SCIENCE AND ENGTNEERING RESEARCH COUNGIL

MULLAPD RADIO ASTRONOMY OBSEKVATORY
MT Project Issued by
MT Design Note 1.2

18-July-1985
Revised
R.Fadman

23 August 1985

General Single Dish Data Format System

1 PREFACE TO MTDN1. 1

This note was formally GSDD. It is now being issued as a new note with some revisions for the new documentation scheme.

On Rachael Padman's suggestion, I have inc'uded a description of the basic set as the first chapter as an introduction to the concepts and also to ensure that extensions of the system can grow from a common core. The original "Full System" is now described in the second chapter. Many of the items are not: properly defined yet and there is still redundancy to eliminate.

JHF

2 PREFACE TO MTDN1. 2

Clarification and amendments to item description. The mapping parameter section has been revised to reflect the more general MRAO mapping scheme.

CONTENTS

1 PREFACE TO MTDNJ. 1 1
2 PREFACE TO MTDN1. 2 1
CHAPTER 1 INTRODUCTION
1.1 GENERAL 1-1
1.2 TAPE DESCRIPTION 1-1
1.3 FILE DESCRIPTION 1-1
CHAPTER 2 THE BASIC SYSTEM
2.1 THE NEED FOR A MINYMUM FORMAT 2-1
2.2 MINIMUM REQUIRED DATA 2-1
2.3 FILE YROLOG DATASET DESCRIPTION 2-2
2.4 SCAN DATASE'T DESCRIPTION 2--2
2.5 SCAN DATASET PROLOG 2-3
2.6 SCAN DATASET HEADER 2-4
2.6.1 Scalar Class 1 : Identity Parameters 2-4
2.6 .2 Scalar Class 2 : Space-Time Parameters 2-4
2.7 SCAN DATASEJ TABLES 2-5
2.7 .1 Vector Class 1: Backend Table 2-5
2.7.2 Vector Class 2 : Data Table 2-6
CHAP'TER 3 THE FULL SYSTEM
3.1 SCAN DATASET HEADER 3-3
3.1.] Scalar Class 1 : Identity Parameters 3-3
3.1.2 Scalar Class 2 : Space-Time Parameters 3-3
3.1.3 Scalar Class 3 : Telescope Parameters 3-4
3.1 .4 Scalar Class 4 : Observing Parameters 3-5
3.i.5 Scalar Class 5 : Environment Parameters 3-5
3.1.6 Scalar Class 6 : Mapping Parameters 3-6
3.1.7 Scalar Class 7 : Spectral Line Parameters 3-6
3.1.8 Scalar Class 8 : Continumm Parameters 3-7
3.1.9 Scalar Class 9 : Froquency Parameters 3-7
3.2 SCAN DATASET TABTES 3-7
3.2.1 Vector Class 1: Receiver Table 3-7
3.2.2 Vector Class 2 : Dat:a Table 3-8
3.2.3 Vector Class 3 : Pointing History Table 3-8
3.2.4 Vector CJass 4 : Phase Control Table 3-9
3.2.5 Vector Class 5 : Phase Value Table 3-9
3.2.6 Vector Class 6 : Phase Timing Table 3-9

CHAPTER 1

INTRODUCTION

1.1 GENERAL

This document contains the specification and explanation of the General Single Dish Data Format System. This specification has been drawn up according to the requirements of the NRAO, IRAM, and UK/NL MT teams.

The specification defines a physical format for the storage of single dish data and for its transport between the computer systems participating in its definition.

The specification defines the meaning of the data items to be transported so that reduction software developed at any institution can be used on data produced by any of the telescopes.

The FITS format has not been chosen as the primary transport system because it would require:
o A large amount of formatted header information giving overheads in the time taken to create it and to store it.

- The DEC Backup Utility offers a nore reliable method of reading and writing error free tapes.

It is important to nete that this format can easily be converted to FITs.

1.2 TAPE DESCRIPTION

Data will be transported in DEC VAX/VMX RMS compatible files on DEC BACKUP tapes or on ANSI standard tapes.

BACKUP is a highly reliable facility for writing and reading tapes and should be used wherever possible.

1.3 FILE DESCRIPTION

The DEC VAX/VMS RMS file organisation is SEQUENTIAL with fixed length 512 byte records.

Such an organisation permits random access with VAX/RMS.
Files of this organisation are compatible with the ANSI standard, i.e disk files of this type can be directly copied to ANSI standard tape. Such files contain the minimum RMS control information (None?). The file definition is given below:

TITLE "GSDD.DAT"		
IDENT	"'6-JUN-1985 $18: 35: 48$	VAX-11 FDL Editor"
SYSTEM		
	SOURCE	$\mathrm{VAX} / \mathrm{VMS}$

FILE

ALLOCATION	$\langle-\rangle$
BEST TRY CONTIGUOUS	yes
EXTENSION	$\langle-\rangle$
NAME	"GSDD.DAT"
ORGANIZATION	sequential

RECORD

BLOCK_SPAN	no
CARRIAGE_CONTROL	carriage_return
FORMAT	fixed
SIZE	512

Users of the GSDD format on a VAX should copy the above information into an FDL file and use it for creating/converting files to the GSDD format.

The file consists of datasets. There are only two kinds of datasets, the "File Prolog" dataset and the "Scan" dataset. Each file will contain, one and only one File Prolog dataset. Each file will contain at least one Scan dataset. Datasets are positioned by record number.

Datasets are composed of "items". An item may a scalar(variable) or a vector(array). Items will be positioned in terms of 64 bit locations (quadwords). Items may not cross location boundaries. Locations are numbered from the start of each "Prolog". The permitted data types for a scalar or a vector element are:

Logical	$\mathrm{L} * 1$ (Unsigned byte)
Integer	$\mathrm{I} * 4$ (Signed longword)
Real	$\mathrm{R} * 8$ (Double precision)
Character	$\mathrm{C} * 8$ (8 byte character string)

If no value can be given to an item, the null value of the items should be:
Logical 256
Integer - 2147483647 ('FFFF'X - Minimum value of signed longword)
Real - $1 \mathrm{E}+37$ (Lower range of double precision)
Character ' (Blank String)

The bytes 1-8 in a location are ordered left to right. The bit structure of the data types follows the rules for DEC machines. Where a location is occupied by a single integer the integer will be placed in bytes 1 to 4 . The rest of the location must be padded with another integer.

CHAPTER 2

THE BASIC SYSTEM

This chapter describes a minimum format, as a way of introducing a practical data structure. This minimum format is intended primarily for reduced spectra. The information included in the header is regarded as a minimum complete set which will enable the data to be reduced and displayed.

2.1 THE NEED FOR A MINIMUM FORMAT

If we want observatories in general (many of which do not support computer professionals on their staffs) to adopt our proposed standard data format, we have to make it accessible. This means it must be possibie to write a recognizable file without (1) requiring any specialist knowledge of data-base systems, and (2) without having to provide lots of data items which may be either unknown or unnecessary in most contexts. Furthermore, if we all decide to adopt this format as the basis of our data redrction system, then it must be possible to include data from other wavebands with a minimum of difficulty. In practice this means that we should not require radio-specific data (aperture efficiency etc). The data items selected here refer specifically to the spectrum, and not to the observation.

There is a second reason for wanting to define a minimum format. This is one of completeness. It is not always intuitively obvious just which parameters are required to specify an observation fully.

2.2 MINIMUM REQUIRED DATA

In order to identify a spectrum absolutely for later use the following items are required:

1. The time at which the spectrum was measured (by convention the start time)
2. The position on the sky at which the centre of the beam was pointing.
3. The X co-ordinate system of spectrum (e.g. centre frequency and channel spacing).
4. The noise level on the spectrum.

Any reduction system must be capable of operating on data which have only this information, even if not all possible operations in the reduction system can be carried out without further details. With the information given above it is always possible to:

1. Display the data with properly labelled axes.
2. Perform any 1-d data-type-independent operations (baseline removal, addition, subtraction, normalization by a control spectrum, etc).
3. Merge the data (via averaging or otherwise) with data from other instruments (subject to an intelligent understanding on the part of the observer).

2.3 FILE PROLOG DATASET DESCRIPTION

The File Prolog will appear at the beginning of the file which describes the structure of the file in terms of scans. The contents of the file prolog are as follows:

Item	Location	Format	\| Value
GSDD File Version Number	1	I*4	1
Number of scans in the file		I*4	N
Start record of scan 1	2	I*4	
Start record of scan 2		1*4	,
:	:	:	
:	:	:	
Start record of scan N		I*4	

2.4 SCAN DATASET DESCRIPTION

A Scan Dataset consists of:
o The Scan Dataset Prolog describing the structure of the rest of the dataset. The Scan Dataset Prolog starts in the first record of the Scan Dataset.
o The Scan Header containing the quantities which are fixed in the time domain of the observation (i.e they are "parameters" of the scan). These quantities must be scalar items. The Scan Header starts on a new record of the Scan Dataset.

- The Scan Data Tables containing the quantities which are variable in the time domain of the obscrvation (e.g: raw data) or are dimensioned by parameters of the scan (c.g: the backend data). These quantities are vectors items. Each Scan Data Table starts on a new record of the Scan Dataset.

2.5 SCAN DATASET PROLOG

The first item is the GSDD structure version number. This is provided so that software processing the scan dataset can check if the structure is compatible with the program.

The next 2 items, the number of scalar and vector classes, give the number of subdivisions of header information and the the number of tables respectively.

The next 3 items of the prolog record the positions of the start of the Scan Header and Scan Data Tables.

The rest of the prolog describes the hierarchical structure of the header and table information. This information is provided to permit dynamic reading of the scan dataset. This facility is necessary so that addition of new items to the dataset can be automatically handled by programs processing scan dataset information. New items can be added logically to the dataset - i.e they can be added at the end of a group of related items, without modifications of the header processing programs.

Item Name	Value	Mnemonic	Location
GSDD Structure Version Number	1	SOVER	1
Number of Scalar Classes	2	SONSC	
Number of Vector Classes	2	SONVC	2
Start Record of Scalar Classes	2	SOSCS	
Start Record of Vector Class 1	< >	SOVC1	3
Start Record of Vector Class 2	< >	SOVC2	
Number of Scalar Class 1 Characters	1	SINSC	5
Number of Scalar Class 1 Integers	0	SINSI	
Nuaber of Scalar Class 1 Logicals	0	SINSL	6
Number of Scalar Class 1 Reals	1	SINSR	
Number of Scalar Class 2 Characters	2	S2NSC	7
Number of Scalar Class 2 Integers	0	S2NSI	
Number of Scalar Class 2 Logicals	0	S2NSL	8
Number of Scalar Class 2 Reals	9	S2NSR	
Vector Class 1 Dimensionality	1	V1DIM	9
Number of Vector Class 1 Characters	3	V1NVC	
Number of Vector Class 1 Integers	1	V1NVI	10
Number of Scalar Class 1 Logicals	0	V1NSL	
Number of Vector Class 1 Real	5	V1NVR	11
Vector Class 2 Dimensionality	5	V2DIM	
Number of Vector Class 2 Characters	0	V2NSC	12
Number of Vector Class 2 Integers	0	V2NSI	
Number of Scalar Class 2 Logicals	0	V2NSL	13
Number of Vector Class 2 Reals	1	V2NSR	

The description of each table is prefixed by the parameters of the scan which dimensions them. The "dimensionality" of the table is the number of these parameters in front of the table.

2.6 SCAN DATASET HEADER

This is the regarded as the minimum header information required to identify the scan and process it.

2.6.1 Scalar Class 1 : Identity Parameters

The Identity Parameters award a scan a unique designation.

Telescope Descriptor
Identifies the telescope.
Examples: UKMT, NRAO-TUC, NRAO-GB, IRAM

Scan Number

Sequence number for the scan.
With the Telescope Descriptor it provides a unique identity tag. The integral value of the Scan Number defines the object observed in an obscrving run. The fractional part of the $S c a n$ Number defines the repeat number of the scan of the object.

2.6.2 Scalar Class 2 : Space-Time Parameters

The Space-Time parameters define the telescope and target locations in time and space.

| Item | Mnemonic \|Location| Format | Unit | | | |
| :---: | :---: | :---: | :---: | :---: |
| Equinox Code | S2EQN | 3 | C*8 | |
| Coordinate System Code | S2CSC | 4 | C*8 | |
| Telescope Geographic Longitude | S2TLN | 5 | R *8 | DEGREE |
| Telescope Geographic Latitude | S2TLA | 6 | $\mathrm{R} * 8$ | DEGREE |
| Telescope Altitude | S2TAL | 7 | R*8 | METER |
| Universal Time Date at scan start | S2UT1 | 8 | $\mathrm{R} * 8$ | \|. YYYY.MMDD |
| Universal Time Hour at scan start | S2UT2 | 9 | R*8 | HOURS |
| Epoch of Lamda, Beta in Universal Timel | S2EPH | 10 | R *8 | YEAR |
| Source Lamda | S2KSL | 11 | R *8 | DEGREE |
| Source Beta | S2KSB | 12 | R *8 | UEGREE |
| Source Pi | S2KSX | 13 | $R * 8$ | DEGREE |

Equinox codes
Possible values are 'B1950' and 'J2000'.
The Equinox Codes determinc the time reference frame.

Coordinate System codes

```
    0 = Galactic (1II, bII)
    1=1950 RA,DEC
    2 = Epoch RA, DEC
    3 = Mean RA, DEC at the start of the scan
    4 = Apparent RA, DEC
    5 = Apparent HA, DEC
    6 = 1950 Ecliptic
    7 = Epoch Ecliptic
    8 = Mean Ecliptic at the start of the scan
    9 = Apparent Ecliptic
10 = Azimuth, Elevation
11 = Supergalactic
```

Times
Universal Time Hour is the fractional day of Universal. Time Date.
Coordinates
Lambda, Beta and Pi depend on the Coordinate System. The Pi coordinate (e.g. Horizontal Parallax) is included to allow reduction of observations of solar system objects.

2.7 SCAN DATASET TABLES

2.7.1 Vector Class 1: Backend Table

| I tem | \| Mnemonic |Location | | Format | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Number of Backends | V1NBC | 1 | I*4 | |
| Backend Descriptor | V1BKE | 2 | C*8 | |
| Data Precision Code | \| V1DPC | $12+\mathrm{V} 1 \mathrm{NBC}$ | C*8 | |
| Data Calibration Code | ! V1CAL | 2+2*V1NBC | $\mathrm{C} \div 8$ | |
| Number of Channels | VINCH | $12+3 * V 1 N B C$ | I*4 | |
| Reference Frequency | V1 REF | \| $2+4 *$ V1NBC | R *8 | MHZ |
| Observed Frequency | \| V1CF | $\mid 2+5 *$ V1NBC | R*8 | MHZ |
| Frequency Resolution | \| V1BPP | \| $2+6 *$ V1NBC | R *8 | MHZ |
| Thermal Noise Level | ! V1NOI | ! $2+7 \%$ V1NOI | R *8 | DN |

Data Precision Codes

$$
\begin{aligned}
& 0=\mathrm{L} 1 \\
& 1=\mathrm{I} 2 \\
& 2=\mathrm{I} 4 \\
& 3=\mathrm{R} 4 \\
& 4=\mathrm{R} 8
\end{aligned}
$$

[^0]
Reference Frequency

Frequency for which LSR velocity corrections etc have been applied. Usually this will be the rest frequency of the molecule being observed.

Observed Frequency

Frequency observed - i.e. frequency corresponding to centre channel of backend (centre channel defined by $\operatorname{FLOAT}(\mathrm{NCH}+1) / 2$.). It represents the frequency to which the receiver front-end is actually tuned. The observed frequency, reference frequency and frequency increment (see below) are always sufficient to define the frequency scales, independent of which velocity reference is used for reduction.

Frequency Resolution

Channel width of spectrometer. May be positive or negative, depending on frequency conversions in the receiver and backend.

Thermal Noise level

Units are DN - Data numbers, i.e. same units as data values. This is a more useful measure than integration time and system temperature, as it is the only quantity required for averaging with optimal weighting.

We still don't know how to deal with non-linear frequency scales, - as would be required for some Acousto-Optic spectrometers, or possibly optical/IR data. I suggest that a zero frequency resolution be used as a flag to indicate that a non-linear scale is in use, and that we find a way to include the actual frequencies with the data - perhaps a frequency table similar to the pointing history table.

2.7.2 Vector Class 2 : Data Table

Item	Mnemoni	\|Location	Format	Unit
Number of Backends	\| V2NBC	1	I*4	
Number of Integrations per Scan	\| V2NIS	1	I*4	
Number of Cycles per Integration	\| V2NCI	2	I*4	
Number of Phases per Cycle	\| V2PCC	1	I*4	
Number of Channels +1	\| V2NCH	3	1 I*4	
Data(NCH, PCC, NCI, NIS, NBC)	V2DAT	4	$1 \mathrm{R} * 8 \cdot 1$	

Definitions

1. PHASE - Particular combination of switched parameters. Thus a simple beam-switched observation would involve 2 phases (on- and off-source).
2. CYCLE - Complete observation; involving measurement of the power level for each channel for one complete set of phases.
3. INTEGRATION - Normally the data will be accumulated over a number of cycles before being reduced. An integration comprises this number of cycles.
4. SCAN - Complete observation of source. In general could include a number of integrations. Reasons for breaking up a scan into more than one integration include guarding against interference or loss of data due to a system failure.

Each set of channel values is tagged with the universal time of measurement. offset from the start of the scan. This time is given in seconds. The time is the first item in the list of data numbers of each channel, hence the data array is dimensioned $\mathrm{NCH}+1$. In the basic system all array dimensions except NCH would be equal to 1 .

CHAPTER 3

THE FULL SYSTEM

The file prolog is the same as in the basic system. The full system has many more entries in the scan header and more data tables. Whereas the basic system is expected to be used with reduced data only, the full system is intended to contain all the information necessary to reduce the data.

The full system is expected to used by the institutions participating in the specification of the format. Explanations of items in the basic system are not repeated here.

Item Name	Value	Mnemonic	Location
GSDD Structure Version Number	1	SOVER	1
Number of Scalar Classes	9	SONSC	
Number of Vector Classes	5	SONVC	2
Start Record of Scalar Classes	2	S0SCS	
Start Record of Vector Class 1	4	SOVCl	3
Start Record of Vector Class 2	< >	S0VC2	
Start Record of Vector Class 3	$<>$	S0VC3	4
Start Record of Vector Class 4	$<>$	SOVC4	
Start Record of Vector Class 5	$<>$	S0VC5	
Number of Scalar Class 1 Characters	8	SINSC	5
Number of Scalar Class 1 Integers	0	SINSI	
Number of Scalar Class 1 Logicals	0	SINSL	6
Number of Scalar Class 1 Reals	1	SINSR	
Number of Scalar Class 2 Characters	2	S2NSC	7
Number of Scalar Class 2 Integers	0	S2NSI	
Number of Scalar Class 2 Logicals	0	S2NSL	8
Number of Scalar Class 2 Reals	16	S2NSR	
Number of Scalar Class 3 Characters	1	S3NSC	9
Number of Scalar Class 3 Integers	0	S3NSI	
Number of Scalar Class 3 Logicals	0	S3NSL	10
Number of Scalar Class 3 Reals	11	S3NSR	
Number of Scalar Class 4 Characters	0	S4NSC	11
Number of Scalar Class 4 Integers	0	S4NSI	
Number of Scalar Class 4 Logicals	16	S4NSL	-
Number of Scalar Class 4 Reals	2	S4NSR	12
Number of Scalar Class 5 Characters	0	S5NSC	13

3.1 SCAN DATASET HEADER

3.1.1 Scalar Class 1 : Identity Parameters

| Item | Mnemonic \|Location| Format | Unit | | | |
| :---: | :---: | :---: | :---: | :---: |
| Telescope Descriptor | S1TEL | 1 | C*8 | |
| Frontend Descriptor | S1 RCV | 3 | C*8 | |
| Project Identification | S1PID | 2 | C*8 | |
| Observer Name 1 | SlON1 | 4 | C*8 | |
| Observer Name. 2 | S10N2 | 5 | $\mathrm{C} * 8$ | |
| Observer Name 3 | S10N3 | 6 | C*8 | |
| Source Name 1 | S1SN1 | 7 | C*8 | |
| Source Name 2 | S1 SN2 | 8 | C*8 | |
| Scan Number | SlSNO | 9 | $\mathrm{R} * 8$ | |

Frontend Descriptor
Identifies the frontend.
Examples: <TBD>
Project Identification
Identifies the observing program.
Observer Name
Holds the name(s) of the observer(s).

Source Name
Holds the name of the object scanned,

3.1.2 Scalar Class 2 : Space-Time Parameters

The Space-Time parameters define the telescope and target locations in time and space.

Reference $\mathrm{Pi} \quad|\mathrm{S} 2 \mathrm{SP}|$| R | $\mathrm{R} * 8$ | DEGREE |
| :--- | :--- | :--- | :--- |

3.1.3 Scalar Class 3 : Telescope Parameters

The Telescope Parameters are the constants for the dish.

| Item | \| Mnemonic |Location| Format | Unit | | | |
| :---: | :---: | :---: | :---: | :---: |
| Mounting Code | S3MNT | 28 | C*8 | |
| Azimuth/RA Pointing Correction | S3HPC | 29 | $\mathrm{R} * 8$ | ARCSEC |
| Elevation/Dec Pointing Correction | S3VPC | 30 | $\mathrm{R} * 8$ | ARCSEC |
| Antenna diameter | S3DIA | 31 | $\mathrm{R} * 8$ | METER |
| Collimation Error | S3CE | 32 | R*8 | ARCSEC |
| Bend Error | S3BE | 33 | $\mathrm{R} * 8$ | ARCSEC |
| Antenna Beam Width (FWHM) | S3HP | 34 | R *8 | ARCSEC |
| Antenna Aperture Efficiency | S3AE | 35 | $\mathrm{R} * 8$ | \% |
| Antenna Beam Efficiency | S3ABE | 36 | R*8 | \% |
| Focus X Displacement | S3FOX | 37 | R*8 | MM |
| Focus Y Displacement | S3FOY | 38 | $\mathrm{R} * 8$ | MM |
| Focus Z Displacement | S3FOZ | 39 | R*8 | MM |

Telescope Mounting Code

$1=A Z / E L$
$2=R A / D E C$

Pointing corrections

Define a systematic correction to be applied to each value in the pointing history table (see below).

Antenna diameter
Nominal diameter of the dish.

Col.limation error
Defines ...?

Bend error
Defines ...?

Antenna beam width
Full width half maximum of the antenna response.
Aperture efficiency
The ratio of the total power observed to the total power incident on the telescope.

Antenna beam efficiency
Roughly the fraction of the beam lying in a diffraction limited main beam. We could settle on Kutner and Ulichs' definition of Eta-fss if there are no strong objections.

Focus Displacement
Given in a a right handed coordinate system with the origin at the focus, the Z-Axis pointing outwards along the primary principal axis, the X-Axis in the vertical plane pointing towards the Sky. The Focus Displacement records any scan dependent displacement of the focus from this origin.

3.1.4 Scalar Class 4 : Observing Parameters

The observing parameters define the type of scan and the switching frequencies.

| | Mnemonic | Location | Format | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Item | S4STC | 40 | L*1 | |
| Scan Type Flags | S4SRT | 42 | $R * 8$ | SECOND |
| Length of Cycle | S4INT | 43 | $R * 8$ | SECOND |
| Scan Integration Time | | | | |

Scan Type Flags

```
1 Line (/continuum)
2 Total Power (/switched)
3 Position Switched
4 Frequency Switched
5 Load Switched
6 Beam Switched
7 Sky - Horn Switched
8 Polarization Switched
9 Correlation frontend
10
: Spare
16
```

Scan Integration Time
Total integration time excluding blanking time, but including all phases of a switching cycle, including off-source phases.

3.1.5 Scalar Class 5 : Environment Parameters

The Environment parameters define the external physical conditions affecting the telescope.

| Item | Mnemonic | Location | Format | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Ambient Temperature | S5AT | 44 | $\mathrm{R} * 8$ | C |
| Pressure | S5PRS | 45 | $\mathrm{R} * 8$ | BAR |
| Relative Humidity | S5RH | 46 | $\mathrm{R} * 8$ | $\%$ |
| Index of Refraction | S5IR | 47 | $\mathrm{R} * 8$ | |

3.1.6 Scalar Class 6 : Mapping Parameters

The Mapping Parameters define the pattern traced by the centre of the beam on the sky, excluding slews.

| Item | Mnemonic \|Location| Format | Unit | | | |
| :---: | :---: | :---: | :---: | :---: |
| XY Reference frame code | S6AC | 48 | $C * 8$ | |
| Lambda at Origin | S6LZ | 49 | $\mathrm{R} * 8$ | DEGREE |
| Beta at Origin | S6BZ | 50 | $\mathrm{R} * 8$ | DEGREE |
| U unit vector 1 ambda | S6UL | 51 | $\mathrm{R} * 8$ | DEGREE |
| U unit vector beta | S6UB | 52 | $\mathrm{R} * 8$ | DEGREE |
| V unit vector lambda | S6VL | 53 | $\mathrm{R} * 8$ | DEGREE |
| V unit vector beta | S6VB | 54 | $\mathrm{R} * 8$ | DEGREE |
| Number of Starting U Cell | S6SX | 55 | $\mathrm{R} * 8$ | |
| Number of Starting V Cell | S6SY | 56 | $\mathrm{R} * 8$ | |
| Number of U points | S6NXS | 57 | $\mathrm{R} * 8$ | |
| Number of V points | S6NYS | 58 | $\mathrm{R} * 8$ | |

XY Reference Frame Code

```
    1 = Cartesian
    2 = Polar
```

Lamda and Beta as in class 2.
The u - and v - unit vectors define the mapping frame in terms of the chosen $X Y$ co-ordinate frame. The mapping cell is assumed to have dimensions (1,1) in the UV frame.

3.1.7 Scalar Class 7 : Spectral Line Parameters

| | Mnemonic | Location | Format | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Velocity Definition Code | S7VDEF | 59 | $\mathrm{C} * 8$ | |
| Velocity Reference Code | S7VREF | 60 | $\mathrm{C} * 8$ | |
| Velocity | S 7 VL | 61 | $\mathrm{R} * 8$ | KM / S |
| Reference Scan Number | S 70 SN | 62 | $\mathrm{R} * 8$ | |
| Bad Channel Value | S7BCV | 63 | $\mathrm{R} * 8$ | K |

Velocity Definition Code

$$
\begin{aligned}
& 0=\text { Radio } \\
& 1=\text { Optical }
\end{aligned}
$$

Velocity Reference Code

```
0= Local Standard of Rest
1 = Heliocentric
```

$2=$ Geocentric
$3=$ Baricentric

3.1.8 Scalar Class 8 : Continuum Parameters

| | \mid Mnemonic | \mid Location | Format | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Item | S8ST | 64 | $\mathrm{R} * 8$ | K |
| Source Temperature | S8RMS | 65 | $\mathrm{R} * 8$ | |
| RMS of Mean | S8BAS | 66 | $\mathrm{R} * 8$ | |
| Baseline Value | | | | |

3.1.9 Scalar Class 9 : Frequency Parameters

3.2 SCAN DATASET TABLES

3.2.1 Vector Class 1: Receiver Table

Item	1 Mnemon	ation	Format	Unit
Number of Backends	\| V1NBC		I*4	
Backend Descriptor	\| V1BKE	2	C*8	

Spectral Data Precision Code	V1DPC	$\mid 2+\mathrm{V} 1 \mathrm{NBC}$	C*8	
Spectral Data Calibration Code	V1CAL	$\|2+2 * V 1 N B C\|$	$\mathrm{C} * 8$	
Number of Channels	V1CH	$\mid 2+3 * V 1$ NBC \|	I*4	
Reference Frequency	V1REF	$\mid 2+4 *$ V1NBC \|	$\mathrm{R} * 8$	MHZ
Observed Frequency	V1CF	$12+5 *$ V1 NBC	$\mathrm{R} * 8$	MHZ
Frequency Resolution	V1BPP	$\mid 2+6 * V 1 \mathrm{NBC}$	$\mathrm{R} * 8$	MHZ
Thermal Noise Level	V1NOI	$12+7 \times \mathrm{V} 1 \mathrm{NBC}$	R*8	DN
Receiver Temperature	V1RT	$12+8 *$ V1NBC	$\mathrm{R} * 8$	K
Calibration Temperature	V1CT	$12+9 * V 1 N B$	$\mathrm{R} * 8$	K
Calibration Factor	V1CF	$\mid 2+10 * V 1$ NB	$\mathrm{R} * 8$	V / K
Source System Temperature	V1SST	$\mid 2+11 * \mathrm{~V} 1$ NBC \mid	$\mathrm{R} * 8$	K
Reference System Temperature	V1RST	$\mid 2+12 * V 1$ NBC \mid	R*8	K
Reference Point	V1RP	$\|2+13 * V 1 N B C\|$	R*8	
Velocity at Reference Point	V1XV	$\|2+14 * V 1 N B C\|$	$\mathrm{R} * 8$	KM/S
Delta Velocity	V1DX	$\|2+15 * \mathrm{~V} 1 \mathrm{NBC}\|$	$R * 8$	KM/ S
Opacity	V1T0	$\|2+16 * V 1 N B C\|$	$\mathrm{R} \div 8$	NEPERS
H20 Opacity	V1W0	$\|2+17 * V 1 N B C\|$	$\mathrm{R} * 8$	NEPERS
H2O Temperature.	V1WT	$\mid 2+18 \%$ V1NBC \mid	$\mathrm{R} * 8$	C
02 Temperature	V10T	$\mid 2+19 *$ V1 NBC \mid	- $\mathrm{R} * 8$	C

3.2.2 Vector Class 2 : Data Table

Each set of channel values is tagged with the time of measurement as in the basic system. Cross-referencing with the pointing history table is therefore possible. The time is the first item in the list of data numbers of each channel, hence the data array is dimensioned $\mathrm{NCH}+1$.

3.2.3 Vector Class 3 : Pointing History Table

(records offsets from commanded positions during source mapping)

I tem	Mnemo	\|Location	Format	Unit
Number of position measurements	\| V3mes	1	I*4	1
Time of Measurement	\| V3MST	2	$1 \mathrm{R} * 8$	HoUR
Longitude Measurement offset	\| V3ling	$12+$ V3MES	I $R * 8$	1. DEGREE
Latitude Measurement offset	V3LAT	$12+2 \times$ V3MES	$1 \mathrm{R} * 8$	1 DEGREE

The longitude and latitude offsets are given in the coordinate system of the mounting type (i.e AZ/EL or RA/DEC).
3.2.4 Vector Class 4 : Phase Control Table

Item	Mnemonic \|Location		Format \| Unit	
Number of Switching variables	\| V4NSV	1	I*4	
Variable Descriptor Code	1 V̇4VDC	2	C*8	
Variable Amplitude	I V4VAM	$2+\mathrm{V} 4 \mathrm{NSV}$	R*8	

3.2.5 Vector Class 5 : Phase Value Table

Item	Mnemonic \|Location		Format	Unit
Number of Switching variables	I V5NSV	1	I*4	
Number of Phases per Cycle	\| V5PPC		I*4	
Phase Values: PHV(PPC, NSV)	1 V 5 PHA	2	L*1	

3.2.6 Vector Class 6 : Phase Timing Table

| Item | \| Mnemonic |Location | Format | Unit | | | |
| :---: | :---: | :---: | :---: | :---: |
| Number of Phases per Cycle | V6PPC | 1 | I*4 | |
| Fractional time per phase: TPP(PPC) | V5 TPP | 2 | $\mathrm{R} * 8$ | |

Example Two switch variables (focus and position).
3 positions, 2 foci.
Implies 8 phases, assumed equal length.
Posn on $0 \quad 00111100$
Posn $\mathrm{Hi} \quad+30^{\prime \prime} \quad 11000000$
Posn Lo $\quad-30^{\prime \prime} \quad 000000011$

Focus $\mathrm{Hi}+54 \mathrm{~mm} 10101010$
Focus Lo -54 mm 011010101
This switching arrangement would be described as:

```
Vector Class 4
NSV = 5
VDC = Posn on, Posn Hi, Posn Lo, Focus Hi, Focus Lo.
VAM = 0 +30 -30 +54 
```

Vector Class 5
NSV $=5$
$P P C=8$
$\mathrm{PHV}=0,0,1,1,1,1,0,0$,
$1,1,0,0,0,0,0,0$,
$0,0,0,0,0,0,1,1$,
$1,0,1,0,1,0,1,0$,
$0,1,0,1,0,1,0,1$
Vector Class 6
$\mathrm{PPC}=8$
$\mathrm{TPP}=.125, .125, .125, .125, .125, .125, .125, .125$

[^0]: Data Calibration Codes
 Units of data - e.g. 'K'; 'Jy', etc

