70-23,532

IYER, Ramdas Ramnath, 1937-
GENERAL TECHNIQUE FOR SOLVING NONLINEAR,
TWO-POINT BOUNDARY-VALUE PROBLEMS VIA THE
METHOD OF PARTICULAR SOLUTIONS.

Rice University, Ph.D., 1970
Engineering, aeronautical

University Microfilms, A XEROX Company, Ann Arbor, Michigan



RICE UNIVERSITY

GENERAL TECHNIQUE FCR SOLVING
NONLINEAR, TWO-POINT BOUNDARY-VALUE PROBLEMS

VIA THE METHOD OF PARTICULAR SOLUTIONS

by

.
v

R.R. IYER

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Thesis Director's signature
)
W ) e e

Houston, Texas

May, 1970



Abstract

GENERAL TECHNIQUE FOR SOLVING
NONLINEAR, TWO-POINT BOUNDARY- VALUE PROBLEMS
VIA THE METHOD OF PARTICULAR SOLUTIONS
by

R.R. IYER

In this thesis, a general technique for solving nonlinear, two-point
boundary-value problems is presented; it is assumed that the differential
system has order n and is subject to p initial conditions and q final conditions,
where p +q =n. First, the differential equations and the boundary conditions
are linearized about a nominal function x(t) satisfying the p initial conditions.
Next, the linearized system is imbedded into a more general system by means
of a scaling factor @, 0 <sa < 1, applied to each forcing term. Then, the

method of particular solutions is employed in order to obtaiiu the perturbation

&x(t) = aA(t) leading from the nominal function x(t) to the varied function X(t);
this method differs from the adjoint method and the complementary function
method in that it employs only one differential system, namely, the nonhomo-
geneous, linearized system.

The scaling factor (or stepsize) a is determined by a one-dimensional
search starting from a = 1 so as to ensure the decrease of the performance

index P (the cumulative exrror in the differential equations and the boundary



ii

conditions). It is shown that the performance index has a descent property;
therefore, if a is sufficiently small, it is guaranteed that P<P. Convergence
to the desired solution is achieved when the inequality Pse is met, where €
is a small, preselected number.

Computationally, the present technique can be employed in two ways:
(a) the function x(t) is updated according to X(t) = x(t) + 0 A(t); or (b) the initial
point x(0) is updated according to X(0) = x(0) + aA(0), and the new nominal
function X(t) is obtained by forward integration of the nonlinear differential
system. In this connection, five numerical examples are presented; they
illustrate (i) the simplicity as well as the rapidity of convergence of the
algorithm, (ii) the importance of stepsize control, and (iii) the desirability

of updating the function x(t) according to Scheme (a).
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1. Introduction

In recent years, considerable attention has been devoted to the solution of
the two-point boundary-value problem for nonhomogeneous, linear differential
systems. Among the techniques available, we mention (a) the method of adjoint
variables and (b) the method of complementary functions (Ref. 1). Methods (a)
and (b) have one common characteristic: each requires the solution of two
differential systems, namely, the original system plus the derived system;
this derived system is the adjoint system in Case (a) and the homogeneous
system in Case (b).

With particular regard to high-speed digital computing, programming can be
made simpler if one employs the original system only. This technique, a modi-
fication of (b), consists of combining linearly several particular solutions of
the original, nonhomogeneous system. For this reason, it has been called the

method of particular solutions (Ref. 2). It has the follcwiig advantages with

respect to the previous techniques: (a) it makes use of only one differential
system, namely, the original, nonhomogeneous system; (8) each particular
solution satisfies the same prescribed initial conditions; and (Y) in a physical
problem, each particular solution represents a physically possible trajectory,
even though it satisfies only the initial conditions and not the final conditions.
While the method of particular solutions has been developed for linear
systems, it can also be used to solve nonlinear systems. Firsi, quasilinearization

must be employed, and the nonlinear system must be replaced by one that is



linear in the perturbation about a nominal function (see, for example, Refs. 3-6);
to this linear system, the method of particular solutions can be applied to find
the perturbation leading to a new nominal function; then, the procedure is
employed iteratively.

Recently, Heideman illustrated the above procedure through several
particular nonlinear examples (Refs. 7-9). Here, a general technique for the
solution of the two-point boundary-value problem associated with a nonlinear
differential system of order n subject to p initial conditions and q final conditions
is presented. Note that p + q=n. As a guide during progression of the algorithm,
we employ the performance index P already introduced in Ref. 10: this is the
cumulative error in the differential equations and the boundary conditions and
can be proved to have a descent property. In addition, the performance index
is also employed as a convergence criterion: the algorithm is terminated when

the performance index becomes smaller than some preselected value.



2, Linear System

In this section, we review the main results of Ref. 2. Consider the linear

differential systeml
X=M@Ex+N({t) , 0stsl (1)

where t is the time, x is the state, and M and N are piecewise continuous functions
of the time. Here, xisnx 1, Misnxn, and Nisnx 1. At the initial time

t =0, p scalar components of x are prescribed, that is,
i i .
x@©0=8 , i=1,2,...,p (2)

where the scalar quantities 8" are given. At the final timet =1, q scalar relations

must be satisfied; in matrix form, this can be written asz
Cx(l) =y 3)

where C and y are given. Here, Cisqx nand yis qx 1. The problem is to find
the function x(t) which solves Eq. (1) subject to (2)-(3).

In order to solve the proposed problem, the method of particular solutions

(Ref. 2) is employed. Specifically, let

xj=xj(t) s, j=1,2,...,qtl (4)

! The assumption t = 0 concerning the initial time and the assumptiont = 1 con-
cerning the final time can be made without loss of generality. Indeed, a problem
where the actual running time 6 has the lower limit a and the upper limit b can
be reduced to the present form by introducing the transformed time t = (6-a)/(b-a).

2 By assumption, p +q = n.



denote q + 1 particular solutions obtained by forward integration of Eq. (1) subject

to the initial conditions

x;(0)=81 , j=1,2,...,qH , i=1,2,...,p

©)

x?-*k(O)=5. 1,2, ..., , k=1,2,...,q

ik’

where 6jk denotes the Kronecker delta. Next, iist=cduce the q+1 undetermined,

scalar constants kj and form the linear combination

+1

x(t) =

Ly ijj ) 6)

By simple substitution, it can be verified that this linear combination satisfies

the differential equation (1) and the initial conditions (2) providing

({jl
k. =1 (7)
o1 ]

It also satisfies the final condition (3) providing

%+1
) kx (1) = 8
Cj’sl kaJ( )=y @)

Equations (7)-(8) constitute a system of q + 1 scalar relations which are linear in
the q + 1 constants kj . After the constants kj are known, the solution x(t) of the

linear, two-point boundary~value problem is obtained from (6).



3. Nonlinear System

Consider the nonlinear differential syst:em3
x=opx,t) , 0stsl , S 9)

where t is the time, x is the state, and @ is a continuous function of the arguments
xandt. Here, xisnx land®is nx 1. At the initial time t =0, p scalar com-

ponents of x are prescribed, that is,
i i .
x@0)=8 , i=1,2,...,p (10)

. i . . . .
where the scalar quantities 8 are given. At the final time t =1, q scalar relations

must be satisfied; in matrix form, this can be written as4
¥(x(1)) =0 (11)

where | is a q x 1 continuous function of x evaluated at t = 1. The problem is to
find the function x(t) which solves Eq. (9) subject to (10)-(11).
In order to solve the proposed problem, consider a nominal function x(t)

satisfying the initial conditions (10) exactly, but not necessarily Eqs. (9) and (11). Let

X(t) = x(t) + Ax(t) (12)

denote a varied function satisfying the initial conditions (10) exactly and Eqgs.
(9)-(11) to first order. If quasilinearization is applied, we obtain the following

differential system:

3 See Footnote 1.

4 See Footnote 2.



A% - cpI(x,t)Ax+[:'c -ox,t)]=0 , O0stsl

Ax1(0) =0 , i=1,2,...,p (13)
T

‘l'x (x(1))ax(l) + v(x(1)) =0

where P, is nx n and \hx is nxq.5
For convenience, we imbed this differential system into the more general

system

bx - CDI(x,t)Ax +alx - ox,t)]=0 , O0=st<l
Axi(0)=0 , i=1,2,...,p (14)
v (ML) +ab(x(1)) = 0
where a denotes a scaling factor (or stepsize) in the range
0<sac<l (15)
Next, we introduce the auxiliary variable

A = &x/a (16)

5The matrix cpx is defined so that its ith column is the gradient of the ith component
of ® with respect to the vector x. An analogous remark holds for the matrix q:x.

The symbol T denotes transposition of a matrix.



and rewrite Eqs. (14) in the form
. T . _
A - cpx(x,t)A +[x-eopx,t)]=0 , 0<t<l
Aloy=0 , 1=1,2,...,p (17)
T -
b, ANA) +u(x(D) =0

For a given nominal function x(t), the vector x - % and the matrix rox are known
functions of the time t; also, the vector wx are known quantities att = I, This
being the case, the system (17) is reduced to the form (1)-(3).

We now apply the method of particular solutions. Let
Aj =Aj(t) . J=1,2,...,q+1 (18)

denote q + 1 particular solutions obtained by forward integration of Eq. (17-1)

subject to the initial conditions

A;(0)=0 , §=L,2,...,q4 , i=1,2,...,p
(19)

Af“‘m =5

ik i=1,2,...,q+l , k=1,2,...,q

where 6'k denotes the Kronecker delta. After introducing the q + 1 undetermined,

scalar constants kj’ we form the linear combination

qt+l
AR) =) kA () (20)



Because of the results of Section 2, this linecar combination satisfies the system

(17) providing
) k=1, wxoc(l»? kA (1) + 4(x(1)) = 0 1)
j=l =]

Equations (21) constitute a system of q + 1 scalar relations which are linear in
the q + 1 constants kj . After the constants kj are known, the solution A(t) of the
linearized, two-point boundary-value problem is obtained from (20). With A(t)
known and a specified, the perturbation Ax(t) is computed from (16); then, the

varied function X(t) is computed from (12).

3.1. Performance Index. Here, we define the scalar performance index

1
P= [& - o, 0] T4 - o, )lde + 4 k1) @2)
0

Clearly, P =0 if x(t) satisfies Eqs. (9) and (11), and P > 0 otherwise. Since P
measures the cumulative error in the differential system, one can use it as a
guide during progression of the algorithm as well as to cstablish convergence. In

this connection, the following convergence criterion arises from the above definition:
Pse (23)

where € is a small, preselected number.

3.2. Descent Property. The first variation of the performance index is

given by

1
P = 2] [k - ox, 1)1 [8% - o) (i Tde + 20T ()] @x(D)  @24)
0



and, because of Eqs. (14-1) and (14-3), reduces to
1 T T
5P = -20] [k - o6, 0)] [k - o, )]dt - 200" (OOWE)  @25)
. 0
which, in the light of (22), becomes
8P = -20P (26)

Since P> 0, Eq. (26) shows that the first variation of the performance index is
negative for o> (0. Therefore, if a is sufficiently small, the decrcase of the

performance index is guaranteed, that is,

~

P<P (27)

3.3. Stcpsize. After the linearized, two-point boundary-value problem is
solved for any given iteration, the function A(t) is available. With this function,

one can form the one-parameter family of solutions
X(t) = x(t) + aA(t) (28)

and explore the behavior of the performance index with respect to the parameter a.

For the family (28), the performance index (22) becomes a function of the form
P = P(a) (29)
At a =0, the slope of the function (29) is negative and is given by

Pa(O) = -2PQ) (30)
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Assuming that a minimum of P(a) exists, one can perform a one-dimensional
search (using quadratic interpolation, cubic interpolation, or quasilinearization)

to determine the optimum value of the stepsize, that is, the value for which
P a(cx) =0 (31)

Ideally, this procedure should be used iteratively until the modulus of the slope

satisfies the following inequality:
IP_@|<mn | (32)

where m is a small, preselcted number.

In practice, the rigorous determination of a takes time on a computer.
Therefore, one might renounce solving Eq. (13) with a particular degree of
precision and determine the stepsize in a noniterative fashion. To this effect,

we first assign the value

a=1 (33)

to the stepsize; this corresponds to full quasilinearization of Eqs. (9)-(11) and
is the value which would solve Eq. (31) exactly, should the differential equation
(9) and the boundary condition (11) be linear. Of course, the stepsize (33) is

acceptable only if
P(a) < P(0) (34)

Otherwise, the previous value of a must be replaced by some smaller value in
the range (15) (for example, with a bisection process) until Ineq. (34) is met.

This is guaranteed by the descent property of Section 3.2.
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3.4. Summary of the Algorithm. In the light of the previous discussion,

we summarize the algorithm as follows:

(a) Assume a nominal function x(t) consistent with the initial conditions (10)
and, possibly, with the final conditions (11).

(b) For the nominal function, compute the vector x - © and the matrix cpx as
functions of the time t; at the final time t = 1, compute the vector | and the matrix wx.

(c) Determine the q+1 particular solutions Aj (t) by forward integration of the
differential equation (17-1) subject to the initial conditions (19).

(d) Compute the q+1 constants kj by solving the linear algebraic system (21).

(e) Determine the function A(t) with (20).

(f) Consider the one-parameter family of solutions (28), and determine the
stepsize a in such a way that Ineq. (34) is satisfied; to this effect, perform a
bisection process on a starting from a = 1.

(g) Once the stepsize is known, compute the varied function X(t) from (28).

(h) With X(t) known, the iteration is completed; the varied function X(t)
becomes the nominal function x(t) for the next iteration; that is, return to (a), and
iterate the algorithm.

(i) The algorithm is terminated when the stopping condition (23) is satisfied.

3.5. Alternate Scheme. As an alternative to the previous algorithm, the

following scheme can be employed:
(a) Assume a nominal initial point x(0) consistent with the prescribed initial
conditions (10); integrate Eq. (9) forward to obtain the nominal function x(t), which

is suchthat x -~ @=0for 0 sts<1,
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(b) For the nominal function, compute the matrix ¢ asa function of the time
t; at the final time t = 1, compute the vector | and the matrix tbx.

(c) Determine the q + 1 particular solutions Aj (t) by forward integration of the
differential equation (17-1) subject to the initial conditions (19).

(d) Compute the q + 1 constants kj by solving the linear algebraic system (21).

(e) Determine the initial value A(0) from (20) applied at t = 0.

(f) Consider the one-parameter family of initial points
K0) = x(0) +cA() (35)

and integrate Eq. (9) forward subject to (35); determine the stepsize a in such a
way that Ineq. (34) is satisfied; to this effect, perform a bisection process on a
starting froma = 1.

(g) Once the stepsize is known, compute X(0) from (35).

(h) With X(0) known, the iteration is completed; the varied initial point
X(0) becomes the nominal initial point x(0) for the next iteration; that is, return to
(a), and iterate the algorithm.

(i) The algorithm is terminated when the stopping condition (23) is satisfied.



13

4. Numerical Examples

In this section, five numerical examples are presented using the algorithm
of Section 3.4. For simplicity, the symbols employed here denote scalar quantites.
The one-dimensional search to determine the stepsize o was performed on the
functional P; a bisection process from a = 1 was employed until Ineq. (34) was
satisfied. The algorithm was employed iteratively and was terminated when the

inequality
p<10t0 (36)

was satisfied.

All the computations were performed on the Rice University Burroughs
B-5500 computer in double-precision arithmetic; the algorithm was programmed
in FORTRAN 1V; the interval of integration was divided into 50 steps for the first
four examples and 200 steps for the fifth example. The differential system (17)
was integrated using Hamming's modified predictor-corrector method with a
special Runge-Kutta procedure to start the integration routine (Ref. 11). The
definite integral P was computed using Simpson's rule.

Example 4.1. Consider the differential equations

x=y , y=-exp(x) @37

subject to the boundary conditions

x(@©0)=0 , x(1)=0 (38)
Assume the nominal functions

x®)=0 , yt)=-1 (39)
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which are consistent with the boundary conditions (38) but not consistent with

the differential equations (37). Starting with these nominal functions, we employ

the algorithm of Section 3.4. Convergence to the solution is achieved in 3 iterations.
The numerical results are presented in Tables 1 and 2, where N denotes the iteration

number.

6 In Tables 1-2 as well as subsequent tables, all data are truncated rather than
rounded-off.
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Table 1. Performance index (Example 4.1).

a P
— 0.2x 10l
1 0.4x 10 %
1 0.1x 10”2
29

1 0.1x 10
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Table 2. Converged solution (Example 4.1, N = 3).

X y
0 0
0.0000 x 10 0.5493 x 10
-1 0
0.4984 x 10 0.4467 x 10
0.8918 x 10} 0.3394 x 10°
0.1176 x 10° 0.2284 x 10°
0.1347 x 10° 0.1148 x 10°
0.1405 x 10° -0.1508 x 10°°
0.1347 x 10° -0.1148 x 10°
0.1176 x 10° -0.2284 x 10°
-1 0
0.8918 x 10 -0.3394 x 10
0.4984 x 10" -0.4467 x 10°
-0.1324 x 10~ 22 -0.5493 x 10°
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Example 4.2. Consider the differential equations

X=yz , y=-xz , é=x-sin(22t)
subject to the boundary conditions
x0)=0 , y0)=1 , x(1)=1

Assume the nominal functions

xg)=t , yt)=1 , z@)=1

(40)

(41)

(42)

which are consistent with the boundary conditions (41), but not consistent with the

differential equations (40). Starting with these nominal functions, we employ the

algorithm of Section 3.4. Convergence to the solution is achieved in 13 iterations.

The numerical results are presented in Tables 3 and 4, where N denotes the

iteration number.
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Table 3. Performance index (Example 4.2).

N a P

0 — 0.3x 100

1 1 0.4x 1072
2 1 0.2x 1073
3 1 0.1x 1074
4 1 0.1x 107>
5 1 0.6x 1077
6 1 0.4x 10”8
7 1 0.2x 107
8 1 0.1x 10710
9 1 0.9x 10712
10 1 0.6x 102
11 1 0.3x 104
12 1 0.2x 1071
13 1 0.1x 10" ¢
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<

Table 4. Converged solution (Example 4.2, N = 13).

t x y z
0 1 1
0.0 0.0000 x 10 0.1000 x 10 .1570 x 10
0 0 ]
0.1 .1564 x 10 0.9876 x 10 .1570 x 10
0 0 1
0.2 .3090 x 10 0.9510 x 10 .1570 x 10
0.3 .4539 x 10° 0.8910 x:10° .1570 x 10"
0 0 1
0.4 .5877 x 10 0.8090 x 10 .1570 x 10
0 0 1
0.5 .7070 x 10 0.7071 x 10 .1570 x 10
0 0 1
0.6 .8089 x 10 0.5878 x 10 .1570 x 10
0.7 .8909 x 10° 0.4540 x 10° .1570 x 10}
0 0 1
0.8 .9510 x 10 0.3090 x 10 .1570 x 10
0 0 1
0.9 .9876 x 10 0.1565 x 10 .1570 x 10
1.0 .1000 x 10} 0.7479 x 10~ 1570 x 10}
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Example 4.3. Consider the differential equations

x=10y , y=10z , z=-5xz (43)

subject to the boundary conditions

x(0)=0 , y@0)=0 , y)=1 (44)

Assume the nominal functions

xt)=0 , y@)s=t , z@t)=0 (45)

which are consistent with the boundary conditions (44) but not consistent with the
differential equations (43). Starting with these nominal functions, we employ

the algorithm of Section 3.4. Convergence to the solution is achieved in 6 iterations.
The numerical results are presented in Tables 5 and 6, where N denotes the

iteration number.



Table 5.
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Performance index (Example 4.3).

a P
—_— 0.3x 102
1 0.1x 10"
1/8 0.2 x 10°
1 0.3x 10"
1 0.5x 10™*
1 0.2x 107
20

1 0.2x 10
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Converged solution (Example 4.3, N = 6).

t X y z

0.0 .0000 x 10° 0.0000 x 10° 0.3320 x 10°
0.1 .1655 x 10° 0.3297 x 10° 0.3230 x 10°

0 0 0
0.2 .6500 x 10 0.6297 x 10 0.2667 x 10

1 0 0
0.3 .1396 x 10 0.8460 x 10 0.1613 x 10
0.4 .2305 x 10" 0.9555 x 10° 0.6423 x 10°
0.5 .3283 x 10" 0.9915 x 10° 0.1590 x 10

1 0 -2
0.6 .4279 x 10 0.9989 x 10 0.2401 x 10

1 0 -3
0.7 .5279 x 10 0.9999 x 10 0.2201 x 10

1 0 , -4
0.8 .6279 x 10 0.9999 x 10 0.1230 x 10
0.9 .7279 x 10" 0.9999 x 10° 0.4339 x 1078
1.0 .8279 x 10" 0.1000 x 10° 0.4208 x 100
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Example 4.4. Consider the differential equations

k=y , ye=6y+li2x® , #s=-12x° (46)
subject to the boundary conditions
y(©)=-1, z@)=0, y(l)=0 (47)
Assume the nominal functions
xt)=0.5 , yt)=t-1 , zt)=t (48)

which arc consistent with the boundary conditions (47) but not consistent with the
differential cquations (46). Starting with these nominal functions, we employ
the algorithm of Scction 3.4. Convergence to the solution is achiceved in 4
itcrations. The numerical results are presented in Tables 7 and 8, where N

denotes the iteration number.
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Table 7. Performance index (Example 4.4).

N a P
— 0.2 x 10
1 0.5 x 10°
1 0.6x 107
1 0.1x 1072
20

1 0.4x 10
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Table 8. Converged solution (Example 4.4, N = 4).
t X y z

0 1 0

0.0 0.8256 x 10 -0.1000 x 10 0.0000 x 10
0 0 0

0.1 0.7355 x 10 -0.8115 x 10 -0.7291 x 10
0.2 0.6618 x 10° -0.6696 x 10° -0.1313 x 10"
0.3 0.6005 x 10° -0.5600 x 10° -0.1790 x 101
0.4 0.5490 x 10° -0.4734 x 10° -0.2186 x 10’
0.5 0.5053 x 10° -0.4026 x 10° -0.2519 x 10"
0.6 0.4681 x 10° -0.3418 x 10° -0.2803 x 10"
0.7 0.4368 x 10° -0.2843 x 10° -0.3048 x 10"
0 0 1

0.8 0.4114 x 10 -0.2211 x 10 -0.3263 x 10
0 0 1

0.9 0.3933 x 10 -0.1364 x 10 -0.3457 x 10
- 1

1.0 0.3858 x 10° -0.1033 x 10 -0.3638 x 10
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Example 4.5. Consider the differential equations7

%=13y , y=13z , 2=-20.15xz +1.3y> - 13u% +2.6y + 13

(49)
u=13w , w=-20.15xw +14.3 yu +2.6u-2.6
subject to the boundary conditions
x0)=0 , y@0)=0 , u(@0)=0 , y(1)=0 , u(l)=1 (50)

Assume the nominal functions

xt)=0 , y@t)y=0 , z{t)=0 , ut)=t , w(t) =0 (51)

which are consistent with the boundary conditions (50) but not consistent with the
differential equations (49). Starting with these nominal functions, we employ the
algorithm of Section 3.4. Convergence to the solution is achieved in 6 iterations.
The numerical results are presented in Tables 9 and 10, where N denotes the

iteration number.

7This example, which involves unstable differential equations, was considered
in Ref. 12.
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Table 9. Performance index (Example 4.5).

N a P
— 0.9x 102
1/2 0.3 x 102
1/2 0.8 x 10
1 0.4x 10
1 0.6 x 10~
1 0.5x 10" 10
22

1 0.3x 10
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Table 10. Converged solution (Example 4.5, N = 6).
t X y Z u w
0 0 0 0 0
0.0 0.0000 x 10 0.0000 x 10° -0.9663 x 10 .0000 x 10" 0.6529 x 10
0 0 -1 0 0
0.1 -0.5028x 10° -0.5802x 10° -0.7188 x 10 .6971 x 100 0.4220 x 10
0.2 -0.1215x 10 -0.4603x10° 0.1945x 10° 0.1100x 100 0.2036 x 10°
0.3 -0.1631x 100 -0.1744x 10° 0.2210 x 10° 0.1247 x 10° 0.3249 x 1071
0.4 -0.1688x 100  0.7033x 10"} 0.1243x 10° 0.1213 x 10} -0.7189 x 10~
1 0 -1 1 0
0.5 -0.1506 x 10 0.1844 x 10 0.3000 x 10 .1093 x 10° -0.1002 x 10
-1 -
0.6 -0.1270x 100  0.1602x 10° -0.5755x 10~ 0.9815 x 10° -0.6490 x 10}
0.7 -0.1120x 10  0.6614x 10"} -0.7534x 10 * 0.9334 x 10° -0.1024 x 10~
0.8 -0.1091x 10 -0.1365x 107 -0.4303 x 10 > 0.9447 x 10° 0.2223 x 10~
0.9 -0.1133x 100 -0.4258 x 10~ -0.1453 x 10"2 0.9774 x 10° 0.2352 x 10”
1 -20 -1 & -
1.0 -0.1173x 100 -0.1508 x 10 0.9405 x 10 .1000 x 10 0.1765 x 10
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S. Further Numerical Examples

For comparison purposes, the examples of Section 4 were recalculated
using the algorithm of Section 3.5. The nominal coordinates at t =0 were
identical with those employed in the previous section. In this algorithm, the
integration of the differential equation (9) was performed using Hamming's
modified predictor-corrector method with a special Runge-Kutta procedure to
start the integration routine (Ref. 11). Since x - ¢ =0 along each nominal curve,
the performance index P contains only the error due to violation of the final
conditions.

Computations were also performed by setting the stepsize at the fixed value
a = 1 in both the algorithm of Section 3.4 and the algorithm of Section 3.5. For
the sake of brevity, the detailed results are omitted. Only the number of iterations
at convergence is presented in Table 11.

The results show that a definite advantage exists in controlling the stepsize
a through the performance index P. For the algorithm of Section 3.4, Example
4.3, the number of iterations for convergence was 6 with stepsize control and 8
without stepsize control. For the algorithm of Section 3.5, Example 4.4, the
number of iterations for convergence was 4 with stepsize control and 20 without
stepsize control.

Of particular interest is Example 4.5, which involves rather unstable
differential equations. For this example, a solution was obtained by means of

the algorithm of Section 3.4 with stepsize control included. The algorithm of
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Section 3.4 without stepsize control and the algorithm of Section 3.5 with
or without stepsize control failed to produce a solution.

For the above reasons as well as the considerations of the previous
paragraph, it seems that the algorithm of Section 3.4 with stepsize control
included is to be preferred. It is emphasized that the above conclusions were
obhtained through particular examples and that, consequently, the subject

requires further investigation.
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Table 11. Number of iterations for convergence.

Algorithm of Section 3.4  Algorithm of Section 3.5

a<l a=1 a<l a=1
Example 4.1 3 3 3 3
Example 4.2 13 13 13 13
Example 4.3 6 8 S S
Example 4.4 4 4 6 20

Example 4.5 6 - - -
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6. Discussion and Conclusions

In this thesis, a general technique for solving nonlinear, two-point,
boundary-value problems is presented; it is assumed that the differential
system has order n and is subject to p initial conditions and q final conditions,
where p +q =n. First, the differential equations and the boundary conditions
are linearized about a nominal function x(t) satisfying the p initial conditions.
Next, the linearized system is imbedded into a more general system by means
of a scaling factor a, 0 <a <1, applied to each forcing term. Then, the method

of particular solutions (Ref. 2) is employed in order to ohtain the perturbation

Ax(t) = aA(t) leading from the nominal function x(t) to the varied function X(t);
this method differs from the adjoint method and the complementary function
method in that it employs only one differential system, namely, the nonhomo-
geneous, linearized system.

As a guide during progression of the algorithm, the performance index
P, already introduced in Ref. 10, is employed. This is the cumulative error
in the differential equations and the boundary conditions and can be proved to
have a descent property with respect to the scaling factor (or stepsize) a. The
stepsize o is determined by a one-dimensional search so as to ensure satisfaction
of the inequality P < P; this can be achieved through a bisection process starting
from a = 1. In addition, the performance index is also employed as a convergence
criterion: the algorithm is terminated when the performance index becomes

smaller than some preselected value.



33

Computationally, the present technique can be employed in two ways:
(a) the function x(t) is updated according to X(t) = x(t) + aA(t); or (b) the initial
point x(0) is updated according to X(0) = x(0) + aA(0), and the new nominal function
X(t) is obtained by forward integration of the nonlinear differential system. In
this connection, five numerical examples are presented; they illustrate (i) the
simplicity as well as the rapidity of convergence of the algorithm, (ii) the
importance of stepsize control, and (iii) the desirability of updating the function

x(t) according to Scheme (a).
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