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Abst rac t .  A secret sharing scheme permits a secret to be shared among 
participants in such a way that only qualified subsets of participants can 
recover the secret. If any non qualified subset has absolutely no informa- 
tion about the secret, then the scheme is called perfect. Unfortunately, in 
this case the size of the shares cannot be less than the size of the secret. 
Krawczyk [9] showed how to improve this bound in the case of compu- 
tational threshold schemes by using Rabin’s information dispersal algo- 
rithms [14], [15]. 
We show how to extend the information dispersal algorithm for general 
access structure (we call access structure, the set of all qualified subsets). 
We give bounds on the amount of information each participant must 
have. Then we apply this to construct computational schemes for general 
access structures. The size of shares each participant must have in our 
schemes is nearly minimal: it is equal to the minimal bound plus a piece 
of information whose length does not depend on the secret size but just 
on the security parameter. 

1 Introduction 

Secret sharing is an important tool in security and cryptography. An important 
issue in secret sharing theory is the size of the share distributed, since the security 
of a system degrades as the amount of information that must be kept secret 
increases. A very strong requirement is that all qualified subsets of participants 
can reconstruct the secret but all other subsets obtain no information (in an 
information-theoretic sense) about the secret. These schemes are called perfect 
secret sharing schemes. Unfortunately, in this case the size of the shares cannot 
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be less than the size of the secret. However, the proof of this lower bound uses 
the notion of information-theoretic secrecy. 

A natural question is whether one can do better for secret sharing if the no- 
tion of secrecy is computational, namely, against resource bounded adversaries: 
i.e. any qualified subset can reconstruct the secret but any other subset ob- 
tains no computational information about the secret. These schemes are called 
computational secret sharing schemes. 

Krawczyk [9] proposed a computational rn-threshold scheme, where m shares 
recover the secret but m - 1 shares give no (computational) information on the 
secret, in which shares corresponding to a secret uniformly chosen in a set S are 
of size logISl/m (where JSI denotes the cardinality of the set S )  plus a short 
piece of information whose length does not depend on the secret size but just on 
the security parameter. In our paper, 1x1 denotes the cardinality of the set X ,  
whereas in Krawczyk's one, 1x1 denotes the size of z for x E X .  

The scheme of Krawczyk is very simple and combines in a natural way tra- 
ditional (perfect) secret sharing schemes, encryption, and known information 
dispersal algorithms. It is provable secure given a secure (private key) encryp- 
tion function. 

A natural and open question is whether the space efficiency can be carried 
over more general access structures than just threshold schemes: one of the prob- 
lems was to  find an information dispersal algorithm for general access structures. 

In this paper, we define information dispersal algorithms for general access 
structures; we show bounds on the size of pieces each participant must have and 
we give practical constructions of algorithms that reach these bounds. Then we 
apply these results to  computational secret sharing schemes. We show how to 
realize computational secret sharing schemes for general access structures that 
are nearly optimal: the size of each share is equal to  the minimal theoretical 
bound plus a piece of information whose length does not depend on the secret 
size but just on the security parameter. 

2 Perfect Secret Sharing (PSS) 

Let P = { P I , .  . . , P,} be the set of participants. Denote by A C 2p the family of 
subsets of participants which we desire to  be able to recover the file; A is called 
the access structure. It is reasonable to require that A be monotone, that is if 
A E A and A C A' C P ,  then A' E A. 

If A is an access structure on P ,  then B E A is a minimal authorized subset 
if A # A whenever A c B. The set of minimal authorized subsets of A is denoted 
A' and is called the basis of A. A is uniquely determined as a function of A', 
as we have A = { B  & P : 3A C B ,  A E A'}. We say that A is the closure of 
do and write A = cZ(do). 

Given an access structure A, on a set P = {PI,  . . . , P,} of participants, let 
be K the space of secrets, and let {p,  ( k ) } k E ~  be a probability distribution on 
K .  Let a secret sharing scheme for secrets in K be fixed. For any participant 
Pi E P ,  let us denote by V, the set of all possible shares given to  participant Pi. 
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Given a set of participants A = (el,. . . , q v }  C P ,  where il < i z  < . . . < i,, 
denote by V, the set y,  x . . . x y?. A secret sharing scheme for secrets in K and a 
probability distribution {p, ( k ) } k E ~  naturally induce a probability distribution 
on V, ,  for any A P. Denote such probability distribution by {&A ( U ) } ~ E V ~ .  

Finally, denote by H ( K )  the entropy of {p, ( k ) } k E ~  and by H ( V , )  the entropy 
of 

Following the information-theoretical approach of [S] and [4] we have the 
following definition. 

( a ) ) a ~ ~ A ,  for any A E 2 p .  

Definition 1. Let A be an access structure on a set P of participants. We say 
that a secret sharing scheme for secrets in K is perfect for the access structure 
A on P ,  if the following two properties hold: 

1. Any qualified subset can reconstruct the secret: 
Formally, for all A E A, it holds H(K(V, )  = 0. 

2. Any  non-qualified subset has absolutely no information on  the secret: 
Formally, for all A $ A, it holds H(K(V, )  = H ( K ) .  

3 Information Dispersal Algorithms (IDA) 

We analyze the problem of distributing pieces of a file f among a set of users 
in such a way that some predefined subsets of users can, pooling together their 
pieces, reconstruct the entire file f. An information dispersal algorithm differs 
from a secret sharing scheme as there arc no restriction whatsoever about the 
sets which are not in A. Rabin ([14],[15]) first considered the problem and in- 
troduced the Information Dispersal Algorithms. His schemes are intended for 
the distribution of a piece of information among n active processors, in such 
a way that the recovery of the information is possible in presence of m active 
processors, where m and n are parameters satisfing 1 5 m 5 n. The basic idea 
of his algorithms is to add to the information some amount of redundancy and 
then to partition it into n fragments, each transmitted to one of the parties. 
Reconstruction of f is possible out of m fragments. Information dispersal algo- 
rithms have several applications to secure and reliable storage of information in 
computer networks. Moreover they can be applied to fault-tolerant transmission 
of information and to communication between processors in parallel computers. 

Subsequently, Naor and Roth [12], using integer linear programming tech- 
niques, proposed an information dispersal algorithm over arbitrary graphs. In 
their model, an arbitrary file f is distributed among the nodes of the graph in 
such a way that each node of the graph, by accessing the memory of its own 
and of its adjacent nodes, can reconstruct the contents of f. Their scheme can 
be applied to store files in distributed networks. 

In this paper, we define information dispersal algorithms in a similar way 
than secret sharing schemes, using an information-theoretical approach. Let P = 
{ P I ,  . . . , P,} be the set of participants; we denote by A the access structure that 
is the subsets of participants which we desire to be able to recover the file: A 
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is monotone. We define in a similar way respect to secret sharing schemes the 
minimal authorized subsets, the basis and the closure of A. 

If F is the set of files, { p ~ ( f ) } f ~ ~  a probability distribution on F ,  and 
information dispersal algorithm for files in F is fixed, we define as V,, V, ,  H ( K )  
respectively Gi, G,, H ( F ) .  

Definition 2. Let A be an access structure on a set P of participants. We say 
that an algorithm C to distribute a file in F according with the probability 
distribution { p ~ ( f ) } f ~ ~  is an Information Dispersal Algorithm (IDA) if any 
qualified subset can reconstruct the file. Formally, for all A E d, it holds 

H(FIGA) = 0. 

Thc following lemma holds. 

Lemma3. Let d be an access structure on a set P of participants. Any in- 
formation dispersal algorithm for A, for any A E A, must give to at least a 
participant Pj E A a fragment from a domain Gj such that H(Gj)  2 H(F)/IAI.  

Proof. Let A E A. Consider the conditional mutual information I(GA; F ) .  It can 
be written either as H(G,) - H(G,IF) or as H ( F )  - H(FIGA). Hence, from (4) 
of Appendix A and from 1. of definition 2 we have 

H(G,) = H ( F )  + H(G,JF) 2 H ( F ) .  

From (5) and (8) of appendix A it follows that CPiEA H(Gi) 2 H ( G A ) .  So, from 
(1) one gets that there exists a participant Pj in A such that H ( G j )  2 H(F)/IAI. 

0 

3.1 

We outline the following simple information dispersal algorithm E(m, b ) ,  where 
b is the number of file fragments and m is the minimum number of fragments 
required to reconstruct the file. It is a simple version of Rabin’s information 
dispersal algorithm. The algorithm is based on Reed Solomon erasure codes. 
The information f E F to be shared is first partitioned into m equal parts where 
each part is viewed as an element over a finite field (e.g. G F ( q ) ,  for a large 
enough q) .  These m elements are then viewed as coefficients of a polynomial of 
degree m- 1, and the b fragments for distribution are obtained by evaluating this 
polynomial in b different points (we need q 2 b ) .  Clearly the whole information 
can be reconstructed (by interpolation) from any m fragments. 

Assuming the uniform probability distribution over the set of files F ,  we 
have H ( F )  = log IF1 = m log q. Moreover, for all participant Pi E P it holds 
H(G;)  5 log IG;I = logq = log IFl/m. 
Observe that we have the requirement q 2 b. This implies log IF1 = mlogq 2 
m log b. So when the parameters m and b are big the algorithm works for large 
files. 

A Simple Information Dispersal Algorithm 
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3.2 The Size of Pieces 

The efficiency of any information dispersal algorithm, is computed regarding the 
size of pieces given to each participant. So, even in the case of general access 
structures, we are interested to  minimize the size of fragments distributed to  
participants. 

Information Rate 

If we are interested in limiting the maximum size of fragments for each par- 
ticipant (i.e., the maximum quantity of information that must be given to  any 
participant), then a worst-case measure of the maximum of H(G,) over all Pi E P 
naturally arises. Analogously to  definition of information rate for secret sharing 
schemes presented in [a] ,  we give the following definition. 

Definition 4. We define the information rate of an information dispersal algo- 
rithm .E for the access structure d, when the probability distribution on the set 
of files F is ITF, as 

The following theorem holds. 

Theorem 5. Let A be an access structure on a set P of participants. The in- 
formation rate of any information dispersal algorithm E for A satisfies 

P(A, np, C )  I Pinax, 

where emax = min{lA( : A E A’}. 

Proof. Let A E do such that (A1 = emax. From Lemma 3, any information 
dispersal algorithm ,P for F must give to at least a participant Pj E A a fragment 
such that H ( G j )  2 H ( F ) / e m a x .  So, for any information dispersal algorithm C ,  
max{H(Gi) : 1 5 i 5 n} 2 N ( G j )  2 H(F)/emax. Hence, 

Average Information Rate 
In many cases it is preferable to limit the sum of the size of fragments given to  
all participants. In such a cases the arithmetic mean of the size of fragments for 
each participant is a more appropriate measure. 
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Definition 6. We define the average information rate of an information disper- 
sal algorithm C for an access structure A when the probability distribution on 
the set of files F is nF, as 

Consider the following linear programming problem LP1. 

Let M,$),, the solution of the linear programming problem LP1. The following 
theorem holds. 

Theorem 7. Let A be an access structure on a set P of participants. The aver- 
age information rate of any information dispersal algorithm C for A satisfies 

Proof. Let A E A'. From Lemma 3,  it follows that CPsEA H(Gi )  2 H(G,) 2 
H ( F ) .  Let xi = H ( G i ) / H ( F ) ,  for 1 5 i 5 n. We have xi 2 0, and CP,EA xi 2 1, 
VA E do. Then xi 2 Mmin. (1) Hence, 

3.3 General Information Dispersal Algorithms 

The schemes in this section are obtained supposing the uniform probability dis- 
tribution on F :  hence H ( F )  = log IF[. Let d be an access structure on a set P 
of participants. For all Pi E P ,  let p i ,  qi be some positive integers such that 

Let m be the least common multiple of yl, . . . , yn, let xi = p i / q i ,  for a = 
1,. . . , n, and let b = cy=, m . E. We assume the information dispersal algorithm 
c(m,b) described in section 3.1 which works for parameters b (number of file 
fragments) and m (number of required fragments to  reconstruct the file). We 
explain later how to choose the values xi, for i = 1 , .  . . , n, in order to optimize 
the information rate or the average information rate of the scheme. 
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Distribution Scheme 

- Using Z(m, b)  partition the file f E F into b fragments, fl, . . . , fb. 
- Assign to each participant Pi, m - xi distinct fragments fji), . . . , f:!$; (this 

is always possible since Cy.l m . xi is equal to b, the number of available 
fragments). 

The fragment of each participant Pi consists on gi = (fii), . . . , .fc!zi), for z = 
1,.  . . ,n .  

Reconstruction Scheme 

- Each set of participants A in the access structure collect their fragments. 
- Using E(m, b) reconstruct f out of the collected values. 

Proposition 8. The above scheme constitutes an information dispersal algo- 
rithm for the access structure A. 

Proof. For all A E do, from condition (2) there holds CPiEA m . xi 2 m. From 
this fact, and from the properties of the algorithm E(m, b) derives the feasibility 
for a set of participants A to reconstruct the file f out of the fragments. 

3.4 

We now show how to choose the values xi, for 1 _< i 5 n in order to maximize the 
information rate. We propose two techniques. Both of them are optimal as they 
reach the lower bound proved in section 3.2. Moreover, the algorithm obtained 
applying the second technique gives to participants fragments no longer than 
necessary. 

How to Optimize the Information Rate 

First Technique 

We propose the following simple method to choose the values zi = p i /q i ,  for all 
i = 1,. . . , n. For all participants Pi E P ,  let be pi = 1, and qi = min{(A( : A E 
do and Pi E A } .  The following theorem holds. 

Theorem 9. The above xi satisfies condition (2). Moreover, the information 
dispersal algorithm El obtained taking these values maximizes the information 
rate, that is e(d,C,) = emax. 

Proof. Let be A E do. For all Pi E A, there holds qi 5 IAl. Hence, 

Pi 1 1 C - 2  C - = ( A ( . - = l .  I Al I A1 P , € A  qi P , E A  

So each xi satisfies equality (2). 
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To prove that the scheme El reaches the bound on information rate, observe 
that each participant Pi receives m/qi fragments, each of size log IFl/m. 
Moreover, for all i = 1 , .  . . , n, qi = min(lA1 : A E do and Pi E A} 2 min{lAl : 
A E do} = ernax. So, for i = 1,. . . , n there holds 

AS H(Gi )  5 log lGil and H ( F )  = log(F), then 

Vrnax 

Then max{H(Gi) 
Theorem 5 it follows the equality. 

: 1 5 i 5 n} 5 H ( F ) / e m a x ,  SO e(d,Ec,) 2 emax. From 
0 

Second Technique 
This second technique provide an information dispersal algorithm with maximal 
average information rate among the schemes with maximal information rate: 
this algorithm reaches the bound on information rate and gives to participants 
fragments no longer than necessary. It should be found solving the following 
linear programming problem called LP2. 

Let be M$L = Zy=l ,f3: the solution to  the linear programming problem LP2. 
As each p,", for i = 1,. . . , n is rational we can express it as a fraction p: = p z / q z .  
The following theorem holds. 

Theorem 10. The above ,d,* satisfies equation (2). Moreover, the information 
dispersal algorithm E, obtained taking z, = P:, for i = 1 , .  . . , n, maximizes the 
information rate, that is e(A, C2) = emax. 
Proof. From definition of /3:, for all A E A', CPSEA p: 2 1, so equality (2) is 
satisfied. 
To prove that the scheme E2 reaches the bound on information rate, observe 
that each participant P, receives m.P: fragments, each of size log IFl/m. So, for 
a = 1, . . . , n there holds 

Then p(d, E,) 2 emax. From Theorem 5 it follows the equality. 0 

In this way, the sum of fragments distributed to  participants is minimized, 
while all fragments are less than log IFl/Qmax. 
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3.5 How to Optimize the Average Information Rate

The linear optimization problem LP1 described in section 3.2 will be used to
maximize the average information rate.
Let be M^)n = £?=i a* the solution to the linear programming problem LP1.
As each a*, for i = 1, . . . , n is rational we can express it as a fraction a* = Pi/qi-
The following theorem holds.

Theorem 11. The above a* satisfies equation (2). Moreover, the information
dispersal algorithm £3 obtained taking xt = a*, for i = 1,. . . , n, maximizes the
average information rate, that is Q{A, S-i) = T^sy-

Proof. Prom definition of a*, for all A e A0, J2PieAa* > 1, so equality (2) is
satisfied.
To prove that the scheme JC3 reaches the bound on information rate, observe
that each participant Pj receives m • a* fragments, each of size log \F\/m. So, for
i = 1, . . . , n there holds

log\Gt\ =
 l-^-m-a*<H(F).a*.

TJX

Then
H(Gi)<H(F)-a*.

So, ElLi H{Gi) < H{F) • Zti «i = H(F) • M^ n . Hence,

nll(F) n

From Theorem 7 it follows the equality. •

3.6 Comparison of the Techniques

Observe that the solution M^)n to the optimization problem LP2 is in general

bigger than the solution M^yn to the problem LP1 in which the fragments may be
bigger than log |F | /gm a x . The following example shows that the three previous
schemes don't give in general the same result.
Let V = { A , . . . , P 6 } , and let be A0 = {{Pi,P2}, { P ^ P s , ^ } , {P2 ,P5,P6}} the
basis of the access structure A on V.
In the next table, we present for the three schemes 27i, E2 and S3 the following
values in order to outline the differences between the techniques : the value
x; = °o

g Kpf for each i = 1 , . . . , 6, the value g and the value g.

aq x2 X3 x4 x5 XQ Q g
S1 1/2 1/2 1/3 1/3 1/3 1/3 2 18/7
£2 1/2 1/2 1/2 0 1/2 0 2 3

" J73 I 0 I 1 I 0 I 0 I 0 I 0 || 1 || 6
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3.7 Modified Schemes 

As we observe in section 3.1 the simple information dispersal algorithm E(m, b)  
has the requirement log [FI = rn log q 2 rn log b. So when the parameters rn and 
b are big our algorithms work only for large files. Moreover, for special access 
structures ni and b could be exponentially big in n. 

To solve this problems, we propose now two information dispersal algorithms 
which work even for small files and which nearly reach the theoretical minimal 
bounds proved in section 3.2. The first algorithm is intended to  maximize the 
information rate, while the second analizes the average information rate. 

Algori thm 234 

This algorithm is simply an adaptation of algorithm El to handle the case of 
small files. So, while for the algorithm El there were for all P, E P ,  p ,  = 1 and 
q2 = min{ IAl : A E do and P, E A}, now, for the algorithm C, we take pi = 1 
and qi = emax = min{lAl : A E A’}. So, m = emax, and b = n. Clearly qi 5 q2,  
hence from theorem 9, for all A E Ao, 

C”:>C”? l .  I -  

P , E A  P , E A  

This proves that pt and q: satisfy inequality (2). 
Each participant receives a fragment of size log I F l / e m a x .  So, @(A, &) 2 emax, 
and it follows that with this algorithm we obtain optimal information rate. More- 
over, the constraint on the file size is log IF1 > emaxlog,, and emax satisfies 
emax 5 n. So the algorithm C, is useful even for small files. 

Algori thm z15 

This algorithm is an adaptation of algorithm E3 which can be used with small 
files and which gives an average information rate close to  optimum. 
Suppose we have found the razios at and Mi/n solving the optimization problem 
LP1. Suppose (FI”” > n ( M i / n  + 1). Let k be the biggest integer such that 
IFll/k’L > knMi/n + n, and let be b = Cp, [a: . k . nl. Use in the distribution 
scheme for E5 an information dispersal algorithm with parameters (k . n, b) .  
Observe that b 5 knMc>n + n < IFll/kn, so log IF1 > knlogb. Then the simple 
algorithm of section 3.1 applies. We give to  each participant Pi, [a: .k.nl distinct 
fragments, each of size v. So log IG, I = 
Now we give a bound on the average information rate of the algorithm. 

[af . k . n1. 

1 
k 

n n 

c l o g  lGil 5 x(y(at . k . n + 1)) = (Mi/n + -)log IFI. 
i= 1 2=1  

Hence, from theorem 7 
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It follows that with this algorithm we obtain an average information rate nearly 

that is log IF1 2 nlog (n (Mi/n + 1)), and Mi/n satisfies Mi/n 5 n. So the 
algorithm C5 is useful even for small files. 

optimal. Moreover, the constraint on the file size is IFll/, > n ( Mmin ( l )  + 1), 

4 Computational Secret Sharing Schemes 

In a computational secret sharing scheme, any qualified subset can reconstruct 
the secret but any non qualified subset obtain no computational information on 
the secret. The scheme presented here is a generalization of Krawczyk’s one [9]. 

In this section we use the information dispersal algorithms described in the 
previous section to  construct short secret sharing schemes for general access 
structures. We can choose I D A  = Zi with a E (1,. . . , 5 } ,  depending if we want 
optimize the information rate or the average information rate. 

Let P = { P I , .  . . , P,} be the set of participants and A be an access structure 
on P.  Let S be the space of secrets we want to share. We assume a secure (length 
preserving) private key encryption function with space of plaintext S, denoted 
ENC.  Let be K the space of keys and F the space of ciphertexts of ENC. We 
now assume a perfect secret sharing scheme PSS for the access structure A and 
the set on secrets K and an information dispersal algorithm I D A  for the same 
access structure and the set of files F .  
For each participant Pi E P we denote by Gi the set of possible fragments 
given to  participant Pi with IDA,  and by V,  the set of possible shares given 
to participant Pi with PSS.  Moreover, we denote by Wi = Gi x V, the set of 
possible shares given to  participant Pi in the scheme SS which we are going to  
describe. We consider uniform probability distributions both over S and over K .  

Distribution Scheme of S S :  

- Chose a random encryption key k E K .  Encrypt the secret s E S using the 

- Using I D A  partition the encrypted file f into n fragments 91,. . . , gn, and 

- Using P S S  generate n shares for the key k, denoted v1,. . . , vn, and distribute 

encryption function ENC under the key k ,  let f = ENCk(s) .  

distribute them to the participants in A. 

them to the participants in A. 

The share of each participant Pi, i = 1,. . . , n consists on wi = (gi, wi). 

Reconstruct ion Scheme of SS: 

- Each set of participants A in the access structure collect their shares. 
- Using I D A  reconstruct f out of the collected values gi for all Pi E A. 
- Using PSS recover the key k out of wi for all Pi E A. 
- Decrypt f using k to recover the secret s. 
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The next theorem is similar to Krawczyk’s one [9]. 

Theorem 12. The above scheme SS constitutes a computationally secure se- 
cret sharing scheme for the access structure A provided that ENC is a secure 
encryption function and PSS a perfect secret sharing scheme. 

Proof. The feasibility for a set of participants A to reconstruct the encrypted 
secret f out of the fragments is inherited from the properties of the algorithm 
IDA.  Also the reconstruction of the key k out of vi for all Pi E A is guaranteed 
by the secret sharing scheme PSS.  Knowledge of f and lc permits deriving s 
using the decryption function to each set of participants in the access structure 
A. 

As for the secrecy against a coalition of participants B not belonging to the 
access structure, the intuitive idea is the following. The fragments corresponding 
to f of all participants in B give no more information on s than f itself. On 
the other hand, the fragments corresponding to k of all participants in B give 
no information at all on k. Therefore participants in B cannot learn something 
about s. 0 

The Size of Shares 

Thelengthofeachsharefori= 1, . . . ,  n,isloglWil =logIGiI+loglKl.So,the 
length of the shares depends both 011 the information dispersal algorithm and 
on the perfect secret sharing scheme used to construct the scheme. Depends on 
what information dispersal algorithm we choose, the size of Gi is minimal for 
the corresponding definition. And the size of V, does not depend on the secret 
size but only on the security parameter. 

However, observe that for general access structures the size log IV,l of shares 
of perfect secret sharing schemes used in order to share the enciphering key k 
should be exponentially large respect to the size of the secret key logIK1: an 
upper bound better than exponential is not known for the length of shares in 
the general case. Moreover, Csirmaz [5] proved that there are access structures 
on n elements so that any perfect secret sharing scheme must assign a share 
which is of size at least - times the size of the secret k. n 

log n 
We have better upper bounds when the access structure is based on graphs. 

If, for example, the graph on which the access structure is based is complete 
multipartite, then there exists an ideal perfect secret sharing scheme for A (see 
[3]) and the size of the shares becomes log ISl/pmax + log IKI. Otherwise, using 
bounds found in [17] we can say that log IV,l 5 log IKl(A + 1)/2, where A is the 
maximum degree of the graph. Moreover, better bounds on V, can be obtained 
if the graph is acyclic. 

5 Conclusions 

We have shown how to realize computational secret sharing schemes for general 
access structures. Our schemes are nearly optimal: the size of each share is equal 
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to the minimal theoretical bound plus a piece of information whose length does 
not depend on the secret size but just on the security parameter. 

We remark that the size of the shares that must be kept secret is an important 
issue: in many cases such shares must be kept in mind or in tamper-resistant 
devices, so they must be very small. In our scheme, only V, must be secret, the 
piece G, could be in a hard disk or in a floppy disk. Moreover, the size of the 
V,  does not depend on the size of the secret file. Hence for very long files our 
schemes are very useful. 

Finally, observe that computational schemes are not weaker than perfect ones 
in practical viewpoint since most of the time people uses an encryption function 
to distribute the shares or a pseudo-random generator to produce them. Hence 
our schemes are very convenient and practical for very long file. 
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A Information theory 

In this appendix we review the information theoretic concepts we are going to  
use. For a complete treatment of the subject the reader is advised to  consult [7] 
and [8]. 

Given a probability distribution { P ( Z ) } ~ ~ X  on a set X, we define the en t ropy  
of X ,  H ( X ) ,  as 

H ( X )  = - CP(4 1 0 g P ( 4 3 .  
X € X  

The entropy H(X) is a measure of the average information content of the ele- 
ments in X or, equivalently, a measure of the average uncertainty one has about 
which element of the set X has been chosen when the choices of the elements 
from X are made according to the probability distribution { p ( x ) } x e x .  The en- 
tropy enjoys the following property 

0 I H(X) I log 1x1, (31 

where H ( X )  = 0 if and only if there exists 50 E X such that p(x0) = 1; 
H ( X )  = log (XI  if and only if p(x) = l/lXl, Vx E X. 

Given two sets X and Y and a joint probability distribution { p ( x ,  y ) } x e ~ , y e ~  
on their Cartesian product, the condi t ional  en t ropy  H ( X I Y ) ,  also called the 
equivocation of X given Y ,  is defined as 

y e Y  x e x  

The conditional entropy can be written as H ( X I Y )  = C Y c y p ( y ) H ( X I Y  = y)  
where H ( X I Y  = y) = - CzeX p(xly) logp(a1y) can be interpreted as the average 
uncertainty one has about which element of X has been chosen when the choices 
are made according to  the probability distribution {p(x ly)}xt~ ,  that is, when 
it is known that the value chosen from the set Y is y. From the definition of 
conditional entropy it is easy to see that 

H ( X I Y )  2 0. (4) 

All logarithms in this paper are of base 2 
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If we have n + 1 sets XI ,..., X,,Y the entropy of X I  .. . X ,  given Y can be 
written as 

H ( X 1 . .  . X,IY) = H ( X 1 I Y )  + H(XZIX1Y)  + . . . + H ( X , I X I . .  . X,-IY) (5) 

The mutual information between X and Y is defined by 

I ( X ;  Y )  = H ( X )  - H ( X 1 Y )  ( 6 )  

and enjoys the following properties: 

I ( X ;  Y )  = I (Y;  X ) ,  

I(X;T’) 2 0 ,  

(7) 

and 

from which one gets 

with equality if and only if X and Y are independent. 

H ( X )  2 H ( X I Y ) ,  
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