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Abstract

This paper considers a problem of quantum communication between parties that are connected through a
network of quantum channels. The model in this paper assumesthat there is no prior entanglement shared among
any of the parties, but that classical communication is free. The task is to perfectly transfer an unknown quantum
state from a source subsystem to a target subsystem, where both source and target are formed by ordered sets
of some of the nodes. It is proved that a lower bound of the rateat which this quantum communication task is
possible is given by the classical min-cut max-flow theorem of network coding, where the capacities in question
are the quantum capacities of the edges of the network.
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1 Introduction

Consider a communication network consisting of a setV of several nodes, each of which can hold a small number
of qubits and which have no prior entanglement among them. Furthermore, these nodes are connected via a setE
of edges which correspond to quantum communication channels, each of a certain capacity. LetG = (V,E) be the
weighted graph corresponding to this network. Consider thefollowing communication problem: given a setS ⊆ V
of source nodes in the network which all together hold a quantum stateρS and a set of target nodesT ⊆ V of nodes
to which the quantum state is supposed to be sent, where|S| ≤ |T |, the task is to devise a communication protocol
that, for any selected subsetT0 ⊆ T with |T0| = |S|, transmits the stateρS through the network such that after
the transmission the state of the system corresponding toT0 is equal toρS and for any particular ordering of the
elements ofT0.

Clearly, this task depends on the particular properties of the network and it might or might not be possible to
achieve this task for the givenG, S, andT . A trivial case where it is impossible to transmit any state perfectly
is whenS andT are disconnected, i. e., there is no quantum communication path between any node ofS and any
node ofT . Another trivial case where it is possible to transmit any state perfectly is when each node inS is directly
connected with each node inT . We shall be concerned with cases in between these two extremes, where the actual
network topology given byG does not allow disjoint paths between the qubits inS and the qubits inT , but we
nevertheless want to achieve perfect state transfer via quantum teleportation [2]. If perfect state transfer is possible,
we also want to achieve it with as few uses of the network as possible.

If G is a classical network, a celebrated result of network coding is the min-cut max-flow theorem for net-
work information flow [1, 9, 11] which states that perfect transfer fromS to T at rateh is possible whenever for
eacht ∈ T the max-flow betweenσ andt is at leasth. Hereσ is a special source nodeσ /∈ S from which the input
information is supposed to originate and is passed toS. This is the so-called multi-cast model for which optimal
network coding is linear [11] and can be constructed in polynomial time [8]. This is in contrast to the general
network model in which linear coding is not enough [3].

The strategy this paper presents to achieve perfect quantumteleportation through the quantum networkG is
very simple and works whenever the associated classical multi-casting task is feasible. It consists of five steps: (i)
First, a state|0〉 + |1〉 (normalization omitted) is created at each nodesi ∈ S, 1 ≤ i ≤ |S|. (ii) Next, a classical
linear network coding protocol forG, S, T is translated into a sequence of Clifford operations to be applied at
each node of the network. It is proved that the states can be sent through the network in such a way that the final
state is given by|S| cat states each of the form|0〉Si

|0〉T1,i
· · · |0〉T|T |,i

+ |1〉Si
|1〉T1,i

· · · |1〉T|T |,i
, albeit some of the

phases in this state might be incorrect. Here, for each1 ≤ i ≤ |S|, Si is the single-qubit register possessed by the
nodesi and eachTj,i is the single-qubit register possessed by the nodetj ∈ T , 1 ≤ j ≤ |T |. (iii) Now the classical
information obtained by measuring internal network qubitsin the Hadamard basis is sent to one dedicated output
nodet1 ∈ T . Using this information, the phase errors are fixed and indeed |S| perfect cat states are generated.
(iv) After the selection ofT0 ⊆ T is revealed, the cat states are converted into|S| EPR pairs shared between the
corresponding node pairs. For this purpose, it is again necessary to measure in the Hadamard basis and exchange
the obtained classical information. (v) Finally, using theEPR pairs the stateρS overS is teleported to the target
nodes inT0.

It is perhaps interesting to note that deciding what the target nodesT0 are (and in particular their order!) to
which the state is teleported can be doneafter the quantum network has been used. At this point the only required
communication is purely classical.

Related work It should be noted that, prior to this work, several papers studied the problem of sending quan-
tum states using the idea of network coding, that is, allowing any coding at intermediate nodes of the network.
Hayashi, Iwama, Nishimura, Raymond, and Yamashita [7] showed that network coding (without free classical
communication) does not give us any benefit for perfect transmission on the butterfly network, a famous network
with two source-target pairs. Leung, Oppenheim, and Winter[10] showed that this negative result can be general-
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ized to several types of networks even if the transmission isallowed to be asymptotically perfect. Also, they studied
several variants of situations including the one where freeclassical communication is allowed. On the contrary,
Hayashi [6] showed that perfect transmission of two source states on the butterfly network can be efficiently done
by network coding if the sources have prior entanglement andeach link has a capacity of one qubit or two classical
bits. It should be noted that all of the above results focus onthe (multiple-source) uni-cast model, a well-studied
network coding model, while the model discussed in this paper is close to the multi-cast model. The quantum
network coding for the multi-cast model was previously studied by Shi and Soljanin [13]. In their model, however,
the source was restricted to the product of copies of a state,and hence in fact they could use only source coding for
perfect transmission, instead of coding at intermediate nodes.

2 Preliminaries

2.1 Quantum Information

Quantum states are normalized vectors in a complex Hilbert spaceH = C
d. The simplest case ofH = C

2 is of
particular importance, and a system supporting such a statespace is called aqubit (quantum bit). This paper
mainly treats the case of two-dimensional quantum systems,but the results in this paper can be generalized to any
d-dimensional systems. Notice that even if the quantum information to be transmitted is originally given by qubits,
higher-dimensional systems may be necessary in the coding schemes. Intuitively, this is because the protocols to
be presented are based on classical network coding which itself might require higher alphabets for the coding, even
if the original information is binary. These points will be discussed further in Theorem 5.

The orthonormal basis states of a qubit are written as|0〉 and |1〉, and the general state of a qubit is given by
|φ〉 = α|0〉 + β|1〉, whereα, β ∈ C and|α|2 + |β|2 = 1. If both α andβ are non-zero, the state|φ〉 is a so-called
superposition of|0〉 and|1〉 with amplitudesα andβ. For ad-dimensional system, we label the orthonormal basis
states by the elements of some alphabet of sized, e. g., the numbers{0, 1, . . . , d − 1} or the elements of a finite
field, if d is a prime power. A normalized vector inCd is called aqudit, and is written as|ψ〉 =

∑d−1
i=0 αi|i〉, where

αi ∈ C and
∑d−1

i=0 |αi|2 = 1. Quantum registers consist of several qudits. The basis states of a quantum register of
n qudits are tensor products of the basis states of the single qudits. The following notation is used:

|x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉 = |x1〉|x2〉 · · · |xn〉 = |x1, x2, . . . , xn〉,
wherex1, . . . , xn are elements of{0, 1, . . . , d−1}. From now we focus on the case whered = 2. A general state of
a quantum register ofn qubits is a normalized vector inH = (C2)⊗n ∼= C

2n

, given by|ψ〉 =
∑

x∈F
n
2

αx|x〉, where

αx ∈ C and
∑

x∈F
n
2

|αx|2 = 1. For two vectorsx andy in F
n
2 , let x · y denote the usual inner product. When

writing states of quantum registers, normalization factors may be omitted. We next discuss some basic elementary
quantum operations that can be used to manipulate the content of quantum registers. This is all standard, see for
example [12].

Definition 1 (Elementary Clifford Operations). The following four operations are called elementary Clifford oper-
ations:

σX :=
∑

x∈F2

|x+ 1〉〈x|,

σZ :=
∑

x∈F2

(−1)x|x〉〈x|,

H :=
1√
2

∑

x,y∈F2

(−1)xy|y〉〈x|,

CNOT(A,B) :=
∑

x,y∈F2

|x〉〈x|A ⊗ |x+ y〉〈y|B.
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a1 a2

❄ ❄

✒✑
✓✏
s1

❄

a1

❍
❍

❍
❍

❍
❍

❍❍❥

a1
✒✑
✓✏
s2

❄

a2

✟
✟

✟
✟

✟
✟

✟✟✙

a2

✒✑
✓✏
n1

❄

a1 ⊕ a2

✒✑
✓✏
n2

✟
✟

✟
✟

✟
✟

✟✟✙

a1 ⊕ a2
❍

❍
❍

❍
❍

❍
❍❍❥

a1 ⊕ a2

✒✑
✓✏
t1 ✒✑

✓✏
t2

��✠
a1

❅❅❘
a2

��✠
a1

❅❅❘
a2

Figure 1: The butterfly network and a classical linear codingprotocol. The nodes1 (resp.s2) has for input a bita1

(resp.a2). The task is to senda1 anda2 to botht1 andt2. The capacity of each edge is assumed to be one bit. Our
convention here is thats1 (resp.s2) receivesa1 (resp.a2) through a virtual incoming edge, and thatt1 (resp.t2)
has two virtual outgoing edges through which it should output a1 anda2, respectively.

Here, when writing(−1)x for x ∈ F2, we identify F2 andZ/2Z, the integers modulo2. The operationσX

corresponds to the addition of the identity element. The operationσZ has no direct classical analogue and changes
the phases of the basis states. The operatorH is called theHadamard operator, andCNOT the controlled-NOT
operator.

Finally, let

|+〉 = H|0〉 =
1√
2
(|0〉 + |1〉),

|−〉 = H|1〉 =
1√
2
(|0〉 − |1〉),

and for convenience, we say that measuring a qubit in the basis {|+〉, |−〉} (the Hadamard basis) gives a bitb,
whereb = 0 if |+〉 is measured, andb = 1 if |−〉 is measured.

2.2 Convention on Classical Multi-Cast

The key result of this paper is a quantum simulation of any classical linear network coding scheme in the multi-cast
model. Here we use the standard definition of classical linear network coding (see [11, 8]). For convenience, the
following simple but very useful convention is assumed whendescribing a classical multi-cast (linear) protocol.

Each sourcesi ∈ S is supposed to have a “virtual” incoming edge from which it receives its inputai. Also,
each targettj ∈ T is supposed to have|S| “virtual” outgoing edges, whereai must be output through theith virtual
outgoing edge, for1 ≤ i ≤ |S|. In this way, the source and target nodes perform a linear-coding operation on their
inputs, and this convention enables us to ignore the distinction between source/target nodes and internal nodes.
These conventions are illustrated in Figure 1 on the well-known coding protocol over the butterfly network.
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3 Sending Quantum States through Networks

First, the following lemma is proved to describe the effect of measuring in the Hadamard basis.

Lemma 2. Consider a system of n qubits and a partition of {1, . . . , n} into two disjoint subsets A and B. Let
|ψA,B〉 be a joint state given by

|ψ(A,B)〉 =
∑

x∈Fn
2

αx|f(x)〉A|g(x)〉B,

where αx ∈ C, f : F
n
2 → F

|A|
2 , g : F

n
2 → F

|B|
2 , and registers A and B correspond to the qubits belonging to A and

B, respectively. Then the state in A obtained from |ψ(A,B)〉 by measuring each qubit in B in the {|+〉, |−〉} basis
has the form

|ψA〉 =
∑

x∈F
n
2

(−1)y0·g(x)αx|f(x)〉,

where y0 ∈ F
|B|
2 is a (in general random) vector of measurement results.

Proof. Applying the Hadamard transformH⊗|B| = 1√
2|B|

∑

y,z∈F
|B|
2

(−1)y·z|y〉〈z| to the qubits inB gives the new
state

(
IA ⊗H⊗|B|)|ψ(A,B)〉 =

1√
2|B|

∑

x∈Fn
2

αx|f(x)〉
∑

y∈F
|B|
2

(−1)y·g(x)|y〉.

Measuring the qubits inB in the computational basis{|0〉, |1〉} gives a certain resulty0 ∈ F
|B|
2 and the state col-

lapses to the state claimed in the lemma. �

The next lemma shows the way of fixing phase errors that have happened to a state, provided that the phase
errors are of a benign type.

Lemma 3. Let |ψ〉 be a state of the form

|ψ〉 =
∑

x∈Fn
2

(−1)L(x)αx|x〉,

where L is a known linear function. Then by applying local σZ operations, |ψ〉 can be mapped to
∑

x∈Fn
2

αx|x〉.

Proof. Note that ifL : F
n
2 → F2 is linear, thenL mapsx = (x1, . . . , xn) ∈ F

n
2 to L(x) = b · x for some fixed

vectorb = (b1, . . . , bn) ∈ F
n
2 . Further note that sinceL is known, the vectorb is also known, and therefore the

operation
⊗n

i=1 σ
bi

Z can be applied to the state, which has the effect of cancelingout the phases. �

Next, we present three types of operations necessary for thenetwork communication protocol:quantum coding
operations, quantum fan-out operations, andmeasurements. Quantum fan-out operations can be formally viewed
as quantum coding operations, but we deal with them separately since no coding is actually performed. All the op-
erations required for the protocol are elementary Cliffordoperations and a supply of ancilla states that are initialized
to |0〉.

Quantum coding operations Classical network coding protocols in general perform coding at intermediate nodes.
For simplicity, consider the case where each edge has capacity one. It is straightforward to generalize this
to the case where the capacities are positive integers. Consider a nodev ∈ V with m-fan-in andn-fan-out
performing classical linear coding. The nodev has thenm incoming edges, each one conveying an element
of F2 and labeled with a vectorvi ∈ F

|S|
2 , for i = 1, . . . ,m. The outputs of the node aren elementswj ∈ F2

for j = 1, . . . , n that are computed as suitable linear combinationswj =
∑m

i=1 γi,j

∑|S|
k=1 vi,k, wherevi,k
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denotes thekth entry ofvi, and are further propagated through the network. Hereγi,j are fixed elements of
F2. The quantum coding operation associated with this classical operation is as follows: attachn new ancilla
qubits initialized to|0〉 and, for eachi = 1, . . . ,m andj = 1, . . . , n, apply a controlled-NOT operation if and
only if γi,j = 1, using theith incoming qubit as control and thejth ancilla as target. The effect of this is to
map, for anyx = (x1, . . . , xm) ∈ F

m
2 , the basis state|x〉 ⊗ |0〉⊗n to |x, z1, . . . , zn〉 wherezj =

∑m
i=1 γi,jxi.

Next, then ancilla qubits are sent along on then outgoing edges and all the incoming qubits are retained at
the node.

Fan-out operations Then-fan-out operation is the special case of the quantum codingoperations with one-fan-
in and n-fan-out, such thatγ1,j = 1 for eachj = 1, . . . , n. For a given basis vector|x〉 on one qubit
(with x ∈ F2), we attachn further ancillas initialized to|0〉 and apply a sequence ofn controlled-NOT
operations using the given qubit as control and each ancillaas target. The effect on the state is given by
|x〉|0〉⊗n 7→ |x〉⊗(n+1).

Measurements They are used to make the superfluous qubits (kept at each node) collapse, by measuring them in
the Hadamard basis. More details will be given below in the proof of Theorem 4.

Putting it all together, we have the following result:

Theorem 4. Let G = (V,E) be a quantum network with a subset S ⊆ V of source nodes and a subset T ⊆ V
of target nodes, where each edge e ∈ E has an integral weight that describes its quantum capacity. Assume that
classical linear network coding over F2 is possible in the multi-cast model from S to T . Then perfect quantum
teleportation from S to any ordered subset T0 ⊆ T with |T0| = |S| is possible.

Proof. First, each nodes ∈ S creates the state|+〉 = 1√
2
(|0〉 + |1〉). Next, we simulate a classical coding scheme

for the associated multi-cast task in such a way that the fan-out operation is applied whenever a broadcast is per-
formed in the associated classical protocol and the quantumcoding operation is applied whenever a classical coding
operation is applied in the associated classical protocol.Remember that, from the convention of Subsection 2.2,
the sources and target nodes are not necessary to be treated as special nodes.

Because of the classical network coding property that each output can perfectly recover all the inputs
a1, . . . , a|S|, we obtain the following state after the sequence of quantumcoding and fan-out operations above:

1√
2|S|

∑

a1,...,a|S|∈F2

|a1, . . . , a|S|〉
︸ ︷︷ ︸

S

⊗ |a1, . . . , a|S|〉
︸ ︷︷ ︸

t1

⊗ · · ·⊗|a1, . . . , a|S|〉
︸ ︷︷ ︸

t|T |

⊗|f1(a1, . . . , a|S|)〉⊗· · ·⊗|fm(a1, . . . , a|S|)〉

for some functionsfi : F
|S|
2 → F2, 1 ≤ i ≤ m, where the first|S| qubits are owned by the source nodes inS, the

next |T | · |S| qubits are owned by the nodest1, . . . , t|T | in T , and the lastm qubits are owned by several nodes in
the network. Note that by induction all functionsfi are linear. By Lemma 2, the first(|T | + 1) · |S| qubits must
form the following state after measuring all the lastm qubits in the Hadamard basis:

1√
2|S|

∑

a1,...,a|S|∈F2

(−1)L(a1 ,...,a|S|) |a1, . . . , a|S|〉
︸ ︷︷ ︸

S

⊗ |a1, . . . , a|S|〉
︸ ︷︷ ︸

t1

⊗ · · · ⊗ |a1, . . . , a|S|〉
︸ ︷︷ ︸

t|T |

,

whereL : F
|S|
2 → Z/2Z is a linear function determined by the measurement results.Now, the information aboutL

is propagated through (free) classical communication to one of the target nodes, without loss of generality the first
target node. Using Lemma 3, nodet1 can apply a local unitary operation that fixes the phase and leads to the state

1√
2|S|

∑

a1,...,a|S|∈F2

|a1, . . . , a|S|〉
︸ ︷︷ ︸

S

⊗ |a1, . . . , a|S|〉
︸ ︷︷ ︸

t1

⊗ · · · ⊗ |a1, . . . , a|S|〉
︸ ︷︷ ︸

t|T |

.
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This state is a collection of|S| cat states, each of|T | + 1 qubits, which are shared in such a way that each source
node has one qubit and each target node has one qubit.

When a subsetT0 ⊆ T with |T0| = |S| and a permutationπ over the|S| elements ofT0 are revealed, the
|T | parties run a protocol to prepare|S| EPR pairs from the|S| cat states. For this, again Lemmas 2 and 3 can
be used to achieve the preparations of the EPR pairs using local measurements and classical communication only.
Finally, the stateρS is teleported [2] to the qubits inT0 with the particular ordering given byπ. �

In fact, Theorem 4 can be generalized to the following statement.

Theorem 5. Let G = (V,E) be a quantum network with a subset S ⊆ V of source nodes and a subset T ⊆ V
of target nodes, where each edge e ∈ E has an integral weight that describes its quantum capacity. Assume that
classical network coding is possible in the multi-cast model from S to T . Then perfect quantum teleportation from
S to any ordered subset T0 ⊆ T with |T0| = |S| is possible.

Proof (sketch). It is known [11, 8] that, if classical multi-cast is feasibleon a network, a linear coding scheme
exists over some large enough finite field. The techniques developed in this section generalize to any finite field
as follows. Suppose that the finite field has sizeq. Each source node starts with theq-dimensional quantum state
1√
q

∑

x∈Fq
|x〉. The node-by-node simulation of Theorem 4 is then performedin a similar way. To deal with the

measurements, we need a simple generalization of Lemmas 2 and 3 toq-dimensional quantum systems. This can
be done using the concept ofq-ary Clifford operations (see Refs. [4, 5] for a descriptionof these operations in the
framework of quantum error-correcting codes). �

4 Example: The Butterfly Graph

This section illustrates the techniques developed in the previous section with the example of the quantum network
shown in Figure 2. The topology of this network is the same as the classical butterfly network (see Figure 1) with
the main difference that each edge represents a quantum channel of capacity one. Recall that in our model classical
communication is free. The task is to send a quantum state from the source (s1 ands2) to the target (t1 andt2). In
this example, there are two internal nodesn1 andn2. The difficulty is that the order of the target qubits are part
of the input, i. e., we have to realize either the associationcorresponding to the pairs(s1, t1) and (s2, t2) or the
association corresponding to the pairs(s1, t2) and(s2, t1). The former corresponds to the identity permutation and
the latter to the swap, if we think of the qubits in some fixed order.

This task can be achieved perfectly, i. e., with fidelity one,using the protocol given in Theorem 4. We give the
explicit details for this example of the butterfly network. More precisely, we describe how the protocol simulates the
classical linear coding scheme for multi-casting presented in Figure 1. The protocol applies the fan-out operations
at nodess1, s2, andn2, while performs appropriate quantum coding operations at nodesn1, t1, andt2. Hereafter,
all the registers are assumed to be single-qubit registers each initialized to|0〉.

First, the source nodes1 (resp.s2) prepares a registerS′
1 (resp.S′

2) and applies an Hadamard operator to it. The
quantum state after this step is described as

1

2
(|0〉 + |1〉)S′

1
⊗ (|0〉 + |1〉)S′

2
=

1

2
(|0〉S′

1
|0〉S′

2
+ |0〉|1〉 + |1〉|0〉 + |1〉|1〉).

Then s1 (resp. s2) further introduces two registersR1 and R2 (resp. R3 and R4), and applies the operators
CNOT(S′

1
,R1) andCNOT(S′

1
,R2) (resp.CNOT(S′

2
,R3) andCNOT(S′

2
,R4)). The resulting state is

1

2
(|0〉(S′

1
,R1,R2)|0〉(S′

2
,R3,R4) + |0〉|1〉 + |1〉|0〉 + |1〉|1〉).

Hereafter, let0 and1 denote strings of all-zero and all-one, respectively, of appropriate length (three here). The
registersR1 andR2 are sent tot1 andn1, respectively, whileR3 andR4 are sent tot2 andn1, respectively.
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❄

S1

✲S′
1

❄

S2

✛ S′
2✒✑

✓✏
s1

❄

R1

❍
❍

❍
❍

❍
❍

❍❍❥

R2
✒✑
✓✏
s2

❄

R3

✟
✟

✟
✟

✟
✟

✟✟✙

R4

✒✑
✓✏
n1

❄

R5

✒✑
✓✏
n2

✟
✟

✟
✟

✟
✟

✟✟✙

R6

❍
❍

❍
❍

❍
❍

❍❍❥

R7

✒✑
✓✏
t1 ✒✑

✓✏
t2

��✠
T1

❅❅❘
T′

1

��✠
T2

❅❅❘
T′

2

Figure 2: Example for perfect quantum state transfer through a quantum network. This example is based on the
well-known butterfly network. Each edge has quantum capacity one. The task is to send a given input quantum
stateρS in (S1,S2) to either(T1,T2) or (T2,T1) in this order of registers. Here, the quantum registerS1 (resp.S2)
is possessed by the source nodes1 (resp.s2), while the quantum registerT1 (resp.T2) is possessed by the target
nodet1 (resp.t2). The protocol given in Theorem 4 realizes perfect quantum teleportation ofρS for both possible
orders of the target registers. EachRi indicates the quantum register to be sent along the corresponding edge in
the protocol. The quantum registersS′

1, S′
2, T′

1, andT′
2 possessed by the source nodess1 ands2 and the target

nodest1 and t2, respectively, are used at the stage of sharing the cat states. Overall, a total of seven qubits of
communication are necessary to transfer the state from the source to the target registers.

The noden1 then prepares a new registerR5, and applies the operatorsCNOT(R2,R5) andCNOT(R4,R5). The
resulting state is

1

2
(|0〉(S′

1
,R1,R2)|0〉(S′

2
,R3,R4)|0〉R5

+ |0〉|1〉|1〉 + |1〉|0〉|1〉 + |1〉|1〉|0〉),

and the registerR5 is sent ton2.
The noden2 then performs a quantum fan-out, i. e., prepares two registers R6 andR7 and applies the opera-

torsCNOT(R5,R6) andCNOT(R5,R7). The resulting state is

1

2
(|0〉(S′

1
,R1,R2)|0〉(S′

2
,R3,R4)|0〉(R5,R6,R7) + |0〉|1〉|1〉 + |1〉|0〉|1〉 + |1〉|1〉|0〉),

and the registersR6 andR7 are sent tot1 andt2, respectively.
At this point, the nodes1 has the registerS′

1; s2 hasS′
2; n1 hasR2 andR4; n2 hasR5; t1 hasR1 andR6;

t2 hasR3 and R7. Finally, t1 (resp.t2) prepares two registersT1 and T′
1 (resp.T2 and T′

2), and applies the
operatorsCNOT(R1,T1), CNOT(R1,T′

1
) andCNOT(R6,T′

1
) (resp.CNOT(R3,T2), CNOT(R3,T′

2
) andCNOT(R7,T2)).

The resulting state is

1

2
(|0〉(S′

1
,R1,R2)|0〉(S′

2
,R3,R4)|0〉(R5,R6,R7)|0, 0〉(T1 ,T′

1
)|0, 0〉(T2 ,T′

2
)

+ |0〉|1〉|1〉|0, 1〉|0, 1〉 + |1〉|0〉|1〉|1, 0〉|1, 0〉 + |1〉|1〉|0〉|1, 1〉|1, 1〉).
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Now every qubit in(R1,R2,R3,R4,R5,R6,R7) is measured in the Hadamard basis. The outcomey0 ∈ {0, 1}7

is then communicated to the target nodet1. Using the information ofy0, the state can be mapped to

1

2
(|0〉S′

1
|0〉S′

2
|0, 0〉(T1 ,T′

1
)|0, 0〉(T2 ,T′

2
) + |0〉|1〉|0, 1〉|0, 1〉 + |1〉|0〉|1, 0〉|1, 0〉 + |1〉|1〉|1, 1〉|1, 1〉)

⊗
(
H⊗7|y0〉(R1,R2,R3,R4,R5,R6,R7)

)

by a local operation att1.
The state in(R1,R2,R3,R4,R5,R6,R7) is then discarded. Observe that the state in(S′

1,T1,T2,S
′
2,T

′
1,T

′
2) in

this order of the registers forms two cat states

1

2
(|0, 0, 0〉 + |1, 1, 1〉)(S′

1
,T1,T2) ⊗ (|0, 0, 0〉 + |1, 1, 1〉)(S′

2
,T′

1
,T′

2
).

From these two cat states, two EPR pairs can be created easilyeither in(S′
1,T1) and(S′

2,T
′
2) or in (S′

1,T2)
and(S′

2,T
′
1), according to the two possible communication scenarios. For instance, an EPR pair in(S′

1,T2) shared
by s1 andt2 can be created as follows. The nodet1 measures the qubit inT1 in the Hadamard basis{|+〉, |−〉} and
sends the resultb ∈ {0, 1} of the measurement tos1. The nodes1 then applies the operatorσb

Z to the qubit inS′
1.

It can be checked easily that the remaining two qubits in(S′
1,T2) form an EPR pair.

Finally, using these EPR pairs either in(S′
1,T1) and(S′

2,T
′
2) or in (S′

1,T2) and(S′
2,T

′
1), the quantum stateρS

in (S1,S2) is teleported either to(T1,T
′
2) or to (T2,T

′
1) in this order of registers. By appropriately applying swap

operators, the stateρS is recovered either in(T1,T2) or in (T2,T1) in this order of registers.

5 Conclusions

It has been proved that the problem of teleporting an unknownquantum state through a network can be solved
perfectly, i. e., with fidelity one, by efficiently using the idea of network coding. The method presented in this paper
allows the state to be teleported for all quantum networks whenever classical linear network coding is possible for
the network. Moreover, it only uses Clifford operations andis based on three simple rules that are applied at each
node of the network: fan-out operations, quantum coding operations, and measurements.

Acknowledgements

The authors are grateful to Tsuyoshi Ito for helpful discussions.

References

[1] Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li, and Raymond W. Yeung. Network information flow.IEEE
Transactions on Information Theory, 46(4):1204–1216, 2000.
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