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Abstract

This paper considers a problem of quantum communicationdsst parties that are connected through a
network of quantum channels. The modelin this paper asstiraethere is no prior entanglement shared among
any of the parties, but that classical communication is fide task is to perfectly transfer an unknown quantum
state from a source subsystem to a target subsystem, whitredaorce and target are formed by ordered sets
of some of the nodes. It is proved that a lower bound of theatehich this quantum communication task is
possible is given by the classical min-cut max-flow theorémedwork coding, where the capacities in question
are the quantum capacities of the edges of the network.
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1 Introduction

Consider a communication network consisting of alseif several nodes, each of which can hold a small number
of qubits and which have no prior entanglement among themth&umore, these nodes are connected via #&'set
of edges which correspond to quantum communication chaneath of a certain capacity. L&t= (V, E) be the
weighted graph corresponding to this network. Considefdth@ving communication problem: given a sgtC V/

of source nodes in the network which all together hold a quardtateps and a set of target nod&sC V' of nodes

to which the quantum state is supposed to be sent, Wiiére |T'|, the task is to devise a communication protocol
that, for any selected subséy C T" with || = | S|, transmits the statps through the network such that after
the transmission the state of the system correspondifiy t® equal topg and for any particular ordering of the
elements oflj.

Clearly, this task depends on the particular propertieb@fetwork and it might or might not be possible to
achieve this task for the give@@, S, andT. A trivial case where it is impossible to transmit any stagef@ctly
is whenS andT are disconnected, i. e., there is no quantum communicattm lpetween any node éfand any
node ofT". Another trivial case where it is possible to transmit ayesperfectly is when each nodeSris directly
connected with each node’n We shall be concerned with cases in between these two eedremmere the actual
network topology given by= does not allow disjoint paths between the qubitsiand the qubits irf¥", but we
nevertheless want to achieve perfect state transfer viatgometeleportation [2]. If perfect state transfer is polgsib
we also want to achieve it with as few uses of the network asiples

If G is a classical network, a celebrated result of network adsnthe min-cut max-flow theorem for net-
work information flow [1.] 9[ 111] which states that perfectniséer fromS to 1" at rateh is possible whenever for
eacht € T the max-flow between andt is at least:. Hereo is a special source node¢ S from which the input
information is supposed to originate and is passefl.td@his is the so-called multi-cast model for which optimal
network coding is linear [11] and can be constructed in potyial time [8]. This is in contrast to the general
network model in which linear coding is not enough [3].

The strategy this paper presents to achieve perfect quateeportation through the quantum netwdarkis
very simple and works whenever the associated classical-oasiting task is feasible. It consists of five steps: (i)
First, a statd0) + |1) (normalization omitted) is created at each nagde S, 1 <i < |S|. (ii) Next, a classical
linear network coding protocol fof7, S, T is translated into a sequence of Clifford operations to hdieg at
each node of the network. It is proved that the states canrigrseugh the network in such a way that the final
state is given byS| cat states each of the forji)s, [0)r, , - -+ [0)1,, , + [1)s,[1)7,; -+~ [1)7,5 ,, @lbeit some of the
phases in this state might be incorrect. Here, for daghi < |S|, S; is the single-qubit register possessed by the
nodes; and eacHT ; ; is the single-qubit register possessed by the tpdeT’, 1 < j < |T'|. (iii) Now the classical
information obtained by measuring internal network qulritthe Hadamard basis is sent to one dedicated output
nodet; € T. Using this information, the phase errors are fixed and idd8¢ perfect cat states are generated.
(iv) After the selection offy C T is revealed, the cat states are converted jStcEPR pairs shared between the
corresponding node pairs. For this purpose, it is againgsacg to measure in the Hadamard basis and exchange
the obtained classical information. (v) Finally, using #R pairs the states over S is teleported to the target
nodes in7y.

It is perhaps interesting to note that deciding what theetangpdesi are (and in particular their order!) to
which the state is teleported can be daifter the quantum network has been used. At this point the onlyinedju
communication is purely classical.

Related work It should be noted that, prior to this work, several papeudistl the problem of sending quan-
tum states using the idea of network coding, that is, allgwany coding at intermediate nodes of the network.
Hayashi, lwama, Nishimura, Raymond, and Yamashita [7] glibtthat network coding (without free classical
communication) does not give us any benefit for perfect tression on the butterfly network, a famous network
with two source-target pairs. Leung, Oppenheim, and Wiidi@f showed that this negative result can be general-



ized to several types of networks even if the transmissiatiégsved to be asymptotically perfect. Also, they studied
several variants of situations including the one where flassical communication is allowed. On the contrary,
Hayashi[6] showed that perfect transmission of two soutates on the butterfly network can be efficiently done
by network coding if the sources have prior entanglementeanth link has a capacity of one qubit or two classical
bits. It should be noted that all of the above results focuthenmultiple-source) uni-cast model, a well-studied
network coding model, while the model discussed in this pa&pelose to the multi-cast model. The quantum
network coding for the multi-cast model was previously gddy Shi and Soljanin [13]. In their model, however,
the source was restricted to the product of copies of a gtatehence in fact they could use only source coding for
perfect transmission, instead of coding at intermediatiesao

2 Preliminaries

2.1 Quantum Information

Quantum states are normalized vectors in a complex Hillpartes{ = C?. The simplest case dff = C2 is of
particular importance, and a system supporting such a statee is called gubit (quantum bit). This paper
mainly treats the case of two-dimensional quantum systbaighe results in this paper can be generalized to any
d-dimensional systems. Notice that even if the quantum imétion to be transmitted is originally given by qubits,
higher-dimensional systems may be necessary in the codimepes. Intuitively, this is because the protocols to
be presented are based on classical network coding whathritight require higher alphabets for the coding, even
if the original information is binary. These points will besdussed further in Theorem 5.

The orthonormal basis states of a qubit are writtefDasind|1), and the general state of a qubit is given by
|¢) = a|0) + B|1), wherea, 3 € C and|a|? + |3* = 1. If both o and 3 are non-zero, the staté) is a so-called
superposition of0) and|1) with amplitudeso and 3. For ad-dimensional system, we label the orthonormal basis
states by the elements of some alphabet of jz= g., the number$0,1,...,d — 1} or the elements of a finite
field, if d is a prime power. A normalized vector @f' is called agudit, and is written asy) = ZZ —0 ! a;]i), where
a; € C andz ]aZP = 1. Quantum registers consist of several qudits. The basis states of a quantursteegif
n qudits are tensor products of the basis states of the singliesg The following notation is used:

|21) @ |22) @ - -+ ® |@y) = |21)|22) -+ |T0) = |21, T2y -+ -, T,
wherex, ..., z, are elements of0, 1, ...,d—1}. From now we focus on the case where- 2. A general state of
a quantum register of qubits is a normalized vector H = (C?)®" = C?", given by|)) = Zwng ag|x), where
ag, € C and Zwenvg |az|? = 1. For two vectorse andy in F%, let = - y denote the usual inner product. When
writing states of quantum registers, normalization factoay be omitted. We next discuss some basic elementary
guantum operations that can be used to manipulate the ¢mftgnantum registers. This is all standard, see for
example([12].
Definition 1 (Elementary Clifford Operations)The following four operations are called elementary Ciiffoper-
ations:

ox =Y |z+1)al,
z€Fo
oz =Y (=1)"la)al,
x€F2
\f > (D))
7y€F2

CNOTW®) := 3" |2)(z]a ® |z + y)(yls-
z,y€F2
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Figure 1: The butterfly network and a classical linear cogirgocol. The node; (resp.ss) has for input a bit:;
(resp.az2). The task is to send;, anda, to botht; andt,. The capacity of each edge is assumed to be one bit. Our
convention here is that; (resp.ss) receivesa; (resp.as) through a virtual incoming edge, and that(resp.ts)

has two virtual outgoing edges through which it should otitguandas,, respectively.

Here, when writing(—1)* for = € 5, we identify F, andZ/27Z, the integers modul@. The operatiorv x
corresponds to the addition of the identity element. Theatmn o, has no direct classical analogue and changes
the phases of the basis states. The opertHtis called theHadamard operator, and CNOT the controlled-NOT

operator.
Finally, let
1
|+) = H|0) = ﬁ(\@ + 1)),
1
|—) = HI|1) = ﬁ(\@ — 1),

and for convenience, we say that measuring a qubit in thes Bas), |—)} (the Hadamard basis) gives a bitb,
whereb = 0 if |[+) is measured, anbl= 1 if |—) is measured.

2.2 Convention on Classical Multi-Cast

The key result of this paper is a quantum simulation of angsital linear network coding scheme in the multi-cast
model. Here we use the standard definition of classical lineavork coding (see [11] 8]). For convenience, the
following simple but very useful convention is assumed wtescribing a classical multi-cast (linear) protocol.

Each source; € S is supposed to have a “virtual” incoming edge from which deiges its inputz;. Also,
each target; € T'is supposed to hayé&| “virtual” outgoing edges, where; must be output through thiéh virtual
outgoing edge, fot < i < |S]. In this way, the source and target nodes perform a linedingooperation on their
inputs, and this convention enables us to ignore the digtimbetween source/target nodes and internal nodes.
These conventions are illustrated in Figure 1 on the wedkkmcoding protocol over the butterfly network.




3 Sending Quantum States through Networks

First, the following lemma is proved to describe the effdaneasuring in the Hadamard basis.

Lemma 2. Consider a system of n qubits and a partition of {1,...,n} into two digoint subsets A and B. Let
|Ya,B) beajoint state given by
[VaB)) = Z ozl f(x))alg(x))B,

zelfy

wherea, € C, f: Fy — IE"QA‘, g: F§ — IE"QB|, and registers A and B correspond to the qubits belonging to A and
B, respectively. Then the state in A obtained from |¢(a gy) by measuring each qubit in B in the {|+), |—)} basis
has the form

[Wa) = D (1)U @ ag|f(x)),

zelFy

wherey, € FQB lisa (in general random) vector of measurement results.

Proof. Applying the Hadamard transforfd®I 5! = 21‘3‘ Z,‘%zeFLB\ (—1)¥#*|y)(z| to the qubits irB gives the new
State

(Ia ® HEP) [gp 8)) = V;—BZF aalf@) 3 (~1pe@)y).

|B
y€el,

Measuring the qubits iB in the computational basig0), |1)} gives a certain resuly, € IE‘|23| and the state col-
lapses to the state claimed in the lemma. O

The next lemma shows the way of fixing phase errors that happedmed to a state, provided that the phase
errors are of a benign type.

Lemma 3. Let |¢)) be a state of the form

W)=Y (1)@ aglx),

xzelfy
where L isa known linear function. Then by applying local o operations, |¢) can be mapped to Zmng glx).

Proof. Note that if L: Fy — Fy is linear, thenL mapsz = (z1,...,x,) € F} to L(z) = b - « for some fixed
vectorb = (by,...,b,) € F4. Further note that sincé is known, the vectob is also known, and therefore the
operation®:"_; abZi can be applied to the state, which has the effect of cancelib¢he phases. O

Next, we present three types of operations necessary foetinork communication protocotjuantum coding
operations, quantum fan-out operations, andmeasurements. Quantum fan-out operations can be formally viewed
as quantum coding operations, but we deal with them sepasitee no coding is actually performed. All the op-
erations required for the protocol are elementary Cliffloperations and a supply of ancilla states that are inigdliz
to |0).

Quantum coding operations Classical network coding protocols in general perform ogdit intermediate nodes.
For simplicity, consider the case where each edge has ¢gma®. It is straightforward to generalize this
to the case where the capacities are positive integers. idarres nodev € V' with m-fan-in andn-fan-out
performing classical linear coding. The nodéas thenn incoming edges, each one conveying an element

of IF, and labeled with a vectar; € IF‘f', fori =1,...,m. The outputs of the node areelementsv; € [y
for j =1,...,n that are computed as suitable linear combinations= ", v ; Z',i‘l Vi k, Wherewv; g,
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denotes théth entry ofv;, and are further propagated through the network. Hegeare fixed elements of
5. The quantum coding operation associated with this clakssferation is as follows: attachnew ancilla
qubits initialized tg0) and, foreach = 1,...,mand;j = 1,...,n, apply a controlled-NOT operation if and
only if v; ; = 1, using theith incoming qubit as control and théh ancilla as target. The effect of this is to
map, foranye = (z1,...,z,) € FJ', the basis stater) ® [0)*" to |z, 21, .. ., z,) Wherez; = >, v, jz;.
Next, then ancilla qubits are sent along on theoutgoing edges and all the incoming qubits are retained at
the node.

Fan-out operations The n-fan-out operation is the special case of the quantum coolr@gations with one-fan-
in and n-fan-out, such thaty; ; =1 for eachj =1,...,n. For a given basis vectdr:) on one qubit
(with z € TFy), we attachn further ancillas initialized tg0) and apply a sequence of controlled-NOT
operations using the given qubit as control and each aradlltarget. The effect on the state is given by
|x>|0>®n N |$>®(n+1)_

Measurements They are used to make the superfluous qubits (kept at each caltipse, by measuring them in
the Hadamard basis. More details will be given below in trepof Theoreni 4.

Putting it all together, we have the following result:

Theorem 4. Let G = (V, E) be a quantum network with a subset S C V' of source nodes and a subset 7' C V
of target nodes, where each edge e € E has an integral weight that describes its quantum capacity. Assume that
classical linear network coding over IF5 is possible in the multi-cast model from S to 7. Then perfect quantum
teleportation from S to any ordered subset 7y C 7" with |7p| = |S| is possible.

Proof. First, each node € S creates the stafe-) = %(|0> +]1)). Next, we simulate a classical coding scheme
for the associated multi-cast task in such a way that theotdreperation is applied whenever a broadcast is per-
formed in the associated classical protocol and the quaotuiimg operation is applied whenever a classical coding
operation is applied in the associated classical protoeRemember that, from the convention of Subsedfion 2.2,
the sources and target nodes are not necessary to be treafgelczal nodes.

Because of the classical network coding property that eatpub can perfectly recover all the inputs

Aty ..., Q3| we obtain the foIIowing state after the sequence of quarumding and fan-out operations above:
ai,...,qg) X lay,...,aq5) - -Qlay,...,qg) S f1lal,...,a X - ® a1,...,0Q
B E 1 K 1 K 1 K 1(a1 S| m(a1 K

ai,...,a g €F
1,--,0| 5| €2 4 t 4|

for some functionsf; : IF‘23| — Ty, 1 <i < m, where the firstS| qubits are owned by the source nodesSirthe
next|T'| - [S| qubits are owned by the nodes . .., #;7 in T', and the lastn qubits are owned by several nodes in
the network. Note that by induction all functiorfsare linear. By Lemmal2, the fir${7'| + 1) - |.S| qubits must
form the following state after measuring all the lasgubits in the Hadamard basis:

1
— -1 L(al"“’“\s\)a,...,a Qlat,...,ag) Q- - lai,...,ags),
ol Z (-1 a1 1s)) ® la 1s|) lax 1s])

ai,...,a|g|€EF
1,--59|5| 2 S t t‘T‘

whereL: IE"QS‘ — Z/2Zis alinear function determined by the measurement redutig;, the information about
is propagated through (free) classical communication ®dairthe target nodes, without loss of generality the first
target node. Using Lemnia 3, notiecan apply a local unitary operation that fixes the phase adsl&o the state

1
NoE| Z lat, ... q5) ® a1, ..., q5) @ - ®lay,...,q)-
~——

at,...,a| g €F
15--5@|5| 2 S t t‘T‘



This state is a collection df5| cat states, each ¢f'| + 1 qubits, which are shared in such a way that each source
node has one qubit and each target node has one qubit.

When a subsef C T with |Ty| = |S| and a permutatiom over the|S| elements ofl;, are revealed, the
|T| parties run a protocol to prepaf€| EPR pairs from theS| cat states. For this, again Lemnias 2 ahd 3 can
be used to achieve the preparations of the EPR pairs usiagrtsasurements and classical communication only.
Finally, the stateg is teleported[[2] to the qubits iy with the particular ordering given by. d

In fact, Theorenl 4 can be generalized to the following statem

Theorem 5. Let G = (V, E) be a quantum network with a subset S C V' of source nodes and a subset 7' C V/
of target nodes, where each edge e € E has an integral weight that describes its quantum capacity. Assume that
classical network coding is possible in the multi-cast model from S to T'. Then perfect quantum teleportation from
S to any ordered subset Ty C 7" with |Tp| = |.S| is possible.

Proof (sketch). It is known [11,[8] that, if classical multi-cast is feasilid@ a network, a linear coding scheme
exists over some large enough finite field. The techniquesldpgd in this section generalize to any finite field
as follows. Suppose that the finite field has sjzécach source node starts with tipgimensional quantum state
% Exqu |z). The node-by-node simulation of Theoréin 4 is then performeasimilar way. To deal with the
measurements, we need a simple generalization of Lefmmad[2 &ny-dimensional guantum systems. This can
be done using the concept g¢fary Clifford operations (see Refs][4, 5] for a descriptairthese operations in the
framework of quantum error-correcting codes). O

4 Example: The Butterfly Graph

This section illustrates the techniques developed in theipus section with the example of the quantum network
shown in Figuré 2. The topology of this network is the saménasctassical butterfly network (see Figlie 1) with
the main difference that each edge represents a quantumedladicapacity one. Recall that in our model classical
communication is free. The task is to send a quantum state thhe sourceq; andss) to the target#; andts). In
this example, there are two internal nodgsandn,. The difficulty is that the order of the target qubits are part
of the input, i.e., we have to realize either the associatimmesponding to the pairg,,¢;) and (s, t2) or the
association corresponding to the pdiss, t2) and(sz, t1). The former corresponds to the identity permutation and
the latter to the swap, if we think of the qubits in some fixedieor

This task can be achieved perfectly, i. e., with fidelity amging the protocol given in Theordm 4. We give the
explicit details for this example of the butterfly networkohé precisely, we describe how the protocol simulates the
classical linear coding scheme for multi-casting presemtd-igure[1. The protocol applies the fan-out operations
at nodess1, s9, andneq, while performs appropriate quantum coding operation®desn,, t1, andt,. Hereafter,
all the registers are assumed to be single-qubit registets iaitialized tg0).

First, the source nodg (resp.s2) prepares a registé&, (resp.S5) and applies an Hadamard operator to it. The
guantum state after this step is described as

%(I0> +11)s; @ (10) +[1))sy, = %(|0>s'1|0>s'2 +10)[1) + [1)]0) + [1)[1)).

Then s; (resp. sg) further introduces two registeR; and Ry (resp.Rs and R4), and applies the operators
CNOTG1R) andCNOT1R2) (resp.CNOT(52:R3) and CNOT(52:R4)). The resulting state is

1
5(0)(s1 Ry R2) 0) (54, Rs Ra) + 10)[1) +[1)[0) +[1)[1)).

Hereafter, lel0 and1 denote strings of all-zero and all-one, respectively, gfrapriate length (three here). The
registersR; andR, are sent t@; andn, respectively, whil&Rs andR, are sent td, andn,, respectively.
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Figure 2. Example for perfect quantum state transfer tHiauguantum network. This example is based on the
well-known butterfly network. Each edge has quantum capacie. The task is to send a given input quantum
statepg in (S1,Ss) to either(Ty, T2) or (To, T1) in this order of registers. Here, the quantum regiStefresp.S2)

is possessed by the source negldresp.s), while the quantum registér; (resp.T») is possessed by the target
nodet; (resp.t2). The protocol given in Theorel 4 realizes perfect quantiepbrtation ofpg for both possible
orders of the target registers. Eakhindicates the quantum register to be sent along the comegmp edge in
the protocol. The quantum registes$, S, T}, and T}, possessed by the source nodesand s, and the target
nodest; andts, respectively, are used at the stage of sharing the casst&reerall, a total of seven qubits of
communication are necessary to transfer the state fronotirees to the target registers.

The noden, then prepares a new registy, and applies the operato&NOT(R2Rs) and CNOT(R+Rs) | The
resulting state is

1
510 (s} R1 R2)10)(54,Rs Ro) [0)Rs +[0)[1)[1) +[1)[0)[1) + [1)[1)[0)),

and the registeRs is sent tons.
The noden, then performs a quantum fan-out, i. e., prepares two regiBigandR; and applies the opera-
tors CNOT(Rs:Rs) and CNOT(Rs:R7) | The resulting state is

1
5(’0>(S’1,R1,R2)’0>(S’2,R3,R4)‘O>(R5,R67R7) + ’0>‘1>‘1> + ’1>’0>‘1> + ’1>’1>‘0>)a

and the registerRs andR7; are sent ta; andt,, respectively.

At this point, the nodes; has the registed); s2 hasS); ny hasRy andRy4; ne hasRs; ¢ hasR; and R;
to hasRs andR7. Finally, ¢; (resp.t2) prepares two register§; and T} (resp.Te and T,), and applies the
operatorsNOT®R1: T CNOT(R:T1) andCNOT®Re 1) (resp.CNOTR3:T2) CNOT(Rs:T2) andCNOT(R7:T2)),
The resulting state is

1
5(10)(s} R1 R2)|0)(54 Rs.Ro) [0} (Rs Rs k) [0: O) 1y 74)10, 0) 7, )
+10)[1)[1)]0,1)|0, 1) + [1)|0)[1)[1,0)[1,0) + [1)|1)[0)[1,1)[1,1)).



Now every qubit in(R1, Rz, R3, R4, Rs, Rg, R7) is measured in the Hadamard basis. The outcgge {0, 1}7

is then communicated to the target nageUsing the information ofy,, the state can be mapped to

1
50)5;10)510,0) ¢, 110, 0) 75, 13 + 102 1)]0, 1)0, 1) + [1)]0)[1, 0)[1, 0) + [1)[1)]1, 1)]1, 1))
® (H®7|y0>(R17R27R37R47R57R67R7))

by a local operation at;.
The state iRy, R2, R3, R4, R5, Rg, R7) is then discarded. Observe that the statéSin Ty, T2, S5, T/, T5) in
this order of the registers forms two cat states

1
§(|07070> + |1> L, 1>)(S’1,T1,T2) ® (|07070> + |1> L, 1>)(S’2,T’1,T’2)'

From these two cat states, two EPR pairs can be created edbiy in (S}, T1) and (S}, T%) orin (S}, T2)
and(S), T} ), according to the two possible communication scenariosirnstance, an EPR pair if$), T2) shared
by s; andt, can be created as follows. The nagdeneasures the qubit ifi; in the Hadamard basig+), |—)} and
sends the result € {0, 1} of the measurement tq. The nodes; then applies the operatm% to the qubit inS].

It can be checked easily that the remaining two qubits$in T2) form an EPR pair.

Finally, using these EPR pairs either(Bf, T1) and(S5, T5) or in (S, T2) and (S5, T ), the quantum states
in (S1,S2) is teleported either t6T,, T,) or to (T2, T}) in this order of registers. By appropriately applying swap
operators, the stajes is recovered either ifiT;, T2) or in (T2, T1) in this order of registers.

5 Conclusions

It has been proved that the problem of teleporting an unknquantum state through a network can be solved
perfectly, i. e., with fidelity one, by efficiently using thega of network coding. The method presented in this paper
allows the state to be teleported for all quantum networksneker classical linear network coding is possible for
the network. Moreover, it only uses Clifford operations @btased on three simple rules that are applied at each
node of the network: fan-out operations, quantum codingatdfmas, and measurements.
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