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A b s t r a c t  
In this paper we solve axisymmetric problems by stress and deduce a series of valuable 

general solutions by unified method. Some of them are well-known solutions, and others 

have not appeared in the literature. We also prove the completeness of these general 

solutions. 

I. I n t r o d u c t i o n  

�9 Lekhniskii v.21 was the first one who considered axisymmetric deformation of rotating bodies 

for transversely isotropic media, extended Love's solution and calculated many examples. 

Elliott[31 expressed the three-dimensional solution with two quasi-harmonic functions. This 

solution especially suits to the case of axisymmetric deformation, and can be used to deduce 

Lekhniskii's solution. Elliott and Shield applied Elliott's solution to solve a series of important 
problemst4.51. The general solution of three-dimension problems given by Hu [61 can be reduced to 

Lekhniskii's solution and Elliott's solution in case of axisymmetric deformation. Based on the 
equilibrium equations in the form of displacement, Eubanks and SternbergtT1 obtained Lekhniskii's 

solution and proved its completeness. They also extended Almansi's theorm, which enabled them to 

prove the completeness of Elliott's solution. In the present paper we solve axisymmetric problems 
by stress and deduce a series of general solutions by unified meth(~'  Two of them are the well- 

known solutions mentioned above, and others have not appeared in the literature. The deduction is 

elementary, and the completeness is obtained obviously. 
We only consider the solid Of revolution Which is defined in [7], i.e. on the meridian plane any 

straight line parallel to the coordinate axes intersects the boundary at two points. 

II. S t r e s s  F u n c t i o n s  and  G e n e r a l  S o l u t i o n s  

In a transversely isotropic body the equilibrium equations, constitutive equations and 

geometric equations as well as the strain compatibility equations in terms of the stress are (78.8), 

(78.1), (78.7) and (78.10) in [1], respectively. It is easy to verify the general solution of the 

equilibrium equations without body forcetJ0r: 

O~T" l- OG "OZF OZG ( 2 . 1 )  
O~F c r ~ = v ~ F  , or,= Oz ~ r-T~" c r s = ~  + Or----f- r , z =  OrOz" 

0 2 # ' - -  (2 2) 
V*---~-rZ + ro t  
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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where F and G are the functions called stress functions. Substituting from (2.1) in compatibility 
equations, we get 

(a.-axO( rOrOG O~G \ 0 *'OZF OG \ zOZF 02G \ , ,., 
�9 

( 2 . 3 )  

OSF O s OaF 2 
--a.-~-~-----O-F[ atsv.G + 2a~s ~ + a33v.F ] 

0 ~ F zOZF O~G \+atZOZF + OG \ =r-6-dr[_a,d,~+-ff~-) -I,:~ -VfZr )+~,"vl, F ] (2.4) 

Integrating (2.3) with respect to r, we obtain 

aH v~G+(all+aaz) atF/azZ+azs v ~ F = B ( z )  (2 .5 )  

where B (z) i~ an arbitrary function of  z. 

Equation (2.5) can be used to eliminate the terms containing F i n  (2.4), and then integrating it 
with respect to r, we obtain 

+ a  . O ' F  OaG 1 a , , , , . .  
a~sv~G+(2a~s , ) "~ ' i -  +assv~.F=(a~--a~2)'-ffZz2 -- '~r z~ ( z )+C(z )  (2 .6 )  

where C (z) is an arbitrary function of  z. 

Eliminating V~G in(2.6) by (2.5), Eqn. (2.6) becomes 

" "O~G " a ) `oa f  
att(att--ai~)~-~---katia-+ats (alt-- lz ]"~'i-z~ --(alxass--a~s)v~F 

=alsB( z) +aHr2B'/ ( z) / 2 - a t , C (  z ) ( 2 . 7 )  

Assume that 

where 

G = e H  (2 .8 )  

e=(aH +alD/a ,  

Substituting (2.8) into (2.5) and (2.7) and rearrange them, we have 

d v ~ H  +a v ~ F  +d(O2F/Oz z) ----dP( z) 

dOo~Hzz - - v  IF - -c (  OaF/OzZ) = f P( z) + grzP" ( z) - d Q (  z) 

where 

and 

P(z)'-B(z)/(a.+aID. O(z)fa11C (z)/(ah-a~D 

a= a . (  a!l--Otz) / ( all ass--als), d = (  a~l--a~2) / (all ass--a~s) 

c =  [ a l i a .  + als (a.--atD ] / (a .  as3--al s) 

f �88 +alD/(al,ass--a] 3), g=alt(an +alD/[ 2 ( a . a . - a ~ D  ] 

(2.9) 

(2.10) 

(2.ii) 

(2.12) 

(2.I3) 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
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In (2.13) the meaning ofa,c,d is the same as in paper [I]. 
Now the stress formula (2.1) becomes 

O~F , a , = v ~ F  ' 02F OH 82F , O2H 
r,j= OrOz a,=-~q-z~ +e r- '~7'  a~ te-~- (2.14) 

The deduction above shows that the equilibrium equations, constitutive and geometric 
equations are reformulated in the form of (2.10), (2. II) and (2.14). The stress functions H and F 
consist of two parts for each, one is the solution of the corresponding homogeneous equations of 
(2.10), (2.11), and the other is a special solution of Eqs. (2.10), (2.1 I) themselves. It is easy to find 
that a special solution of Eqn. (2.10),  (2.11) can be written as follows 

H = g r = H z ( z ) / d + H o ( z ) ,  F = F o ( z  ) (2 .15)  

Substituting (2.15) into (2.10) and (2. i 1), a set of differential equations of H v H 0 and F o is obtained 

H", ( z )=P"  (z) 

d H ' o ( z ) - - c F ' o ( z ) = f P ( z ) - - d Q ( z )  } (2 .16)  

4gH2(z) +dF'o (z) = d P ( z )  

from which we can get 

H~(z) = P( z) + koz + hi 

dFUo(z)=(d--4g)P(z)--4ghoz--4gkt  } (2.17)  

dH~ (z) = f P ( z )  - -dO(z )  - c F ~  (z) 

Here k0, k I are integral constants. The corresponding stress components are 

r* , ,=0,  a ,*=0 ], 
( 2 . 1 8 )  

or*, = a~----(d--4g-~ 2ge)P(z)  + 2gko( e - -2 )z  + 2gk~(e--2) 

Becuse d-- 4g + 2ge= 0, (2.18) becomes 

r~,=cr~*=0, a ,  ~ = cr~=m z +moz (2.19)  

where 

mo----2g(e--2)ho, mt----2g(e--2)k t 

Now we prove the fact the stress state (2.19) is also contained by the general solution of the 
homogeneous equations corresponding to Eqs. (2.10) and (2.1 !). In fact, the stress state (2.19) 
makes (2.14) 

OZF/OrOz---O, v~F=0 (2.20) 

OtF ' a H  a tF  81H 
+ e. r--r-~-r =- -~- r  + e - ~ o - ' = m t  + ,%z (2 .21)  

The first equation of (2.20) gives 

F = f t ( r )  +/:2(z) (2 .22)  

and substituting it into the second one and integrating the resultant we obtain 

f l(r) =c,lnr + cl (2.23) 
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respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
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where %, c, are integral constants. Eqn. (2.21) gives 

from which 

OZH 1 OH 
Or S r Or 

# 1 @H )-----0 
= r - T ~ r  ( r  ar  

and 

H=r~hl(z)/2+ ha(z) 

f[  (z) q-ehl(z) =moz +ml 

(2.24) 

(2.25~ 

To determine functions h~, h 2 and ~,  we substitute (2.22) and (2.24) into the homogeneous 
corresponding to (2. I 0) and (2. i !), then 

2h~ (z) -t- ./~ ( z ) :  0 (2 .26)  

drZh~ (z ) /2  + dh~ (z) --cf~ (z)----- 0 (2 .27)  

Considering e # 2 a n d  unite Eqs. (2.25), (2.26) and (2.27), we may obtain h,, h 2 and f2, and then 
substituting them and (2.23) into (2.22) and (2.24), the expressions for Fand H are obtained, which 
contain fiv.e integral constants. Without losing the generality, we can assume that P(z) =Q(z) = 0 in 
(2.10), (2.11), i.e. 

d V ~,/--/+ av~.F+d(aZF/Oz2):O (2 .28)  

d~o. -v~.F_c(OZF/az2 = 0  (2.29) 

It means that Eqs. (2.10), (2.11 ) and (2.14) are equivalent to Eqs. (2.28), (2.29), (2.14) when we only 
consider the stress distribution. 

Utilizing the relationship of displacement and strain, constitutive equations as well as Eqs. 
�9 (2.14), (2.28), (2.29), it is easy to obtain the displacement expression 

u==-e(ai,--a,z)aH/Or , w=(a/az)[e(a l , - -a~2)H-a ,F]  (2.30) 

Therefore, H and Fcan also be called displacement functions. From the displacement point of view 
the arbitrariness of H, F reduces to four integral constants. 

We have proved that Eqs. (2.10), (2.11), (2.14) are equivalent to Eqs. (2.28), (2.29), (2.14) in 
expressing the stress, therefore, the displacements deduced from them differ at most a rigid 
displacement (i.e. the translation in the axial direction). It is easy to verify that (2.30) includes this 
rigid displacement, so formula (2.30) contains any real displacement. "Because every step in this 
section is convertable, displacement (2.30) in which H and F satisfy (2..28), (2.29) must be the 

solution of elasticity problem. Thus, we have proved that (2.30) is the general and complete solution. 

III. TheGeneral Solution Expressed by Two Quasi-Harmonic Functions 

Equations (2.28), (2.29) which functions H and F should satisfy are still complicated because 
unknown functions are coupled. We want to 0nd such two functions that they can construct the 
general solution, but the differential equations satisfied by these functions are simpler and 
uncoupled. From (78.14) in [1] we.know that 

Assume 

S2 2 s~ + s i f ( a + c ) / d ,  ls~=l/d (3.1). 
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H=H~ -- (a/d)F + (sI +s l)F/2 

and substituting it into (2.28) and (2.29), 

1 , ~ O 2 F  1 , , OZF + : . ,  

8=Hl ls~(s~ ' ~  02F \ 1 21 , , -  02F\ 
2 ) - T s '  ) =~ 

is obtained. 
When s~ ~ s ] ,  we multiply (3.3) by s] , and add it to (3.4), then the result 

V IF, = 0 

is obtained, where 

(3.2) 

(3.3) 

(3.4) 

( 3 . 5 )  

p=e(d 'ac) /d  (3 .10)  

Obviously, r must satisfy the quasi-harmonic equation 

2 - -  V ir ( i = 1 , 2 )  (3 .11)  

It is easy to verify that (3.9) is the same as (2.4.8) and (2,4.9) in [3], i.e. Eiliott's solution. 
When s~= s[=s 2, (3.2), (3.3) and (3.4) may be simplified as follows: 

H=HI + F(c--a)/2d 
v ~ H t  +s2v~F +o~F/az2=o 
O~Ht/Oz*--s~( s2v~F +OZF/Oz=) = 0  

Multiplying (3.13) by s 2 and adding it to (3.14), we have 

v~H==0 (3.15) 

(3.12) 
(3.13) 
(3.14) 

+(3.9) 

where 

u=p(alt_atz)w=_p(at~_alz)O(r ,-beZ)0r ~ )1 

Oz + e "~--a  Oz a--ds|" ,Oz 

then 

V, ~ =V~ +aVs~, az2 ( i = i , 2 )  

F~=H~§ (s: --sD F/2, F2:  H,-- (s[ --s~)F/2 (3 .6)  

Based upon (3.6), H 1 and F can be expressed by F~, F v then F, H are written as follows 

F: (F~- -FD/ ( s~ - - s , ) ,H= i-~ d(s~--s~) F,+ 1 d(s[--sl) 

Substitute them into (2.30)and denote 

2pd(s~ --s] )qb~ , F 2pd(s[ --s| )r 
Fl=-- eEd(s~--s~')-bc--a] 2=--eEd (s]--s~)--c-ba] (3 ,8)  
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whe re V] = V,~ + Oz/szOzz �9 It is shown that H~ is a quasi-harmonic function. To obtain F, we can 
use either (3.14), or (3.13), so the general solution of F can be written in two forms: 

=~_2(Fo 1 OH,\ 2d l ~. 1 #Ht  \ F y r  ' ,- 

where F 0 satisfies the quasi-harmonic equation 

V~ Fo = 0 

Substituting (3.16) and (3.12) into (2.30), the displacement is 

c--a O c- -a  
u =  4 ( c + a )  0----7- (qg~ ' w----'~2 4 ( c + a )  

where 

(3 .17)  

(3.18) 

8 
8z "(q~o+zq~z) (3.19) 

c p z = 2 e ( a , - a t D O H , / O z ,  qgo - - - -4e (a j , - -a lD[ (c+a)Hd(c - -a )+Fo]  (3 .20 )  

Obviously, ~v0 and q~z should satisfy 

V~ q~,=0 ( i = 0 , 2 )  

Substituting (3.17) and (3.12) into (2.30), the displacement is 

C - - a  c - - a  

u----~i--.4(c_i_a ) (qao+r~oi), w =  4 ( c + a )  (q~o+rq~,) (3 .22)  

qo l=- -2e (a , , - a l z )OH, /Or ,  q O o = 4 e ( a . - a l ~ ) ( F o - - ( c + a ) H l / ( c - - a ) )  

q00 should satisfy Eqn. (3.21), and because of 

O v~HI=[~ V~ ' 1.~OHt 
Or --'~-I Or 

where 

According to (3.15), (3.18), 

cpi should satisfy 

(3 .21)  

(3 .23)  

( V,Z-- 1/r2)~p1=0 (3 .24)  

Thus, we use a simple method, but without losing generality, to prove that the general solution of 
axisymmetric problem can be expressed by two quasi-harmonic functions: when s~ ~s~,  the 

solution is (3.9), where r satisfies (3.11); when s~ = s~, the solution is (3.19) or (3.22), where q~, 
satisfies (3.21) and (3.24), respectively. 

In the case of isotropic media, where /~ is Poisson's ratio, we have 

(c+a) / (c- -a)=l - - l z ,  s 2 = l  (3 .25)  

then (3.19) and (3.22) become Papkovich-Neuber's Solutionlg, t01. 

IV. The General  So lut ion  Expressed  by a Quas i -B iharmonic  F u n c t i o n  

Multiplying (2.29) by a and addingit  tO Eqn. (2.28), we obtain the equation 
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02 ( d_ac)  O~_~Fzz = 0 

Introducing such a function ~p that 

Ozr - - d (  Oz H = ( d - - a c ) ~ ,  F =  V ~ q- a~-~--zZ )e; 

the equation above is satisfied. Substitute (4.1) into (2.14) and denote 

then 

0 ~ O 2 
r , , =  ~ ( V .  + a "-~'T) ~P, 

(4 .1 )  

d~--~--~z----~ (4 .2)  

19 2 

O z -  O z 0 02 

o z  + + a  
= = ,  0 I 02 0 z 

or, - - ~ t - - ~ r - r - + b - - ~ r  + a ~ ) ~ p ,  c r 0 = - - ~  

(4 .3 )  

S=e(al l -a tD. t - I  , T = e ( a . - - a l z ) F  (4 .7)  

therefore, Eqs. (2.28) and (2.29) become 

-'8zS ' 027" = 0  
dv~S+av~T+dOo~Tz2=O, , ~ - - v . T - - c  Oz ~ (4 .8 )  

Multiplying the first equation of (4.8) by aid 2, the second one by l/d, and then adding them 
together, the resultatat is 

82 z (S - -  T ) +  v~[dag+(aZ--d)T]=O (4 .9)  

Introducing such a function U that 

where 

where 

b= l +e(ae--d)  (4 .4)  

Substituting (4.1) into (2.28) or (2.29) and considering (3.1) and (4.2), we find that function 
q0 satisfies the quasi-biharmonic equation 

v~ v ~ = 0  (4.~) 

Comparing (4.3), (4.5) with (78.17) in [1 ], the stress expression (4.3) is just Lekhniskii's solution. In 
the case of isotropic media, (4.3) degenerate into Love's solution, and Eqn. (4.5), into the 
biharmonic equation. 

Now we derive another form of the solution. First, we write (2.30) in the following fo'rm 

u = - -  0--7-' 
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C - - a m  2 = r  
S -  T I  = V . o ,  

Eqn. (4.9) is satisfied automatically. Eqn. (4.10) gives 

d20 2U daS+(a2--d) T = -  

, OzU 
S--  1 V(a--d)v*U--d(c--a)-g7 J T :  (ac--d) 

Substituting the first ones of (4.1 I), (4.10) into (4.6), we get 

(4 .10)  

1. 
( ac - -d )  

d ~v~U +d~ ] 4.11) 
(ac--d) [ ( 

O[ . O z U  7 O ~ U (d'--d)vl, U--d(c--a)~z2 J, w =-b-~z V.  

Eliminating S and T with (4.1 i) and (4.8), we obtain the equation 

v~ vIU=0 
We denote OU/Or=~ , and formula (4.12) can be written as 

(4 .12)  

(4 .13)  

o (v,' 1 o 
rl_~_) ~ ( i = 1  2) Or V~= -- ' (4 .15)  

function ~b should satis~ 

( V ,' --~-~-= ) (V ~ -- -~-z ) *  = 0 (4 .16)  

In the case of isotropic media, (4.14) and (4.16) become Michell's solution: 

[ +'1 2( ,o | } 
u= ; ( 2 - # )  (2~,- I  ar \--6-;- - r - } -  1 -~ -~ 'TJ  (4.17) 

o ( acp _~_) 
9 =  --87-k-T;-r + 

( v2-1)(v'-1)~=0 (4.18) 

We can get other general solutions by different methods to simplify and solve Eqs. (2.28) and 
(2.29). The character of these general solutions is that highest derivatives in the displacement 
expression are at most second order. 

V. Conelusion 

First, we give the general solutions (2.30), (2.28) and (2.29) to the axisymmetric problems in 
transversely isotropic media, and prove them equivalent to the equilibrium equations and 
compatibility relationship; then, based on these equations, we use the transform and simplification 
technique without losing generality and obtain a series of valuable solutions: (3.9), (3.19), (3.22), 
(4.3) and (4.14), among them (4.14) has not been found in other papers, Papkovich- 

Because of 

0~4) l w a .,{ a r  
(ac--d) 
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Neuber's solution is the special case of (3.19) and (3.22); (3.9) and (4.3) is the well-known Elliott's 
and Lekhniskii's solutions and (4.3) will degenerate into Love's solution in the case of isotropic 
media. 
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