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Abstract
In this paper we solve axisymmetric problems by stress and deduce a series of valuable
general solutions by unified method. Some of them are well-known solutions, and others
have not appeared in the literature. We also prove the completeness of these general
solutions.

I. Introduction

.Lekhniskiil'2 was the first one who considered axisymmetric deformation of rotating bodies
for transversely isotropic media, extended Love’s solution and calculated many examples.
Elliottl’! expressed the three-dimensional solution with two quasi-harmonic functions. This
solution especially suits to the case of axisymmetric deformation, and can be used to deduce
Lekhniskii’s solution. Elliott and Shield applied Elliott’s solution to solve a series of important
problems!*s.. The general solution of three-dimension problems given by Hu'®! can be reduced to
Lekhniskii’s solution and Elliott’s solution in case of axisymmetric deformation. Based on the
equilibrium equations in the form of displacement, Eubanks and Sternberg!”! obtained Lekhniskii’s
solution and proved its completeness. They also extended Almansi’s theorm, which enabled them to
prove the completeness of Elliott’s solution. In the present paper we solve axisymmetric problems
by stress and deduce a series of general solutions by unified methcj.cg' Two of them are the well-
known solutions mentioned above, and others have not appeared in the literature. The deduction is
elementary, and the completeness is obtained obviously.

We only consider the solid of revolution which is defined in [7], i.e. on the meridian plane any
straight line parallel to the coordinate axes intersects the boundary at two points.

II. Stress Functions and General Solutions

In a transversely isotropic body the equilibrium equations, constitutive equations and
geometric equations as well as the strain compatibility equations in terms of the stress are (78.8),

(78.1), (78.7) and (78.10) in [1], respettively. It is easy to verify the general solution of the
equilibrium equations without body forcel!ol:

*F 9*F oG 9*F | 9*G

Trz=—ar_a;, ‘72=V1F, Op= 32 + ror ’ O 922 + ar? 2.1
o2 a
Vi=gm toay .2
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where F and G are the functions called stress functions. Substituting from (2.1) in compatibility
equations, we get

8% G 8 GO G 1 D L .
(au—‘au)(rar are ) =r ar ]:al?. 2z + ror )+au ( 52 ‘== 3r? )+013V¢F]
2.3)
3F a 9*F
uW ar [ast:G'l‘zalsW'*‘aaaV:F]
02 92 F  9*G 9*F oG 2
=13 l:a“( T+ )+alz('£r+ oy )+013V*FJ (2.4)

Integrating (2.3) with respect to r, we obtain
8, VG +(ay;+0,;) 8*F /822 40\, V3 F=B(2) (2.5

where B (z) is an arbitrary function of z.
Equation (2.5) can be used to eliminate the terms containing Fin (2.4), and then integrating it
with respect to r, we obtain

2 2
013V:G+(2als+a«)aaTI: +65VaF=(ay,—ay,) %Z'Gz__%"zB”(z)"‘c(Z) (2.6)

where C (z) is an arbitrary function of z.
Eliminating y4G in(2.6) by (2.5), Eqn. (2.6) becomes

a(ay, - —a,z)]a;TlZ—(a“aaz—af,)V:F
=a,3B(z) +a,,r*B"(z)/2—a,,C(2) 2.7
Assume that
G=eH (2.8)
where
e=(a;,+0a,,)/ay, (2.9)

Substituting (2.8) into (2.5) and (2.7) and rearrange them, we have

dviH +ayiF +d(8*F [/82*)=dP(z) (2.10)
2 .
2 GiF—c(@*F [02)=fP(2) +gr*P"(2)—dQ(2) .10
where
P(z)=B(z)/(au+axz), Q(2)=a,,C (2)/(a}, —a?,) (2.12)
and '

G=0,3(a,,—0,,)/(a,,853—al;), d=(a},—a},)/(ay, a33—ats)
=60, +0;s (a;,—6;,)]/ (a;,65;—a3;) (2.13)

f=a,(a,, +4a,,)/(8,,855—a}y), g=a,,(a,,+a,,) /[ 2(a,,a53—a};) ]



Solutions of Axisymmetric Problems in Transversely Isotropic Body 145

In (2.13) the meaning of a,c,d is the same as in paper [1].
Now the stress formula (2.1) becomes

8tF \ 9% F aH 9F atH
Braz » TmVeE, O=Ga teTar. Ge=gr tegy (21D

Tes™=

The deduction above shows that the equilibrium equations, constitutive and geometric
equations are reformulated in the form of (2.10), (2.11) and (2.14). The stress functions H and F
consist of two parts for each, one is the solution of the corresponding homogeneous equations of
(2.10), (2.11), and the other is a special solution of Eqs. (2.10), (2.11) themselves. It is easy to find
that a special solution of Eqn. (2.10), (2.11) can be written as follows

H=gr:H,(2)/d+H(2), F=Fy(2) (2.15)
Substituting (2.15) into (2.10) and (2.11), a set of differential equations of H,, H, and F, is obtained

Hj(z)=P"(2)

dH3(2)—cF4(2)=fP(z)—dQ(z) } (2.16)

AgH ,(2) +dF1(2)=dP(z2)

from which we can get

H,(2)=P(z)+k2+k,
dF}(2)=(d—49)P(2)—4gk,z—4gk, } (2.17)
dH%(2)=fP(2)—dQ(2)—cF{(2)
Here &,, k, are integral constants. The corresponding stress components are
T*rz=0’ O':'—_O
(2.18)
oF = of=(d—4g+2ge)P(2) +2gk,(e—2)z+2gk,(e—2)
Becuse d—4g9+2ge=0, (2.18) becomes
T8:=07=0, OF = 0g=m +m,z (2.19)

where
m,=2g(e—2)k,, m=2g(e—2)k,
Now we prove the fact the stress state (2.19) is also contained by the general solution of the

homogeneous equations corresponding to Eqs. (2.10) and (2.11). In fact, the stress state (2.19)
makes (2.14)

8F/aroz=0, yiF=0 (2.20)
9tF aH _9*F a*rH
3zF teTar = TG Tt (2.21)

The first equation of (2.20) gives
F=f(r)+f.(2) (2.22)

and substituting it into the second one and integrating the resultant we obtain

fn(f)=colnr+cl (2.23)
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where ¢, ¢, are integral constants. Eqn. (2.21) gives

*H 1 8H __ 8 (1 8H\_,
art r or (" )

from which
H=r?h(2)/2+hy(2) (2,24)

and
f:(z)+eh1(z)=moz+m1 (2,25)

To determine functions #,, &, and f,, we substitute (2.22) and (2.24) into the homogeneous
corresponding to (2.10) and (2.11), then

2k, (2) + f1(2)=0 (2.26)

dr*hi(2)/2+dh](2)—cfi(2)=0 (2.27)

Considering e22and unite Egs. (2.25), (2.26) and (2.27), we may obtain h,, h, and f, and then

substituting them and (2.23) into (2.22) and (2.24), the expressions for Fand H are obtained, which

contain five integral constants. Without losing the generality, we can assume that P(z2)=Q(z)=01in

(2.10). (2.11), i.e.
dviH + avyiF +d(8*F [98z*)=0 (2.28)

d%—ﬁf;v,F c(82F /3z%) =0 (2.29)

It means that Eqgs. (2.10), (2.11) and (2.14) are equivalent to Egs. (2.28), (2.29), (2.14) when we only

consider the stress distribution.
Utilizing the relationship of displacement and strain, constitutive equations as well as Egs.

(2.14), (2.28), (2.29), it is easy to obtain the displacement expression
u==—e(a,,—a,,)dH /or, w=(8/8z)[e(a,,—a,,)H—a, F] (2.30)

Therefore, H and F can also be called displacement functions. From the displacement point of view
the arbitrariness of H, F reduces to four integral constants.

We have proved that Egs. (2.10), (2.11), (2.14) are equivalent to Eqgs. (2.28), (2.29), (2.14) in
expressing the stress, therefore, the displacements deduced from them differ at most a rigid
displacement (i.. the translation in the axial direction). It is easy to verify that (2.30) includes this
rigid displacement, so formula (2.30) contains any real displacement. Because every step in this
section is convertable, displacement (2.30) in which H and F satisfy (2.28), (2.29) must be the
solution of elasticity problem. Thus, we have proved that (2.30) is the general and complete solution.

III. The,General Solution Expressed by Two Quasi-Harmonic Functions

Equations (2.28), (2.29) which functions H and F should satisfy are still complicated because
unknown functions are coupled. We want to find such two functions that they can construct the
general solution, but the differential equations satisfied by these functions are simpler and
uncoupled. From (78.14) in [1] we know that

52 +si=(a+c)/d, sisi=1/d 3.1

Assume
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H=H,—(a/d)F+(st+s}F/2 (3.2)
and substituting it into (2.28) and (2.29),
2 2
H +_( 1V&F+a F )+ 2( 1V¢F+ F )—0 (3.3)
H, 1 a‘F 1 rF
82 2 z( V#F+ 231(3 V.F+ 322 ) 0 (3.4)

is obtained.
When s} 2s}, we multiply (3.3) by s? , and add it to (3.4), then the result

ViF=0 (3.5)
is obtained, where
vt =vi +02/s102° (i=1,2)
F1=HQ_+ (st —sd) F/Z, sz= H,— (s} —s3)F/2 (3.6)

Based upon (3.6), H, and F can be expressed by F,, F,, then F, H are written as follows

F=(F,—F,)/(si—s}), H=" [1+F(—s:—)] F+ 2[ d—(c%—]F, 3.7

$;—s3)

Substitute them into (2.30)-and denote

_ 2pd (st —s3)¢, ____2pd(si—si)¢d,
Fi=- eld(si—s})+c—al’ o= e[d (si—s})—c+a] 3.8
then
u=p(a“—alz)_a_(¢‘Ti_.¢?‘_).
e L. ) (3.9
—_ — (o, +¢,) G0 1 8¢, 1 _a,
w=—p(a,—0,;) 9z += (dsl'—a' 9z a—ds} .vaz)
where
p=e(d—ac)/d (3.10)

Obviously, ¢; must satisfy the quasi-harmonic equation
Vigi=0  (i=1,2) (3.11)

It is easy to verify that (3.9) is the same as (2.4.8 ) and (2.4.9) in [3], i.e. Elliott’s solution.
When si=s}=>s? (3.2), (3.3) and (3.4) may be simplified as follows:

H=H, +F(c—a)/2d (3.12)
ViH, +5V2F +0%F [821=0 (3.13)
0*H /32> —s*(s*ViF +08%F /32*)=( (3.14)

Multiplying (3.13) by s and adding it to (3.14), we have
viH,=0 (3.15)
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‘where Vi= y%+8%/5"02* _Itisshown that H, isa quasi-harmonic function. To obtain F, we can
use either (3.14), or (3.13), so the general solution of F can be written in two forms:

_1 1,84, Lz (3.16
F_?i( Fot 2" 9z ) a+c( Fo tg? ) -16)
_1 16H___2d 1 8H, 317
F_EZ—(F" 2 or a+c( "2 Tor ) (3.17)

where F satisfies the quasi-harmonic equation
ViF,=0 (3.18)

Substituting (3.16) and (3.12) into (2.30), the displacement is

c—a a3 c_a‘l a
= 4(C+a) ar (¢0+Z¢Z)r w=¢2_ 4(C+a) aZ <¢0+z¢:) (3.19)

where
@, =2e(a,,—6,,)8H /92, @,=4e(a,,—a;,)[(c+a)H,/(c—a)+F,] (3.20)
Obviously, @, and ¢, should satisfy
V:@i=0 (i=0,2) (3.21)
Substituting (3.17) and (3.12) into (2.30), the displacement is

g=@ — W(%-f-f%) w= W(%“H‘Px) (3.22)

where
1=—2e(6,,—06,,)0H,/0r, @,=d4e(a,,—a,,)(Fy—(c+0)H,/(c—a)) (3,23)
According to (3.15), (3.18), @, should satisfy Eqn. (3.21), and because of

8 1\80H,
ar Vilh=(vi—5) 5

@, should satisfy
(Vi—1/r) =0 (3.24)

Thus, we use a simple method, but without losing generality, to prove that the general solution of
axisymmetric problem can be expressed by two quasi-harmonic functions: when s? 2¢s%, the
solution is (3.9), where ¢, satisfies (3.11); when s}=s}, the solution is (3.19) or (3.22), where ¢
satisfies (3.21) and (3.24), respectively.

In the case of isotropic media, where p is Poisson’s ratio, we have

(c+a)/(c—e)=1—y, s*=1 (3.25)
then (3.19) and (3.22) become Papkovich-Neuber’s Solution®® !0,
1V. The General Solution Expressed by a Quasi-Biharmqnic Function

Multiplying (2.29) by a and adding it to Eqn. (2.28), we obtain the equation
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a2 9*F
d( vi +GW) H+ (d—aC)?zT—O
Introducing such a function ¢ that

2
H=(d—ac)2 F=—d(v:+a§z—z-)¢ (4.1)

0z*"’

the equation above is satisfied. Substitute (4.1) into (2.14) and denote

% _
d az =@ (4.2)

then

Tez= %‘(V:'*‘a %) @, O =a—i( CV;‘*'d %)QD

9 (8 ) a* _ 8. 08, 3 92
Op=— 9z \ 9r? + ror +a 022 )W' Te=—"32 (b or? + ror +a 9z )(p
(4.3)
where
b=1+e(ac—d) (4.4)

Substituting (4.1) into (2.28) or (2.29) and considering (3.1) and (4.2), we find that function
@ satisfies the quasi-biharmonic equation

Vi vip=0 (4.5)

Comparing (4.3), (4.5) with (78.17) in [1], the stress expression (4.3) is just Lekhniskii’s solution. In
the case of isotropic media, (4.3) degenerate into Love's solution, and Eqn. (4.5), into the
biharmonic equation.

Now we derive another form of the solution. First, we write (2.30) in the following form

u= gf ; w=gr (55T (4.6)
where

S=e(a,,—a,)H, . T=e(a;,—a;;))F 4.7
therefore, Eqs. (2.28) and (2.29) become

, T »s 9T
dViS+GV*T+d?=O, dEZT_V*T—C EPe) =0 (4.8)

Multiplying the first equation of (4.8) by a/d?, the second one by 1/d, and then adding them
together, the resultant is

92 _ .
e (S—cd“ T)Jrcllzvg[daS+(a2-d)T]=0 4.9

Introducing such a function U that
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c—a azU
S— 7 T=vyiU, daS+(a* —d)T——d (4.10)
Eqgn. (4.9) is satisfied automatically. Eqn. (4.10) gives
1 U _ d 2 U ¢4 11)
S = W{(a d)V*U d(c—-a) 322 :I T——'—‘——_—‘(ac_d) [ aV§U+d a8z ]( .

Substituting the first ones of (4.11), (4.10) into (4.6), we get

_ 1 R 8 (4.12)
Y= — Wa[(a —d)yyiU—d(c— a) ],w_a viU .

Eliminating S and T with (4.11) and (4.8), we obtain the equation
viviU=0 (4.13)

We denote 8U /gr=¢ , and formula (4.12) can be written as

=D 1 e [(aZ d)y—— 3 (6(13 (p) d(c—e)—— adZ] W=7, 6 BCD +2 (4.10)

Because of

ad . _1__ 0 .
va—(V?—rz)—g;— (1=1,2) (4.15)

function @ should satisfy

(Vf—riz)(vi—riz)q5=0 (4.16)

In the case of isotropic media, (4.14) and (4.16) become Michell’s solution:

o*d
=] Cum (G +E) 20w (4.17)
w= az ?3? +(f)
(v=)(v ~Ho=s

We can get other general solutions by different methods to simplify and solve Eqgs. (2.28) and
(2.29). The character of these general solutions is that highest derivatives in the displacement
expression are at most second order.

V. Conclusion

First, we give the general solutions (2.30), (2.28) and (2.29) to the axisymmetric problems in
transversely isotropic media, and prove them equivalent to the equilibrium equations and
compatibility relationship; then, based on these equations, we use the transform and simplification
technique without losing generality and obtain a series of valuable solutions: (3.9), (3.19), (3.22),
(4.3) and (4.14), among them (4.14) has not been found in other papers, Papkovich-
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Neuber’s solution is the special case of (3.19) and (3.22); (3.9) and (4.3) is the well-known Elliott’s
and Lekhniskii’s solutions and (4.3) will degenerate into Love’s solution in the case of isotropic
media.
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