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Summary 

If de Sitter’s hydrostatic equations are developed independent of the 
external potential theory, the hydrostatic geopotential coefficient Jh 
occurs explicitly on the right-hand side of these equations. Since this 
Jh has to be treated as an unknown in the solution of the problem, it be- 
comes rather difficult to solve these hydrostatic equations independently, 
regardless of which of the dynamical parameters associated with the 
Earth is taken as the initial datum. The solution of these equations is 
possible, however, with the help of a boundary condition derived from 
the external potential theory which neither assumes nor discounts the 
presence of equilibrium conditions in the Earth’s interior. If a general 
solution is constructed on these lines, the three particular solutions, 
usually quoted in literature, stem from it in the wake of the appropriate 
assumptions. Of course, out of these the only meaningful solution is that 
corresponding to the polar moment of inertia as the initial datum. It is 
essential that the solution be constructed in this way in order to demon- 
strate clearly the correct structure of the problem of hydrostatic 
equilibrium. 

The anomalous gravity field of the Earth referred to the hydrostatic 
figure is compared with that referred to the international reference 
ellipsoid. 

Introduction 

In a previous paper (Khan 1968) I modified de Sitter’s (1924) equations of the 
classical hydrostatic theory to make their development independent of the external 
potential theory. It was shown that if these modified equations are solved all by 
themselves, as advocated by some investigators, the quantity Jh which appears 
explicitly on the right-hand side of these equations is equated with the satellite- 
determined non-hydrostatic J and the solution becomes of rather doubtful geo- 
physical significance. If the Jh is to be treated as an unknown, as it should be, it 
becomes rather difficult to solve these equations for S,, no matter what parameter 
(i.e., polar or mean moment of inertia, dynamical flattening H or satellite-determined 
J )  is defined as the initial datum, and one has to look for some additional boundary 
condition. Now, if hydrostatic equilibrium exists, the actual figure of the earth 
should be coincident (Caputo 1965) with the equilibrium figure predicted for it from 
its rate of rotation. This is the definition of the hydrostatic figure and hence con- 

* Received in original form 1968 November 12. 

177 

3 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/18/2/177/653743 by U

.S. D
epartm

ent of Justice user on 16 August 2022



178 Alohammad Asadullah Khan 

stitutes a natural boundary condition for its solution. In this paper we present a 
general solution based on de Sitter’s development which makes use of this boundary 
condition and discuss the various possible particular solutions which can be obtained 
from it. The procedure outlined here is really a restatement of the method of de 
Sitter (1924) who did indeed employ a relation obtained from the external potential 
theory to eliminate Jh from his equations (Khan 1968). However, since this elimin- 
ation was made at an early stage in the development of his equations, it could possibly 
remain undetected and lead to a confusion of the correct structure of the method, as 
pointed out earlier by Khan (1968). We will demonstrate the correct structure of 
the problem of hydrostatic equilibrium clearly and show that the three frequently 
quoted hydrostatic solutions, namely the hydrostatic flattening fh corresponding to 
(1) the polar or mean moment of inertia, (2) the dynamical flattening H ,  and (3) the 
difference between the polar and equatorial moment of inertia can be obtained from 
it simply by defining the appropriate initial datums. Of course, the most meaningful 
solution from the geophysical point of view is still the one in which the polar or the 
mean moment of inerita of the hydrostatic model is taken equal to that determined 
for the real earth (O’Keefe 1960; Henriksen 1960; Jeffreys 1963; Khan 1967). This 
hydrostatic model is used as a reference to estimate the minimum strength in the 
Earth’s interior required to support the stresses arising from the departure of the 
real Earth from hydrostatic equilibrium and also, to compute the Earth’s anomalous 
gravity field since such a field would reflect the long wavelength hydrostatic stresses 
which may exist in the Earth’s crust and mantle. 

Modified hydrostatic equations 

The modified equations are given as 

and 

where 

f;, = flattening the Earth would have if it were in hydrostatic equilibrium 

f’ =fh-4%h2 

C = moment of inertia of the Earth about the polar axis 

hl = mass of the Earth 

a, = equatorial radius of the Earth 

o2 rm3 
GM 

m = -  

w = angular velocity of the Earth 

r, = the radius of the Earth at which sin’ 4 = 3, where 4 is latitude 
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Hydrostatic equilibrium of the Earth 179 

q, = surfacc value of the parameter y which depends upon the internal 
density distribution of the Earth 

1, = surface value of the parameter 1 which is defined as the departure 
from unity of the average value of a function F(q)  (occurring in the 
hydrostatic theory) over the range of integration 

With I., = 0, one can eliminate qs froin equations (I)  and (2) and get (Khan 
1968) an explicit expression for f h  as 

(4) 

where 
‘lo = 9 F 2 q ”  - 1 

q‘= 1-q 

F = l + l s  
A = 1 7 - 5 -  I 1 4  4 2 4 0  - %‘.F2qq’ 

6 = z3gF2q’ Jh - $m+i$Jh  

I 1 
and 

6 - 2.0 
2 - 2 l ’ l 2  Jh 

The quantity 6, is approximately of the order 0f.h and 6, is of the order off,’. 
Considering the potential in free space of an ellipsoid of revolution which has 

both polar and equatorial symmetry, we can obtain the following equation: 

J = f-$m-$f’+~mf. (5 )  
From this equation one can easily obtain an expression forf, i.e., 

f = J ++nz + &Jm + $ J 2  +&m’. ( 6 )  
Equations (5 )  and (6) are derived from the external potential theory with no 

assumptions whatsoever as to the conditions existing in the Earth’s interior (Caputo 
1965). Hence, they should be valid irrespective of whether or not hydrostatic 
equilibrium conditions exist inside the Earth. Thus equation (5) or (6) should relate 
the observed J with real flattening in a non-hydrostatic case and hydrostatic J with 
hydrostatic flattening in a hydrostatic case. For convenience of discussion, let us 
write equation ( 5 )  or (6) as 

G( J , f )  = 0 (7) 

G(J,,f; ,)  = 0 (8) 

for a non-hydrostatic case and as 

for a hydrostatic case. 
In case of an Earth in hydrostatic equilibrium, equations (3) and (8) must be 

satisfied simultaneously. This is equivalent to saying that if we can determine Jh,fh 
obtained from equation (3) or (8) should be identical. 

General solution of the problem of hydrostatic equilibrium 

(3) which can be written as 
TO construct the general solutions, we have to examine the hydrostatic equation 

F(WH,  J h 9 . h )  0- ( 3 4  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/18/2/177/653743 by U

.S. D
epartm

ent of Justice user on 16 August 2022



180 Mohammad Asadullah Khan 

In terms of the basic parameters, the above equation can be written as 

F(C, Ah, 0, a, M )  = 0. (3b) 
If the hydrostatic equilibrium exists, the figure of the Earth predicted from the 
external potential theory should be coincident with the hydrostatic figure. This 
gives us an important boundary condition of the problem, i.e., equations (3) and 
( 5 )  must match at the outer boundary of the Earth. Hence, 

or more specifically, 
F(m, H~ Jh7-h) = G(Jh,-h)  

(9) 
=$Jh2+ffl J h - k f f Z  

where 
5 

E l =  l i - n m  

a2 = +m+&m2 

and the other quantities appearing in equation (9) are defined in equation (4). 
Equation (9) gives the general solution of the problem of hydrostatic equilibrium. 

The particular solutions are obtained by examining the left-hand side of equation 
(9) in the form of equation (3a) or (3b) and by properly defining the basic parameters 
occurring in that equation. If the rate of rotation o and the mass M are chosen to 
be the same for the hydrostatic Earth and the real Earth, there are three possible 
solutions which correspond to the following boundary conditions 

(0, M ,  a, C) = constant 

(a, M ,  a, H )  = constant 

(w, M ,  a, J )  = constant 

298.0 - 

2970 - 
k- 
T 
k- 

296.0 - 

295.0 - 
\ 
\ 

" I '  ' ' ' ' I '  ' ' ' ' ' ' ' ' ' I 2940 
1070 I080 1090 1100 1110 

J2h  x lo6 

FIG. 1. Graphical solution of equation (9) for M' a* H )  = constat. 
(w, M, a, C) 
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Hydrostatic equilibrium of the Earth 181 

t, 2 95.0 

294.0 
324000 325000 326000 3 2 7000 328000 

f fx108 

FIG. 2. Graphical solution of equation (9) for (w, M, a, J )  = constant. 

Graphical solutions of the general hydrostatic equation (9) are given in Fig. 1 for 
the first two cases and in Fig. 2 for the last case. The plots of the function G(Jh,fh) 
are shown by solid curves while those of F(m, H ,  Jh,fh) subject to the set of boundary 
conditions mentioned in equation (10) are shown by broken-line curves. It is obvious 
from the shape of these plots that each set has an unique intersection point in the 
region in which we are interested. Note that in Fig. 1 the abcissa is scaled in terms 
of J Z h  where JZh = 3Jh. In all the solutions, As has been taken equal to zero. It was 
shown previously (Khan 1968) that reasonable variations in values of As do not 
affect the solution critically. The rate of rotation o is treated constant via the para- 
meter m in all the solutions given in Figs 1 and 2. 

For the case when (0, M ,  a, C) = constant, the hydrostatic flattening is 
f h - l  = 299.75k0.05 and the hydrostatic J is Jh = 1607-49 x This value is 
about the same as reported by Henriksen (1960), O’Keefe (1960) and in a previous 
paper by me (Khan 1967). These investigators used de Sitter’s hydrostatic equations 
per se. The results obtained from the two procedures are identical because, as 
pointed out before, de Sitter’s specific elimination of Jh (with the help of a relation 
obtained from the external potential theory) from the hydrostatic equations in order 
to obtain his equations for hydrostatic theory is, in fact, equivalent to the procedure 
given in this paper. However, since this elimination is hidden in the development of 
de Sitter’s second order hydrostatic theory (Khan 1968) it can lead to the erroneous 
impression that, in de Sitter’s second order theory, the value of hydrostatic flat- 
tening can be obtained from a solution of equation (3), (3a) or (3b) alone. Hence, 
it is more instructive to state it explicitly. For this model, the hydrostatic flattening 
is smaller than the real flattening. 

Ther merit of this solution lies in the fact that the polar moment of inertia 
of the hydrostatic Earth is equal to that of the real Earth, as obtained from 
observational data on the geopotential coefficient J and the dynamical flattening H .  
Consequently, it is possible to avoid certain dynamical complications which arise 
when the moment of inertia of the hydrostatic model is taken different from that of 
the real Earth. 
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182 Mohammad Asadullah Khan 

For the case when (w, M ,  a, H )  = constant, the hydrostatic flattening is 
f h  = 297.29+0.05 and the corresponding hydrostatic J is J,, = 1635.225~ 
This value of the hydrostatic flattening is very near the flattening obtained in pre- 
satellite times. The pre-satellite method essentially consisted of predicting J from the 
hydrostatic theory and using it in equation ( 5 )  to compute hydrostatic flattening which 
was then assumed to give the best approximation to the real flattening. Since equation 
(5) is valid both for hydrostatic or non-hydrostatic equilibrium the pre-satellite 
method will tend to give similar results as the solution proposed here, if the only 
known data used in the solution is the dynamical flattening H. However, it is evident 
that the method proposed here is simpler and more efficient than the pre-satellite 
method, but one has to assume 1, = 0, if one wants to avoid the iterative procedure 
of pre-satellite times. 

However, the polar moment of inertia of this hydrostatic model is greater than 
the real Earth and this introduces some dynamical complications. It would imply a 
change in the radial stratification of the Earth, such as would result because of the 
equatorial bulge of the real Earth being more compressed and consequently the real 
Earth having a higher density gradient than the hydrostatic state would require. 
This creates the problem of suggesting some reasonable physical phenomenon res- 
ponsible for such a process. Some increase in the polar moment of inertia could 
possibly be accounted for by the fact that when the earth readjusts itself to the 
equilibrium shape defined by the above model, there will be an increase in the polar 
moment of inertia because of the expansion of the equatorial bulge to conform to the 
new figure. Approximate calculations show, however, that this factor can only 
account for a small fraction of the total variation.required by this model, This is 
the hydrostatic model of pre-satellite times when the geopotential coefficient J for 
real Earth was not precisely known and hence, the moment of inertia of the real 
Earth could not be determined. 

For the hydrostatic model (0, M, a, J )  = constant, the solution of the equation 
G(J, , f , )  = 0 will obviously give a constant value of flattening as can be seen from 
Fig. 2. The hydrostatic flattening for this model is fh-’ = 298.2910.05 and the 
corresponding hydrostatic value of H is H = 3260.50 x However, the polar 
moment of inertia of the hydrostatic model is greater than that of the real Earth and 
the dynamical problems in this case are of a similar nature as those enumerated for 
the second hydrostatic model. 

The results of the above three solutions are summarized in Table 1. 

Minimum strength of the Earth 

The stress differences arising because of the departure of the Earth from hydro- 
static equilibrium for the model (a, M ,  a, C) = constant are given by Jeffreys (1963). 
On the supposition that the stresses are supported by strength (1) down to the core, 
or (2) down to a depth of 0.1 of the Earth’s radius, the strength S needed to support 
the P ,  inequality is given as follows: 

Case 1 
S = 4.3 x AJ2 x 10” dyne cm-’ = 4.7 x lo7 dyne cm-’. 

S = 7.9 x AJ, x 10l2 dyne cm-’ = 8.7 x lo’ dynecm-2 
Case 2 

Gravity field referred to the equibrium figure 

The equilibrium model (w, M ,  a, C) = constant is used as reference for com- 
puting the anomalous gravity field of the Earth,‘and this gravity field is compared 
with that computed relative to the international reference ellipsoid. The field is an 
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8th degree and order spherical harmonic representation using Kozai’s (1964) zonal 
harmonic coefficients and Gaposhkin’s (1966) tesseral harmonic coefficients ob- 
tained from satellite orbital data. If the anomalous gravity field is to be used for 
any studies regarding the Earth’s crust and mantle, it must be computed with reference 
to the equilibrium figure (O’Keefe & Kaula 1963; O’Keefe 1965; Fischer 1967) 
of the Earth, because such a figure is a figure of zero stress and departures from it 
will, inter alia, be indicative of the hydrostatic stresses existing in the Earth’s crust 
and mantle. The gravity anomalies referred to the international reference ellipsoid 
are shown in Fig. 3. Fig. 4 shows the gravity anomalies referred to an ellipsoid with 
flattening 1/299.75. It is obvious from a comparison of Fig. 3 with Fig. 4 how the 
picture of the anomalous gravity field is a function of the ellipsoid adopted as the 
reference figure. This is also evident from some of the discussions given by O’Keefe & 
Kaula (1963), and Fischer (1967). In any case it is clear that the satellite-determined 
gravity anomalies referred to the equilibrium figure do not exceed 43 milligals 
(roughly) for an 8th harmonic representation of the gravity field, as seen from 
Fig. 3 or 4. The most pronounced gravity anomaly is negative and occurs in the 
Indian Ocean just to the south of Ceylon. The magnitude of this anomaly (Fig. 3) 
reduces by about 11 milligals to 32 milligals (Fig. 4) when the gravity field is referred 
to the equilibrium figure. However, in that case (Fig. 4) the positive gravity anomaly 
over the New Guinea and Borneo Islands areas gets accentuated by an almost equal 
amount. Also the negative gravity anomaly located to the east of Zapadno and 
Sibirskaya in U.S.S.R. becomes more pronounced by about 11 milligals. The well- 
pronounced positive-anomaly to the south-southwest of Iceland in Fig. 3ifades some- 
what in Fig. 4. The two negative anomalies flanking the southern tip of North 
America are equally observable in both the representations, while the positive 
anomaly over and around Peru is much more pronounced in Fig. 4. The negative 
anomaly over the Hudson Bay area is decidedly more pronounced in Fig. 4. Several 
other contrasting features of interest can be pointed out from a study of the two 
gravity field representations. It is interesting to note that the variance of the 
anomalous field is 145 mgal’ when referred to the hydrostatic figure and 136 mgalZ 
with reference to the international reference ellipsoid. 

Review of the previous methods 

perspective in the light of the general solution. 

de Sitter’s pre-satellite method 
This method is discussed in detail in numerous papers (de Sitter 1924; de Sitter & 

Brouwer 1938; Bullard 1948; Jeffreys 1952; Message 1955; Khan 1968). 11 is taken 
as the initial datum and an attempt is made to find a value of Jh which would be 
compatible with the selected value of H (both Jh and H being functions of m). This is 
done by estimating a quantity q = 312 C/Ma,” ( J  = qfJ) from a knowledge of the 
internal density distribution of the Earth (de Sitter 1924; Bullard 1948). However, the 
method is obsolete because the satellite determination of J has made it possible to 
compute the quantity q for the real earth directly. Even if for some reason, one 
still desires to compute fh from H only as the initial datum, it is much simpler to use 
the solution outlined in this paper because considerable labour can be saved provided 
one agrees to put As = 0 which does not make any appreciable difference anyway 
(Khan 1968). 

However, it must be appreciated that de Sitter’s whole effort was really directed 
to devise a method which would give the best approximation to the real flattening of 
the Earth, not necessarily the hydrostatic flattening. 

Below we give a very brief review of the previous methods, examining them in 
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Hydrostatic equilibrium of the Earth 187 

Previous post-satellite methods 
JeKreys (1963) has given an excellent numerical method based on a simplified 

density model. He computes the various hydrostatic parameters from the first order 
theory and evaluates the second order correction terms by the numerical evaluation 
of the appropriate integrals. The method reported in this paper could be really 
regarded as a counterpart of Jeffreys’ (1963) method with the exception that I have 
employed de Sitter’s development of the hydrostatic theory. 

In the previous applications of de Sitter’s development to compute the hydro- 
static flattening, however, it is sometimes claimed that using satellite-determined J ,  
and dynamical flattening H and hence knowing the polar moment of inertia of the 
Earth, fh should be computed from the hydrostatic equations alone without using 
any controls from the external potential theory. If this is accepted, the use of de 
Sitter’s (1924) equations is automatically ruled out because these equations are 
derived with the help of external potential theory. Consequently, the modified 
equations (Khan 1968) should be used, but in that case, the equations cannot be 
solved because of the explicit appearance of J h  on the right-hand side of these equations 
and because of the necessity of treating this quantity as an unknown in the solution. 
If these modified equations are solved with the help of satellite-determined J (i.e., 
J = J h ) ,  one gets the results given in the last section of Table 2. The first part of 
Table 2 gives the results obtained by different investigators using de Sitter’s 
equations. The important results of Jeffreys (1963) and Ledersteger (1967) on 
hydrostatic flattening are not included in Table 2 because they did not use de Sitter’s 
equations in a way which is pertinent to the discussion given in this paper. 

Summary and conclusions 

If the hydrostatic geopotential coefficient J ,  appearing explicitly on the right-hand 
side of the modified hydrostatic equations is treated as an unknown in the solution 
of the hydrostatic equilibrium problem, it becomes rather difficult to solve these 
equations all by themselves and one has to look for an additional boundary condition. 
This boundary condition is inherent in the definition of the hydrostatic equilibrium 

Table 2 

Comparison of hydrostatic flattening za1ue.s 

Post-satellite method 

f h  = hydrostatic flattening; f = 1 /298-25 ? 0.05 

(a) Using de Sitter’s equations 

Henriksen (1960) 
OKeefe (1960)* 
Khan (1967) 

A- f - 1  -f-1 

300.0 +1.75 
299.8 1-1.55 
299.86 f 0.05 -1- 1.61 

(b) Using modified hydrostatic equations alone? 

From Khan (1968) 296.70 0*05$ -1.55 
297.04 f 0.05s -1.21 

*Henriksen’s calculations. 
?See text. 
$Based on m = 0.00344980 (Khan 1967; Jeffreys 1963), H = 040327364, (Khan 1967) and 

§Based on rn = 040344992 (Henriksen 1960), H = 090327070 and J2 = 0~00108270. 
J2 = 0901082645 (Kozai 1964). 

J2 = 0.00108270. 
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and is derived from the external potential theory which neither assumes nor discounts 
the existence of hydrostatic equilibrium in the Earth’s interior. It requires that the 
equilibrium figure of the Earth coincide exactly with that predicted from the external 
potential theory, if hydrostatic equilibrium exists in the Earth’s interior and is stated 
in terms of equation (5). The solution obtained with the help of this boundary 
condition turns out to be sufficiently general so that the three most frequently men- 
tioned particular solutions in literature can be obtained from this by merely defining 
the appropriate initial datum. Geophysically, the most meaningful model, of course, 
remains to be the one whose polar or mean moment of inertia is held equal to that 
of the real Earth, calculated from the satellite-determined J and the dynamical 
flattening H computed via the constant of precession of the real Earth. For this 
hydrostatic model the flattening is fh-’ = 299.75. The solution is significant in that 
it demonstrates the correct structure of the problem of hydrostatic equilibrium of 
the Earth. The anomalous gravity field of the Earth with respect to the international 
reference ellipsoid and the equilibrium figure is shown in Figs 3 and 4. The 
equilibrium figure provides the best reference for computing the anomalous field 
because such a field would also reflect the hydrostatic stresses which become very 
important in geophysical studies on a regional scale. 
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