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Non-equilibrium thermo field dynamics (NETFD) is constructed in a compact form upon several
basic requirements (axioms) without referring to the existence of the reservoir. The dissipation is
involved in NETFD through the axioms, preserving most properties of the usual quantum field theory,
e.g., the operator formalism, the time-ordered formulation of the Green’s functions, the Feynman
diagram method in real time. NETFD with this general and compact form appear to be fundamental
in physics.

§1. Introduction
In previous papers,”” we constructed a fundamental framework for a quantum
field theory for nonequilibrium systems, which was called non-equilibrium thermo
field dynamics (NETFD), this construction was based upon two concepts. One was
the thermal state in the thermal-Liouville space. This state concept made it possible
for us to specify the thermal situation in terms of the thermal state condition. The
other was coarse graining which was realized by projecting out some partial space
from the complete thermal-Liouville space. By eliminating the reservoir variables
(i.e., coarse graining in the time axis) we obtained the “Hamiltonian” H in the
thermal-Liouville space which describes the dissipation effect. The thermal state
condition and the “Hamiltonian” H give us the quasi-particle supevoperators and the
thermal vacuum ket-vector automatically, with which NETFD preserves most prop-
erties of the usual quantum field theory.

In this paper, we will show that NETFD can be formulated in an extremely
compact form on several basic requirements (axioms) without veferring to the exist-
ence of the reservoir. The framework of NETFD can be said to become completely
a self-contained one. Under any situation of the symmetry of the system, we can
determine, by the basic requirements, the basic structure of 74 the real part of which
reveals the dissipation effect. The determination of H in this formalism becomes
extremely simple. ' '

In order to show the structure of the theory much more Vividly, we confine
ourselves to the argument written by only four superoperators a,a', @ and @', which
satisfy the canonical commutation relations:

[0, a'le=[2, @']o=1, | @

while the other commutation relations vanish, where the o-commutator is defined for
arbitrary superoperators A and B by
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54 T. Avimitsu and H. Umezawa

[A, Ble=AB—0oBA (1-2)
with
:{—H for boson,
—1 for fermion, (1-3)
and the tilde conjugate ~ is defined by
(AB) =A4BE, | (1-4a)
(ctA+c:B) =c*A+c*B (1-4b)

~with complex c-numbers ¢: and c.. The tilde conjugate satisfies the double tilde
~ conjugate rule

A=g"A, . (1:5)
where va is the fe_rrnion number of A. As particular cases for (1+5), we have

=oa, a'=oa'. (1-6)

Q)

It is straightforward to rephrase the whole argument in this paper. into a quantum field
theoretical form by regarding the superoperators as the field operators and the
thermal-Liouville space as the state vector space. It will be given in a forthcoming
paper. '

In the next section, the basic requirements (axioms) of NETFD are given with
some remarks. The procedure of the coarse graining in time axis to obtain the
dissipation effect is replaced by the basic requirements. In § 3, the whole structure of
NETFD is reviewed upon the basic requirements. In § 4, the theory is applied to a
phase-invariant bilinear model to show how it works. In §5, the two-point Green’s
function of the semi-free field is explicitly obtained, which is the basic element of the
Feynman diagram in the perturbational calculation of NETFD. Some discussions
are given in § 6.

§2. Basic requirements (axioms) of NETFD

We list the basic requirements to construct NETFD in the most refined and
compact manner.

Al. The equation of motion for the thermal vacuum ket-vector in the Schridinger
representation |W(t)) is given by

S| W(t)y=—iH|W (), (2-1)
where H is a superoperator consisting of @, @', @ and @'. Equation (2-1) will be
called the Schrodinger equation or the master equation. :

A2. The superoperator H should satisfy the relation _
(H)Y =i . (2-2)
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General Structure of Non-Equilibvium Thermo Field Dynamics 55

Any superoperator which satisfies the relation (2-2), i.e., the tilde conjugate invari-
ance, will be called Tildian.

A3. The requirement of the conservation of the inner-product between the thermal
vacuum bra-vector {1| and the thermal vacuum ket-vector | W(#)) reads

(1H=0. ~ (2-3)
A4.. The thermal state condition for the thermal vacuum bra-vector is given by

(1la'=(1l2z, , (2-4a)

(lla=(1la'o. (2-4Db)

A5. The fequirement of the existence of the stationary thermal vacuum ket-vector in
the Schrodinger vepresemtation reads

H|W(c0)y=0. (2-5)

A6. The' thermal state condition for the stationary thermal vacuum ket-vector
|W(c0)). The unperturbed part of the thermal state condition is given in the form

a|W(oo)y= fa't|W(co)y, _ (2-6a)
alW(eo))=ofa'|W(co)y, (2-6b)

where 7 is some c-number function.

A7. The thermal state condition for the thermal vacuum ket-vector in the Heisenberg
representation |W(%)). The unperturbed part of the thermal state condition is given
in the form :

a| W(t)Y=rfa'|wit)y, ’ (2-7a)
alwt)=ofa'|W(t)), A (2-7b)
where f is some c-number function. '
Remarks

R1. By inspecting the symmetric property of a system, we can write down the

general form of H in terms of the superoperators @, ', @ and @'. Then the most
basic structure of the Tildian Hamiltonian H, which includes the dissipation effect of
the system, is determined by the basic requirements A2~ A6. This will be illustrated
in § 4. : :

R2. In the basic requirement A6, we can add information about the symmetry of the
stationary thermal vacuum ket-vector in the Schrédinger representation |W(c0)),
which reveals itself in the structure of the real part of iH. In other words, the
symmetry breaking effect can be added to the structure of the real part of the iH
through A6.

R3. In the basic requirement A7, we can add information about the symmetry of the
. thermal vacuum ket-vector in the Heisenberg representation | W(#%)). The informa-
tion reveals itself in the definition of the quasi-particle superoperators which are
determined by A7 (see § 3 for the detailed definition of the quasi-particle superoper-
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56 T. Avimitsu and H. Uwmezawa

ators). Some preliminary investigation of this point has been progressed in Ref. 3).
Note that the basic requirement A7 is determined by the initial condition of the
system at =1t (i.e., by the experimental set-up of the system at the initial time %).
R4. Although the thermal state conditions (2:6) in A6 and (2:7) in A7 are invariant
under the phase transformation @~ a exp(i6), this does not exclude the spontaneous
breakdown of phase symmetry. For example, in the case of superconductivity, a
stands for the annihilation operator of electron with energy gap, and therefore, « is
a linear combination of annihilation and creation operators with opposite spin (i.e.,
the Bogoliubov transformation), and in this way the phase symmetry of original
electron field is broken.

§3. Structure of NETFD

The master equation (2-1) in A1 is solved formally as
|W())=S@—s)W(s), @-1)

where :
S(t)=exp[ —iHt] . (3-2)

Note that as the Tildian Hamiltonian H is not Hermitian generally, S is not
" necessarily unitary. In the following, we require the normahzatlon of the thermal
. vacuum ket-vector to be

Qw)y=1. : (3-3)

Then the thermal average (i.e., thermal vacuum expectation value) of a superoperator
A is given by 1|A| W(#)).

The thermal average {1|A|W(#)) can be expressed as the thermal expectation
value with respect to the thermal vacuum ket-vector in the Heisenberg representation

W (k)
QAW (Y =CUAMI W (1)), (3-4)
where |
A)=S"(t—1t)AS(t—t,). - (3-5)

In deriving the relation (3-4), we used A3. The superoperator A(#) will be called the
Heisenberg representation of the superoperator A. Note that the thermal vacuum
ket-vector in the Heisenberg representation | W (%)) is specified by A7. Note also
that the Heisenberg equation of motion for the superoperators is

8 A(t)=ilH, A()]. . (3-6)
As particular cases of (3:5), we have »
a(t)=S""t—to)aS(t—t), (3-7a)

a"(B)=S N t—t)a' S(t—t). | (3-h)
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General Structuve of Non-Equilibrium Thermo Field Dynawmics 7 57

Superoperators a@(¢) and @''(¢) are given by taking the tilde conjugation of (3-7a)
“and (3+7b), respectively (remember A2):

a(t)=SMt—t)aS(t—1), (3:7¢)
at(t)=S"t—t)a'S(t—t). (3-7d)

It should be noted that ¢"(¢) and Z"(¢) are not Hermitian conjugation to a(t) and
a(t), respectively, when S is not unitary, although they satisfy the canonical com-
mutation relations:

[a(t), @™ (D) ]o=[a(2), @"'(t)]o=1, (3-8)

while the other commutation relations vanish.

We use the interaction representation (i.e., the perturbative expansion) to intro-
duce quasi-particle superoperators. The interaction representation is specified by the
unperturbed Tildian Hamiltonian Ho, which is defined by a bilinear form consisting of
* the superoperators «, @', @ and @', and by the unperturbed part of the thermal state
condition for |W(%)) given by (2:7) in A7. The superoperators «, a', @ and @' in
this representation will be called semifree. Let So(t) denote S(¢) with H being
replaced by H,. In this interaction representation, (3-7) becomes

;Z(t)zgo_l(t—to)dgo(t—to) s ’ (3'93-)
a"()=So W t—t)a'Se(t—t), etc. (3-9b)

Since the thermal state conditions, (2:6a) in A6 for | W(o0)) and (2:7a) in A7 for
| W(t)), are linear in @ and @', and since H, is of the bilinear form, the thermal state
condition for |W(#)) should be linear in a(¢) and @ ''(¢) with arbitrary #:

a()W(t))=F(t—t)@at" ()| W(t)) . ~ (3-10a)
On the other hand, (2-3) in A3 and (2-4a) in A4 give
Qla()=Qla"(t)o. ' (3-10b)

These are the thermal state condition at arbitrary time. Comparing (3-10a) with (2-6
a) in A6 we find f =f(o0), and with (2:7a) in A7 we find f=7(0).
We define the annihilation and creation quasi-particle superoperators by

H(8)=Z""(t — ) at) — f(t— ) T (D)], (3-11a)
FHO=Z"(t—t) @™ (t) —oa(t)], (3-11b)

respectively, because, then, (3:10) gives

rOIW()N=0, (17 (#)=0. , (3-12a)
The tilde conjugation of (3-12a) leads to _ |
FOIW()N=0, (lr*(#)=0. (3-12b)

The normalization factor ZY%(¢) is determined by the canonical commutation relation
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58 T. Avimitsu and H. Umezawa

[7(®), y¥(D)e=[7(1), 7¥(D)o=1, - (3-13)
while the other commutation relations vanish. The result is

Z(H)=1+ns(2), | (3-14)
where

no(t)=7fo(t)/[1—1s(1)] (3-15)
with

no(t)=on(t), ‘ (3-16a)

fo(t)=0af(t) . N (3-16b)
Using the relations (3-11) and (3-12), we obtain |

n(t —to)=Cla" (t)a() W (). . (3-17)

The above argument shows one of the most significant roles played by the
thermal state condition; the latter condition specifies the thermal vacuum and creation
and annihilation superoperators for the quasi-particles.

Note that although we have used the same notations a(#), a"'(t) and | W (%)) both

for the Heisenberg and the interaction representations, we expect that one can

distinguish between them by the context. ‘

We now define the thermal-Liouville space in which NETFD is constructed. The
thermal-Liouville space is nothing but the linear vector space spanned by the set of
bra and ket vectors which are generated, respectively, by cyclic operations of the
annihilation superoperators 7(#) and #(#) on the thermal vacuum (1], and of the
creation superoperators 7$( t) and 7 *(¢) on the thermal vacuum | W(%)).

Both the deviation of H from the unperturbed Tildian Hamiltonian A, and the
deviation of the thermal state condition from its unperturbed linear form [i.e., (2-6)
and (2:7)] are considered as perturbative effects. By adopting the usual definition of
the normal product for the quasi-particle superoperators [i.e,, when a product has a
form in which all the creation superoperators (y* and 7*) stand to the left of the
annihilation superoperators (7 and #), it is called a normal product]), we obtain a
Wick-type formula for NETFD. This Wick-type formula leads us to Feynman-type
diagrams for multi-time Green’s functions in the interaction representation. We then
obtain a Feynman-type diagram method for perturbative calculations for NETFD
when a perturbative interaction is introduced in . We can also formulate the
generating functional methods in NETFD.*

Note that the perturbational calculation leads us to an expression of the Heisen-
berg superoperators in terms of product of quasi-particle superoperators. This is an
extension of the concept of the dynamical map in the usual quantum field theory to
NETFD. ,

According to Refs. 5) and 6), the entropy for the nonequilibrium state in the
thermal-Liouville space is given by -
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General Structure of Non-Equilibvium Thermo Field Dynamics 59

s(t)=9%1ng<t)/g(oo> (3-18)

with
QUO=CUW (DI W())

=(W'(H)IW (). : (3-19)
The timé derivatives of £2(¢) are given by
d2(t)=—(WH(OIGE) +iH ]| W(t)), (3-20)

d2Q@)=( W (OIGH) +HAW YW (DIGH, GE)'IW®)Y.  (3-21)

The sign of d:2(#) should be determined by tlie boundary condition of the system (i.e.,
the system is open or closed). Note that if H is Hermitian £2(#) remains constant in
time. '

§4. A phase-invariant bilinear model

Since the unperturbed thermal state condition (2+6) in A6 and (2:7) in A7 are
invariant under the phase transformation a—a exp(76), H should assume this phase
invariance. Thus, the general form of H is written in the form

H=ha'a+ha'd+hsad'a+hia'a’ +ho, (4-1)

where &= /'+1h” with real quantities #’ and #”. The basic requirement A2 makes &
Tildian. Then (4-1) reduces to

H=n'(a"a—a'@)+im"(a'a+a' @)+ihs" Ga+ih @ a' +iho" . (4-2)

The basic requirements A3 and A4 give us relations between the 4” terms as

W0+ ohd =0, (4-3a)

20" +hs"+ h"=0. (4-3b)
The basic requirements A5 and A6 give us another relation between the #” terms as

ko’ +ohs” f5=0, (4-4a)

20"+ hy’ fot+hd fo'=0,  (4-4b)
where . »

fe=0of . : (4-5)

In deriving (4-4), we used the unperturbed thermal state condition (2:6) in A6 as it

may be consistent with the phase-invariant bilinear model. From (4-4a), we see that

f is a real quantity. Note that (4-3) and (4-4) are not mutually independent. They
reduce to

e =—chd" (4-6a)
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60 T. Avimitsu and H. Umezawa

W= =+ b, (4-6b)

W =hs" Fs. (4-6c)
If we introduce real quantities ¢, x1 and x. by the definitions

e=h, (4-7a)

2m=hs", . (4-7b)

2x2=ha" | (4-7¢)

we finally obtain the general form of the Tildian Hamiltonian H for the phase-
invariant bilinear model, which, satisfies the basic requirement A2~ A6, as

H=cla'a—ata)— nat+x)atatata)+i2xniaga+i2x.atat—i20x, (4-8)
with the relation 4
r=xnfos. (4-9)
By using the Heisenberg equations of motion:

da(t)=1[H, a(t)]

=—ile—i(n+x)]a(t)+ 20231 (2), (4-10a)
0™ () =i[H, a™(1)]
=ile—i(n+x)]a™(t)—2xa(t), (4-10b)
and the basic requirement A4, we obtain
341 a™(8) a(t)=—2(x1 — x2){|a™(¢) a(t) + 20> . (4-11)
By applying the thermal vacuum ket-vector | W (%)) to (4-11), we have
0t — to)=—2(xts— x2) n(t — to) + 202, (4-12)
where we defined #(t—f) by [c.f. (3:17)]
n(t—t)=(1a" () () W(t)). (4-13)

In the limit ¢—>co, we obtain from (4-12)

n(e0)=(1la’ a| W(co))=—22 - (4-14)

Inspecting (4-11) and (4-14), we know that it will be convenient to introduce
bositive quantities x and # by

X=x1— %z, ’ . (4-15a)
s OX2 71 N1 .
p=Z=(f =), (4-15b)

where we used (4-9) in the second equality of (4:15). The reason why we can
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General Stmcture'of Non-Equilibrium Thermo Field Dynamics 61
determine that x and # should be positive, is the stability of the system.
Then the Tildian (4-8) reduces to

H=ela'a—ata)+ill (4-16a)
with

T=—x[Q+275)a"a+ @' @)—2(1+ 7o) Ga—27sa a']—20x7s

=—x(a*As*a’—0), , (4-16b)

where

Mo=0T . _ C(4-17)

We have introduced the thermal doublet notation

a=(‘;) a*=(a", @)l (4-18)
with
Lf:<1’ °>- (4-19)
0, -0
and
Ao‘:L?CdId, (4'20)
Cd= CJ(T)+ Ca(a) (4 . 21)
with
1+ 7o, 7o s s .
() — ’ (2) — ’ 4-929
Co <1+m, ﬁo')’ Co (1+m, 1+ﬁo')’ (-2
[5=]o'7."3, : (4'23)
1, 0
2'3—(0 ’ _1) . ‘ (4_ 24)

It should be noted that the Tildian Hamiltonian (4:16) has exactly the same form as
the unperturbed part of the Tildian Hamiltonian""? which was obtained by eliminat-
ing the reservoir variables. Note, however, that the entire consideration in this paper
does not need any reference to the reservoir. :

The time derivative of £2(#) for the phase-invariant bilinear model is given by

A2 =T+ W)Y (4-25)

with (4:-16b). By using the thermal state condition properly (see Appendix A for |

details), we obtain
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62 : T. Arimitsu and H. Umezawa

_ 47‘m[%(f—l‘o)—ﬁ] for boson,
dth'l.Q(l‘)z ]_—Zn(t—t)
4x[1—n(t—to)]2+7;(t—to)2[n(t_t°)_ﬁ] for fermion, (4-26)

where #(¢— %) is defined by (4-13) the explicit form of which is given by
w(t)=7n+[n(0)— #le* . (4-27)

If  and f are equal to exp(— Boe) and exp(— Be), respectively, with To=1/8 and
T =1/B(ks=1) being the initial and final temperatures of the system, respectively, we
obtain

~

n=(e"—0o)", | (4-28a)

n(0)=(ef*—g)! ' (4-28b)
and

0<n(t—tf)<co for boson, | (4-292)

0<n(t—1) <% for fermion, (4-29b)

as can be seen from (4-23) and (4-24). Then (4:22) tells us that
dtS(t)%O for T= To, (4°30a)
d:S(£)<0  for T<Tp. (4-30b)

From (4-27) and (4-30), we can see that the phase-invariant bilinear model describes
an open system coupling to the particle reservoir with temperature 7" if the chemical
potential of the reservoir remains constant.

§5. Two-point Green’s function of the semi-free field

The two-point Green’s function of the semi-free field is the basic element of the
Feynman diagram, and is defined by

G™(t, 5)=—i1Tla*(t) @ (s)l| Ws(%)) (5:1)

where (1| and | Ws(%)) are the thermal vacuum states for the system which satisfy the
thermal state conditions (2-4) and (2-7), respectively. We introduced the thermal
doublet C

a(t)

a“(t)Z(aﬁ(t)

) . adt)=(a"(t), at)ls, (5-2)
the elements of which are defined by (3-9) and its tilde conjugate. The timei evolution
of So(#) in (3-9) is determined by the unperturbed Tildian Hamiltonian A which is
given by the Tildian Hamiltonian (4:16) of the phase-invariant bilinear model. We
use the thermal doublet notations also for the quasi-particle superoperators:
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General Structure of Nown-Equilibvium Thermo Field Dynamics 63

[7(t) _
r(=\"_s ], 7O=GF@), F()s. (5-3)
77() ,
The two-point Green’s function (5-1) is easily evaluated by rewriting it in terms
of the quasi-particle superoperator defined by (3-11) and its tilde conjugate, and by
using a Wick-type formula. The result is given by

G(t, s)=[IsW(t— 1) G(t, s) W (s —t)Is]%, (5-4)
where
ges(t, s)=— iU T{r(8) 7 Walta))
=<Z”2(s—to)Z‘”Z(t—to)G’(t—s), 0 )
: 0 , 2Vt — 1) Z V(s — 1) Gt — )
(5-5)
with
G"(¢)=—i6(t)expl —i(e—ix)t], (5-6a)
G¥(t)=i6(—t)exp[— i(e+ix)t] o (5-6b)
and ,
W(t)=1,B(t)Is A (5-7)
with
B<t>=z”2<t>( L _f“)), (5:8)
-0, 1

where Z(t) and f(t) are related to each other through (3-14) (together w1th (3-15)) in
which #z4(#) is given by

ne(t)=on(t) (5-9)
with
1ns(0)=fo/ 1—15) . 4 (5-10)

The definition (3-3) of the quasi-particle superoperator can be ertten in the thermal
doublet notation by using (5-8) as

r()=B(t —t)%a’(t), ' (5-11a)

74t)=a’()B ' (t—h)". (5-11b)
We have

B (t)=B(t)sn. (5-12)

The explicit expression of G*(¢, s) is given in Appendix B.
When we introduce an interaction, we make use of H in this section as the
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64 ; T. Arimitsu and H. Umezawa

unperturbed Tildian Hamiltonian. In this case the two-point Green’s function in (5-1)
becomes the internal lines in the Feynman diagrams.

As the quasi-particle superoperator satisfies the following Heisenberg equation of
motion in the thermal doublet notation:

atYG(t)Z_Z-,:E 8“”—2;(1%7;0—”@“‘9}7 (t) (5'13)

the equation of motion for the quasi-particle two-point Green’s function is given by

- a ap a 1+%0‘ Y .
i0,G (1, 5)=5(t=5)3% + | e87— ix g s | am(t, ). (5-14)

It may be worthwhile to note that (5-10) is solved to give
KO\ ZHOZ =)0 g [y
%(t) 0, ZV2(¢— 1) Z V() e et |\ 7% ’

Especially in the case where the initial state is of the grand canonical distribution
with temperature To=§0"", (4-28b), and the final state is of the grand canonical
distribution with temperature 7=47", (4-28a), the Green’s function (5-4) with o=1
(i.e., for boson) reduces to that derived by Schwinger.'®

(5+15)

§6. Discussion

We presented the fundamental framework of NETFD in its most general and
compact form. The dissipation effect appears in NETFD through the basic require-
ments which determine the basic structure of the Tildian Hamiltonian H. In other
words, the previous derivation”? of H by eliminating the reservoir variable (ie.,
coarse graining in time axis) has been replaced by the basic requirements. The
elimination of partial subsystems in the whole thermal-Liouville space, which we
called the second step in Refs. 1) and 2), can be formulated by the pro;ectlon method
given in Ref. 2) under the basic requirements of NETFD.

As has been seen in previous papers,”” NETFD is based on the Liouville equation
formalism. Then, although NETFD seems very much similar to the ordinary
quantum field theory without thermal degrees of freedom in technical points of view,
which makes us easy to handle with non-equilibrium phenomena, the thermal-
Liouville space, in which NETFD is constructed, is very much different from the
Hilbert space of the ordinary quantum field theory. This is the reason why we can
- introduce the dissipation within the quantum field theoretical framework without any
difficulties.

The symmetry breaking situation can be easily added to NETFD. through the
basic requirements. The phase change problems both in equilibrium and far from
equilibrium can be treated dynamically by NETFD. In the latter case, the physical
. parameters, like mass etc., in H will depend on time because of the time-dependent
renormalization procedure by which the time dependence of an order parameter and
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the appearance or disappearance of corresponding Goldstone boson field can be
treated self-consistently depending on physical situation. The detailed investigation
will be given in a forthcoming paper. (Clearly S(¢) defined by (3-2) should be
regarded as the well-known time-ordered exponential, if H is interpreted as a renor-
malized Tildian Hamiltonian.)

As can be seen by the application of NETFD to the phase-invariant bilinear
model in §4, the basic requirements seem intimately related to open systems.
However, the fact that the formalism in this paper does not need any reference to a
reservoir seems to suggest that the domain of applicability of NETFD formulated in
this paper is much wider. Being optimistic, we expect that NETFD can treat closed
systems (such as the universe) in which a suitable boundary condition permits local
dissipation. This might provide us with a new foundation in our approach to
understand nature.

Although we explained the general structure of NETFD using the superoperators
which satisfy the canonical commutation relations, we can include the case where the
canonical commutation relations are not satisfied. Some investigation of the latter
case ™' in thermal equilibrium has been done in terms of TFD.'”~'” These consid-
erations can be generalized to the nonequilibrium situations and can be formulated in
the present compact formalism. For example, the basic structure of the Tildian
Hamiltonian A for spin system is determined through the basic requirements. This
will be given in a forthcoming paper.

It should be noted that in the axiomatic formulation of NETFD we can use the
notation <0| and |0> for the thermal vacuum bra and ket vectors, respectively, instead
of €1] and |W(%)), because we do not need the explicit structure of the vacuum
vectors. The thermal vacuum vectors are specified by the thermal state conditions in
the basic requirements.

For reader’s convenience, we will mention here the recent (after this paper was
submitted) development of NETFD based on what developed in Refs. 1), 2) and this
paper. The generating functional methods in NETFD have been formulated.” The
semi-free quantum fields in NETFD have been constructed in a way parallel to that
of the usual quantum field theory without thermal degrees of freedom, i.e., in terms of
orthonormalization relations among wave functions, the sum rule for wave functions,
the divisor operator and the particle-antiparticle conjugation (c-conjugation).””
Symmetry breaking situations have been investigated dynamically within the frame-
work of NETFD.2® The theory has been developed in order to handle with the
time-dependent renormalization procedure, and to show the mechanism of tke sponia-
neous creation of dissipation.”? See also Refs. 26)~28).

We close this paper by noting that the linear response theory, proposed by
Kubo,” and Prigogine’s sub-dynamics” can be re-examined from the viewpoint of
NETFD. '
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Appendix A
—— Relations between Thermal Averages ——

The thermal average (1/@a|W(¢)) for the semi-free field gives us a relation
between (1]a'al W(¢)) and (1| W(2)) as

(Ua’ al W(EN ="t~ t)— o] (U W(2)Y, (A-1)

where we used (3-1), (3-7), (3-8) and thermal state condition (3-10). The relation
(3-15) is obtained from (A-1) with (3-3).

The thermal average {1|W'(¢)a@al W(£))=¢W'(¢)|Gal W(#)) for the semi-free
field gives us a relation between

(Wi (®)la'al W(#)) and (W () W(1)) as
(W (Dla"a WEY=[F(t—to) — T YX W (D) W(2)), (A-2)

where we used (3-1), (3:7), (3-8) and the thermal state condition (3-10a) and its
Hermite conjugate. To obtain (4+22), we used (A-2).

Similarly, we can obtain relations between observable thermal averages.

Appendix B »
—— Two-Point Green’s Function G%(t,s) —

Equation (5-4) gives us the expression

G(t, s)={Is[Cs™ G (t —s)~ Cs'P Gt —s5)

1 1
- Z(l ’ I)Ang(t - fo, S— fo)]]o-}aﬁ s (B'l)

where Co'” and Cs'® are defined in (5-28), G"(#) and G%(¢) are defined in (5+6), and
Ang(t — b, s— to)z [%0‘(0) - ﬁd]e—is(t—-s)e—x(ms—zm) (B'Z)
with the definitions (4-15b) and (5-10). -
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