween this stored bound and Fl for one

remaining job. Continue the procedure of Algorithm 1 or 2 in order

to grafting the tree constru~ted as before, finally finding the minimum

value of t, Fn, and an optimal schedule.

Similarly Generalized Algorithm 3 for the generalized problem

with explicit set-up times is formulated by taking Generalized Algo

rithm 1 or 2 for Algorithm 1 or 2, respectively, in Algorithm 3.

It must be remarked that, at each stage k (k=l-n-I) of Algo

rithm 3, the optimal schedule of any k jobs among given n jobs for

the same objective function and its minimal value are determined.

This shows the usefulness of Algorithm 3 for sensitivity analysis and

for parallel scheduling as shown in the next section.

11. Parallel Scheduling

For the parallel scheduling of n jobs to q stations, where each of them

has the same kind of machines, Algorithm 3 is applied first for total n

jobs until the procedure at stage (n-q+ 1) is finished. Then, by deter

mining the minimum value of the maximum among q minimal values

of tat q stations for each combination (fnl.In2,Inq) , n=nl +n2+' .. +nq,

where (jn!, In2, "', Inq) denotes an exhaustive and mutually exclusive

separation of the set of n jobs into q subsets, the optimal parallel

schedule with this minimum value can be found. A simple example will

be shown in the next section.

12. Example by Algorithm 3

Algorithm 3 is applied to Example 1 of Section 6, and the optimal

parallel schedule for two similar stations is found as below:

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

General Scheduling Algorithms

18 (feas.)

s= {(2, 5)}

17 (feas.) opt.

S= { (5, 2), (2,7) }

Fig.18. Tree for Two Jobs 1,2

I. First, solve the min-makespan problem for all three jobs.

Stage 1. For each job i, determine the FlCi) by relation (4.1).

95

The results are: F I (I)=9, F I (2) = 14, and F I (3)=5, which are stored.

Stage 2. For each set of two jobs i l , i2, determine the F~CiI' i2) by

Algorithm 1 and store the necessary contents.

(1) For jobs 1, ~, the solution tree becomes Fig. 18. The results

to be stored are: (1,2); F2(1, 2)=17; node 2 (18, S= {(2, 5)}),

node 4 (17, S= {(5, 2), (2, 7)}), and node 5 (21, S= {(5, 2), (7, 2)}).

(2) For jobs 1, 3, the solution tree becomes Fig. 19. The results

to be stored are: (1,3); F~(1,3)=9; node 1 (9, S=1», and

node 2 (9, S= {(I, 8)}).

(3) For jobs 2, 3, the solution tree becomes Fig. 20. The results

to be stored are: (2, 3); j<~(2, 3) = 14; node 1 (14, S= 1», and

node 2 (14, S= {(4, 9)}).

Stage 3. (Final stage)

Since the maximum value among all F2(il , i2) at Stage 2 is

F2(1,2)=17, the bound at each of stored nodes 2,4,5 is replaced by

the maximum value between this stored bound and F I (3) stored at

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

96 Ichiro Nabeshima

9 (feas.) opt.

S= {(l, 8)}

1
Max(14,5) =14

S=,s

(4,9)

2 14 (feas.) opt.

S= {(4, 9)}

Fig.19. Tree for Two Jobs 1,3 Fig.20. Tree for Two Jobs 2,3

Stage 1, that is, Max (18,5)=18 for node 2, Max (17,5)=17 for node

4, Max (21,5)=21 for node 5. Thus the solution tree shown in Fig.

21 is constructed by continuing the procedure of Algorithm 1 to

the revised tree and the same optimal schedule as that in Example 1

is determined.

11. Next, find the optimal parallel schedule using the results obtained

at Stages 1 and 2.

For a separation (1; 2, 3), Max [FI (l), F2(2,3)1=Max [9,14]=14;

for (2; 1,3), Max [FI (2), F 2(1,3)]=Max [14,9]=14;

for (3; 1,2), Max [FI(3), F 2(1,2)]=Max [5,17]=17,

hence the minimum value is 14 for the separation (1; 2,3) or (2; 1,3)

which gives the optimal parallel schedule.

Remark: If it is assumed that n jobs (n~4) including these three

jobs 1, 2, 3 in the above example mus't be in optimum scheduled by

Algorithm 3, then at Stage 3, for jobs 1, 2, 3 the following must be

stored: node 2 (18, S= {(2,5)}), node 4 (17, S= {(5,2), (2,7)}), node 6

(17, S={(5,2), (2,7), (1,8)}), and node 5 (21, S={(5,2), (7,2)}). The

same tree as Fig. 21 must be the starting tree with a further revised

bound when it happened to use the stored nodes and their contents

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

General Scheduling Algorithm8

M,,(J~ M:' (18. 5) ~18
s= { (S, 2), (2, 7) ~ .. s= { (2, 5) }

(1,8)

6 17 (feas.)
opt.

Fig.21. Tree for Three Jobs 1,2,3

for three jobs 1, 2, 3 at Stage 4.

13. Applications to Multiprogramming Scheduling

97

The computer system may be viewed as a machine shop, where the

program corresponds to the job, the computer parts (input channels, pro

cessing units and out-put channels) to the machines of the machine shop,

and the ordering of the subparts (subprograms) of the program on the

computer parts to the technological ordering of the job.

By considering a computer with many such computer parts which can

operate simultaneously, the flow diagram of each program is represented

by a graph as shown in Fig. 22 where the subprogram (operation) number

(mji) denotes the j th program on the m th computer part for the i th

time, and the number pm;; on each directed arc shows the processing time

of operation (mji). [4]

Since one of the aims of multiprogramming is to schedule a set of

programs such that _ the total elapsed time to complete all programs or the

mean tardiness or any other objective function f defined in Section 2 is

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

98

1 Processor 1

2 Input Channel 1

3 Input Channel 2

4 Processor 2

5 Output Channel

Ichiro Nabeshima

Fig.22. Example of a Graph for jth Program. (4)

a minimum, we can apply Algorithms 1, 2, or generally Generalized Algo

rithms 1, 2, to this complex scheduling problem for a computer. Simi

larly, we can apply Algorithm 3, or generally Generalized Algorithm 3,

to parallel scheduling for separating the given finite set of programs to

each of the finite number of computers where each of them has the same

kind of computer parts, in order to minimize the maximum value among

the minimal values f for individual computers.

By the same reasons as above, Algorithms 1, 2,3 are applied to the

multiproject scheduling where each project is of PERT type.

References

[1] Balas, E., "Machine Sequencing via Disjunctive Graphs: An Implicit Enume

ration Algorithm," Operations Research, Vol. 17, No. 6, 1969, pp. 941-957.

[2] Balas, E., "Machine Sequencing: Disjunctive Graphs and Degree-Constrained

Subgraphs," Nav. Res. Log. Quart., Vol. 17, No. 1, 1970, pp. 1-10.

[3] Charlton, J.M. and C.C. Death, "A Generalized Machine-Scheduling

Algorithm," Oper. Res. Quart., Vol. 21, No. 1, 1970, pp. 127-134.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

General Scheduling Algorithms 99

[4] Helier, J., "Sequencing Aspects of Multiprogramming," J. Ass. Comp. Mach.,

Vo!. 8, No. 3, 1961, pp. 426-439.

[5] Nabeshima, I., "Dynamic Programming and State Transformation Process in

Discrete Optimization Problems: Part I," Rep. of Univ. of Electro-Com

munications, No. 23, 1967, pp. 61-68 ..

[6] Nghiem, Ph. T., Les problemes d'ordonnancement avec contraintes dis

junctives, in book, Les problemes d'ordonnancement, edt. by B. Roy, Dunod,

1964, pp. 136-151.

[7 J Roy, B. and Sussman, B., Les problemes d'ordonnancement avec contraintes

di.sjunctives, SEMA, D.S. No. 9, 1964.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

