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Abstract 

In this work, we give the general solution sequential linear conformable fractional differential 

equations in the case of constant coefficients for 𝛼 ∈ (0,1]. In homogeneous case, we use a 

fractional exponential function which generalizes the corresponding ordinary function. In 

non-homogeneous case, we present to fractional the method of variation of parameters for a 

particular solution of sequential linear conformable fractional differential equations.  
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1. Introduction 

Though L’Hospital has suggested the concept of fractional derivative long back (17
th

 

century), still its reflection is being found in several researches of recent centuries. For 

defining the fractional derivative, most researchers preferred to apply the integral form. 

Caputo and Riemann-Liouville are the two frequently used definitions. For understanding 

these definitions in detail, readers are referred to read [1-3].  

Recently fractional derivative and associated integral have been freshly defined by Khalil and 

colleagues [4]. New definitions take the advantages from the limit form as used in the regular 

derivatives. This new theory has been improved by Abdeljawad [5].  For instance, he gives 

definitions of left and right conformable fractional derivatives, Taylor power series 

representation and Laplace transformation of certain functions, fractional integration by parts 

formulas, chain rule and Gronwall inequality.  

In short time, a lot of studies about new fractional derivative definition have been presented. 

Some works in this field are with regard to the power series solutions around an ordinary 

point and a regular-singular point homogeneous sequential linear conformable fractional 

differential equations of order 2𝛼 in the case of variable coefficients [6,7,8,9], conformable 
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fractional fourier series [10], boundary value problems for conformable fractional differential 

equations [11,12] and existence and uniqueness theorems for sequential linear conformable 

fractional differential equations [13]. 

While the general solution has been found for Riemann-Liouville fractional derivative, 𝛼-

exponential function which is Mittag-Leffler-type function is used [14]. However we present 

the general solution using a fractional exponential function for sequential linear conformable 

fractional differential equations in the case of constant coefficients. 

The Method of Variation of Parameters are not applicable due to a noticeable lack of basic 

properties in the Riemann-Liouville derivative. However this case for conformable fractional 

derivative is not valid. Finally, In this work, we present the fractional method of variation 

parameters to derive a particular solution. 

 

2. Conformable Fractional Calculus 

Definition 2.1. 𝑓: [0, ∞) → ℝ let a function. Then for all 𝑡 > 0, the conformable fractional 

derivative of f  of order   is defined as 

𝑇𝛼(𝑓)(𝑡) = lim𝜀→0
𝑓(𝑡+𝜀𝑡1−𝛼)−𝑓(𝑡)

𝜀
        

where 𝛼 ∈ (0,1). 

If f  is 𝛼-differentiable in some  (0, 𝑎), 𝑎 > 0 and lim𝑡→0+ 𝑓(𝛼) (𝑡) exists, then define 

    𝑓(𝛼)(0) = lim𝑡→0+ 𝑓(𝛼) (𝑡).         

Theorem 2.1. Let 𝛼 ∈ (0,1] and 𝑓, 𝑔 be 𝛼-differentiable at a point 𝑡 > 0. Then 

(1) 𝑇𝛼(𝑎𝑓 + 𝑏𝑔) = 𝑎𝑇𝛼(𝑓) + 𝑏𝑇𝛼(𝑔), for all 𝑎, 𝑏 ∈ ℝ. 

(2) 𝑇𝛼(𝑡𝑝) = 𝑝𝑡𝑝−𝛼 for all 𝑝 ∈ ℝ. 

(3) 𝑇𝛼(𝜆) = 0 for all constant functions 𝑓(𝑡) = 𝜆. 

(4) 𝑇𝛼(𝑓𝑔) = 𝑇𝛼(𝑓)𝑔 + 𝑓𝑇𝛼(𝑔). 

(5) 𝑇𝛼(𝑓/𝑔) =
𝑇𝛼(𝑓)𝑔−𝑓𝑇𝛼(𝑔)

𝑔2
. 

(6) In addition, If 𝑓 is differentiable, then 𝑇𝛼(𝑓(𝑡)) = 𝑡1−𝛼 𝑑𝑓

𝑑𝑡
. 

Additionaly, conformable fractional derivatives of certain functions as follow: 

(i) 𝑇𝛼 (sin
1

𝛼
𝑡𝛼) = cos

1

𝛼
𝑡𝛼. 

(ii) 𝑇𝛼 (cos
1

𝛼
𝑡𝛼) = − sin

1

𝛼
𝑡𝛼 . 

(iii) 𝑇𝛼 (𝑒
1

𝛼
𝑡𝛼

) = 𝑒
1

𝛼
𝑡𝛼

. 
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Definition 2.2. 𝑓: [𝑎, ∞) → ℝ let a function. Then for all 𝑡 > 𝑎, 𝛼 ∈ (0,1) the “conformable 

fractional integral” of 𝑓 of order 𝛼 is 

(𝐼𝛼
𝑎𝑓)(𝑡) = ∫ 𝑓(𝑥)𝑑𝛼(𝑥)

𝑡

𝑎

= ∫ 𝑥𝛼−1𝑓(𝑥)𝑑𝑥
𝑡

𝑎

 

where the integral is the usual Riemann improper integral. 

Theorem 2.2. Let 𝑓: [𝑎, ∞) → 𝑅 be any continuous function and 0 < 𝛼 ≤ 1. Then for all 

𝑡 > 𝑎 

𝑇𝛼𝐼𝛼
𝑎𝑓(𝑡) = 𝑓(𝑡). 

Theorem 2.3. Let 𝑓, 𝑔: [𝑎, 𝑏] → ℝ be two functions such that 𝑓, 𝑔 is differentiable. Then 

∫ 𝑓(𝑡)𝑇𝛼(𝑔)(𝑡)𝑑𝛼(𝑡)
𝑏

𝑎

= 𝑓𝑔|𝑎
𝑏 − ∫ 𝑔(𝑡)𝑇𝛼(𝑓)(𝑡)𝑑𝛼(𝑡)

𝑏

𝑎

. 

3. General Solution in the Homogeneous Case  

In this section we introduce a method, analogous to that for the ordinary case. Let 𝑦 be 𝑛 

times 𝛼-differentiable function for 𝛼 ∈ (0,1]. The most general sequential linear 

homogeneous conformable fractional differential equation with constant coefficients is 

𝑇𝛼
𝑛 𝑦 + 𝑝𝑛−1 𝑇𝛼

𝑛−1 𝑦 + ⋯ + 𝑝2 𝑇𝛼
2 𝑦 + 𝑝1𝑇𝛼𝑦 + 𝑝0𝑦 = 0.                                  (1) 

where 𝑇𝑛
𝛼𝑦 = 𝑇𝛼𝑇𝛼 … 𝑇𝛼𝑦, 𝑛 times, and the coefficients 𝑝0, 𝑝1, … , 𝑝𝑛−1 are real constants. 

Left-hand of equation (1) rewrite by 

𝐿𝛼[𝑦] = ( 𝑇𝛼
𝑛 + 𝑝𝑛−1 𝑇𝛼

𝑛−1 + ⋯ + 𝑝2 𝑇𝛼
2 + 𝑝1𝑇𝛼 + 𝑝0)𝑦.               (2) 

If the equation (1) have 𝑦1(𝑡), 𝑦2(𝑡), … , 𝑦𝑛(𝑡) that are linearly independent solutions, general 

solution is 

𝑦 = 𝑐1𝑦1(𝑡) + 𝑐2𝑦2(𝑡) + ⋯ + 𝑐𝑛𝑦𝑛(𝑡). 

where 𝑐1, 𝑐2, … , 𝑐𝑛 are arbitrary constants [13]. 

Lemma 3.1. Let 𝐿𝛼[. ] is a linear operator with constant coefficients and 𝛼 ∈ (0,1]. For 𝑡 > 0 

𝐿𝛼 [𝑒
𝑟
𝛼

𝑡𝛼

] = 𝑃𝑛(𝑟)𝑒
𝑟
𝛼

𝑡𝛼

 

where 𝑟 is real or complex constant and 𝑃𝑛(𝑟) = 𝑟𝑛 + 𝑝𝑛−1𝑟𝑛−1 + ⋯ + 𝑝0. 

Proof : Conformable derivatives of 𝑦 = 𝑒
𝑟

𝛼
𝑡𝛼

are 

𝑇𝛼𝑦 = 𝑟𝑒
𝑟

𝛼
𝑡𝛼

, 𝑇2
𝛼𝑦 = 𝑟2𝑒

𝑟

𝛼
𝑡𝛼

,…, 𝑇𝑛
𝛼𝑦 = 𝑟𝑛𝑒

𝑟

𝛼
𝑡𝛼

.                    (3) 
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If 𝑦 = 𝑒
𝑟

𝛼
𝑡𝛼

 and the equations (3) substitute in 𝐿𝛼[𝑦] = ( 𝑇𝛼
𝑛 + 𝑝𝑛−1 𝑇𝛼

𝑛−1 + ⋯ + 𝑝2 𝑇𝛼
2 +

𝑝1𝑇𝛼 + 𝑝0)𝑦, then 

𝐿𝛼 [𝑒
𝑟

𝛼
𝑡𝛼

] = (𝑟𝑛 + 𝑝𝑛−1𝑟𝑛−1 + ⋯ + 𝑝0)𝑒
𝑟

𝛼
𝑡𝛼

, 

𝐿𝛼 [𝑒
𝑟
𝛼

𝑡𝛼

] = 𝑃𝑛(𝑟)𝑒
𝑟
𝛼

𝑡𝛼

 

is obtained. Hence, the proof  is completed. 

As for the usual case, we shall seek the solution of the equation (1) in the form 𝑦 = 𝑒
𝑟

𝛼
𝑡𝛼

, 

where 𝑟 is a real or complex constant. It follows from the equation (2) and Lemma 3.1 that 

𝐿𝛼 [𝑒
𝑟

𝛼
𝑡𝛼

] = 𝑃𝑛(𝑟)𝑒
𝑟

𝛼
𝑡𝛼

= 0. 

𝑃𝑛(𝑟) = 𝑟𝑛 + 𝑝𝑛−1𝑟𝑛−1 + ⋯ + 𝑝0 is called as the characteristic polynomial.  For all 𝑟 we 

have 𝑒
𝑟

𝛼
𝑡𝛼

≠ 0. Hence, 𝑃𝑛(𝑟) = 𝑟𝑛 + 𝑝𝑛−1𝑟𝑛−1 + ⋯ + 𝑝0 = 0 is obtained. Here,  

𝑟𝑛 + 𝑝𝑛−1𝑟𝑛−1 + ⋯ + 𝑝0 = 0                                             (4) 

is called as the characteristic equation.  

Lemma 3.2: If 𝑟 is a root of the characteristic equation (4), then 

𝜕

𝜕𝑟
[𝐿𝛼 [𝑒

𝑟
𝛼

𝑡𝛼

]] = 𝐿𝛼 [
𝜕

𝜕𝑟
𝑒

𝑟
𝛼

𝑡𝛼

] 

and 

𝜕𝑙

𝜕𝑟𝑙 𝑒
𝑟

𝛼
𝑡𝛼

= (
𝑡𝛼

𝛼
)

𝑙

𝑒
𝑟

𝛼
𝑡𝛼

. 

Proof: 𝐿𝛼[. ] is linear as is seen from Theorem 4.3 in [13]. Also,  
𝜕

𝜕𝑟
 is linear as is known the 

classical derivative. Hence, we can written 

𝜕

𝜕𝑟
[𝐿𝛼 [𝑒

𝑟

𝛼
𝑡𝛼

]] = 𝐿𝛼 [
𝜕

𝜕𝑟
𝑒

𝑟

𝛼
𝑡𝛼

]. 

Moreover, by the help of classical derivative, it seen that  

𝜕𝑙

𝜕𝑟𝑙
𝑒

𝑟

𝛼
𝑡𝛼

=
𝑡𝑙𝛼

𝛼𝑙
𝑒

𝑟

𝛼
𝑡𝛼

. 
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Lemma 3.3: Let  𝑟1 is a root which multiplicity 𝜇1 of the characteristic equation (4). Then, for 

𝑙 = 0,1, … 𝜇1 − 1, the functions 

𝑦1,𝑙(𝑡) = (
𝑡

𝛼

𝛼

)

𝑙

𝑒
𝑟1
𝛼

𝑡𝛼

 

are solutions of equation (1). 

Proof: By using Lemma 3.2, we can written  

{𝐿𝛼 [
𝜕𝑙

𝜕𝑟𝑙
𝑒

𝑟

𝛼
𝑡𝛼

]}
𝑟=𝑟1

= {
𝜕𝑙

𝜕𝑟𝑙
[𝐿𝛼 [𝑒

𝑟

𝛼
𝑡𝛼

]]}
𝑟=𝑟1

. 

Considering the equation 𝐿𝛼 [𝑒
𝑟

𝛼
𝑡𝛼

] = 𝑃𝑛(𝑟)𝑒
𝑟

𝛼
𝑡𝛼

 and using classical Leibniz rule,  

{𝐿𝛼 [
𝜕𝑙

𝜕𝑟𝑙
𝑒

𝑟
𝛼

𝑡𝛼

]}
𝑟=𝑟1

= ∑ (
𝑙
𝑗
) [

𝜕𝑙−𝑗

𝜕𝑟𝑙−𝑗
(𝑒

𝑟
𝛼

𝑡𝛼

)]
𝑟=𝑟1

𝜕𝑗

𝜕𝑟𝑗
[𝑃𝑛(𝑟)]𝑟=𝑟1

𝑙

𝑗=0

 

is obtained. Since 𝑟1 is a root of multiplicity 𝜇1 of the characteristic equation (4), for 𝑗 =

0,1, … , 𝜇1 − 1, we have  

[
𝜕𝑗

𝜕𝑟𝑗 𝑃𝑛(𝑟)]
𝑟=𝑟1

= 0. 

From Lemma 3.2, 
𝜕𝑙

𝜕𝑟𝑙 𝑒
𝑟

𝛼
𝑡𝛼

= (
𝑡

𝛼

𝛼
)

𝑙

𝑒
𝑟1
𝛼

𝑡𝛼

= 𝑦1,𝑙(𝑡). Hence,   

𝐿𝛼[𝑦1,𝑙(𝑡)] = 0 

is obtained. 

Corollary 3.1: Let 𝑟1, 𝑟2, … , 𝑟𝑘 are distinct roots of, respectively, multiplicity 𝜇1, 𝜇2, … , 𝜇𝑘 of 

the characteristic equation (4). So, linearly independent set of solutions to equation (1) for 

these roots is as following: 

⋃ {(
𝑡

𝛼

𝛼
)

𝑙

𝑒
𝑟𝑚

𝛼
𝑡𝛼

}
𝑙=0

𝜇𝑚−1
𝑘
𝑚=1 . 
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Proof: Corollary 4.1 is seen by Lemma 3.3 and Theorem 4.5 in [13]. 

Lemma 3.4: Let 𝑟1 ve 𝑟1̅ (𝑟1 = 𝜃 + 𝑖𝛽, 𝛽 ≠ 0 ) are complex roots which multiplicity 𝜎1 of the 

characteristic equation (4). Hence, for 𝑙 = 0,1, … 𝜎1 − 1, the functions 

𝑦1,𝑙(𝑡) = (
𝑡

𝛼

𝛼

)

𝑙

𝑒
𝜃
𝛼

𝑡𝛼

[𝑐𝑜𝑠 (
𝛽

𝛼
𝑡𝛼) + 𝑖𝑠𝑖𝑛 (

𝛽

𝛼
𝑡𝛼)] 

and 

𝑦2,𝑙(𝑡) = (
𝑡

𝛼

𝛼

)

𝑙

𝑒
𝜃
𝛼

𝑡𝛼

[𝑐𝑜𝑠 (
𝛽

𝛼
𝑡𝛼) − 𝑖𝑠𝑖𝑛 (

𝛽

𝛼
𝑡𝛼)] 

are linearly independent solutions of equation (1). 

Proof: Since 𝑟1 = 𝜃 + 𝑖𝛽 is a root of multiplicity 𝜎1 of the characteristic equation (4), 

according Lemma 3.3, the functions  

𝑦1,𝑙(𝑡) = (
𝑡

𝛼

𝛼

)

𝑙

𝑒
𝜃+𝑖𝛽

𝛼
𝑡𝛼

 

are solutions of the equation (1). Analogously, for 𝑟1̅ = 𝜃 − 𝑖𝛽, the functions 

𝑦2,𝑙(𝑡) = (
𝑡

𝛼

𝛼

)

𝑙

𝑒
𝜃−𝑖𝛽

𝛼
𝑡𝛼

 

are also solutions of the equation (1). For these solutions, if the Euler’s identity:   

𝑒𝑖
𝛽
𝛼

𝑡𝛼

= 𝑐𝑜𝑠
𝛽

𝛼
𝑡𝛼 + 𝑖𝑠𝑖𝑛

𝛽

𝛼
𝑡𝛼 

𝑒−𝑖
𝛽
𝛼

𝑡𝛼

= 𝑐𝑜𝑠
𝛽

𝛼
𝑡𝛼 − 𝑖𝑠𝑖𝑛

𝛽

𝛼
𝑡𝛼 

is used, the solutions given in Lemma 3.4 are get.  

Corollary 3.2: Let {𝑟𝑚, 𝑟�̅̅̅�}𝑚=1
𝑝

, 𝑟𝑚 = 𝜃𝑚 + 𝑖𝛽𝑚, 𝛽𝑚 ≠ 0, are distinct 2𝑝 roots of multiplicity 

{𝜎𝑚}𝑚=1
𝑝

 of the characteristic equation (4). In this case, for these roots, elements of following 

sets are linearly independent solutions of the equation (1): 
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⋃ {(
𝑡

𝛼

𝛼

)

𝑙

𝑒
𝜃𝑚
𝛼

𝑡𝛼

[𝑐𝑜𝑠 (
𝛽𝑚

𝛼
𝑡𝛼) + 𝑖𝑠𝑖𝑛 (

𝛽𝑚

𝛼
𝑡𝛼)]}

𝑙=0

𝜎𝑚−1𝑝

𝑚=1

 

and 

⋃ {(
𝑡

𝛼

𝛼
)

𝑙

𝑒
𝜃𝑚

𝛼
𝑡𝛼

[𝑐𝑜𝑠 (
𝛽𝑚

𝛼
𝑡𝛼) − 𝑖𝑠𝑖𝑛 (

𝛽𝑚

𝛼
𝑡𝛼)]}

𝑙=0

𝜎𝑚−1
𝑝
𝑚=1 . 

These sets have linearly independent 2 ∑ 𝜎𝑚
𝑝
𝑚=1  solutions. 

Proof: Proof is seen by Lemma 3.4 and Theorem 4.5 in [13]. 

Theorem 3.1: Let {𝑟𝑗}
𝑗=1

𝑘
 are distinct 𝑘 roots of multiplicity {𝜇𝑗}

𝑗=1

𝑘
 and {𝜆𝑗 , 𝜆�̅�}

𝑗=1

𝑝
, 𝜆𝑗 =

𝜃𝑗 + 𝑖𝛽𝑗 , 𝛽𝑗 ≠ 0,  are distinct 2𝑝 roots which multiplicity {𝜎𝑗}
𝑗=1

𝑝
of the equation (1) such as 

∑ 𝜇𝑗
𝑘
𝑗=1 + 2 ∑ 𝜎𝑗

𝑝
𝑗=1 = 𝑛 . So, linearly independent set of solutions to the equation (1) is union 

of following sets: 

⋃ {(
𝑡

𝛼

𝛼
)

𝑙

𝑒
𝑟𝑚

𝛼
𝑡𝛼

}
𝑙=0

𝜇𝑚−1
𝑘
𝑚=1 , 

⋃ {(
𝑡

𝛼

𝛼

)

𝑙

𝑒
𝜃𝑚
𝛼

𝑡𝛼

[𝑐𝑜𝑠 (
𝛽𝑚

𝛼
𝑡𝛼) + 𝑖𝑠𝑖𝑛 (

𝛽𝑚

𝛼
𝑡𝛼)]}

𝑙=0

𝜎𝑚−1𝑝

𝑚=1

 

and 

⋃ {(
𝑡

𝛼

𝛼
)

𝑙

𝑒
𝜃𝑚

𝛼
𝑡𝛼

[𝑐𝑜𝑠 (
𝛽𝑚

𝛼
𝑡𝛼) − 𝑖𝑠𝑖𝑛 (

𝛽𝑚

𝛼
𝑡𝛼)]}

𝑙=0

𝜎𝑚−1
𝑝
𝑚=1 . 

Proof: The proof is seen by Corollary 3.1, Corollary 3.2 and Theorem 4.5 in [13].  

Example 3.1. 𝑇2
𝛼𝑦 + 4𝑇𝛼𝑦 + 3𝑦 = 0. 

The characteristic equation of the above equation is 

𝑟2 + 4𝑟 + 3 = 0. 

The roots are  
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𝑟 = −3 and 𝑟 = −1. 

Hence, the general solution is 

𝑦(𝑡) = 𝑐1𝑒
−3

𝛼
𝑡𝛼

+ 𝑐2𝑒
−1

𝛼
𝑡𝛼

. 

Example 3.2. 𝑇2
𝛼𝑦 − 10𝑇𝛼𝑦 + 25𝑦 = 0. 

The characteristic equation of the above equation is 

𝑟2 − 10𝑟 + 25 = (𝑟 − 5)2 = 0. 

The roots are 𝑟1,2 = 5. Hence, the general solution is 

 
5

1 2

t

y c c t e


   . 

Example 3.3. 𝑇2
𝛼𝑦 + 𝑇𝛼𝑦 + 𝑦 = 0. 

The characteristic equation of the above equation is 

𝑟2 + 𝑟 + 1 = 0. 

The roots are  

𝑟1 = −
1

2
+ 𝑖

√3

2
 and 𝑟2 = −

1

2
− 𝑖

√3

2
. 

Hence, the general solution is 

𝑦(𝑡) = 𝑒−
1

2𝛼
𝑡𝛼

(𝑐1𝑐𝑜𝑠
√3

2𝛼
𝑡𝛼 + 𝑐2𝑠𝑖𝑛

√3

2𝛼
𝑡𝛼). 

4. Method of Variation of Parameters for Conformable Fractional Calculus 

In this section, we apply method of variation of parameters to derivate the particular solution 

of equation  

𝑇𝛼
𝑛 𝑦 + 𝑝𝑛−1 𝑇𝛼

𝑛−1 𝑦 + ⋯ + 𝑝2 𝑇𝛼
2 𝑦 + 𝑝1𝑇𝛼𝑦 + 𝑝0𝑦 = 𝑞(𝑡)                   (5) 

where 𝑦 is 𝑛 times 𝛼-differentiable function for 𝛼 ∈ (0,1] at a point 𝑡 > 0. 

Theorem 4.1. Let 𝑢(𝑡) be a function which is solution of homogenous case of  equation (5) 

and given by 

𝑢(𝑡) = ∑ 𝑐𝑖𝑦𝑖(𝑡)𝑛
𝑖=1  .                                            (6) 

Then particular solution of the equation (5) is 

𝑣(𝑡) = ∑ 𝑐𝑖(𝑡)𝑦𝑖(𝑡)

𝑛

𝑖=1
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where 𝑐1(𝑡), 𝑐2(𝑡), … , 𝑐𝑛(𝑡) provide following systems of equations 

∑ 𝑐𝑖
(𝛼)(𝑡)𝑦𝑖(𝑡)

𝑛

𝑖=1

= 0 

∑ 𝑐𝑖
(𝛼)(𝑡)𝑦𝑖

(𝛼)(𝑡)

𝑛

𝑖=1

= 0 

⋮ 

∑ 𝑐𝑖
(𝛼)(𝑡) 𝑇𝑛−2

𝛼 𝑦𝑖(𝑡)

𝑛

𝑖=1

= 0 

∑ 𝑐𝑖
(𝛼)(𝑡) 𝑇𝑛−1

𝛼 𝑦𝑖(𝑡)𝑛
𝑖=1 = 𝑞(𝑡). 

Proof: Now we shall seek the solution of the equation (5) in the form 

𝑣(𝑡) = ∑ 𝑐𝑖(𝑡)𝑦𝑖(𝑡)𝑛
𝑖=1   

If we calculate conformable derivative of  𝑣(𝑡) for 𝛼 ∈ (0,1], then we get 

𝑇𝛼𝑣(𝑡) = ∑ 𝑐𝑖(𝑡)𝑦𝑖
(𝛼)(𝑡)𝑛

𝑖=1 + ∑ 𝑐𝑖
(𝛼)(𝑡)𝑦𝑖(𝑡)𝑛

𝑖=1 . 

Let first condition is ∑ 𝑐𝑖
(𝛼)(𝑡)𝑦𝑖(𝑡)𝑛

𝑖=1 = 0. In this case, we obtain 

𝑇𝛼𝑣(𝑡) = ∑ 𝑐𝑖(𝑡)𝑦𝑖
(𝛼)(𝑡)𝑛

𝑖=1 . 

If we calculate conformable derivative of 𝑇𝛼𝑣(𝑡) for 𝛼 ∈ (0,1], then we get 

𝑇𝛼
2 𝑣(𝑡) = ∑ 𝑐𝑖(𝑡) 𝑇𝛼

2 𝑦𝑖(𝑡)𝑛
𝑖=1 + ∑ 𝑐𝑖

(𝛼)(𝑡)𝑦𝑖
(𝛼)(𝑡)𝑛

𝑖=1 . 

Let second condition is  ∑ 𝑐𝑖
(𝛼)(𝑡)𝑦𝑖

(𝛼)(𝑡)𝑛
𝑖=1 = 0. So, we have 

𝑇𝛼
2 𝑣(𝑡) = ∑ 𝑐𝑖(𝑡) 𝑇𝛼

2 𝑦𝑖(𝑡)𝑛
𝑖=1 . 

By continuing in this way; 

𝑇𝛼
𝑛−1 𝑣(𝑡) = ∑ 𝑐𝑖(𝑡) 𝑇𝛼

𝑛−1 𝑦𝑖(𝑡)

𝑛

𝑖=1

+ ∑ 𝑐𝑖
(𝛼)(𝑡) 𝑇𝛼

𝑛−2 𝑦𝑖(𝑡)

𝑛

𝑖=1

 

is obtained. Let (𝑛 − 1)𝑡ℎ condition is ∑ 𝑐𝑖
(𝛼)(𝑡) 𝑇𝛼

𝑛−2 𝑦𝑖(𝑡)𝑛
𝑖=1 = 0. Hence, it is obtained that 

𝑇𝛼
𝑛−1 𝑣(𝑡) = ∑ 𝑐𝑖(𝑡) 𝑇𝛼

𝑛−1 𝑦𝑖(𝑡)𝑛
𝑖=1 . 

And finally, calculating conformable fractional derivative of above equation for 𝛼 ∈ (0,1], we 

can write the following equation 
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𝑇𝛼
𝑛 𝑣(𝑡) = ∑ 𝑐𝑖(𝑡) 𝑇𝛼

𝑛 𝑦𝑖(𝑡)𝑛
𝑖=1 + ∑ 𝑐𝑖

(𝛼)(𝑡) 𝑇𝛼
𝑛−1 𝑦𝑖(𝑡)𝑛

𝑖=1  . 

If we substitute 𝑣(𝑡), 𝑇𝛼𝑣(𝑡), 𝑇𝛼
2 𝑣(𝑡) … , 𝑇𝛼

𝑛 𝑣(𝑡)  in the equation (5), then we have 

∑ 𝑐𝑖
(𝛼)(𝑡) 𝑇𝛼

𝑛−1 𝑦𝑖(𝑡)𝑛
𝑖=1 + ∑ 𝑐𝑖(𝑡)[𝑝𝑜𝑦𝑖(𝑡) + 𝑝1𝑦𝑖

(𝛼)(𝑡) + ⋯ + 𝑇𝛼
𝑛 𝑦𝑖(𝑡)]𝑛

𝑖=1 = 𝑞(𝑡). 

Because 𝑦1(𝑡), 𝑦2(𝑡), … , 𝑦𝑛(𝑡) are solutions of equation (6), we get 

∑ 𝑐𝑖(𝑡)[𝑝𝑜𝑦𝑖(𝑡) + 𝑝1𝑦𝑖
(𝛼)(𝑡) + ⋯ + 𝑦

(𝑛)
𝑖
(𝛼)(𝑡)]𝑛

𝑖=1 = 0. 

Hence, 

∑ 𝑐𝑖
(𝛼)(𝑡) 𝑇𝛼

𝑛−1 𝑦𝑖(𝑡)

𝑛

𝑖=1

= 𝑞(𝑡) 

is obtained. The last equation is 𝑛𝑡ℎ condition. The system of equations formed by these 

conditions is as following: 

∑ 𝑐𝑖
(𝛼)(𝑡)𝑦𝑖(𝑡)

𝑛

𝑖=1

= 0 

∑ 𝑐𝑖
(𝛼)(𝑡)𝑦𝑖

(𝛼)(𝑡)

𝑛

𝑖=1

= 0 

⋮ 

∑ 𝑐𝑖
(𝛼)(𝑡) 𝑇𝑛−2

𝛼 𝑦𝑖(𝑡)

𝑛

𝑖=1

= 0 

∑ 𝑐𝑖
(𝛼)(𝑡) 𝑇𝑛−1

𝛼 𝑦𝑖(𝑡)𝑛
𝑖=1 = 𝑞(𝑡). 

If 𝑐1(𝑡), 𝑐2(𝑡), … , 𝑐𝑛(𝑡) provide system of equations which are built by conditions, then 

function  𝑣(𝑡) = ∑ 𝑐𝑖(𝑡)𝑦𝑖(𝑡)𝑛
𝑖=1  is a particular solution of the equation (5). 

Example 4.1. 𝑇2
𝛼𝑦 + 4𝑇𝛼𝑦 + 3𝑦 = 𝑞(𝑡).  

a) Let 𝑞(𝑡) = 𝑒2𝑡𝛼
. For 𝑣(𝑡) = 𝑐1(𝑡)𝑒

−3

𝛼
𝑡𝛼

+ 𝑐2(𝑡)𝑒
−1

𝛼
𝑡𝛼

, the system of equations which are 

built by conditions is 

𝑐1
(𝛼)(𝑡)𝑒

−3
𝛼

𝑡𝛼

+ 𝑐2
(𝛼)(𝑡)𝑒

−1
𝛼

𝑡𝛼

= 0 

−3𝑐1
(𝛼)(𝑡)𝑒

−3

𝛼
𝑡𝛼

− 𝑐2
(𝛼)(𝑡)𝑒

−1

𝛼
𝑡𝛼

= 𝑒2𝑡𝛼
. 
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Solving the above system of equations, we get 𝑐1
(𝛼)(𝑡) = −

1

2
𝑒

2𝛼+3

𝛼
𝑡𝛼

, 𝑐2
(𝛼)(𝑡) =

1

2
𝑒

2𝛼+1

𝛼
𝑡𝛼

. For 

this values, if we calculate conformable integral of this values for 𝛼 ∈ (0,1], then we have 

𝑐1(𝑡) = −
1

4𝛼+6
𝑒

2𝛼+3

𝛼
𝑡𝛼

, 𝑐2(𝑡) =
1

4𝛼+2
𝑒

2𝛼+1

𝛼
𝑡𝛼

. The particular solution 𝑣(𝑡) is 

𝑣(𝑡) = −
1

4𝛼 + 6
𝑒

2𝛼+3
𝛼

𝑡𝛼

. 𝑒
−3
𝛼

𝑡𝛼

+
1

4𝛼 + 2
𝑒

2𝛼+1
𝛼

𝑡𝛼

. 𝑒
−1
𝛼

𝑡𝛼

 

=
1

4𝛼2+8𝛼+3
𝑒2𝑡𝛼

. 

b) Let 𝑞(𝑡) = 2𝑡2𝛼 + 𝑡𝛼 − 3. In this case, the system of equations is 

𝑐1
(𝛼)(𝑡)𝑒

−3
𝛼

𝑡𝛼

+ 𝑐2
(𝛼)(𝑡)𝑒

−1
𝛼

𝑡𝛼

= 0 

−3𝑐1
(𝛼)(𝑡)𝑒

−3

𝛼
𝑡𝛼

− 𝑐2
(𝛼)(𝑡)𝑒

−1

𝛼
𝑡𝛼

= 2𝑡2𝛼 + 𝑡𝛼 − 3. 

If we solve this system of equations, we obtain 

𝑐1(𝑡) = −
1

3
𝑡2𝛼𝑒

3

𝛼
𝑡𝛼

+
4𝛼−3

18
𝑡𝛼𝑒

3

𝛼
𝑡𝛼

+
−4𝛼2+3𝛼+27

54
𝑒

3

𝛼
𝑡𝛼

, 

𝑐2(𝑡) = 𝑡2𝛼𝑒
1

𝛼
𝑡𝛼

+
1−4𝛼

2
𝑡𝛼𝑒

1

𝛼
𝑡𝛼

+
4𝛼2−2𝛼−6

2
𝑒

1

𝛼
𝑡𝛼

. 

Hence, we obtain particular solution 𝑣(𝑡) as following: 

𝑣(𝑡) =
2

3
𝑡2𝛼 +

3−16𝛼

9
𝑡𝛼 +

52𝛼2−12𝛼−27

27
. 

c) Let 𝑞(𝑡) = 𝑠𝑖𝑛2𝑡𝛼. In this case, the system of equations is 

𝑐1
(𝛼)(𝑡)𝑒

−3
𝛼

𝑡𝛼

+ 𝑐2
(𝛼)(𝑡)𝑒

−1
𝛼

𝑡𝛼

= 0 

−3𝑐1
(𝛼)(𝑡)𝑒

−3

𝛼
𝑡𝛼

− 𝑐2
(𝛼)(𝑡)𝑒

−1

𝛼
𝑡𝛼

= 𝑠𝑖𝑛2𝑡𝛼. 

From the system of equations, we find 𝑐1
(𝛼)(𝑡) = −

1

2
(𝑠𝑖𝑛2𝑡𝛼)𝑒

3

𝛼
𝑡𝛼

, 𝑐2
(𝛼)(𝑡) =

1

2
(𝑠𝑖𝑛2𝑡𝛼)𝑒

1

𝛼
𝑡𝛼

. Using integration by parts for conformable fractional derivative, we have 

𝑐1(𝑡) = −
3

8𝛼2+18
𝑠𝑖𝑛2𝑡𝛼𝑒

3

𝛼
𝑡𝛼

+
𝛼

4𝛼2+9
𝑐𝑜𝑠2𝑡𝛼𝑒

3

𝛼
𝑡𝛼

, 

𝑐2(𝑡) =
1

8𝛼2+2
𝑠𝑖𝑛2𝑡𝛼𝑒

1

𝛼
𝑡𝛼

−
𝛼

4𝛼2+1
𝑐𝑜𝑠2𝑡𝛼𝑒

1

𝛼
𝑡𝛼

. 

So, we get 

𝑣(𝑡) =
−8𝛼

16𝛼2+40𝛼+9
𝑐𝑜𝑠2𝑡𝛼 +

−4𝛼2+3

16𝛼4+40𝛼2+9
𝑠𝑖𝑛2𝑡𝛼 . 

d) Let 𝑞(𝑡) = 𝑒2𝑡𝛼
𝑡𝛼 . We can write the system of equations as following: 
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𝑐1
(𝛼)(𝑡)𝑒

−3
𝛼

𝑡𝛼

+ 𝑐2
(𝛼)(𝑡)𝑒

−1
𝛼

𝑡𝛼

= 0 

−3𝑐1
(𝛼)(𝑡)𝑒

−3

𝛼
𝑡𝛼

− 𝑐2
(𝛼)(𝑡)𝑒

−1

𝛼
𝑡𝛼

= 𝑒2𝑡𝛼
𝑡𝛼 . 

Solving the system of equations, we have  

𝑐1(𝑡) = −
1

4𝛼 + 6
𝑒

2𝛼+3
𝛼

𝑡𝛼

𝑡𝛼 +
𝛼

2(2𝛼 + 3)2
𝑒

2𝛼+3
𝛼

𝑡𝛼

, 

𝑐2(𝑡) =
1

4𝛼 + 2
𝑒

2𝛼+1
𝛼

𝑡𝛼

𝑡𝛼 +
𝛼

2(2𝛼 + 1)2
𝑒

2𝛼+1
𝛼

𝑡𝛼

. 

Then, the particular solution 

𝑣(𝑡) =
𝑒2𝑡𝛼

𝑡𝛼

4𝛼2 + 8𝛼 + 3
−

4𝛼2 + 4𝛼

(4𝛼2 + 8𝛼 + 3)2
𝑒2𝑡𝛼

 

is obtained. 

e) Let 𝑞(𝑡) = 𝑒−4𝑡𝛼
. For 𝛼 ≠ 3

4⁄  and 𝛼 ≠ 1
4⁄ , the system of equations is 

𝑐1
(𝛼)(𝑡)𝑒

−3
𝛼

𝑡𝛼

+ 𝑐2
(𝛼)(𝑡)𝑒

−1
𝛼

𝑡𝛼

= 0 

−3𝑐1
(𝛼)(𝑡)𝑒

−3

𝛼
𝑡𝛼

− 𝑐2
(𝛼)(𝑡)𝑒

−1

𝛼
𝑡𝛼

= 𝑒−4𝑡𝛼
. 

From the system of equations, we have 𝑐1(𝑡) =
1

8𝛼−3
𝑒

3−4𝛼

𝛼
𝑡𝛼

, 𝑐2(𝑡) =
1

2−8𝛼
𝑒

1−4𝛼

𝛼
𝑡𝛼

. In this 

case, we obtain the particular solution as following: 

𝑣(𝑡) =
𝑒−4𝑡𝛼

16𝛼2−16𝛼+3
. 

For 𝛼 = 3
4⁄  and 𝑣(𝑡) = 𝑐1(𝑡)𝑒−4𝑡

3
4⁄

+ 𝑐2(𝑡)𝑒−
4

3
𝑡

3
4⁄

, the system of equations is obtained as 

𝑐1

(3
4⁄ )

(𝑡)𝑒−4𝑡
3

4⁄
+ 𝑐2

(3
4⁄ )

(𝑡)𝑒−
4
3

𝑡
3

4⁄

= 0 

−3𝑐1

(3
4⁄ )

(𝑡)𝑒−4𝑡
3

4⁄
− 𝑐2

(3
4⁄ )

(𝑡)𝑒−
4

3
𝑡

3
4⁄

= 𝑒−4𝑡
3

4⁄
. 

From this system of equations, we have 𝑐1(𝑡) = −
2

3
𝑡

3
4⁄ , 𝑐2(𝑡) = −

1

4
𝑒−

8

3
𝑡

3
4⁄

. The particular 

solution 

𝑣(𝑡) = −
2

3
𝑡

3
4⁄ 𝑒−4𝑡

3
4⁄

−
1

4
𝑒−4𝑡

3
4⁄
 

is obtained. 

Similarly, for 𝛼 = 1
4⁄  and 𝑣(𝑡) = 𝑐1(𝑡)𝑒−12𝑡

1
4⁄

+ 𝑐2(𝑡)𝑒−4𝑡
1

4⁄
, the system of equations is  
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𝑐1

(1
4⁄ )

(𝑡)𝑒−12𝑡
1

4⁄
+ 𝑐2

(1
4⁄ )

(𝑡)𝑒−4𝑡
1

4⁄
= 0 

−3𝑐1

(1
4⁄ )

(𝑡)𝑒−12𝑡
1

4⁄
− 𝑐2

(1
4⁄ )

(𝑡)𝑒−4𝑡
1

4⁄
= 𝑒−4𝑡

1
4⁄
. 

From this system of equations, we find  𝑐1(𝑡) = −
1

4
𝑒8𝑡

1
4⁄
, 𝑐2(𝑡) = 2𝑡

1
4⁄ . The particular 

solution 

𝑣(𝑡) = 2𝑡
1

4⁄ 𝑒−4𝑡
1

4⁄
−

1

4
𝑒−4𝑡

1
4⁄
 

is obtained. 

5. Conclusion 

In this work, using fractional exponential function, we give the general solution to sequential 

linear homogeneous and non-homogeneous differential equation of conformable fractional of 

order with constant coefficients for 0 < 𝛼 ≤ 1. In contrast to the Riemann -Liouville 

fractional derivatives, it has been found that the method of variation of parameters can be 

applied for conformable fractional derivatives. Additionally, it has appeared that the results 

obtained in this work correspond to results which are obtained in ordinary cases.  
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