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Abstract 

Branch-and-bound algorithms are presented on related disjunctive 

graph for general job-shop scheduling problems with various objective 

functions for two cases, such that set-up times are included in process

ing times in one case and not in the other case. They are applied to 

parallel scheduling and multiprogramming of programs and/or multi

project sheduling. 

1. Introduction 

The branch-and-bound method is a principal application of the funda

mental state equation approach in state transformation process defined 

for combinatorial problems such as job-shop scheduling problem. [5]. 

Three branch-and-bound algorithms 1, 2, and 3 are presented on 

disjunctive graph for general job-shop scheduling problem with various 

objective functions for two cases where set-up times are included in pro

cessing times in one case and not in the other case. Algorithm 3 is ap

plied to parallel scheduling and multiprogramming of computer programs 

and/or multiproject scheduling. 

The research for finding an optimal schedule on disjunctive graph, 

which minimizes the total elapsed time (makespan) of N operations of n 
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General Scheduling Algorithms 73 

jobs on m machines along the required technological orders, had been 

started from a model introduced byRoy and Suss man [7], and Nghiem 

[6]. Recently Balas [1], [2] has proposed branch-and-bound algorithms 

for this problem by finding a critical path in a disjunctive graph with 

a complete set of arcs at each stage. On the other hand, Charlton and 

Death [3] has proposed a more efficient branch-and-bound algorithm for 

this problem by finding a critical path in a disjunctive graph with a spe

cified subset of arcs at each stage. The algorithms presented in this 

paper are revised and extended forms of the latter algorithm, treating 

the problems with various objective functions uniformly. They can be 

applied to parallel scheduling and also to multiprogramming or multi

project scheduling, which makes them general scheduling algorithms. 

2. General Problem where Set-up Times are Included 

in Processing Times 

General job-shop scheduling problems considered first in this paper 

are assumed to satisfy the following n!straints: 

1). n jobs must be processed on m machines where these is no 

requirement for each job to visit all machines or to visit each 

machine only once. 

2). Each job must be processed by specified machines along the 

required technological order which is independent of that of any 

other job, and which may be of PERT diagram type. 

3). Processing of each job by each machine is called an operation. 

Each operation to be performed by each machine must be com

pleted without interruption by another operation on the same 

machine. 

4). Each machine can perform one and only one operation at a time. 

The available time of each machine is assumed to be the same 

as a strarting time of the processing of the first operation in m 

machines. For the case where non-equality of the available time 

of each machine occurs, the algorithms presented later also can be 
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74 ichjro Nabeshima 

applied with slight modifications. 

5). Set-up times are included in processing times of the operations. 

The other case will be discussed in Section 7 and so on. 

6). Objective function f to be minimized is assumed to be the one 

which increases its value in the wide sense when the completion 

time of any operation in a schedule is delayed without changing 

the order of operations on each machine in this schedule. 

Hence objective functions with this property include: total 

elapsed time (makespan), weighted mean completion time of jobs, 

mean waiting time consumed by each operation to be processed 

by the next machine where the sum of all waiting times is equal 

to the sum of the completion times of all jobs minus the sum 

of the given processing times of all jobs, mean machine idle 

time where the sum of all machine idle times is equal to the 

sum of the completion times Of all last operations on m machines 

minus the sum of the given processing times of all jobs, maxi

mum lateness (tardiness), and weighted mean lateness (tardiness), 

where the weights are assumed to be non-negative, lateness Lk of 

job k is defined as the completion time C(k) of the last operation 

for job k minus due date dk of job k, that is, Lk=CCk)-dk , and 

tardiness n of job k is defined to be Max CLk, 0). 

Also any cost function which is an increasing function of 

SOme or all of these objectives can be taken as the objective 

function. 

3. Formulation on I)isjunctive Graph 

Let job kCk=l-n) involve Nk operations and let the technological 

order for job k be a required order I:: N1- 1 + 1, I:: NI-l +2, ... , I:: N1_1 ( 

k k k+1') 

1=1 1=1 1=1 

k k k+1 

of Nk operations I:: N1_1+l, I:: N1_1+2, ... , I:: NI~l of job k where No=O. 
1=1 1=1 1=1 

n 

Then the total number of operations of n jobs is N= I:: N k • 

k=1 
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Let Sp be a set of all operations performed by machine p (p= I-m), then 

any two operations in Sp cannot be performed simultaneously by machine 

p from assumption 4) in Section 2. 

Then, let X be a set of N+2 nodes where nodes 0, and N+l are 

the source, and the sink, respectively, which represent dummy nodes, 

and all other N nodes represent N operations. 

And le,t G= (X, Z) ,be a finite directed graph, with X as its set of 

nodes, and Z as its set of directed arcs which represent the required 

technological order of the operations of any job, that is, directed arc (i, j) 

belongs to Z if the operation corresponding to node i directly precedes 

the operation corresponding to node j, or if i=O or j=N+1. With each 

arc (i, j) is associated a real positive number p; which represents the 

processing time of operation i, where Po=O. 

Let t; be the earliest starting time of operation i. Then C=t;+p; 

is the earliest completion time of operation i (i=I-N) where tN +1= 

Max (C(l), "', C(n)) is the total elapsed time. 

Hence it is sufficient to determine the value of tq in order to deter

mine the value of Cq for each last operation q of any job or on any 

machine. This leads to the fact that we can represent any objective 

function f as a function of all variables tq where operation q represents 

the last operation Of each job for any f except for. mean. machine idle 

time, or the last operation on each ill achine for mean· machine idle time 

f 
, . I 

Then th~ general job shop scheduling problem with any objective 

function f defined. in 6) of Section 2 can be f~rmulated as a critical path 

problem I on a dis:urtctive graph. as shown below by considering the 

precedence relations of any two operations on the same machine p, that 

is, those included in the set Sp (p=l-m): 

Determine the values of all tq where opetation q is the last operation 

of each job 01; on each machine such' that f is minimized subject to 
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(3.2) 

Ichiro Nabeshima 

(p=l-m) 

(i=O-N+l) 

In any feasible schedule, one of inequalities (3. 2) must hold for each 

disjunctive pair. An arc which satisfies one constraint of the disjunctive 

pair is called a disjunctive arc. An example is shown in Table 1 and Fig. 

1 where dotted lines represent disjunctive arcs. 

Table 1. Technological Order of Operations 1-8. 

Machine 

Job 1 1 2 3 

Job 2 4 5 

Job 3 7 6 8 

Fig.1. Related Disjunctive Graph where 

X= ~O, 1, 2, 3, 4, 5, 6, 7, 8, 9}, 

Z= ~ (0,1), (1, 2), (2, 3), (3, 9), (0, 4), 

(4, 5), (5,9), (0, 6), (6, 7), (7, 8), (8, 9)}, 

S, = n, 7} , S2 = {2, 4, 6}, S3 = {3, 5, 8}, 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



General Scheduling Algorithms 77 

By defining a set S of disjunctive arcs which consists of one dis

junctive arc from each disjunctive pair; that is, if i, jESp (p=l-m) 

then (i, j) E S or (j, i) E S; then the above formulation can be transformed 

to the following problem I: 

Problem I. Determined the set S along with the values of all earliest 

starting times t. above defined, such that f is minimized subject to 

t,-t;?;,p;, for (i, j)EZUS 

t;?;,O. (i=O-N+1) 

Hence the general job shop scheduling problem can be converted 

to a critical path problem on related disjunctive graphs G=(X, ZUS) 

where S assumes the possible combinations of disjunctive arcs. 

4. Branch-and-Bound Algorithms 1 and 2 

In order to solve the critical path problem I on a disjunctive graph 

defined in Section 3, we must determine the optimal set S. Since the 

complete determination of the set S by taking one arc from each dis

junctive pair seems to make the algorithm for this problem complex, it 

would be better to follow a method similar to that proposed in Ref. [3], 

because, in case where set-up times are included in processing times, it 

does not make any circuit on the related disjunctive graph at each stage 

as shown in Section 5. 

The method of branching of the following branch-and-bound algorithm 

1 follows the newest active node search procedure as shown below: 

Branch-and-bound algorithm 1. 

Step 1. Solve Problem I with S'=</J (null set) (node (1)) by using the 

recurrence relation: 

(4.1) tj= Max (t;+p;). 
(i, j)EZUS 
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Proceed to Step 2. 

Step 2. If the solution (the values of 'an ti and f) satisfies all dis

junctive pairs (3.2), then this solution gives an optimal schedule. 

Otherwise proceed to Ste~) 3. 

Step 3. Generally, if the solution of Problem I with S does not 

satisfy all of disjunctive. pairs, the solution value of f gives a lower 

bound LB(f) of f for the optimal schedule, at this node. If this LB(f) 

is not smaller than the least upper bound where the upper bound is 

equal to the value of f for a feasible schedule already obtained, then 

go to Step 5. Otherwise, find a disjunctive pair for which tj- ti<Pi 

and ti-tj<Pj hold for i, jESp for certainp's (p=l-m); introduce 

one disjunctive arc (i, j) into S (for example, for a positive tj-i i , or 

for a minimum Pi.-(tj-ti». In any way, the ,new set ZUS of arcs 

does not contain a circuit. (cf. Section 5) Solve Problem I with the 

new S (next node). 

Proceed to Step 4. 

Step 4. Generally, a) if the solution of Problem I does not satisfy 

all of disjunctive pairs, go to Step 3. b) If the solution ?f Problem I 

with S at node (n) satisfies all disjunctive pairs, then this gives a 

feasible schedule where the value of f is an upper bound UB(f), at this 

node, of f for the optimal schedule. 'If the least UB(f) is not greater 

than any LB(f) at all other nodes of degree 1 or 2 where degree of 

a node is defined' as the number of arcs incident to this node, the 

feasible schedule with the least UB(f) gives an optimal schedule. 

Otherwise proceed to Step 5. 

Step 5. Backtrack up the tree to the nearest node (n-k) of degree 

2 or to the first node (1) among the nodes with a LB(f) smaller than 

the least UB(f), and proceed to Step 6, 

Step 6. Remove from the present S the disjunctive arcs which have 

been already introduced to the nodes passed by, and introduce the 

other disjunctive arc (j, i) into the set S at node (n-k), in the case 
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where a disjunctive arc (i, j) of the same pair has been already ex

amined at the next node (n-k+1). Then solve Problem I with this 

S (node (n+1». Go to Step 4. 

Obviously another branch-and-bound algorithm can be formulated 

where the method of branching is the frontier search; that is, 

Branch-a'ld-bound algorithm 2. 

Algorithm 2 differs from Algorithm 1 in the following: 

1). Two branches corresponding to two disjunctive arcs (i, j), (j, i) 

are constructed when the disjunctive pair does not hold for i, i -= Sp 

in Step 3 of Algorithm 1, and Problem I for each new node is 

solved. Then the first part of Step 6 is omitted. 

2). Branching is made to a node which has the smallest lower bound 

among all nodes of degree 1. 

3): An optimal schedule is found at a node with the least UB(f) 

~which is not greater than LB(f) at any other node of degree 1. 

5. Justification of the Algorithms and Some Remarks 

1). The fact that the new set ZU S of arcs, which is generated by 

introducing one disjunctive arc (i,j) into the old S when a dis

junctive pair does not hold for ti and tjfor i, jE Spwhere S is ob

tained from the solution of Problem I for the old set ZU S, does 

not contain any circuit (Steps 3, 6) is justified as follows: there 

·.·is no circuit for the first graph C= (X, ZUS) where S=1>. If 

there is no circuit in the graph Cl = (X, ZU Slat any stage, for 

any i, jE Sp which construct a disjunctive pair such that they can 

make a circuit with the arcs in Cl either by arc (i, j) or (j, i), 

for example, if tj>ti holds for Cl (Fig. 2), then obviously tj>ti+Pi 

holds, hence the disjunctive pair must hold for these i, jESp • 

As a consequence, any i, j ESp for which the disjunctive pair 

does not hold for the old graph do not make a circuit in the new 
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I (1)-4-..... , 

7
i \ ..... , Pj 

\ " 
\ , ., \ , , \ 

Pi '..... , 

"CD 

L--___ I 
Fig.2. tj>ti 

graph obtained by introducing either arc (i, j) or (j, i) into the 

old graph. 

2). Since there are finite number of disjunctive pairs for the problem, 

the algorithm gives an optimal schedule after finite steps. 

3). Whenever Problem I must be solved for each new set ZU S, 

it is sufficient to calculate only the values of ti at nodes which 

can be reached by directed path from the extreme node of a 

newly introduced disjunctive arc, including the extreme node 

itself. 

4). We can obtain an approximate schedule by suitably stopping 

the newest active node search procedure of Algorithm 1. (cf. 

Section 9). 

5). If one takes the time dij for Pi for each arc (i, j) where dij 

represents the processing time Pi plus set-up times incurred 

when operation j follows operation i, then the procedure of 

Algorithms 1 and 2 may make a circuit as shown is example 4 

in Section 6, which shows a counter example for the algorithm 

proposed in Ref. [3]. 

These generalized problems will be treated in Section 7. 
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6. Examples by Algorithm 1 

Three examples 1, 2, 3: (min-makespan problem, min-mean comple

tion time problem, and min-mean tardiness problem, respectively) will 

be solved by Algorithm 1, and it wiH be shown that Algorithm 1 which 

does not check circuits at any stage makes a circuit in the solution 

procedure for example 4 where dij is taken for Pi. 

Example 1. (Min-Makespan Problem) 

Three jobs 1, 2, 3, three machines M 1 , M 2 , Ma, the tech

nological order for each job, and processing times and related opera

tion (node) numbers are given in Table 2 where, for example, M12 
(1) 

Table 2 

Job Technological Order (Operation Number) 

- --.-------~--

1 M12 M,s M31 

(1) (2) (3) 

2 M3' M? M l3 M 25 

(4) (5) (6) (7) 

3 M 13 M32 

(8) (9) 
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82 Ichiro Nabeshima 

means that job 1 is first processed by machine Ml with 2 units of 

processing time and this operation has operation (node) number 1 in 

the related disJunctive graph. (Fig. 3). 

Solution. It is sufficient to minimize tlO=Max (Ca, C7 , C9). 

The tree obtained by Algorithm 1 is shown in Fig. 4 where node 

numbers 1-11 show the order of branching and the number at each 

node represents the lower bound or upper bound. 

In this solution procedure a disjunctive arc (i,j) with the smallest 

(1)14 

/, ,~(1,8) 
/(8,1) ~ 

)7\4(t ' !@~ (2,5) 

/(2,5) \,2) (5, 2) ~ 

® 21 fo®\14 )@~14 ®lf~as.) 
~,n ~,n 

(7,2) (7,2) 

@21 ®17 @21 @17(feas.) 
opt. 

Fig.4. Tree for Example 1. 

Fig.5.Graph of the Optimal Schedule 
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node number i orj and with smaller p;-(tj-t;) or positive tj-t; 

for these i, jESp was introduced into S. (Step 3). 

An optimal schedule is a feasible schedule corresponding to node 

5 with a makes pan of 17 where G=(X, ZU {(1,8), (5,2), (2,7)}) as 

shown in Fig. 5. The corresponding Gantt Chart is shown in Fig. 6 

where each number denotes a job number. 

Time 
o 5 10 

~. 

15 . 17 20 
-r- I ........ f-V I' f-V 
1 3 2 

., 

2 "t- ~ .... V , V 
1 2 

--. 

....... _/ ~ -
1 2 

Fig.6. Gantt Chal'i. of the Optimal 

Schedule 

CD 28 

/. ~ (1,8) 
/(8,1) ~ 

@31 '®30 

/ \(5,2) / ~(2,5) 
/(2,5) '\ /(5',2) ~ 

® 36 ® 32 (4) 34 ® 34 

;r; ~ 
. t (feas.) 

. . '(2 7) op . ' 
, (7,2) , 

® 40 (j) 35 

Fig. 7 .. Tree for Example 2 
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Example 2. (Min-Mean Completion Time Problem) 

For the same data as example 1, it is sufficient to minimize the 

sum of the completion times of three jobs C=C3+C7+C9=(ta+P8)+ 

(t7+P7)+(t9 +Pg). 

The solution tree is shown in Fig. 7. An optimal schedule is a 

feasible schedule corresponding to node 3 with the minimum C=34, 

Fig.S. Graph of the 'Optimal Schedule 

5 10 15 18 20 
....... t-- ~ 

1 3 2 

., 

"" ..... 1:/ 
p I" [;..-' 

t--..... 2 
1 2 

--~ --=- ...... 

2 3 1 

Fig.9. Gantt Chart of the Optimal Schedule 
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that is, a mean completion time of 11 ~where G=(X, ZU {(l,B), (2,5)}). 

The makespan for this schedule is lB, which is not minimum. 

The corresponding graph and Gantt Chart are shown in Figs. Band 

9, respectively. 

Example 3. (Min-Mean Tardiness Problem) 

For the same data as example 1 and additional data for due 

dates shown in Table 3, it is sufficient to minimize the sum of 

tardiness of three jobs T=Max (Ca-lB, O)+Max (C7 -23, O)+Max 

(Cg-5, 0). 

Table 3. Due Dates. 

Job i Due date di 

1 18 

2 23 

3 5 

(Do 

1(8,1) 

@o 

\ (5, 2) 

®O 

1(2,7) 

@O 

1(9,4) 

<ID 0 (feas.) 

opt. 

Fig.lO. Tree for Example 3 
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one disjunctive arc (i,j) which is introduced at Step 3 of Algorithm 1 

is taken as i=8 or 9 whenever i or j is equal to 8 or 9. 

The solution tree is shown in Fig. 10. An optimal schedule is 

a feasible schedule corresponding to node 5 with the minimum T=O, 

or the mean tardiness =0, where G=(X, ZU {(8,l), (5,2), (2,7), (9,4)}). 

The makespan for this schedule is 22. 

The corresponding graph and Gantt Chart are shown in Figs. 11 

and 12, respectively. 

~ 

3 

Fig.Il. Graph of the Optimal Schedule 

1 

d. 
5 

~'-

3 
../ 

2 

10 
........ -

2 

2 
, 

........ 

15 
.-

-,/' 

1 

Time 

d! 20 22 d 25 

....... ,.,.-
-2 

........ 
1 

Fig.12. Gantt Chart of the Optimal Schedule 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



General Scheduling Algorithms 87 

Example 4. (Min-Makespan Problem where set-up times are not 

included in processing times and sequence dependent) 

This example illustrates that Algorithms 1 and 2 can not be ap

plied to the case where explicit set-up times exist. 

Let two jobs 1, 2 be processed on two machines M j , M2 along 

the technological order shown in Table 4. The duration d;j which 

is the sum of the processing time p; of operation i and set-up time 

S;; incurred to perform operation .i after i is shown in Table 5. 

Table 4. Technological Order. 

Job 

1 

2 

Technological Order 
(Operation Number) 

----.----~-.---

M, 
(1) 

M, 
(4) 

1\1, 
(5) 

M, 
(3) 

Table 5. Duration du. 

The corresponding disjunctive graph is shown in Fig. 13. 

Each disjunctive arc which must be introduced into S was taken 
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(feas.) 

Fig.14. Tree for Example 4 

as shown in the tree. (Fig. 14) 

Then a circuit 1 2 3 4 1 IS constructed at node 6 where 

G=(X, ZU {(4,1), (3,4)}). 

Hence certain checks for the circuit must be made at Step 3 in 

the present algorithms 1 and 2 in case where explicit set-up times 

exist; that is, where durations dij are taken for processing times Pi. 

Algorithms for this generalized problem will be presented in the 

next section. 
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7. Generalized Branch-and-Bound Algorithms for Generalized Problem 

with Explicit Set-up Times 

The generalized problem is defined as a problem which is different 

from the general problem presented at Section 2 in the restraint 5) such 

that set-up times are not included in processing times and then duration 

d;j is taken for p; for each arc (i, j) in the related disjunctive graph. 

Branch-and-bound algorithms 1 and 2 for this generalized problem 

can be constructed only by adding the following statements for checking 

circuits at Step 3 and Step 6 in the previous Algorithms 1 and 2; that is 

Generalized Algorithm 1. 

Steps 1, 2, 4, 5 are the same as those in Algorithm 1 of Section 4. 

Steps 3 and 6 are improved as below: 

At Step 3, always introduce one disjunctive arc (i, j) where tj-t; is 

positive. If both tj-t; and t;-tj t!qual zero, introduce one disjunc

tive arc (i, j) which makes no circuit with the present ZU S. If 

this is impossible tor any candidate, the problem has no feasible 

solution. 

At Step 6, check the circuit which may be constructed by introducing 

the other disjunctive arc (j, i). 

If there happens no circuit, the procedure proceeds as stated in 

Algorithm 1. Otherwise, the corresponding node (n + 1) must be 

omitted and back to Step 5 in order to backtrack to the next nearest 

node, at Step 6. 

Similarly the generalized branch-and-bound algorithm 2 taking the 

frontier search procedure is constructed by the same improvements 

of the corresponding Algorithm 2 of Section 4. 

8. Example for Generalized Problem 

Example 4 presented in Section 6 can be solved by Generalized 

Algorithm 1 if we continue the branching along the same procedure as 
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that shown in Fig. 14. Then the tree for this example is completed as 

shown in Fig. 15. 

An optimal schedule is a feasible schedule corresponding to node 5 

with a makespan of 15 where; G=(X, ZU {(4, 1), (4, 3) (2, 5)}). 

The corresponding graph and Gantt Chart are shown in Figs. 16 and 

17, respectively. 

Fig.15. Tree for the Example 

'Fig.16. Graph of the Optimal Schedule 

16 
(feas.) 
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Time 
5 10 15 
r-- "'- /' 

2 1 1 

- -1 ~ 

Fig.1 7. Gantt Chart of the Optimal 

Sche dule 
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9. Heuristic Program for Obtaining an Approximate Schedule 

For a problem with excessively large number of operations, an 

approximate schedule of any problem stated in Sections 2 and 7 can be 

obtained by using Algorithm 1, with stopping its procedure when it 

terminates to the feasible schedule first obtained, for example. 

Then the percentage of the relative error (PRE) of the value of f of 

this approximate schedule is bounded as shown in the following inequality: 

(9.1) 

PRE= (Value of f of Appr. Schedule):=-CMi~·J of Opt. Schedule) x100 
(Min. f of Opt. Schedule) 

~ (Val~e~~~(o~~ ~P~r:~S~~(:tu}e) --:·:J~()we!.J)oun~of f fou l1<!) X 100 
- (Lower bound of f found) 

For example, this upper bound (9.1) for each of the examples 1~4 

becomes 28.6%, 21.4%, 0%, 60% respectively when the lower bound of 

f is taken as that at the first node (node 1). Also they become 28.6%, 

13.3%, Oro, 23.1 % respectively when the lower bound of f is taken as the 

minimum value of two lower bounds at two nodes which follow directly 

the first node. 
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The largest lower bound of f can be known at each stage. Hence, 

by giving a prescribed value of the upper bound (9.1), say 20% or 30%, 

one can stop the procedure whenever a feasible schedule is found. By 

checking whether or not it gives a new upper, bound (9.1) which is 
, ! ;: 

not greater than the prescribed valu~, one dill ~aKe this feasible schedule 

as a desired approximate schedule when it ~iv~s.~. 
, , . . , I 

' " ; I I 

10. Algorithm 3 for Sensitivity Analysis: and Parallel Scheduling 

In this section another algorithm, called Algorithm 3, is presented 

for optimal scheduling of n jobs to one shop. This algorithm is some

what complex, but useful for sensitivity analysis and especially applicable 

to parallel scheduling of n jobs to q stations (shops) each of which has 

the same kind of machines, in order to minimize the maximum among 

q minimal values of the objective function f at q stations. 

Algorithm 3 has a feature which resembles the procedure of dynamic 

programming and uses Algorithm 1 or 2 presented in the previous sections 

at each stage; that is, it is composed of n stage decision process in state 

transformation process [5] as shown below: 

Algorithm 3. 

Stage 1. For each job i, calculate the value of f. Let FI (i) be this 

value for job i U=l~n), and store all FlU). 

The above can be done by following Step 1 of Algorithm 1 or 2. 

Stage 2. For each combination of any two jobs (il, i2) among n 

jobs, apply Algorithm 1 or 2 to a tree starting from the first node with 

a lower bound Max (FI(iI), F j (i2» in order to obtain the minimum 

value of f. F2(i lo i2), for the job-set i l , i2. Store the combination 

(i l , i2), F2(i1, i2), the value of the bound of f. and the set S of disjunc

tive arcs assigned for each node of degree 1 or 2 in the solution 

tree; these are the contents of each solution-tree necessary for the 

next stage. 

Stage 3. For each combination of any three jobs (i l , i2, i3) among 
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n jobs, take out the stored nodes and the contents of the solution 

tree for definite two jobs i" iu (t=!-'u; t, u=l, 2, 3) with the largest 

F2 (i" i.) defined at Stage 2, and replace the stored bound at each 

node of degree 1 or 2 by the maximum value between the stored 

bound and Fl(iw ) for w~Ft, u, where w=l, 2, 3. 

Then continue the procedure of Algorithm 1 or 2 in order to 

grafting the tree with the first fictitious node 1, when the set of stored 

nodes does not include a node with S=1>, and with each other stored 

nodes having revised bound as each other nodes which directly follow 

node 1, finally obtaining the minimum value of f, FS(il, i2 , is), for 

the job-set i l , i2 , is. 

Store the combination (il, ;2, ia), Fa(il, i2 , ia), the value of the 

bound of f, and the set S of disjunctive arcs assigned for each node 

of degree 1 or 2 in the solution tree; these are the contents of each 

solution tree necessary for the next stage. 

Proceed in the same way to Stage k (k=3, 4, 

Stage k. (k=3, 4, ... , n-1). 

n-1) : 

For each combination of any k jobs (il, i 2 , ••• , i.) among n jobs, 

take out the stored contents of the solution tree for definite (k-1) 

jobs among these k jobs with the largest F.- 1 defined at Stage (k-1), 

and replace the bound at each node of degree 1 or 2 by the maxi-

mum value between this stored bound and Fl for one remaining job. 

Continue the procedure of Algorithm 1 or 2 in order to grafting the 

tree composed of the fictitious first node, if necessary, and the set 

of stored nodes with the revised bound as the set of nodes which 

directly follow the first node, finally obtaining the minimum value 

of f, F.(il, i2 , ••• , i.), for the job-set i1 , i2 , ••• , i k • Store the com

bination (il, i2 , •.. , i,,), F.(il, i2 , .•. , i.), the value of the bound of 

f, and the set S of disjunctive arcs assigned for each node of degree 

1 or 2 in the solution tree; these are the contents of each solution 

tree necessary for the next stage. 
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Stage n. For all n jobs, take out the stored contents of the solution 

tree for definite (n-I) jobs with the largest F.- l defined at Stage 

(n-I), and replace the stored bound at each node of degree 1 or 2 

by the maximum value b~tween this stored bound and Fl for one 

remaining job. Continue the procedure of Algorithm 1 or 2 in order 

to grafting the tree constru~ted as before, finally finding the minimum 

value of t, Fn, and an optimal schedule. 

Similarly Generalized Algorithm 3 for the generalized problem 

with explicit set-up times is formulated by taking Generalized Algo

rithm 1 or 2 for Algorithm 1 or 2, respectively, in Algorithm 3. 

It must be remarked that, at each stage k (k=l-n-I) of Algo

rithm 3, the optimal schedule of any k jobs among given n jobs for 

the same objective function and its minimal value are determined. 

This shows the usefulness of Algorithm 3 for sensitivity analysis and 

for parallel scheduling as shown in the next section. 

11. Parallel Scheduling 

For the parallel scheduling of n jobs to q stations, where each of them 

has the same kind of machines, Algorithm 3 is applied first for total n 

jobs until the procedure at stage (n-q+ 1) is finished. Then, by deter

mining the minimum value of the maximum among q minimal values 

of tat q stations for each combination (fnl.In2, ... .Inq) , n=nl +n2+' .. +nq, 

where (jn!, In2, "', Inq) denotes an exhaustive and mutually exclusive 

separation of the set of n jobs into q subsets, the optimal parallel 

schedule with this minimum value can be found. A simple example will 

be shown in the next section. 

12. Example by Algorithm 3 

Algorithm 3 is applied to Example 1 of Section 6, and the optimal 

parallel schedule for two similar stations is found as below: 
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18 (feas.) 

s= {(2, 5)} 

17 (feas.) opt. 

S= { (5, 2), (2,7) } 

Fig.18. Tree for Two Jobs 1,2 

I. First, solve the min-makespan problem for all three jobs. 

Stage 1. For each job i, determine the FlCi) by relation (4.1). 

95 

The results are: F I (I)=9, F I (2) = 14, and F I (3)=5, which are stored. 

Stage 2. For each set of two jobs i l , i2, determine the F~CiI' i2) by 

Algorithm 1 and store the necessary contents. 

( 1) For jobs 1, ~, the solution tree becomes Fig. 18. The results 

to be stored are: (1,2); F2(1, 2)=17; node 2 (18, S= {(2, 5)}), 

node 4 (17, S= {(5, 2), (2, 7)}), and node 5 (21, S= {(5, 2), (7, 2)}). 

(2) For jobs 1, 3, the solution tree becomes Fig. 19. The results 

to be stored are: (1,3); F~(1,3)=9; node 1 (9, S=1», and 

node 2 (9, S= {(I, 8)}). 

( 3 ) For jobs 2, 3, the solution tree becomes Fig. 20. The results 

to be stored are: (2, 3); j<~(2, 3) = 14; node 1 (14, S= 1», and 

node 2 (14, S= {(4, 9)}). 

Stage 3. (Final stage) 

Since the maximum value among all F2(il , i2) at Stage 2 is 

F2(1,2)=17, the bound at each of stored nodes 2,4,5 is replaced by 

the maximum value between this stored bound and F I (3) stored at 
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9 (feas.) opt. 

S= {(l, 8)} 

1 
Max(14,5) =14 

S=,s 

(4,9) 

2 14 (feas.) opt. 

S= {(4, 9)} 

Fig.19. Tree for Two Jobs 1,3 Fig.20. Tree for Two Jobs 2,3 

Stage 1, that is, Max (18,5)=18 for node 2, Max (17,5)=17 for node 

4, Max (21,5)=21 for node 5. Thus the solution tree shown in Fig. 

21 is constructed by continuing the procedure of Algorithm 1 to 

the revised tree and the same optimal schedule as that in Example 1 

is determined. 

11. Next, find the optimal parallel schedule using the results obtained 

at Stages 1 and 2. 

For a separation (1; 2, 3), Max [FI (l), F2(2,3)1=Max [9,14]=14; 

for (2; 1,3), Max [FI (2), F 2(1,3)]=Max [14,9]=14; 

for (3; 1,2), Max [FI(3), F 2(1,2)]=Max [5,17]=17, 

hence the minimum value is 14 for the separation (1; 2,3) or (2; 1,3) 

which gives the optimal parallel schedule. 

Remark: If it is assumed that n jobs (n~4) including these three 

jobs 1, 2, 3 in the above example mus't be in optimum scheduled by 

Algorithm 3, then at Stage 3, for jobs 1, 2, 3 the following must be 

stored: node 2 (18, S= {(2,5)}), node 4 (17, S= {(5,2), (2,7)}), node 6 

(17, S={(5,2), (2,7), (1,8)}), and node 5 (21, S={(5,2), (7,2)}). The 

same tree as Fig. 21 must be the starting tree with a further revised 

bound when it happened to use the stored nodes and their contents 
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M,,(J~ M:' (18. 5) ~18 
s= { (S, 2), (2, 7) ~ .. s= { (2, 5) } 

(1,8) 

6 17 (feas.) 
opt. 

Fig.21. Tree for Three Jobs 1,2,3 

for three jobs 1, 2, 3 at Stage 4. 

13. Applications to Multiprogramming Scheduling 

97 

The computer system may be viewed as a machine shop, where the 

program corresponds to the job, the computer parts (input channels, pro

cessing units and out-put channels) to the machines of the machine shop, 

and the ordering of the subparts (subprograms) of the program on the 

computer parts to the technological ordering of the job. 

By considering a computer with many such computer parts which can 

operate simultaneously, the flow diagram of each program is represented 

by a graph as shown in Fig. 22 where the subprogram (operation) number 

(mji) denotes the j th program on the m th computer part for the i th 

time, and the number pm;; on each directed arc shows the processing time 

of operation (mji). [4] 

Since one of the aims of multiprogramming is to schedule a set of 

programs such that _ the total elapsed time to complete all programs or the 

mean tardiness or any other objective function f defined in Section 2 is 
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1 Processor 1 

2 Input Channel 1 

3 Input Channel 2 

4 Processor 2 

5 Output Channel 

Ichiro Nabeshima 

Fig.22. Example of a Graph for jth Program. (4 ) 

a minimum, we can apply Algorithms 1, 2, or generally Generalized Algo

rithms 1, 2, to this complex scheduling problem for a computer. Simi

larly, we can apply Algorithm 3, or generally Generalized Algorithm 3, 

to parallel scheduling for separating the given finite set of programs to 

each of the finite number of computers where each of them has the same 

kind of computer parts, in order to minimize the maximum value among 

the minimal values f for individual computers. 

By the same reasons as above, Algorithms 1, 2,3 are applied to the 

multiproject scheduling where each project is of PERT type. 
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